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Abstract1

Epilepsies are characterized by electrophysiological crises in the brain,2

which were first observed thanks to electroencephalograms. However, it is3

known that seizures originating from one or more specific regions may or4

may not spread to the rest of the brain, while the exact mechanisms are5

unclear. We propose three computational models at the neural network6

scale to study the underlying dynamics of seizure propagation, understand7

which specific features play a role, and relate them to clinical or exper-8

imental observations. We consider both network features, such as the9

internal connectivity structure and single neuron model, and input prop-10

erties in our characterization. We show that a paroxysmal input leads to11

a dynamical heterogeneity inside the network, non-trivially related with12

its architecture, which may or may not entrain it into a seizure. Although13

hard to anticipate because of the intricate nature of the instability in-14

volved, the seizure propagation might be circumvented upon acting on15

the network during a specific time window. As we deal with a complex16

system, which seems to depend non trivially on various parameters, we17

propose a probabilistic approach to the propagative/non-propagative sce-18

narios, which may serve as a guide to control the seizure by using appro-19

priate stimuli.20

21

Significance: Our computational study shows the specific role that the22

inhibitory population can have and the possible dynamics regarding the propa-23

gation of seizure-like behavior in three different neuronal networks. The study24

conducts in this paper results from the combination of structural aspects and25

time-continuous measures, which helps us unravel the internal dynamics of the26

network. We show the existence of a specific time window favorable to the27

reversal of the seizure propagation.28

1 Introduction29

Epilepsy is one of the most common neurological diseases (Beghi, 2019),30

which can take numerous forms. It is associated with the presence of electro-31

physiological seizures, usually recorded in humans using electroencephalogram32

(EEG). However, EEG recordings do not allow us to probe the activity of each33

neuron within the network. More recently, the recording carried out with mi-34

croelectrode arrays made it possible to obtain spike information of the order of35

a hundred neurons (Peyrache et al., 2012; Dehghani et al., 2016).36

It has then been observed that the neuronal activity does not necessarily37
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correspond to synchronized spikes of the whole neuron population, as previously38

modeled (Computational Neuroscience in Epilepsy , 2008) and can be modeled at39

different scales from cellular to whole-brain levels(Depannemaecker, Destexhe,40

Jirsa, & Bernard, 2021; Depannemaecker et al., 2020). In fact, it turns out that41

the dynamics of neural networks during seizures are more complex (Jiruska et42

al., 2013), and the mechanisms of propagation at different scales are poorly43

understood.44

We take as a starting point examples of seizures where the inhibitory net-45

work is strongly recruited, while excitatory cells’ firing is diminished. Fig.146

shows three seizures from a patient who was recorded using Utah-arrays, be-47

fore resection surgery in a case of untractable epilepsy. From these intracranial48

recordings, 92 neurons have been identified and isolated and were classified49

into two groups: Fast-Spiking (FS) neurons and Regular-Spiking (RS) neu-50

rons, based on spike shape, autocorrelograms, and firing rates (Peyrache et51

al., 2012). Remarkably, direct cell-to-cell functional interactions were observed,52

which demonstrated that some of the FS cells are inhibitory while some of the53

RS cells are excitatory (see details in (Peyrache et al., 2012)). The three seizures54

shown in Fig.1 were taken from the analysis of (Dehghani et al., 2016) (see this55

paper for details), and are shown with the firing rate of each population of cells.56

During the seizure, we can observe a plateau of high activity of FS cells, and a57

strongly reduced activity of RS cells. This phenomenon of unbalanced dynamics58

between RS and FS cells was only seen during seizures in this patient (Dehghani59

et al., 2016). It shows that, in these three examples, the seizure was manifested60

by a strong “control” by the inhibitory FS cells, which almost silenced exci-61

tatory RS cells. It is interesting to see that a very different conclusion would62

be reached if no discrimination between RS and FS cells was performed, which63

underlies the importance of recording inhibitory cells during seizures.64
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Figure 1: Examples of inhibitory recruitment during seizures: (a) Raster
plot of three different seizures from the same patient, 92 neurones where identi-
fied 24 putatives inhibitory cells (red) and (68) putative excitatory cells (green)
(b) Corresponding firing rate of the putative inhibitory population (red) and the
putative excitatory population (green). A plateau of high activity of the puta-
tive inhibitory cells can be observed during the seizure (highlighted in dashed
purple oval). Done with data from (Dehghani et al., 2016).

