
HAL Id: hal-03616400
https://hal.science/hal-03616400

Submitted on 22 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modular Tool for Automatic Summarization
Valentin Nyzam, Aurélien Bossard

To cite this version:
Valentin Nyzam, Aurélien Bossard. A Modular Tool for Automatic Summarization. 57th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, Jul 2019, Florence,
Italy. pp.189-194, �10.18653/v1/P19-3030�. �hal-03616400�

https://hal.science/hal-03616400
https://hal.archives-ouvertes.fr


A Modular Tool for Automatic Summarization

Valentin Nyzam
LIASD - Université Paris 8

v.nyzam@iut.univ-paris8.fr

Aurélien Bossard
LIASD - Université Paris 8

a.bossard@iut.univ-paris8.fr

Abstract

This paper introduces the first fine-grained
modular tool for automatic summarization.
Open source and written in Java, it is designed
to be as straightforward as possible for end-
users. Its modular architecture is meant to ease
its maintenance and the development and inte-
gration of new modules. We hope that it will
ease the work of researchers in automatic sum-
marization by providing a reliable baseline for
future works as well as an easy way to evaluate
methods on different corpora.

1 Introduction

Automatic summarization (AS) is studied since
the late 1950s (Luhn, 1958). Automatic summa-
rization methods were mostly extractive until re-
cently, where abstractive methods have emerged
thanks to the recent breakthrough in neural net-
works. Abstractive automatic summarization
methods are for the most part supervized. How-
ever, because of the automatic summarization task
complexity, huge corpora made of pairs of docu-
ments and their associated summary are needed.
For example, the CNN and Dailymail news cor-
pora on which are based the first neural-based
news automatic summarizers are composed of
more than 200,000 pairs of document and sum-
mary. Other summarization tasks can also be pro-
vided with large corpora, such as scientific articles
summarization. However, most of real-life sum-
marization tasks come without any learning cor-
pus. The cost in human resources to build such
corpora is such that unsupervized summarization
methods cannot be excluded from the research
field.

In the last decades, efforts have been made
in different fields of computer science to release
open source systems that encode several methods.

GATE1(Dowman et al., 2005) platform is an ex-
ample of such an open source system for NLP.
Other research fields such as machine learning
benefit from several open source modular systems,
e.g., Weka (Hall et al., 2009), SPMF (Fournier-
Viger et al., 2014), or Orange (Demšar et al.,
2013). To our knowledge, no such tool exists for
AS. A modular and open source tool for automatic
summarization could allow to easily test differ-
ent automatic summarization methods on differ-
ent tasks / corpora. If such a tool is proven to be
reliable, it can also be used as an acknowledged
baseline for new systems – abstractive or extrac-
tive – to compare to. In fact, we found that some
recent papers in neural abstractive summarization
compare their results with naive extractive base-
lines or even no extractive baseline at all (e.g. (See
et al., 2017) with a lead-based extractive baseline,
(Chopra et al., 2016) with no extractive baseline at
all). These works could have sorely benefited from
a straightforward and easy-to-use summarization
platform to establish fair comparisons to older ex-
tractive systems.

In this paper, we present an open source
modular tool dedicated to automatic summariza-
tion. Written in Java, it is designed to first
answer the lack of such a tool and so pro-
vide the community with an easy-to-use summa-
rization tool, to allow a straightforward mainte-
nance of existing modules and development of
new modules, and to allow methods compari-
son in a unified framework. The tool is avail-
able on GitHub : https://github.com/
ToolAutomaticSum/MOTS. We also present
a study on DUC, TAC, CNN and Dailymail cor-
pora.

