
HAL Id: hal-03616490
https://hal.science/hal-03616490

Submitted on 28 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the optimization of Software Obfuscation against
Hardware Trojans in Microprocessors

Luca Cassano, Elia Lazzeri, Nikita Litovchenko, Giorgio Di Natale

To cite this version:
Luca Cassano, Elia Lazzeri, Nikita Litovchenko, Giorgio Di Natale. On the optimization of Software
Obfuscation against Hardware Trojans in Microprocessors. IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS 2022), Apr 2022, Prague, Czech Republic.
�hal-03616490�

https://hal.science/hal-03616490
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

On the optimization of Software Obfuscation
against Hardware Trojans in Microprocessors

Luca Cassano, Elia Lazzeri, Nikita Litovchenko
Politecnico di Milano

Milano, Italy
{first_name.last_name}@polimi.it

Giorgio Di Natale
Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA

38000 Grenoble, France
giorgio.di-natale@univ-grenoble-alpes.fr

Abstract—The quest of low production cost and short time-to-
market, as well as the complexity of modern integrated circuits
pushed towards a globalization of the supply chain of silicon
devices. Such production paradigm raised a number of security
threats among which Hardware Trojan Horses (HTHs), that
became a serious issue not only for academy but also for
industry in the very last years. Indeed, it has been demonstrated
that HTHs can be inserted into microprocessors allowing the
attacker to run malicious software, to acquire root privileges
or to steal secret information. In this paper we present the
use of software obfuscation to protect systems against HTHs
that aim at stealing information from the microprocessor while
it is executing a program. Moreover, we present a Genetic
Algorithm-based approach to optimize such anti-HTH method-
ology by maximizing the obtained obfuscation while minimizing
the introduced overhead. We proved the effectiveness and
efficiency of the proposed methodology on the Ariane 64bit
RISC-V microprocessor running a set of MiBench benchmarks
and cryptographic programs.

Index Terms—Genetic Algorithm, Hardware Security, Hard-
ware Trojan Horses, Microprocessors, Software Obfuscation

I. INTRODUCTION AND RELATED WORK

The complexity of modern integrated circuits (ICs) and the
requirements related to low production cost and short time-
to-market, pushed the design and fabrication of ICs towards
a globalized supply chain [1]. This new paradigm brought a
dramatic reduction of design cost and time, but, on the other
hand, it came at the cost of a significant loss of trust in the
final system [2]. Several security threats raised in the last
years, among which Hardware Trojan Horses (HTHs) [3].

From a very high-level point of view, a HTH is a hard-
to-detect malicious modification of a design meant to stay
silent most of the time and to activate in a specific and
rare condition [3]. The goal of HWHs is to alter or stop the
nominal behavior of the system or to steal secret information.
HTHs may be inserted in any stage of the design process
and at any level of abstraction: untrusted vendors may sell
infected IP cores [4], rogue employees and untrusted CAD
tools may alter the design [5] or untrusted mask providers
and silicon foundries may maliciously modify the layout [6].

HTHs have been traditionally considered as a purely
academic issue because of their reduced complexity and
limited dangerousness. In the last years, a new menace
raised: the software exploitable HTHs [7]. Complex and
highly dangerous HTHs may be implanted in real-world
microprocessors allowing the attacker to execute a malicious

software, to modify the running software or to steal secret
information [8], or even to acquire root privileges on the host
system [9]. Moreover, in 2018, security researchers found a
HTH, the so-called Rosenbridge backdoor, in a commercial
Via Technologies C3 processor [10]. This HTH could be
activated and exploited to enter in supervisor mode by simply
executing a predefined instructions sequence. The feasibility
of implanting and activating software exploitable HTHs in
commercial microprocessors makes such attacks not only a
concern for academy but also a serious threat for industry.