The region of the brain where the seizure starts is called the seizure focus,65

although in certain patients it is distributed over several foci (Nadler & Spencer,66

2014), then the seizure spreads to other regions of the brain. When another such67

region is reached, it can in turn display a seizure, or manage to control it, thus68

preventing its spread to further regions.69

In order to gain understanding on the dynamics underlying this type of mech-70

anisms, we study the response of networks composed of three different neuron71

models (Adaptive exponential Integrate and fire (AdEx), Conductance-based72

Adaptive Exponential integrate-and-fire (CAdEx), and Hodgkin-Huxley (HH)73

models) interacting through conductance-based synapses, to an incoming parox-74

ysmal (seizure-like) perturbation. We observe two types of behavior: one where75

the incoming perturbation transfers to the excitatory population, thus making76

its activity stronger than the input, and the other where only the inhibitory77
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population strongly increases its activity, thus controlling the perturbation. We78

then propose a more precise approach, based on the AdEx network, that mixes79

structural and dynamical ingredients in order to unravel key aspects of the80

mechanisms into play. Focusing on the different input connectivity profiles for81

each node in the network, we are able to build separate groups of neurons that82

display significantly different dynamics with respect to the perturbation. Fi-83

nally, we study the possibility of a proactive approach, based on the application84

of an extra stimulus with the aim of reversing the propagative behavior.85

2 Material and methods86

2.1 Computational models87

We use for this study a mathematical model of electrophysiological activity88

based on ordinary differential equations, describing the dynamics of the neuron’s89

membrane potential through their interactions.90

Each model of neuron of the network is described by the equation (13) of91

the Adaptative Exponential integrate and fire (AdEx) model (Naud, Marcille,92

Clopath, & Gerstner, 2008).93

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
− w + Isyn (1)

τw
dw

dt
= a(V − EL)− w

When the membrane potential crosses a threshold, a spike is emitted, and the94
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system is reset as in the equation (16).95

if V ≥ VD then


V → VR

w → w + b

(2)

Parameters used for the excitatory (RS) and inhibitory (FS) populations are96

respectively Vt = −50 mV and Vt = −48 mV, Dt = 2 mV and Dt = 0.5 mV,97

b = 100 pA and b = 0 pA, and τw = 1000 ms for RS. For both population:98

Cm = 200 pF, gl = 10 nS, El = −65 mV, a = 0 nS, Vreset = −65 mV,99

trefractory = 5 ms.100

In order to compare some of the results obtained with the AdEx model101

we used two other models of neuronal activity. First the Conductance-based102

Adaptive Exponential integrate-and-fire model (CAdEx), which solves some of103

the limitation of the AdEx model (Górski, Depannemaecker, & Destexhe, 2021).104

The equation are as follow:105

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
+ gA(EA − V ) + Is (3)

τA
dgA
dt

=
ḡA

1 + exp
(

VA−V
∆A

) − gA

When the membrane potential crosses a threshold, a spike is emitted, and the106

system is reset as in the equation (16).107

if V ≥ VD then


V → VR

gA → gA + δgA

(4)

Parameters used for inhibitory (FS) populations are: gl = 10 nS, El =108

−65 mV, VT = −50 mV, ga = 0. nS, EA = −70 mV, , δgA = 0 nS, C = 200 pF,109
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∆T = 0.5 ms, VA = −45 mV, Is = 0.0 nA, refractory = 5 ms, Vreset =110

