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Abstract In this work, we propose an optimization scheme based on a multi-objective Genetic

Algorithm (GA) for the design of orthogonal filter banks for speech compression. A parameteriza-

tion is adopted to assure that the resulting filter banks satisfy perfect reconstruction and have at

least two vanishing moments. We search for a parameter set that optimizes the coding gain and

the frequency selectivity. As the objectives are conflicting, we investigate the solution that realizes

the best compromise between the objectives criteria using the Non-dominated Sorting Genetic

Algorithm (NSGAIII). Experimental results have shown that the optimized filter banks provide

a significant gain in coding performances when comparing with the Daubechies orthogonal filter

banks for test speech signals.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Speech signals play a key role in the human communication
system. Similar to other digital signals, speech signals need
to be encoded and compressed. The fundamental purpose of

speech compression is to characterize it with the least number
of bits while maintaining its perceptual quality [1]. The speech
compression is essential either for reducing memory storage
requirements or accordingly for reducing transmission band-
width requirements. Speech compression is required for long-

distance communication, multimedia applications, video con-
ferencing systems, digital cellular communications, and many
others. To keep step with the rapid advances in these areas, dif-

ferent techniques [2] were developed to meet the growing
demand for better speech compression algorithms.

During the last two decades, Discrete Wavelet Transform

(DWT) has emerged as a powerful mathematical tool in many
areas of science and technology, especially in the field of speech
and image compression, which is implemented usually using
multi-resolution filter banks for analyzing and extracting infor-
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mation from non-stationary signals. Filter banks separate
input signals into subband components representing the
frequency-localized signal energy within each band. Subband

processing units are then adapted to the characteristics of these
subband components. The application of wavelet transform in
speech coding is studied in [3] for speech analysis, coding, and

synthesis. In this domain, the choice of filter banks used to
implement DWT is a key problem which affects coding perfor-
mance as well as the design of the coding system [4,5]. This

paper deals with orthogonal filter banks, also known as conju-
gate quadrature filter (CQF) banks. This class of filter banks
has some interesting properties, such as energy preservation,
that is critical in the design of quantization and bit allocations

algorithms [6].
The problem of orthogonal filter bank design has become

the subject of many research activities [7–15]. Some of the pro-

posed design methods are oriented to speech coding applica-
tions. For example, a new class of optimized wavelet filters
for speech compression was introduced in [11]. In this case,

the wavelet filter coefficients are obtained by simple linear opti-
mization using various techniques, such as Kaiser and Black-
man windows. The authors in [12] proposed a method for

designing a two-channel quadrature mirror filter (QMF) bank
based on Kaiser Windowing. In this technique, the cut-off fre-
quency of the prototype filter and the shape of the Kaiser win-
dow are optimized using a genetic algorithm (GA). The

resulting QMF filter bank is used as the mother wavelet in
the Discrete Wavelet Transform (DWT) tree for speech com-
pression. The study proposed in [13] presents a new speech

compression technique combining a psychoacoustic model
and uniform filter bank which is designed via optimization.
The purpose of the psychoacoustic model is to decide which

portions of the speech signal to discard without losing the
quality of the human ear. In [14], an optimized filter bank is
developed to improve speech perception by incorporating

masking techniques in the algorithm to reduce the noise effect.
The first challenge of any design method is to construct a

filter bank that satisfies perfect reconstruction (PR) in order
to recover exactly the original signal from subbands. Several

parameterization approaches have been proposed to express
PR constraint in terms of free design parameters [7,9]. These
parameters can be used by filter designers to achieve the aspi-

rated characteristics, such as: symmetry, frequency selectivity,
and so on. In addition, the number of vanishing moments
(VM), which is related to the regularity of wavelets and scaling

functions, is a crucial property of most signal processing appli-
cations, and should also be considered.