1http://gate.ac.uk

https://github.com/ToolAutomaticSum/MOTS
https://github.com/ToolAutomaticSum/MOTS
http://gate.ac.uk


2 Related Work

Open source summarizers can be classified into
two categories: systems that only implement one
or more methods defined by their authors as results
of research and systems conceived as a way to im-
plement existing methods. In the first category,
one can cite MEAD (Radev et al., 2004a) that
originally implemented centroid-based extraction
method (Radev et al., 2004b) and later imple-
mented LexRank (Erkan and Radev, 2004). How-
ever, this system does not seem to be available
anymore. Among the other systems in that cat-
egory, one can cite ICSISUMM (Gillick et al.,
2009) that implements ILP-based summarization
and MUSEEC (Litvak et al., 2016). However, sys-
tems in this first category cover only a few meth-
ods among existing methods, so there was a need
for platforms with a better summarization meth-
ods coverage. SUMMA (Saggion, 2014) is a sum-
marization toolkit implemented with GATE. It in-
cludes several sentence scorers, such as LexRank,
Centroid and shallow features based. It benefits
from GATE NLP methods. Sumy2 is a more com-
plete toolkit that implements eight different ex-
traction methods, including baseline systems (ran-
dom, first sentences only). As for PKUSum-
Sum3, (Zhang et al., 2016) implements ten differ-
ent methods and handles three different summa-
rization tasks: mono-document, multi-document
and topic-based multi-document summarization.
Modularity for these two system is however lim-
ited to tokenization/stemming and the choice of
extraction method which is not decomposed itself
in modules. This is the main asset of our tool: it is
modular on a fine-grained level so automatic sum-
marization methods are not defined globally but
as a combination of small interchangeable mod-
ules. Table 1 shows details about the summa-
rization methods implemented by SUMMA, Sumy
and PKUSumSum.

3 Architecture

3.1 Modularity

Our tool is modular on a fine-grained level. Be-
cause of the modularity and the need of mod-
ule compatibility definition, we made the choice
of Java as programming language. Our tool can
handle mono and multi-document summarization,

2https://github.com/miso-belica/sumy
3https://github.com/PKULCWM/PKUSUMSUM

Multicorpus

SummarizationMethod

Abstracts

ROUGE evaluation

Genetic Algorithm

List<Process>

PreProcess

PostProcess

List<CharacteristicsBuilder>

List<IndexBuilder>

List<ScoringMethod>

SelectionMethod

Configuration
file

List<Fitness>

Figure 1: Architecture and workflow of our tool

topic-based or not. It embeds a genetic algo-
rithm to tune hyperparameters. The summariza-
tion modules are all language-independent for
multilingual summarization. Its architecture is
conceived for both extractive, semi-extractive and
abstractive paradigms. Also, using it as an end-
user is straightforward.

It is divided in two branches: one for traditional
greedy extractive methods, and one for global
search algorithms such as genetic or knapsack al-
gorithms (cf Figure 1). Our system can also handle
fully abstractive methods.

The greedy branch is divided in four steps:
• IndexBuilder: an index is built using uni-

grams or n-grams for which a set of features
is built;

• CharacteristicsBuilder: a set of features is
computed for every text chunk4 based on one
or more indexes;

• SentenceScoring: score computation for ev-
ery text chunk based on previous features;

• SelectionMethod: text chunks extraction
with a method using previous scores.

The global search algorithms branch is divided
in two steps:

• FitnessScore: a score computed for a candi-
date summary;

• SelectionMethod: the search algorithm itself
guided by the fitness.

The four steps (or atomic processings) of a sum-
marization method are independent, and they com-
municate via the Process class that controls their
execution and compatibility. Input and output of
the atomic processings are specified via inheri-
tance of a specific method and the implementation
of interfaces defined and documented in our tool.
These interfaces make the Process class able to use
Java methods to adapt input and output between
each atomic processing. All atomic processings
are independent and follow compatibility rules, so

4e.g., sentences, phrases, defined during preprocessing

https://github.com/miso-belica/sumy
https://github.com/PKULCWM/PKUSUMSUM


our system architecture is completely modular.

3.2 Embedded evaluation

If the gold standard summaries are provided with
the corpus to summarize, our tool can perform a
call to ROUGE (Lin, 2004) in order to instantly
retrieve the results of a summarization method on
a specific corpus.

