N

N

PCNsim: A Flexible and Modular Simulator for
Payment Channel Networks
Gabriel Antonio Fontes Rebello, Gustavo Franco Camilo, Maria
Potop-Butucaru, Miguel Elias Mitre Campista, Marcelo Dias de Amorim, Luis

Henrique Maciel Kosmalski Costa

» To cite this version:

Gabriel Antonio Fontes Rebello, Gustavo Franco Camilo, Maria Potop-Butucaru, Miguel Elias Mitre
Campista, Marcelo Dias de Amorim, et al.. PCNsim: A Flexible and Modular Simulator for Payment
Channel Networks. 2022 IEEE INFOCOM, May 2022, London, United Kingdom. hal-03616584

HAL Id: hal-03616584
https://hal.science/hal-03616584

Submitted on 22 Mar 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03616584
https://hal.archives-ouvertes.fr

PCNsim: A Flexible and Modular Simulator
for Payment Channel Networks

Gabriel Antonio F. Rebello'?, Gustavo F. Camilo', Maria Potop-Butucaru?,

2

Miguel Elias M. Campista', Marcelo Dias de Amorim?, and Luis Henrique M. K. Costa!

'Universidade Federal do Rio de Janeiro, Brazil
2Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract—Payment channel networks (PCN) enable the use
of cryptocurrencies in everyday life by solving the performance
issues of blockchains. Nevertheless, the main implementations of
payment channel networks lack the flexibility to test new proposals
that can address fundamental challenges, such as efficient payment
routing and maximization of the payment success rate. In this
demo paper, we propose PCNsim, an open-source simulator based
on OMNeT++, which fully reproduces the default behavior of a
payment channel network. We build the simulator in a modular
architecture that allows easy topology/workload customization and
automates result visualization. The core mechanism of PCNsim
implements the specifications of the Lightning Network. We
evaluate our proposal with a dataset of credit card transactions in
a scale-free topology and show that it successfully demonstrates
the difference between two routing methods in different setups.

Index Terms—Blockchain, payment channels, simulation.

I. INTRODUCTION

Payment channel networks (PCN) provide a scalable solution
to improve the performance of cryptocurrencies [1], [2]. A
payment-channel network is an off-chain network that allows
users to safely send tokens via payment channels without
the need to publish each transaction in the blockchain. For
example, in Figure 1, if Alice wants to send one token to
Charlie, she can send the token to Bob, and Bob relays it to
Charlie. Because payment channels are bidirectional, the token
could also be sent in the backwards direction. This enables
micro-transactions to occur in real-time and narrows the gap
between cryptocurrencies and daily needs.

Nevertheless, payment channel networks present open chal-
lenges that we cannot address efficiently given the absence
of flexible simulators. This forces researchers to develop their
proposals over an existing PCN implementation, which imposes
several disadvantages. First, researchers are restricted to use
small testnet topologies instead of large customized networks
and workloads that represent real use cases. Second, it is
infeasible to test proposals in low-resource computers since
each user needs to run a full blockchain node that downloads the
complete history of transactions. Finally, some implementations,
such as the Lightning Network Daemon (LND), are not
optimized for high throughput, which can result in high-latency
transactions even in small networks [3].

Our contribution. We propose PCNsim!, a flexible,
lightweight, and modular open-source payment channel network

'PCNsim is available at https:/github.com/gfrebello/pcnsim.

Diana

Elvis

Fig. 1: A payment-channel network (PCN) composed of
bidirectional payment channels with limited capacity. Users
can route payments through intermediaries.

simulator. PCNsim includes topology and workload generator
modules that allow researchers to test their proposals on
different scenarios through simple commands. The core of
PCNsim extends the OMNeT++ network simulator to accurately
reproduce a PCN routing model. Our simulator follows the
message format defined in the Lightning Network set of
specifications [4] and we can extend it to simulate other PCN
implementations. Furthermore, PCNsim allows users to model
channel parameters, such as capacity and fees, based on real
data collected from the Lightning Network. As our design is
focused on network and payment routing simulation, PCNsim
waives the requirement of using an underlying blockchain and
does not demand high storage capacity.

II. SYSTEM ARCHITECTURE

We develop PCNsim’s architecture in Python, except the
core module, which we write in C++ for faster transaction
processing. The architecture, depicted in Figure 2, has five sep-
arate modules: (i) topology generator, (ii) workload generator,
(iii) core simulator, (iv) result visualizer, and (v) result storage.

The topology generator and the workload generator provide,
respectively, the network topology and the transaction set to the
simulation. The topology generator allows users to import real
network topologies or create topologies using random graph
models. PCNsim allows users to accurately model network
parameters, such as channel capacity and payment fees, with
real-world PCN information collected from a snapshot of the
Lightning Network. Our workload generator selects two random
end-hosts from the topology to act as payment sender and
receiver for each transaction. As transaction information in
PCNs is usually private, PCNsim models transaction amounts
by sampling values from real-world data such as credit-card

PCNsim | Simulation cfg.