A large number of methodologies for detecting HTHs has
been proposed in the last two decades [11]. Most of these
methodologies attempt to detect the presence of HTHs in
the system before deployment, by exploiting logic testing,
formal property verification, side-channel analysis, optical
inspection and proof-carrying hardware. All these techniques
suffer from a number of limitations, e.g., the difficulty of
triggering the HTHs at design time, the need for a golden
reference of the circuit under analysis, the ability of detecting
only a specific classes of HTHs.

The need for building trusted systems from untrusted com-
ponents and for providing trusted execution over untrusted
systems pushed the definition of HTHs tolerance techniques,
moving towards the new Design-for-Trust paradigm [12].
Existing HTH-ralated Design-for-Trust approaches are based
on the integration of redundant functionally equivalent IP
cores belonging to different IP vendors, like in [13], or on the
deployment of ad-hoc checkers working in parallel with the
core under protection, like in [14], [15]. Moreover, security-
aware task scheduling has been proposed [16]. Issues related
to the adoption of these methodologies are related to the fact
that they can be applied only when the hardware platform
is still to be developed and the designer has the freedom to
add redundancy and diversity. Moreover, all these approaches
protect the system against change functionality HTHs, while
they are ineffective against information stealing ones.

In this paper we introduce the use of software obfus-
cation for mitigating the dangerousness of information-
stealing HTHs in microprocessors. Moreover, we present a
genetic algorithm-based approach for the optimization of
the software obfuscation procedure such that we increase
the confusion in the program (without altering its nominal
functionality) while reducing the introduced overhead. The
advantage of such approach is that no modification of the
underlying HW platform is required. We exploit software978-1-6654-9431-1/22/$31.00 ©2022 IEEE

obfuscation to minimize the probability of exposing sensitive
information to the HTH. Indeed, starting from the original
software, we increase the usage of the microprocessor’s
registers, by adding garbage instructions, by periodically
scrambling the variables among registers and by substituting
constant values with instructions sequences.

With respect to the existing anti-Trojan Design-for-Trust
techniques, our methodology is purely software-based; there-
fore, it can be applied both when the system is still to be de-
signed as well as on already designed and deployed systems.
Moreover, our methodology does not require any redundancy
or modification to target microprocessor. The only similar
idea has been proposed in [17] where software diversity is
achieved by substituting program instructions with equivalent
ones during the fetching procedure. Nevertheless, the pro-
posal in [17] only considers sequentially-triggered change-
functionality HTHs and equivalent instructions substitution
is solely employed. The main contributions of this paper are:

• the definition of software obfuscation procedures to
protect the execution of a program from information
stealing HTHs infesting the underlying microprocessor,

• the definition of a Genetic Algorithm-based engine to
optimize the software obfuscation procedure, and

• an experimental campaign aimed at assessing the feasi-
bility of software obfuscation for security purposes and
its optimization on a set if MiBench benchmarks [18]
and other criptographic programs executed on the 64bit
Ariane RISC-V microprocessor [19].

The remainder of this paper is organized as follows: Sec-
tion II discusses the considered threat model and some back-
ground on design obfuscation; Section III presents the pro-
posed security-aware software obfuscation procedure while
Section IV presents the companion genetic algorithm-based
optimization engine; Section V reports from an experimental
campaign while Section VI discusses the security analysis;
Section VII concludes the paper.

II. BACKGROUND

A. The Considered Threat Model

Withe respect to the classical HTHs classification [3], we
take into account both triggered and always-on HTHs that
aim at stealing information from the infected microproces-
sor. Moreover, we consider HTHs infesting microprocessor’s
logic, inserted during any phase of the design process and at
any level of abstraction.

We assume a two-level information stealing attack that is
carried out by means of the inserted HTH: first, the HTH
repeatedly exfiltrates the content of a number of registers of
the microprocessor and it covertly sends it to the attacker. The
attacker collects this data to then post-process it to retrieve
sensitive information. We further assume that, when injecting
the HTH at design- or fabrication-time, the attacker knows all
the details of the hardware platform. Moreover, we assume
that the attacker has an idea about which operating system
and programs will be executed on the attacked microproces-
sor but, on the other hand, he/she cannot have all the details
about software versions and implementations.