3.3 Embedded genetic algorithm

All summarization methods have parameters that
influence the quality of the summaries. Optimiz-
ing these parameters for a specific task is crucial.
Litvak et al. (2010); Bossard and Rodrigues (2011)
have shown that a genetic algorithm (GA) can be
efficient for this kind of optimization. Our tool in-
tegrates a GA to optimize summarization methods
hyperparameters. We specified a dna syntax for
the definition of methods hyperparameters that can
be used by any module implemented in our tool.
The GA uses ROUGE-2 as objective function, but
it can be overrided using the modular architecture
of our tool. The GA is launched using a XML con-
figuration file that sets the hyperparameters to be
optimized.

4 Implemented modules

The IndexBuilder class defines what the tokens are
and how they are represented. We can use uni-
grams or n-grams and each of them can be asso-
ciated with a frequency, a tf.idf value, or a vector
representation computed with LSA or word em-
beddings.

The CharacteristicsBuilder class defines the
representation of a text chunk (most of the time,
text chunks are sentences). We can use a bag-
of-words representation, the mean vector (the
mean vector of all the tokens in a text chunk),
the matrix composed of all tokens vectors, the
co-occurrence graph (Rousseau and Vazirgiannis,
2013), the k-core representation (Batagelj and Za-
versnik, 2003), or a clustering based on any repre-
sentation (Bossard and Rodrigues, 2011).

The SentenceScore class defines how to com-
pute a score for a text chunk depending on the
characteristics computed previously. We can
choose the sum of tf.idf above a threshold, the sim-
ilarity with a vector or a matrix (to emulate (Radev
et al., 2004b)), the position of the text chunk in a
document.

The SelectionMethod class defines how the sen-
tences are selected. We can chose greedy algo-
rithms such as MMR (Carbonell and Goldstein,
1998), CSIS (Radev et al., 2004a), an extraction
method based on a previous clustering (Bossard,
2013) or a naive extraction of the best sentences,
or global search algorithms such as Knapsack
(Gillick et al., 2008), a genetic algorithm (Bossard
and Rodrigues, 2017), ILP (Gillick et al., 2009) or
a reinforcement algorithm (Ryang and Abekawa,
2012).

Our tool can also call an abstractive external
summarization method, retrieve the results and use
them for postprocessing or evaluation purposes.
This is not trivial as the index has to be updated in
order to take into account out of vocabulary words.

Combining these modules, we can emulate
most of the most known summarization methods.
Table 1 shows a comparison between our tool and
other summarization tools introduced in Section 2.
It shows that, to our knowledge and at the moment
we write this paper, our tool covers the most of the
summarization methods covered by other known
summarizers. Moreover, two of the three methods
not yet implemented: Manifold rank (Wan et al.,
2007) and Submodular functions (Lin and Bilmes,
2011) are currently under development and should
be released soon.

5 Using our tool

Using our tool as an end user is straightforward. It
only requires a configuration file that describes the
summarization method to use by defining every
module used and their parameters, and a descrip-
tor file for the multicorpus to summarize. Even if a
configuration file can be written from scratch, we
supply standard configuration files that encode the
most known and used summarization methods.

6 Study

We evaluated some summarization methods from
our tool on different corpora: DUC 2006 and 2007
and TAC 2008, 2009 and 2010 corpora (multidoc-
ument news summarization) and CNN/Dailymail
corpus.

We used 264.999 documents of the merged cor-
pus of CNN and Dailymail to train the pointer-
generator abstractive method. It was then vali-
dated on 11.659 documents and tested on 12.143
documents. We used the same evaluation set for
all methods. We evaluated all methods with a limit



Luhn Edmundson Lead Centroid LexRank TextRank KL incr. Manifold Rank Clust. ILP LDA Submodular Knapsack Genetic Pointer Generator
SUMMA 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7

Sumy 3 3 7 7 3 3 3 7 7 7 3 7 7 7 7

PKUSumSum 7 7 3 3 3 3 7 3 3 3 7 3 7 7 7

Our tool 3 7 3 3 3 3 3 7 3 3 3 7 3 3 3

Table 1: Comparison of systems summarization methods handling capabilities

of 100 and 50 words, because we found out that
Pointer-Generator often produces only 50 words
long summaries.