−65 mV, tauA = 0.01 ms, ∆A = 0.5 mV and for the excitatory (RS): gl = 10 nS,111

El = −65 mV, VT = −50 mV, δgA = 1 nS, EA = −65 mV, δgA = 1 nS,112

C = 200 pF, ∆T = 2 mV, VA = −30 mV, Is = 0.0 nA, trefractory = 5 ms,113

Vreset = −65 mV, tauA = 1.0 s, ∆A = 1 mV114

Then we use the Hodgkin-Huxley model (Hodgkin & Huxley, 1952), hereafter115

denoted HH, with the following equations:116

Cm
dV

dt
= −gl(El − V )− gKn4(V − EK)− gNam

3h(V − ENa) + Isyn (5)

with gating variables (in ms):117

dn

dt
=

0.032(15.− V + VT )

(exp( 15.−V+VT

5. )− 1.)
(1.− n)− 0.5exp(

10.− V + VT

40.
)n (6)

118

dh

dt
= 0.128exp(

17.− V + VT

18.
)(1.− h)− 4.

1 + exp( 40.−V+VT

5. )
h (7)

119

dm

dt
=

0.32(13.− V + VT )

(exp( 13.−V+VT

4. )− 1.)
(1−m)− 0.28(V − VT − 40.)

(exp(V−VT−40.
5. )− 1.)

m (8)

With Cm = 200 pF, El = −65 mV, ENa = 60 mV, EK = −90 mV,120

gl = 10 nS, gNa = 20 nS, gK = 6 nS, VTexc = −50 mV, VTinh = −52 mV.121

For all types of neuron models, the parameters have been chosen in bio-122

physical range (see (Naud et al., 2008; Górski et al., 2021; Hodgkin & Huxley,123

1952; Hille, 1992)) in order to keep the basal asynchronous irregular activities124

(Brunel, 2000) into a range of firing rate coherent with experimental observa-125

tions (El Boustani, Pospischil, Rudolph-Lilith, & Destexhe, 2007).126

The network is built according to a sparse and random (Erdos-Renyi type)127

architecture where a fixed probability of connection between each neurons is set128

to 5%. We considered a network model of ten thousand neurons, built according129
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to specific properties of the cortex. This network is made of an inhibitory130

(FS) and an excitatory (RS) population, respectively representing 20% and131

80% of the total size of the system as previouly done in (Carlu et al., 2020) The132

communication between neurons occurs through conductance-based synapses.133

The synaptic current is described by the equation (21).134

Isyn = gE(EE − V ) + gI(EI − V ) (9)

Where EE = 0 mV is the reversal potential of excitatory synapses and EI =135

−80 mV is the reversal potential of inhibitory synapses. gE and gI , are respec-136

tively the excitatory and inhibitory conductances, which increase by quantity137

QE = 1.5 nS and QI = 5 nS for each incoming spike. The increment of conduc-138

tance is followed by an exponential decrease according to the equation (22).139

dgE/I

dt
= −

gE/I

τsyn
(10)

with τsyn = 5 ms140

141

The network thus formed receives an external input, based on the activity142

of a third population (excitatory) of the same size as the excitatory population.143

Each of its neurons is connected to the rest of the network according to the144

same rule as mentioned earlier (fixed probability of 5 % for each connection).145

This external population produces spikes with a Poissonian distribution at a146

given tunable rate. The external perturbation that mimics the incoming seizure147

occurs through the augmentation of this firing rate.148

The shape of the latter is described by the equation (23).149
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νpert(t) = β + α ∗ (exp(−(t− T1)
2/(2. ∗ τ2on)) ∗H(−(t− T1))

+H(−(t− T2)) ∗H(t− T1) + exp(−(t− T2)
2/(2. ∗ τ2off )) ∗H(t− T2))