In order to make our threat model dangerous and realistic
at the same time, we assume that the HTH is able to monitor
and exfiltrate data from a reduced number of registers of
the infected microprocessor. We believe that this assumption
is totally reasonable if we keep in mind that: i) HTHs
need to be small enough not to be detected via optical
inspection, ii) HTHs need to have a very small impact on
power consumption, electromagnetic emission and timing
of the infected system, and iii) HTHs cannot occupy the
transmission channels for a long time in order not to be
discovered. Therefore, we assume that the HTH monitors (at
runtime) the content of a fixed (at the attack design-time) and
small set of registers and exifiltrates data through a (possibly
large) number of clock cycles. Given the above discussed
limitations, we assume that the HTH is not able to change the
monitored registers, e.g., in a round-robin fashion. Finally,
based on these limitations, we also assume that the attacker
knows all the details of the deployed countermeasures but
this does not bring any advantage.

The proposed software obfuscation methodology does not
consider change-functionality and denial-of-service HTHs.

B. Design Obfuscation

Obfuscation has been largely employed both for hard-
ware [20] and software protection [21]. Generally speaking,
the goal of obfuscation is to protect the intellectual property
associated with a program or a circuit from unauthorized use
or reproduction. The goal of hardware obfuscation is to avoid
i) reverse engineering of the circuit’s netlist by observing the
circuit’s layout and of the circuit’s functionality by observing
the circuit’s netlist and ii) overproduction of unauthorized
chips to be sold in the black market. This is achieved through
the use of non-standard cells (the so-called camouflaging) or
by "locking" the netlist in order to make the fabricated circuit
unusable before unlocking it through a secret key (the so-
called logic locking).

Software obfuscation aims at making hard, e.g., for a
decompilation tool, to retrieve the functionality implemented
by a program, the meaning of a given construct or variable,
the value of constants, the structure of classes and arrays
by observing the object code. As for hardware obfuscation,
the goal of obfuscating the software is to avoid intellectual
property break. This is achieved by inserting never-executed
dummy code, by reordering or hiding instructions, by un-
rolling and extending loops, by opacifying logic conditions
and by splitting and merging arrays and data structures.

III. SECURITY-AWARE SOFTWARE OBFUSCATION

We propose to exploit software obfuscation at the
assembly-level to mitigate the dangerousness of information-
stealing HTHs in microprocessors by reducing the amount
of significant information exposed to HTHs. More in details,
starting from the original version of a program, we produce a
functionally equivalent obfuscated version that is the one that
would actually be deployed in the final system. When looking
at the (possibly infected) microprocessor architecture execut-
ing the program, software obfuscation aims at: i) spreading
sensitive information through microprocessor’s registers and
submerging it among garbage data, and ii) periodically

Figure 1: The software obfuscation framework

scrambling sensitive information among microprocessor’s
registers. Keeping in mind that the considered HTH model
is able to monitor and send to the attacker the content of
a reduced number of processor’s registers, we can argue
that the presented software obfuscation strategy achieves
the following three benefits: i) it minimizes the amount of
sensitive information exposed to the attacker, ii) it maximizes
the amount of garbage data exposed to the attacker, and iii) it
minimizes the time for which sensitive information is kept in
the same register. The proposed software obfuscation relies
on: i) garbage code insertion, ii) constants obfuscation,
and iii) register scrambling.

Our methodology is depicted in Figure 1: it takes the plain
assembly code of the program to be protected and it produces
the assembly code of the obfuscated version. The input pro-
gram and the corresponding output program are functionally
identical, i.e., the two programs produce identical outputs
when fed with identical inputs. Moreover, the methodology
takes a description of the architecture of the target micropro-
cessor (in terms of instruction set, instructions’ format and
operands and registers’ names and sizes) and a configuration
file to drive the obfuscation process. The first step of the
proposed methodology is parsing the input assembly code to
build an internal Control-Flow Graph (CFG) representation.
Then, the software obfuscation techniques are applied in the
following order: i) insertion of garbage code, ii) obfuscation
of the constants, and iii) scrambling of registers.