As DUC and TAC corpora do not provide
enough data to train a neural network, we used
the model learned on CNN/Dailymail to generate
a summary for DUC and TAC and applied it on the
most recent newswire article of each set of docu-
ments.

Table 2 shows the results of a small sample
of methods from our tool on DUC, TAC and
CNN/DailyMail corpora. We made the choice of
selecting methods that show the modularity of our
tool:

• lead: the first n words of a document (for
DUC and TAC the first n words of the most
recent document);

• tf.idf MMR: sentences are scored with the
sum of tf.idf scores and selected with MMR;

• Centroid MMR: sentences are scored with
the Centroid method and selected with
MMR;

• 2G Centroid MMR: sentences are scored
with the Centroid method on bigrams and se-
lected with MMR;

• 3G Centroid MMR: sentences are scored
with the Centroid method on trigrams and se-
lected with MMR;

• LexRank MMR: sentences are scored with
the LexRank method on unigrams and se-
lected with MMR;

• 2G LexRank MMR: sentences are scored
with the LexRank method on bigrams and se-
lected with MMR;

• 2G Centroid KS: sentences are scored with
the LexRank method on bigrams and selected
with a knapsack algorithm;

• 2G JS KS: sentences are extracted with a
knapsack algorithm that uses the Jensen-
Shannon divergence as fitness and bigrams as
tokens;

• ILP: sentences are extracted with an ILP
based solver under the constraints of (Gillick
et al., 2009);

• Genetic: sentences are extracted with a ge-
netic algorithm that uses the Jensen-Shannon
divergence as fitness and bigrams as tokens;

• Pointer Generator: our tool calls the Pointer
Generator (See et al., 2017) and retrieves its
results.

DUC and TAC were evaluated using the best
ROUGE parameters for these corpora in Graham
(2015)’s study. CNN/Dailymail tasks were eval-
uated using a standard configuration of ROUGE:
recall as score, bigrams as tokens, no stemming,
removal of stop words.

As one can see in Table 2, 2G JS KS,
ILP and Genetic methods perform badly on the
CNN/DailyMail task. This is due to the fact that
ILP method is designed for multidocument sum-
marization. 2G JS KS and Genetic use the same
fitness: a Jensen-Shannon divergence. We hypoth-
esize that the CNN/DailyMail documents are too
small for such a fitness based on the bigrams prob-
ability distribution. Without any suprise, Pointer
Generator performs badly on DUC and TAC cor-
pora. Even if the corpora are close (newswire arti-
cles for both DUC/TAC and CNN/DailyMail), the
task is not exactly the same. This confirms that
sometimes, unsupervized extractive methods are
the only solution available, and that such methods
shall not yet be laid aside by the research commu-
nity.

7 Conclusion

This paper introduces a new tool for automatic
summarization. Written in Java, it is completely
modular and can emulate most of the most known
extractive summarization methods. The tool is
open source, and modules can be added easily.
Compared to other existing tools, ours is mod-
ular on a fine-grained level, so a summarization
method can be defined as a combination of differ-
ent modules: token representation, text chunk rep-
resentation, text chunk scoring, and text chunk se-



DUC2006 DUC2007 TAC2008 TAC2009 TAC2010 CNN/DM(100) CNN/DM(50)
lead 6.69 8.76 8.81 7.44 6.58 19.62 9.51

tf.idf MMR 8.08 9.48 7.72 7.1 7.72 19.71 10.69
Centroid MMR 8.73 9.34 8.39 7.63 7.93 21.15 12.55