In this study, we will focus on the design of orthogonal
wavelet filter banks in the speech compression domain. The

optimization design approach presented in this work is a con-
tinuation of the improvement of earlier works in this subject.
First, we adopt the factorization of the orthogonal filter bank

presented in [7] to guarantee that the designed filter bank has a
perfect reconstruction with at least two vanishing moments.
Particularly in this work, and in order to achieve optimal filters

for speech coding, we have considered criteria of practical sig-
nificance in this field, namely: energy compaction capability or
coding gain and frequency selectivity. Accordingly, the design

problem consists in searching for the filter bank parameters
that optimize simultaneously these two criteria. Really, in
multi-objective problem, it is impossible to satisfy all criteria
maximally.To solve this problem, a multi-objective genetic
method called NSGAIII is used to find a set of compromised
solutions [16] from which the final filter bank can be selected.

The structure of this article is as follows. Section 2 is a brief

review of the wavelet transform. Section 3 describes the design
criteria of the filter bank in detail. In Section 4, we present a
short review of genetic algorithms and multi-objective opti-

mization principles. Next, we define the optimization problem
formula and the multi-objective genetic algorithm used to
design the filter bank. In Section 5, we evaluate the compres-

sion performance of the optimized filter bank on a set of test
speech signals. Finally, in Section 6, we summarize our work
and present some perspective suggestions.

2. Review of wavelet transform

Wavelet transform is an analysis tool that can be used to math-

ematically describe the information content of a signal, from a
coarser to a higher resolution [17]. The discrete wavelet trans-
form is frequently constructed by using a perfect reconstructed
finite impulse response filter bank. In this case, the signal is

divided into different decomposition (resolution) levels. These
decomposition levels include many subbands, which contain
coefficients representing the time–frequency characteristics of

the original signal.
As an example, a three level wavelet filter bank is shown in

Fig. 1. Filters H0 zð Þ and H1 zð Þ are respectively the low-pass

and high-pass filters, G0 zð Þ and G1 zð Þ are their corresponding
synthesis filters. The outputs of the low-pass and high-pass
branches are called approximations and details, respectively.

Recently, many wavelet-based methods have been devised

in order to compress speech signals [4,18,19]. The most impor-
tant characteristic of wavelet transforms, relative to data com-
pression, is that it tends to concentrate the energy of the input

signal into a relatively small number of wavelet coefficients.
Compared with the complete signal, the coding of these coef-
ficients requires fewer binary resources while maintaining sat-

isfactory quality of the reconstructed signal. In wavelet
speech coding scheme (see Fig. 2), the three most commonly
used steps are:

DWT decomposition: In this step, the filter bank is designed,
and then the DWT decomposition is performed on the speech
signal. In addition to the filter bank coefficients, the speech
coding performances are closely related to filter banks and

the number of decomposition levels [3]. In our experiments,
four wavelet decomposition levels are employed. It was recom-
mended in [3] that the adequate number of decomposition

levels for speech compression should be less or equal to five,
without any further advantages in scales of more than five.

Thresholding: Is a simple non-linear technique in which

each coefficient is compared against a threshold; if the coeffi-
cient is smaller than threshold, then set to zero; otherwise it
is maintained or modified. In general, thresholding methods
can be classified into two categories, namely, global and level

thresholding methods. In global thresholding, the decomposed
signal is classified based on single threshold value estimated
from its wavelets coefficients. In level thresholding, this value

is evaluated for each level of the wavelet decomposition tree.
In this study, global thresholding is applied. The threshold
value is given by:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2log Nð Þ

p
ð1Þ



Fig. 1 a three level wavelet filter bank.

Wavelet         
Transform Thresholding and quantization

Entropy coding

Entropy decoding
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Fig. 2 A block diagram of wavelet based speech compression.

Fig. 3 Two-channel PR filter bank.
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Where N is the number of samples in the signal.
Quantization: The purpose of this technique is to mask

irrelevant information of the signal. This minimizes the num-
ber of bits needed to store the transformed coefficients by
reducing the precision of these values. In our coding system,

wavelet coefficients are quantized using the uniform step size
computed by:

D ¼ xmax � xmin

L
ð2Þ

Where, xmax and xmin are respectively the maximum and the
minimum values in the signal and L is the number of quantiza-
tion levels.

Entropy coding: This technique reduces the statistical
redundancy in the quantized coefficients by using variable
length coding techniques such as arithmetic coding, Huffman

coding, etc.