(11)

where H is the heaviside function and β = 6 Hz is the basal constant input.150

This function takes the general form of a high plateau, where T1 and T2 are151

the times when the perturbation reach its beginning and end respectively, and152

α defines its maximal height. τon and τoff are respectively time constants153

associated with the exponential rise and decay of the perturbation.154

2.2 Coarse graining and continuous analysis155

In order to analyse in details what mechanisms are at play in the network156

during a seizure-like event, we resort to a combination of two methods : a so-157

called structural coarse-graining, that is we gather neuron models in n groups158

according to their inhibitory in-degree (the number of inhibitory connections159

they receive, we justify this approach in the body), and we study their time160

evolution through statistics of their membrane potential (mean and alignment)161

over these groups. In other words, at each integration time step, we will obtain162

n values of mean membrane potentials, one for each group, as well as n values163

of Kuramoto order parameter (measuring alignment in groups).164

To obtain the Kuramoto order parameter, we first transform the single neu-165

rons membrane potentials into phase variables by applying a linear mapping166

vj ∈ [VR, VD] → θvj [0, π]. Then the Kuramoto order parameter is computed167

through the equation (24).168

R exp iΨ =
1

N

∑
j

exp iθvj (12)

9
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R ∈ [0, 1] gives the degree of “alignment” (if it persists in time, one would169

say synchronization) : R = 1 implies full alignment , while R = 0 implies no170

alignment whatsoever. Ψ ∈ [0, π] tells us the mean phase of the transformed171

variables (directly related to the mean membrane potential).172

Let us mention one caveat here. The membrane potentials are not mapped173

on the full circle, to avoid artificial periodicity of the obtained angles: having174

V = VR is not the same as having V = VD. One may thus ask why such a mea-175

sure is used instead of the usual measures of dispersion such as the standard176

deviation. We use the Kuramoto order parameter because it gives a naturally177

normalized quantity, thus allowing a direct comparison of what is happening at178

each time step. We acknowledge that it would be formally possible to use a nor-179

malized version of standard deviation, but the normalization procedure involved180

would not be as intuitive. Besides, the Kuramoto order parameter allows direct181

calculation of higher order types of alignment by using the generalized version:182

adding an n multiplier to the exponential would give a measure of the degree183

of partitioning into n clusters, which can turn out to be useful in subsequent184

studies.185

2.3 Code Accessibility186

The code/software described in the paper is freely available online at [URL187

redacted for double-blind review]. The code is available as Extended Data and188

is run on Linux operating system.189

3 Results190

In this section we show how, in networks of various neuron models, a parox-191

ysmal external stimulation can trigger a crisis or not, depending on various192

parameters. We show how the situations differ from model to model and what193
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are the common features. Then, we turn ourselves to a structural analysis based194

on mean firing rates of individual neuron models to guide a particular coarse-195

graining, which we use as a filter to observe the dynamics and gain further196

understanding, from both qualitative and quantitative perspectives. Finally we197

show how this study can guide proactive approach to reduce the chances of crisis198

propagation.199

3.1 Propagative and Non-propagative behaviors200

Figure 2: Firing rate of the network populations in response to a per-
turbation: propagative and non-propagative behaviors (respectively left and
right columns) for AdEx model ((a) and (b)), with amplitude of perturbation
α = 80Hz and τslope = 100ms ; CAdEx model ((c) and (d)) with α = 70Hz
and τslope = 80ms ; HH model (e) with α = 60Hz and τslope = 60ms and (f)
with α = 140Hz and τslope = 60ms. [FIGURE MODIFIED]

In this study we assume that the networks depicted in the previous section201
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represent a small cortical area receiving connections from an epileptic focus.202

Specifically, the arrival of the seizure is modeled by a sudden rise in the firing203

rate of the external (afferent) Poisson region where the crisis comes from, or204

originates. In other words, we are not concerned with how crises originate205

(epileptogenesis), but how they can propagate. Therefore, we will frame our206

analysis into two main behaviors : propagative, i.e the network develops an207

excitatory firing rate greater than the input, which makes it able to propagate208

the crisis to efferent regions, and non-propagative behavior where the excitatory209

firing rate is lower than the input, thus attenuating the incoming signal.210

As mentioned (and detailed) in the method section, the perturbation starts211

with an exponential growth followed by a plateau and ends with an exponential212

decrease, going back to the basal level, see blue curves in Fig.2). We show213

in this figure the response of the various networks to this type of disturbance.214