2G Centroid MMR 9.88 11.21 10.84 9.29 10.15 21.58 11.85
3G Centroid MMR 9.10 10.94 10.84 9.29 10.40 21.14 11.50

LexRank MMR 8.83 10.44 8.98 9.36 9.24 21.17 10.96
2G LexRank MMR 8.37 9.82 8.62 8.9 8.94 17.62 10.78

2G Centroid KS 8.85 9.34 8.4 9.03 9.65 18.47 10.69
2G JS KS 10.18 12.61 11.28 11.35 10.01 14.92 8.55

ILP 9.63 11.35 10.96 9.88 10.43 14.89 5.44
Genetic 10.55 12.17 11.01 10.62 10.79 15.35 10.51

Pointer Generator 3.07 7.47 3.33 5.75 4.26 10.24 10.24

Table 2: Results on DUC, TAC and CNN/Dailymail corpora

lection. As we write this paper, and to our knowl-
edge, our tool covers more automatic summariza-
tion methods than the three other existing summa-
rizers.

As an end-user, using our tool, avail-
able on GitHub (https://github.com/
ToolAutomaticSum/MOTS), is straightfor-
ward. It only needs a description of the corpus to
summarize and a configuration file that describes
the modules to use. We provide configuration files
for the most known summarization methods.

For this paper, we evaluated a small sample of
the methods that can be ran with our tool. Except
for three methods that are really specific to mul-
tidocument summarization, the evaluated summa-
rization methods beat the naive baseline that ex-
tracts the n first words from a document. This
is still a competitive baseline when summarizing
newswire articles.

Due to its ease of use and to its results on differ-
ent summarization tasks, our tool can be used as
a baseline for forthcoming research on automatic
summarization.

Acknowledgement

This work is supported by a public grant overseen
by the French National Research Agency (ANR)
as part of the “Young researchers program” (refer-
ence : ANR-16-CE38-0008 ASADERA).

References
Vladimir Batagelj and Matjaz Zaversnik. 2003. An

o(m) algorithm for cores decomposition of net-
works. CoRR, cs.DS/0310049.

Aurélien Bossard. 2013. Generating update sum-
maries: Using an unsupervized clustering algorithm
to cluster sentences. In Multi-source, Multilingual
Information Extraction and Summarization, Theory

and Applications of Natural Language Processing,
pages 205–227. Springer.

Aurélien Bossard and Christophe Rodrigues. 2011.
Combining a multi-document update summarization
system–cbseas–with a genetic algorithm. In Com-
binations of intelligent methods and applications,
pages 71–87. Springer.

Aurélien Bossard and Christophe Rodrigues. 2017. An
evolutionary algorithm for automatic summariza-
tion. In Proceedings of the International Conference
Recent Advances in Natural Language Processing,
RANLP 2017, pages 111–120, Varna, Bulgaria. IN-
COMA Ltd.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336. ACM.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98, San
Diego, California. Association for Computational
Linguistics.

Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup,
Tomaž Hočevar, Mitar Milutinovič, Martin Možina,
Matija Polajnar, Marko Toplak, Anže Starič, Miha
Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar,
Marinka Žitnik, and Blaž Zupan. 2013. Orange:
Data mining toolbox in python. Journal of Machine
Learning Research, 14:2349–2353.

Mike Dowman, Valentin Tablan, Hamish Cunningham,
and Borislav Popov. 2005. Web-assisted annotation,
semantic indexing and search of television and ra-
dio news. In Proceedings of the 14th International
World Wide Web Conference, Chiba, Japan.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of AIR, 22:457–479.

https://github.com/ToolAutomaticSum/MOTS
https://github.com/ToolAutomaticSum/MOTS
http://arxiv.org/abs/cs.DS/0310049
http://arxiv.org/abs/cs.DS/0310049
http://arxiv.org/abs/cs.DS/0310049
https://doi.org/10.26615/978-954-452-049-6_017
https://doi.org/10.26615/978-954-452-049-6_017
https://doi.org/10.26615/978-954-452-049-6_017
http://www.aclweb.org/anthology/N16-1012
http://www.aclweb.org/anthology/N16-1012
http://jmlr.org/papers/v14/demsar13a.html
http://jmlr.org/papers/v14/demsar13a.html
http://gate.ac.uk/sale/www05/web-assisted-annotation.pdf
http://gate.ac.uk/sale/www05/web-assisted-annotation.pdf
http://gate.ac.uk/sale/www05/web-assisted-annotation.pdf