A. Garbage code insertion

As a first step we perform garbage code insertion. This
activity consists in randomly selecting the block of the
program where to insert the garbage code, the line of the
block after which inserting and the length of the garbage
code sequence to be inserted. The garbage instructions to
be inserted are randomly selected among the move, shift,
arithmetic and logic ones. Moreover, also the operands of
the inserted garbage instructions are randomly generated.
Therefore, in order to prevent anomalous working conditions,
no division instructions (to avoid possible divisions by zero)
and no jump instructions (to avoid jumping into unauthorized
memory areas) are inserted. The registers from which the
inserted garbage instructions read and in which they write
are chosen among the registers that are unused for most time
in the block in which the garbage code is inserted. In this
way, we maximize the usage of all registers as well as we
minimize the time between two consecutive modifications of

Table I: The parameters of the SW obfuscation framework
Name Description
Ngi # times the garbage code insertion module is invoked
Lgi Max. length of the inserted garbage code sequence
Nco # times the constant obfuscation module is invoked
Lco Max. length of the inserted obfuscation sequence
Nrs # times the register scrambling module is invoked

a register’s content. Moreover, by inserting garbage code we
also break specific instructions patterns whose identification
during program execution could be of interest for the attacker.

B. Constants obfuscation

The second software manipulation is the obfuscation of
the constant values in the program. This activity consists
in randomly selecting a block of the program and a code
line where an immediate value, i.e., a constant, is used.
Let call this identified instruction the target instruction, the
register where the constant value is stored the target register
and the constant value itself the target value. The goal of
the constant obfuscation activity is to substitute the target
instruction with a randomly long sequence of instructions
(dubbed the obfuscation sequence) such that, at the end of
its execution, it leaves the target value in the target register.
The obfuscation sequence is composed of load, move, logical
and arithmetic instructions and it employs only the registers
that are unused in the randomly chosen code block.

C. Register scrambling

The last software manipulation activity is the scrambling
of the registers in the input program. This activity consists
in selecting a program block and a target register ri actually
used in the selected block. The validity block of ri, i.e., all
the code lines of the selected block where ri is employed
is the identified and a scrambling point, i.e., the specific
instruction in the validity block after which introducing
register scrambling, is randomly selected. Finally, the register
rj that has not been used for most time in the selected
block is identified (let refer to this register as the scrambled
register), the scrambling instruction

mv rj, ri

is added at the scrambling point and rj is then substituted to
ri in all the remaining instructions of the validity block.

D. Software obfuscation parameters

The proposed software obfuscation methodology can be
configured through the set of parameters reported in Table I.
The larger Ngi, Lgi, Nco and Lco, the more obfuscated
the obtained program. On the other hand, these parameters
(except for Nrs) highly affect the introduced overhead, i.e.,
the number of additional instructions in the output program.

E. Evaluating Security-aware Software Obfuscation

Based on the previously discussed design guidelines for
security-aware software obfuscation, we defined the follow-
ing effectiveness and efficiency metrics, namely register heat
and program enlargement.

Given a register r, we define the register heat of r, dubbed
Hr, as the reverse measure of time elapsed since the last data

has been written in r. When a data is written in r, Hr is set
to HMAX and it is then decreased at each instruction cycle
until either a new data is written in r or Hr equals 0. It is
straightforward that the higher the average heat of a register
over time, and more in general of all processor’s registers,
the larger the amount of data processed by a program. As a
consequence, the more obfuscated garbage instructions and
register scrambling, the higher the average registers’ heat and
therefore the harder for an attacker to identify the sensitive
information among all the processed data.

Moreover, to assess the introduced overhead, we measure
the program enlargement as the percentage increase of the
number of assembly lines between the plain and the obfus-
cated program, dubbed ∆E.