Topology cfg.| |Topology T0p010gy: Core Result
Generator, KZ . Visualizer =
Simulator - Results
Workload cfg.| [Workload |Workload (0MNe;F++)\ Result @
Generator| 2] Storage

Fig. 2: PCNsim’s architecture. Users can easily customize
topologies and workloads via configuration files.

and e-commerce transactions, yielding realistic results. We
provide an intuitive API with several models and datasets for
easy module customization.

PCNsim’s core simulator replicates the behavior of a payment
channel network and gathers statistics. We implement the
specifications of the Lightning Network’s Basis of Lightning
Technology (BOLTSs) into the OMNeT++ simulator, including
the necessary message exchanges to establish Hashed Timelock
Contracts (HTLC) and forward payments. PCNsim keeps
HTLCs in memory rather than on disk, which enables fast
transaction processing and high-throughput payment routing.
Researchers can incorporate proposals such as new routing
methods and payment congestion control mechanisms into the

core simulator and define which statistics they want to measure.

As PCNsim runs on top of OMNeT++, the simulator also
supports OMNeT++ extensions like INET to build payment
channels on top of wireless communication protocols and
mobile networks. PCNsim’s core also removes the need for
setting a full blockchain node, creating a lightweight alternative
for users with low-resource computers.

The result visualizer displays system statistics as gathered
by the core simulator, such as the average payment success rate
or how the capacity of payment channels evolves, and allows
researchers to easily analyze the impact of their proposals
via automatically-generated graphs. Finally, the result storage
module persists the statistics into the disk for further analysis.

III. COMPARING ROUTING METHODS

We compare two routing methods (/) to demonstrate how
PCNsim works: (i) fee: Lightning Network’s fee-minimization,
which is a Dijkstra’s shortest path algorithm using channel fees
as weights, and (ii) cap: a variation of Dijsktra’s shortest path
algorithm that uses the inverse of the channel capacities as
weights. The goal of cap is to maximize the chance that the
payment will reach its destination by routing payments through
high-capacity channels. We compare the methods for different
transaction values (7y/): (i) small transactions (7 = 10€),
(i) large transactions (77, = 200€), and (iii) real credit-card
transactions® (average Ty = 88.3€). We simulate a scale-free
network with 10 nodes and channel capacities and fees sampled
from the Lightning Network. The workload comprises 1,000
transactions between random end-hosts in the network.

We show a time-series of the payment success rates for
all scenarios as measured by a random end-host in Figure 3.
We observe two interesting findings. First, increasing the

2Dataset available at https://www.kaggle.com/mlg-ulb/creditcardfraud.

—Ty=10,Ry =cap --x--Ty =200, Ry = cap
—#—=Ty =10, Ry = fee ATy =200, Ry = fee

Ty=cc,Ry=cap
Ty =cc,Ry = fee

1.0 at-n

Success Rate
o IS o I
(o)) ~ oo Ne)

<
W

0.4

3000 4000 5000

Time (s)

1000 2000 6000

Fig. 3: Transaction success rate in our simulated PCN for
several transaction values (77,) and routing methods (R ;). The
results demonstrate that the Dijkstra’s shortest path approach
with channel capacities as weights is more effective than the
Lightning Network’s fee minimization approach for all cases.

transaction value impacts the payment success rate because
large payments have a higher chance of failing when traversing
a bottleneck in the path. Second, the capacity-based variation
of Dijkstra’s algorithm, cap, yields higher success rates in all
cases and even compensates the difference in transaction values
between credit-card transactions and small transactions. Hence,
although minimizing fees reduces the cost for the end-host, it
incurs a higher chance of not completing the payment at all.

IV. CONCLUSION

Payment channel networks still present many open challenges
that must be addressed before its mass adoption. We propose
PCNsim, a PCN simulator that allows researchers to test new
ideas intuitively and flexibly. Our demonstration shows that we
can use the proposed system to efficiently compare different
routing methods and measure their impact on the behavior of
nodes and channels in a PCN.

REFERENCES

[1] G. A. F. Rebello, G. F. Camilo, L. C. B. Guimaraes, L. A. C. de Souza,
G. A. Thomaz, and O. C. M. B. Duarte, “A security and performance anal-
ysis of proof-based consensus protocols,” Annals of Telecommunications,
pp. 1-21, 2021.

[2] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016, Last access: 12 January 2022. [Online].
Available: https://www.bitcoinlightning.com/wp-content/uploads/2018/03/
lightning-network-paper.pdf

[3] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang, R. Mittal,
G. Fanti, and M. Alizadeh, “High throughput cryptocurrency routing in
payment channel networks,” in 17th USENIX NSDI, 2020, pp. 777-796.

[4] J. Poon and O. Osuntokun, “BOLT #2: Peer protocol for channel
management,” 2021, Last access: 12 January 2022. [Online].
Available: https://github.com/lightningnetwork/lightning-rfc/blob/master/
02-peer-protocol.md

This paper was funded by CNPq, CAPES - Finance Code 001, FAPERJ,
and FAPESP (18/23292-0, 15/24494-8, 15/24514-9, 15/24485-9, 14/50937-1).