Here we can distinguish between two classes of macroscopic differences between215

propagative and non-propagative scenarios : one where the difference is binary216

(AdEx and CAdEx), ie the network either features217

a very strong increase in the firing rate of the inhibitory and excitatory218

populations, either the sharp increase in the firing rate concerns the inhibitory219

population only, thus strongly limiting the activity of the excitatory population220

(consequently preventing the disturbance from spreading to the next region).221

From this perspective, the propagative scenario can be understood as a loss222

of balance between excitatory and inhibitory firing rates, which the network223

struggles to find once the excitatory population has exploded. Interestingly224

these two scenarios can occur for the same global shape of the perturbation225

but changing only the noise and network realizations. It must be noted that226

the 200Hz maximum frequencies measured here are the results of the temporal227

binning of the global spiking dynamics, taken as T = 5ms, which corresponds to228

12
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the refractory time of the single neurons in Adex and CAdEx. Upon choosing229

a shorter binning, e.g T = 1ms, higher frequency peaks are observed, going230

up to 800Hz, thus hinting at overall faster dynamics. The second class (HH)231

shows a rather continuous difference between propagative and non-propagative232

behaviors, depending on the amplitude of the perturbation (this will become233

clearer in the next section). This said, there is still some degree of stiffness in234

the HH scenario, where the non-propagative case shows peaks of both excitatory235

and inhibitory activities at the beginning and end of the plateau.236

Figure 3: Grid search on the amplitude and slope of the incoming
perturbation for each network. Panels (a) and (b) show the number of re-
alizations which propagate, respectively for Adex and CAdEx networks. Panels
(c) and (d) show respectively, for HH networks, the means and standard devia-
tions (over realizations) of the difference of firing rates between excitatory and
Poisson populations (∆ firing rate = νe − νPois), averaged over the length of
the plateau.[FIGURE MODIFIED]
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3.2 Parameter search237

To study how the shape of the perturbation affects the networks response, we238

screened different time constants of the exponential growth rates and maximum239

amplitude of the plateau with 100 seeds (for both network and noise realizations)240

for each couple of values, see Fig.3)241

and probed, in the case of AdEx and CAdEx (respectively (a) and (b),242

the number of realizations which did not yield propagative behavior. In the243

HH case, the perspective is a little different : we chose to show two figures,244

displaying means and standard deviations over realizations of the difference245

in firing rate between excitatory and Poisson populations (averaged over the246

plateau), ∆ firing rate = νe − νPois rate (respectively (c) and (d)). As can247

be expected, for all networks (AdEx, CAdEx and HH) the amplitude of the248

perturbation plays a determinant role in the type of scenario we eventually find249

(propagative or not), however in opposite directions and of different nature.250

Indeed, for both AdEx and CAdEx, increasing the amplitude increases the251

chance of having a propagative scenario for a fixed slope, in a binary fashion,252

while in the case of HH the contrary is observed, and in a continuous fashion.253

Furthermore, in AdEx and CAdEx networks, we observe that when the arrival254

of the disturbance is abrupt (i.e. small time constant for exponential growth),255

it is systematically propagative, no matter which amplitude is considered in the256

range [60 − 120Hz]. On the other hand, if the perturbation rises sufficiently257

slowly (i.e. large exponential time constant), it does not significantly affect258

the excitatory population of the network. These observations show that we are259

dealing with a phenomenon where dynamics play a crucial role. Also, we observe260

a slight coupling effect between slope and amplitude : for higher amplitudes,261

the propagation range extends to slower perturbations. On the contrary, in262

the HH network, it seems that the slope does not play any major role, hinting263
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at a much less dynamical effect : the difference manifest themselves as local264