IV. SOFTWARE OBFUSCATION OPTIMIZATION THROUGH
A GENETIC ALGORITHM-BASED ENGINE

Finding the best setting of the configuration parameters
of the software obfuscation procedure (reported in Table I)
would allow to maximize the effectiveness of the obfuscation
itself while minimizing the introduced overhead. This is the
purpose of the Genetic Algorithm-based optimization engine
described in the following.

A Genetic Algorithm (GA) is a search method based on
the analogy with the mechanisms of the biological evolution.
GAs require solutions to a problem to be encoded, i.e.,
represented as a sequence of symbols, that stands for a
chromosome (a sequence of genes) in the biological analogy.
A GA starts from an initial set (a population) of tenta-
tive solutions, ranks them according to a problem-specific
fitness function and selects the best ones according to a
parental selection function. The selected chromosomes are
then combined (through a cross-over operator) and mutated
(through a mutation operator) to produce a new population.
These operations have a degree of randomness, depending on
probability distributions whose parameters can be tuned, thus
allowing both exploitation and exploration of the solution
space. The process is repeated until a termination criterion
is met, e.g., the maximum number of populations has been
produced or the fitness function of the best solution has not
increased for a given number of consecutive populations.

In the following we present the adopted chromosome
encoding, fitness function, parental selection function and
cross-over and mutation operators.

A. Chromosome Encoding

Since the goal of the designed GA is the identification
of the best configuration parameters for the security-aware
software obfuscation procedure, the defined chromosome
consists of five genes (one for each of the parameters reported
in Table I). The genes have integer values and they are
randomly initialized when the first population is generated.

B. Fitness Function

Since the best solution identified by the GA has to max-
imize the average register heat (Hr) while minimizing the
introduced overhead (∆E), we defined two distinct values
that are calculated based on the execution the obfuscated
programs. The first value, dubbed heat, measures how hot

all the registers in the microprocessor are kept during the
program execution. The second value, dubbed enlargement,
measures how longer is the obtained obfuscated program
w.r.t. the original one. The value range of both heat and
enlargement is [−10000, 10000]; the fitness of each solution
is calculated as the sum of these two values, thus ranging
between −20000 up to 20000.

In order to calculate the value of heat, the execution time of
the program is divided into windows of c instruction cycles
each (being c the number of registers in the microproces-
sor). In each time window twi, the value hi is calculated
as follows: hi is 10000 if the content of all registers in
the microprocessor changed during twi; it is −10000 if
the content of none of the registers in the microprocessor
changed during twi and it is linearly scaled between 10000
and −10000, otherwise. The final value of heat is calculated
as the average of all the previously calculated hi values.
Similarly, the value of enlargement is 10000 if the length of
the obfuscated program is the same as the original program;
it is −10000 if the length of the obfuscated program doubles
the length of the original program and it is linearly scaled
between 10000 and −10000, otherwise.

C. Parental Selection Function

After every population has been generated and the obtained
configurations have been processed by the software obfusca-
tion procedure, the chromosomes in the population are ranked
based on their fitness. We then select the first 10% of the top-
ranked individuals and we directly place them in the next
population. We then select the first 80% of the top-ranked
individuals and we apply the cross-over operator to get the
80% individuals of the next population. Eventually, we take
the 10% worst-ranked individuals of current population and
we put them in the next population for exploration purposes.

D. Cross-over Operator

In genetic algorithms, the cross-over operator is meant to
provide exploitation of the solution space. We implemented a
single cut-point cross-over: given two parent chromosomes,
pc1 and pc2, we randomly select a cut point and we apply
it to both chromosomes, thus obtaining four chromosome
sections, pchead1 , pctail1 , pchead2 and pctail2 , where pchead1 has
the same length as pchead2 , as well as pctail1 has the same
length as pctail2 . The two descendent chromosomes, dc1 and
dc2, are then obtained by exchanging the two tail parts: dc1
will be composed as < pchead1 , pctail2 > as well as dc2 will
be composed as < pchead2 , pctail1 >.