P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani,
C. Wu., and V. S. Tseng. 2014. SPMF: a Java Open-
Source Pattern Mining Library. Journal of Machine
Learning Research (JMLR), 15:3389–3393.

Daniel Gillick, Benoit Favre, and Hakkani-Tür. 2008.
The icsi summarization system at tac 2008. In Proc.
of the Text Analysis Conference workshop.

Daniel Gillick, Benoit Favre, Dilek Hakkani-Tür,
Berndt Bohnet, Yang Liu, and Shasha Xie. 2009.
The icsi/utd summarization system at tac 2009. In
Proc. of the Text Analysis Conference workshop,
Gaithersburg, MD (USA).

Yvette Graham. 2015. Re-evaluating automatic sum-
marization with bleu and 192 shades of rouge. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
128–137, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop, volume 8. Barcelona, Spain.

Hui Lin and Jeff Bilmes. 2011. A class of submodu-
lar functions for document summarization. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 510–520. As-
sociation for Computational Linguistics.

Marina Litvak, Mark Last, and Menahem Friedman.
2010. A new approach to improving multilingual
summarization using a genetic algorithm. In Pro-
ceedings of the 48th annual meeting of the associ-
ation for computational linguistics, pages 927–936.
Association for Computational Linguistics.

Marina Litvak, Natalia Vanetik, Mark Last, and Elena
Churkin. 2016. Museec: A multilingual text sum-
marization tool. In Proceedings of ACL-2016 Sys-
tem Demonstrations, pages 73–78. Association for
Computational Linguistics.

H. P. Luhn. 1958. The automatic creation of literature
abstracts. IBM J. Res. Dev., 2(2):159–165.

Dragomir R Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Celebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam,
Danyu Liu, et al. 2004a. Mead-a platform for
multidocument multilingual text summarization. In
LREC.

Dragomir R Radev, Hongyan Jing, Małgorzata Styś,
and Daniel Tam. 2004b. Centroid-based summa-
rization of multiple documents. Information Pro-
cessing & Management, 40:919–938.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: new approach to ad hoc
ir. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Manage-
ment, pages 59–68. ACM.

Seonggi Ryang and Takeshi Abekawa. 2012. Frame-
work of automatic text summarization using rein-
forcement learning. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natu-
ral Language Learning, pages 256–265. Association
for Computational Linguistics.

Horacio Saggion. 2014. Creating summarization sys-
tems with summa. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland. Euro-
pean Language Resources Association (ELRA).

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1073–
1083.

Xiaojun Wan, Jianwu Yang, and Jianguo Xiao.
2007. Manifold-ranking based topic-focused multi-
document summarization. In Proceedings of the
20th International Joint Conference on Artifical In-
telligence, IJCAI’07, pages 2903–2908, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Jianmin Zhang, Tianming Wang, and Xiaojun Wan.
2016. PKUSUMSUM : A java platform for multi-
lingual document summarization. In COLING (De-
mos), pages 287–291. ACL.

http://www.philippe-fournier-viger.com/spmf/
http://www.philippe-fournier-viger.com/spmf/
http://aclweb.org/anthology/D15-1013
http://aclweb.org/anthology/D15-1013
https://doi.org/10.1145/1656274.1656278
https://doi.org/10.18653/v1/P16-4013
https://doi.org/10.18653/v1/P16-4013
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.1147/rd.22.0159
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
http://dl.acm.org/citation.cfm?id=1625275.1625743
http://dl.acm.org/citation.cfm?id=1625275.1625743