equilibria of the networks under considerations, reached no matter the time265

course. Moreover, the standard deviations, besides showing no clear dependence266

on neither amplitude nor slope, are very small compared to the means, thus267

evidencing that noise neither plays any significant part here. These observations268

highlight once again deep differences between the two types of network and their269

respective phenomenology.270

Interestingly, in the case of AdEx and CAdEx, there exists a limit, bi-stable271

region where the perturbation may or may not propagate in the network, de-272

pending on the noise realisation. Thus, the global scenario does not trivially273

depend on the amplitude and time constants of the perturbation in this region,274

which, besides being of primary importance in the case of seizure propagation,275

also makes it a perfect candidate to study more deeply the internal mechanisms276

at play, and will thus be the main focus of the remainder of this paper.277

3.3 Influence of structural aspects on the dynamics278

In the following, we turn our attention to the bi-stable region of AdEx and279

CAdEx networks, where the two behaviors are present, and investigate what280

can be the source of the divergence. There are two main differences between281

the simulations under consideration: the realization of the network structure282

and the realization of the external input, as both rely on random number gener-283

ators. We have therefore successively fixed each of them, and observed that the284

two behaviors were still present. Also, the global scenarios were indistinguish-285

able from those showed so far. First, this allows us to fix the network structure286

(which will become determinant in this part) without losing the richness of the287

phenomenology. Second, this tells us that what shapes the distinction between288

the two phenomena is more complex than a single question of structure, or real-289
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ization of the input. Another perspective is then needed to explore the internal290

dynamics of the network in both scenarios. As the models into consideration291

have very large number of dimensions, as well as quite intricate structures, brute292

force analytical approaches are simply not conceivable.293

Let us then take a step back and investigate the relationship between the294

firing rate of each neuron and its number of afferent (input) connections of295

the three kinds: excitatory (NExc
inp ), inhibitory (N Inh

inp ) and Poissonian (NPois
inp ).296

Fig.4(a) shows the average firing rates (νNP
E and νNP

I ) measured over the whole297

non-propagative (NP) scenario for each neuron in the AdEx network (simply298

defined as the total number of spikes divided by the total integration time,299

after having discarded a transient), plotted as a function of the three different300

connectivity profiles.301

Note here that averaging over simulations for the sake of robustness might302

be a delicate matter, as we might lose constitutive differences in the process.303

As we are dealing with highly variable situations, we have to make compro-304

mises between generalizability and relevance. Therefore, we start with a single305

realization to then guide larger and more systematic investigations.306

Interestingly, we see a much stronger influence coming from the inhibitory307

in-degree than from the Poissonian and excitatory ones. Counter-intuitively,308

it even seems that excitatory in-degree has barely any effect at all on total309

measured firing rates. Indeed, from the point of view of Pearson’s correlation,310

inhibitory in-degree is much more (anti)-correlated with the firing rate than the311

excitatory in-degree (almost no correlation) or the Poissonian in-degree (little312

correlation). Note that we observe the same structure for propagative situations313

(results not shown). This said we can compile the previous results and analyze314

whether the most salient in-degrees (inhibitory and Poissonian) has any influ-315

ence on the difference between propagative and non-propagative situations, see316
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Figure 4: Influence of connectivity on single neurons firing rates: (a)
Influence of poissonian (NPois

inp ), excitatory (NExc
inp ) and inhibitory (N Inh

inp ) input

connectivity on the firing rates of excitatory neurons (νNP
E ), and inhibitory ones

(νNP
I ) in non-propagative scenario (NP) of the AdEx network. The standard

pearson correlation coefficient ρ is estimated. (b) Time averaged single neu-
ron firing rates and differences in propagative vs non-propagative regimes, as a
function of both inhibitory and poissonian in-degrees.[FIGURE MODIFIED]17
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Fig.4(b).317