E. Mutation Operator

The mutation operator is meant to provide exploration
of the solution space. We implemented a mutation operator
consisting in a single bitflip in the value of a gene. In order
to provide solution space exploration without compromising
the exploitation provided by the cross-over operator, the
probability of applying mutation to a chromosome grows
with the drop of positions in the chromosome ranking.
Finally, it is worth mentioning that, since mutation is applied
to every gene individually, it is possible to have multiple
mutations in a single chromosome.

Table II: The considered benchmark programs
Program #lines (Plain) #lines (Protected) Overhead
SHA 214 282 31%
RSA 624 705 13%
CRC 552 610 11%
Idea 1706 1965 15%
MatrixMul 483 552 14%
Patricia 870 1137 31%

V. EXPERIMENTAL ANALYSIS

We implemented the proposed software obfuscation
methodology and the companion Genetic Algorithm-based
optimization engine as a set of automatic Python scripts
and C programs. We targeted the 64bit Ariane RISC-V [19]
microprocessor that counts 32 user registers, its ISA and
toolchain and we considered the set of benchmark programs
reported in Table II, where the program names and corre-
sponding number of assembly lines of the plain, unprotected
version of the program are reported in the first two colums.

As a first validation note, we checked that the obfuscated
programs were always functionally equivalent to the corre-
sponding plain ones through a set of random simulations.

When considering the effectiveness of proposed optimized
software obfuscation procedure, if we look at Figure 2 we
can see that the average aggregated registers’ heat (calculated
over the entire program execution and considering all the
registers) is always much higher in the obfuscated program
than in the plain one, with an average increase about 281%.
This actually demonstrates that all the registers are more
(and more frequently) used in the obfuscated versions of
the programs. More in details, the difference between the
average Hr for the plain and obfuscated programs ranges
between 99% for SHA and 375% for Idea.

When deepening the analysis for a specific program and
when looking at a register per register average Hr (calculated
over the entire program execution) we have the confirmation
that in the plain program only few registers are employed
(and thus hot) while most registers are almost or totally cold.
Conversely, in the obfuscated program, almost all registers
are used. Figure 3 reports this analysis for CRC: it is evident
that only 6 registers are employed in the plain version, while
this number grows up to 29 in the obfuscated one.

More in depth, Figure 4 reports the heatmap representing
the cycle-per-cycle heat of all registers during the executions
of the plain and obfuscated CRC. Again, it is evident how
our proposal allows to maximize registers’ usage.

Finally, the last two columns of Table II report the number
of assembly instructions in the obfuscated program and the
introduced program enlargement. The average overhead is
about 19%, with a maximum overhead of 31% for SHA and
Patricia. We believe that this overhead is totally reason-
able if we consider that the proposed software obfuscation
methodology would make information stealing harder (as it
will be also discussed in the subsequent security analysis).

As a final remark related to the efficiency of the proposed
GA, Figure 5 reports the value of the fitness function for the
best chromosome when applying the software obfuscation
methodology and the companion search engine to CRC for a

Figure 2: Aggregated average Hr values

number of subsequent populations. It can be observed how
few generations are required to get to the final solution.

VI. SECURITY ANALYSIS

The proposed software obfuscation methodology and com-
panion optimization engine are actually able to enlarge the
set of registers employed during a program execution as
well as to spread the sensitive information through several
registers and instruction cycles. In order to effectively carry
out an information stealing attack, the attacker should be
able to monitor a much larger set of registers w.r.t. the
original program and to monitor them for a longer time.
This would of course require to implant a larger HTH which
would send much more data to the attacker, thus making
the HTH itself either harder to be implanted or easier to
be detected. Moreover, the identification of the sensitive
information among all the received data would be much
more difficult for the attacker. Therefore, we believe that
our proposal would make information stealing attack through
implanted HTHs much harder.

VII. CONCLUSIONS

We presented an automatic methodology for software
obfuscation aimed at protecting program execution over
possibly untrusted microprocessor-based systems against in-
formation stealing HTHs. Moreover, we presented a Ge-
netic Algorithm-based engine for the identification of the
best parameters for the software obfuscation procedure, thus
obtaining an optimal obfuscation both in terms of effective-
ness and introduced overhead. We proved the correctness,
effectiveness and efficiency of our proposal by applying it
to the Ariane 64bit RISC-V microprocessor running a set of
MiBench and cryptographic programs.