3. Design criteria

The principle of speech coding is to use the least number of bits
to represent the speech signal while maintaining an acceptable
perceptual quality [2]. Our main goal is to design optimal

orthogonal wavelet filter banks for speech compression. For
this reason, we look for filter banks with some interesting char-
acteristics, namely perfect reconstruction, high coding gain,
good frequency selectivity and certain regularity (at least two

vanishing moments). In the following subsections, we will
describe these properties and their corresponding appropriate
measurement functions, which are defined to quantify the

effectiveness of filter banks in speech compression schemes.

3.1. Perfect reconstruction condition

Fig. 3 exposes an analysis-synthesis of a two-channel filter
bank. In this system, the relationship between the input signal
and the output one in the Z domain is given by:

bX zð Þ ¼ 1

2
G0 zð ÞH0 zð Þ þ G1 zð ÞH1 zð Þ� �

X zð Þ ð3Þ

þ 1

2
G0 zð ÞH0 �zð Þ þ G1 zð ÞH1 �zð Þ� �

X �zð Þ

Setting: G0 zð Þ ¼ H1 �zð Þ, G1 zð Þ ¼ �H0 �zð Þ the synthesis

filter eliminates the aliasing term (i.e. term of X �zð Þ). We get:
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bX zð Þ ¼ 1
2
H0 zð ÞH1 �zð Þ �H0 �zð ÞH1 zð Þ½ �X zð Þ

¼ T zð ÞX zð Þ ð4Þ

Then, the PR condition can be achieved by imposing the

transfer function T zð Þ to be a pure delay of the form

T zð Þ ¼ z�d, where d is the delay of the system.

T zð Þ ¼ z�d ð5Þ
In the two-channel FIR orthogonal filter bank, the relation

between the analysis filters is defined by [20]:

H1 zð Þ ¼ �z� L�1ð ÞH0 �z�1
� � ð6Þ

Accordingly, in time domain, the analysis and synthesis fil-

ter bank that constitutes the filter bank should satisfy the fol-
lowing equations:

h1 nð Þ ¼ �1ð Þnh0 L� n� 1ð Þ
g0 nð Þ ¼ h0 L� n� 1ð Þ
g1 nð Þ ¼ h1 L� n� 1ð Þ

n ¼ 0; � � � ;L� 1 ð7Þ

L is the length of filters that must be even.
In this case, the PR condition of (eq.4) is fulfilled if:

H0 zð ÞH0 z�1
� �þH0 �zð ÞH0 �z�1

� � ¼ 2 ð8Þ
This is equivalent to the following L=2 inequality con-

straints [20]:XL�1�2k

n¼0

h0 nð Þh0 nþ 2kð Þ ¼ dðkÞ ð9Þ

for k ¼ 0; 1; � � � ; L� 2ð Þ=2
d kð Þ is the Kronecker delta function.
Vaidyanathan [20] solved the design problem of orthogonal

filter banks by using lattice factorization in polyphase domain.

The lattice parameterizations proposed in [7,9] provide the
possibility to design a PR orthogonal filter bank through
unconstrained parameters with at least two vanishing

moments.

3.2. Coding gain

Coding gain (CG) is a widely accepted coding performance

metric used to estimate the energy concentration capability
of a filter bank. By modelling natural speech as a one-
dimensional Markov source with a correlation factor q and

assuming that the quantization errors are uncorrelated, Katto
and Yasuda [21] derived the filter-dependent coding gain:

CG qð Þ ¼ 10 log 10
YM�1

k¼0

AkBkð Þ� 1
ak

 !
ð10Þ

where: Ak ¼
P

i

P
jh

0
k ið Þh0

k jð Þq j�ij j, Bk ¼
P

ig
0
k ið Þ2

For orthogonal filters, we have: Bk ¼
P

ig
0
k ið Þ2 ¼ 1. Conse-

quently, we obtain:

CG qð Þ ¼ 10 log 10
YM�1

k¼0

Akð Þ� 1
ak

 !
ð11Þ

where h
0
k and g

0
k are respectively the kth analysis and synthesis

filter of the M channel nonuniform filter bank equivalent to
the Nd (M ¼ Nd þ 1) level tree structured filter bank (e.g.,
Fig. 4), ak is the corresponding subsampling ratio, and q is

the correlation factor.
In addition, we have:

H
0
i zð Þ ¼

H1 zð Þ if i ¼ 0

H1 zai=2
� � Qi�1

k¼0

H0 zak=2
� �

if 1 � i � M� 2

Qi
k¼0

H0 zak=2
� �

if i ¼ M� 1

8>>>>><>>>>>:
ð12Þ

where:

ak ¼ 2iþ1 if 0 � i � M� 2

2i if i ¼ M� 1

(
ð13Þ

In our work, we have used a correlation factor q = 0.95
and a six-level binary tree structure subband decomposition,
because in experiments, this level number provides the best

performance for various speech types, and is often used to
evaluate wavelet speech coding algorithms.

3.3. Frequency selectivity

The advantage of frequency selectivity in speech coding is that
the cost of coarse quantization in unimportant subbands is

lower, because the errors will be restricted to the frequency
bands where they appear. A popular criterion for evaluating
frequency selectivity in subband coding theory is to make the

two analysis low-pass and high-pass filters close to their ideal
versions, respectively.

To measure the filter frequency selectivity, we use the filter
bank Transition Band Energy (TBE) expressed by:

TBE ¼
Z p

0

H0 xð ÞH1 xð Þj j2dx ð14Þ

where Hi e
jxð Þ is the frequency response of filters Hi zð Þ.

Using parseval’s relation, we find:

TBE ¼ p
XL�1

n¼0

h0 nð Þ � h1 nð Þj j2 ð15Þ

This function is a measure of the deviation from an ideal
low-pass and high-pass filter pair [22]. If the overlap between

the filters is zero, which is only possible for ideal filters, then
TBE is zero.
4. Optimization problem formulation

Genetic algorithms form the main subset of evolutionary algo-
rithms. In an optimization application, a GA starts with an ini-

tial random population of solutions. GA optimization use
three operators to generate new solutions from the existing
ones: evaluation, crossover and mutation. In the evaluation
step, each solution is evaluated based on its objective functions

values for fitness which represents a measure of the solution
quality. Crossover simply combines a certain number of solu-
tions to form offspring. The mutation is achieved by randomly

altering solutions according to a given mutation rate. Each
iteration of this process is called a generation. The procedures:
evaluation, selection, crossover and mutation continue until a

maximum number of generations is reached or another stop-
ping criterion is satisfied.



Fig. 4 M-band filter banks (M ¼ Nd þ 1) (a) Nd level tree structured filter bank (b) Equivalent M channel nonuniform filter bank.
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However, a multi-objective optimization problem considers
more than one objective function. These objective functions

are usually conflicting with each other. In such cases, instead
of one optimal solution, there is a set of non-dominated solu-
tions where none is best for all objectives. These optimal solu-

tions are largely known as the Pareto-optimal solutions.
Because GAs use a population of solutions, they are able to
capture several members of this set in a single optimization

run. A detailed study of the approaches based on this principle
can be found in [23–26]. Among the best of these methods, the
non-dominated genetic algorithm NSGA III [16] has been
employed in this work. The flowchart of NSGAIII is shown

in Fig. 5.
Using the method presented in [7] and selecting L=2� 1

and L=2� 2 angles (L is the length of filter), we can construct

an orthogonal perfect reconstruction filter bank with 1 and 2
vanishing moments, respectively. In order to design an effec-
tive speech compression filter bank, we search for the angles

hk; k ¼ 1; � � � ;L=2�Nvmf g(Nvm is number of vanishing
moments) that maximize the coding gain and minimize the
energy of the transition zone. Our optimization problem is

multi-objective, as described below:

minhk Objf1;Objf2ð Þ; and Objf1 ¼ TBE

Objf2 ¼ 1
CG

(
ð16Þ

In our work, a set of angles is regarded as a chromosome
and is optimized by the multi-objective genetic algorithm
NSGA III to obtain a set of filter banks to minimize all pre-

specified objective functions at a satisfactory level.