REFERENCES

[1] DIGITIMES, “Trends in the global ic design service market.”
http://www.digitimes.com/news/a20120313RS400.html?chid=2.

[2] M. Tehranipoor and C. Wang, Introduction to Hardware Security and
Trust. Springer-Verlag New York, 2012.

[3] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, 2010.

[4] A. Bhardwaj and S. K. Roy, “Defeating hatch: Building malicious ip
cores,” in International Symposium on VLSI Design and Test, pp. 345–
353, Springer, 2017.

[5] V. Jyothi, P. Krishnamurthy, F. Khorrami, and R. Karri, “Taint: Tool for
automated insertion of trojans,” in 2017 IEEE International Conference
on Computer Design (ICCD), pp. 545–548, 2017.

Figure 3: Register-per-register average Hr for CRC

(a) Plain (b) Obfuscated

Figure 4: In depth cycle-per-cycle register-per-register analysis of the application of the proposed methodology to CRC

Figure 5: Fitness function of the best chromosome for CRC

[6] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in International Workshop on Cryp-
tographic Hardware and Embedded Systems, pp. 197–214, Springer,
2013.

[7] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia,
“Software exploitable hardware trojans in embedded processor,” in
2012 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFT), pp. 55–58, 2012.

[8] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. Int. Conf. Computer Design,
pp. 131–134, 2012.

[9] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-
overhead malicious modifications enabling modern microprocessor
privilege escalation,” IEEE Trans. Emerging Topics in Computing,
vol. 2, no. 1, pp. 81–93, 2014.

[10] C. Domas, “Hardware backdoors in x86 cpus.”
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-
Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf, 2018.

[11] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection
techniques,” in Proc. Int. Symp. Circuits and Systems, pp. 2021–2024,
2015.

[12] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware trojans: Lessons learned after one decade of research,” ACM
Trans. Design Automation of Electronic Systems, vol. 22, pp. 6:1–6:23,
2016.

[13] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Building trustworthy
systems using untrusted components: A high-level synthesis approach,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 9, pp. 2946–2959, 2016.

[14] A. Bolat, L. Cassano, P. Reviriego, O. Ergin, and M. Ottavi, “A
microprocessor protection architecture against hardware trojans in
memories,” in 2020 15th Design Technology of Integrated Systems in
Nanoscale Era (DTIS), pp. 1–6, 2020.

[15] A. Palumbo, L. Cassano, P. Reviriego, G. Bianchi, and M. Ottavi,
“A lightweight security checking module to protect microprocessors
against hardware trojan horses,” in 2021 IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), pp. 1–6, 2021.

[16] A. Malekpour, R. Ragel, T. Li, H. Javaid, A. Ignjatovic, and
S. Parameswaran, “Hardware trojan mitigation in pipelined mpsocs,”
ACM Trans. Des. Autom. Electron. Syst., vol. 25, Jan. 2020.

[17] A. Marcelli, E. Sanchez, G. Squillerò, M. U. Jamal, A. Imtiaz,
S. Machetti, F. Mangani, P. Monti, D. Pola, A. Salvato, and M. Simili,
“Defeating hardware trojan in microprocessor cores through software
obfuscation,” in Proc. Latin-American Test Symp., pp. 1–6, 2018.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual
IEEE International Workshop on Workload Characterization. WWC-
4 (Cat. No.01EX538), pp. 3–14, 2001.

[19] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-
v core in 22-nm fdsoi technology,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, 2019.

[20] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1283–1295, 2014.

[21] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä, J. Holvitie,
S. Hyrynsalmi, and V. Leppänen, “Diversification and obfuscation
techniques for software security: A systematic literature review,”
Information and Software Technology, vol. 104, pp. 72–93, 2018.