5. Results and discussion

Before evaluating our results, we give some important param-
eters of the genetic algorithm used in this work. The probabil-
ities of the crossover and mutation operators are 0.5 and 0.02,

respectively. The population size is set to 80, and the chromo-
somes of the initial population are obtained by randomly gen-
erating angles in the [0, p] interval. The maximum number of

generations is set to 200.
First, our design method is applied to design orthogonal fil-

ter banks of length L ¼ 8 with at least one and two vanishing

moments. The design procedure of the optimal filter bank is
achieved via the following steps:
     end

Fig. 5 Flowchart of the NSGAIII.
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� The Multi-objective genetic method NSGAIII is first

employed to find the Pareto optimal solutions (angles hk)
that optimize the coding gain and TBE.

� The best compromised parameter hopt is selected from this
set.

� A final filter bank (filters coefficients) is computed from
these parameters using the parameterization proposed in
[7].

Fig. 6 shows a scatter plot of a set of Pareto optimal solu-
tions obtained for two optimized filter banks. In each case, a
final solution is selected from a set of Pareto optimal solutions.

The selected solutions labelled ‘‘Opt1” and ‘‘Opt2” (the index
indicates the number of vanishing moments) correspond to

the optimal angles hopt1 and h
opt
2 , respectively:

h
opt
1 ¼ 1:63241293; 2:74983605; 1:93924546f g

h
opt
2 ¼ 0:50451695; 1:86743322f g
Fig. 6 3-D scatter plot of the Pareto optimal solutio
The compression is expressed in terms of compression ratio
as:

bitratebit per sample ¼ number of bits of the compressed signal

number of samples of the original signal

ð17Þ
Here, the entropy is used to estimate the bitrate.
The distortion is measured in terms of Signal-to-Noise

Ratio SNR. It is expressed as:

SNRdB ¼ 10log10

PN
i¼1x

2 nð ÞPN
i¼1 x nð Þ � bx nð Þð Þ2 ð18Þ

where, x nð Þ and bx nð Þ are respectively the original and the
reconstructed signals. N is the length of the signal. Here, three

speech signals obtained from the TIMIT database are used for
the evaluation of the filter banks coding performance.
ns obtained for filter bank Opt1 (a) and Opt2 (b).



Table 1 Speech coding performances of the proposed design method.

Speech

Signals

Bitrate

(bps)

Db4

Filter bank

Optimized filter

bank ‘‘Opt1”

Optimized filter

bank ‘‘Opt2”

« SA1»

0.50 7.23 7.34 7.43

0.85 10.21 10.40 10.34

1.00 11.30 11.45 11.37

1.30 13.26 13.63 13.63

« SX37» 0.50 10.26 10.74 10.70

0.85 14.19 14.24 14.33

1.00 15.48 15.63 15.63

1.30 17.98 18.16 18.15

« SI1027» 0.50 7.49 7.60 7.57

0.85 10.55 10.63 10.61

1.00 12.01 12.15 12.12

1.30 14.30 14.43 14.62

Table 2 Comparison between characteristics of filter banks.

Filter bank Nvm TBE CGdB

Db4 4 0.80 9.66

Opt1 1 0.55 9.78

Opt2 2 0.65 9.74
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In experimentation, the wavelet based system discussed in
Sect. 2 has been used for speech compression. In order to ver-

ify the effectiveness of our design method, we compare the per-
formance of the optimized filter bank with the performance of
Daubechies orthogonal filter bank labelled ‘‘Db4” [27] in

Table 1. We present the SNR results of all test signals at 0.5,
0.85, 1, 1.3bps (bit per sample), highlighting the best results
in each case.

As it can be easily observed from Table 1, for all speech sig-
nals and in the majority of bitrates, our optimal filter banks
outperform the Db4 filter bank. The best SNR gain is achieved
by the filter bank ‘‘Opt1” in the case of « SX37» for bitrate

0.5bps, which has the value 0.48 db.
Fig. 7 Comparison between amplitudes of the freque
To justify the improvement of performances obtained with
our filter banks, we have compared the values of objective

functions to those of the Db4 filter bank in Table 2. Ideally,
we wish to have filter banks that achieve high coding gain
and low transition band energy. As desired, our design method

leads to a significant diminution in the approximate error
energy of the filter with respect to Db4. In addition, the filter
bank that we designed provides the highest coding gain, which

has a good correlation with coding performance.
In Fig. 7, we have compared the frequency responses of the

low-pass filters of different filter banks mentioned above. This
figure shows that our optimized filters Opt1 and Opt2 have a

stepper transition band than that of Db4. It is clear from this
figure that the Filter bank Opt2 provides the best transition
band which can be predicted from its TBE values presented

in Table 2. On the other hand, the Db4 filter bank has the most
flatness in magnitude responses at x ¼ p, which is due to his
higher number of vanishing moments (i.e. Nvm).

Fig. 8 illustrates the test speech signal ‘‘SX37” compressed
at 0.5 bps using different filter banks. While for this bitrate, all
reconstructed signals suffer from undesirable distorsions, it
ncy responses of the three analysis low-pass filters.



Table 3 Coding performances comparison of the optimized filter bank with the Db10 filter bank and the filter banks of [11].

Speech

Signals

Bitrate

(bps)

Db10

Filter bank

Kaiser10

Filter bank

Blackman10

Filter bank

Optimized filter bank*

« SA1»

0.50 7.20 7.34 7.33 7.40

0.85 10.44 10.35 10.35 10.45

1.00 11.55 11.51 11.52 11.74

1.30 13.68 13.71 13.71 13.82

« SX37» 0.50 10.71 10.90 10.87 11.04

0.85 14.55 14.54 14.51 14.52

1.00 15.88 16.06 15.99 15.95

1.30 18.38 18.43 18.39 18.45

« SI1027»

0.50 7.32 7.47 7.49 7.60

0.85 10.76 10.84 10.77 10.86

1.00 12.15 12.15 12.16 12.19

1.30 14.51 14.53 14.50 14.59

�h0 ¼ �0:0007754435 � 0:0039807964 0:0148295728 0:0157404073f
�0:0458952614 � � � � 0:0258408218 0:0518062654� 0:0334591674� 0:1151005801

0:1627206002 � � � 0:6337223808 0:6833961936 0:2001006647� 0:1731227719� 0:0590434941

� � � 0:0987661624 0:0314434730 � 0:0178884682 � 0:0039807964 0:0007754435g

Fig. 8 (a) Original speech signal (SX37) and his reconstructed signals.
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can be perceived that the optimized filter banks produce the

best ones.
Table 3 shows a comparison of the proposed wavelet filter

banks with the filter banks obtained by the optimization tech-

nique developed in [11] (see Table 1 in [11]) and the Daube-
chies filter of length 20 labelled ‘‘Db10” [27]. It is important
to note that, in order to ensure a fair comparison, the filters
should have the same length. As it can be seen, our optimized

filter bank outperforms those of Db10 as well as the filter
banks of [11] for the majority of bitrates.

6. Conclusion

In this work, we have proposed an optimization method for
designing wavelet orthogonal filter banks in a speech coding
scheme via a multi-objective genetic algorithm. A parameteri-

zation is used to implement a perfect orthogonal FIR filter
bank having one and two vanishing moments. The optimal
parameter set is the parameter set that maximizes the design

criteria (i.e., coding gain and frequency selectivity). Since the
optimization problem is multi-objective, we have exploited
the non-dominated sorting genetic algorithm NSGAIII to
solve it. This algorithm searches for a solution that achieves

a compromise between diverse design criteria, which is called
the Pareto optimal solutions.

From the obtained experimental results, it is shown that

our optimized filter banks outperform the Daubechies filter
bank as well as the optimized filter banks developed in [11].

We can state that by sacrificing the high degree of regularity

of orthogonal wavelet filter banks, superior speech compres-
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sion performance can be achieved with filters that demonstrate
good energy compaction and low subband aliasing.

The optimality of filter banks is based on the stated design

criteria. It could be interesting to search and exploit other cri-
teria related to the objective quality of the speech signal as well
as the subjective one.

Multi-objective GAs have shown that they are able to work
well in the design of orthogonal wavelet filter banks. This
design method could also be extended to other types of filter

banks in order to be exploited in future works.
In addition, there exist other novel approaches developed

for solving nonlinear optimization problems as those in [28]
and [29]. These methods can be used to design effective filter

banks and may be able to improve the coding performances.
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