Here we see that the global dependency of the average single neuron firing318

rates on inhibitory and Poissonian connectivity does not qualitatively change319

between propagative and non-propagative regimes. However, the difference dis-320

plays an inverse dependency on both variables: despite maintaining the same321

general hierarchical structure, the crisis tends to compensate a little bit for it.322

In other words, the neurons that are initially less firing, due to their struc-323

tural properties, are the most impacted by the crisis. Furthermore, it must be324

noted that, although there is no correlation between inhibitory and Poissonian325

in-degrees (as can be expected from random connectivities), we still see a slope326

of the firing rate in the 2D+color representation, highlighting that they both327

play a role in the single neurons long term dynamics.328

Although these results are not sufficient to explain the propagation or non-329

propagation behaviors, it is already worth pointing that, not only they establish330

a first link between structure and dynamics, but give insight on how differences331

of dynamics are correlated with structure, hence giving interesting leads on pos-332

sible ways of analyzing time-series. Indeed one can think of deploying algorithms333

to infer structural or functional connectivity from the spiking regimes of single334

neurons in both “nominal” and crisis dynamics, as well as their difference.335

However, it seems necessary from our current perspective to go deeper into336

the temporal evolution. In order to probe whether the differences in the indi-337

vidual mean firing rates give single neurons specific roles in the dynamics, we338

now start classifying in the AdEx network the indices of the neurons in the339

raster plot according to the total number of spikes they emit during the whole340

simulation. We chose for this purpose a representative propagative scenario for341

two reasons : 1) it is clearly the most consequential case in the context of seizure342

dynamics and spreading, hence 2) if no distinction is visible here, the previous343
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static approach (in the sense “time-averaged”) would be of little dynamical rel-344

evance. The sequence of propagation of the perturbation then appears visually,345

see Fig.5(a). We observe, in the case of propagation a fast cascade, which is con-346

sistent with the experimental observations (Neumann et al., 2017): the model347

shows that some neurons are quickly ”entrained” in a sequence at the onset of348

the seizure. In addition, there is no perfect synchronization of the action poten-349

tials of all neurons. This is an interesting result, coherent with the observations350

on epilepsy in the last decade (Jiruska et al., 2013).351

Figure 5: Dynamics in propagative situation (AdEx): (a) Raster plot
of a simulation with propagative behavior, neuron indices are sorted according
to the number of spikes during the simulation. A ”cascade” phenomenon can
be observed when zooming on the onset of the perturbation propagation in
the excitatory population. (b) The same cascade phenomenon is observed when
neuron indices are sorted in function of the number of inhibitory inputs received.

Secondly, we examine the same situation, but sorting neuron indices as a352

function of the number of inhibitory inputs they receive (as shown Fig. 5(b), as353

it is the most influential structural feature we observed. Here too, the cascade354

phenomenon is clearly visible, showing that the inhibitory input connectivity355

has a central influence on the dynamics at play during the perturbation.356
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Figure 6: Dynamics in propagative situation (CAdEx and HH): Same
plot as previously shown but for CAdEx network ((a) spike-sorting, (b) in-
hibitory in-degree sorting) and HH network ((c) spike-sorting, (d) inhibitory
in-degree sorting). Cascade phenomena are still observable in panels (a),(b)
and (d), hence showing its robustness, but not in (c), where propagation takes
a slightly different form, highlighting the contrast induced by different perspec-
tives on a single complex dynamics.[NEW FIGURE]

Fig.6 shows the same pictures for CAdEx and HH networks. We see here357

that CAdEx network’s behaviors are very similar to AdEx : sorting with firing358

rate or inhibitory in-degree give very similar structures and we can distinguish359

here too the cascading effect at the onset of the perturbation, following the360

indices. HH networks show quite a different phenomenology. First the two361

sorting do not show the same structures, which hints at a more sublte mapping362

between inhibitory in-degree and long-term single neuron model dynamics. In363

the firing rate sorting, we can still distinguish 3 blocs of distinct activity, and364

thus of populations, corresponding to the 3 key periods of the simulation : before365

stimulation, at the onset, and during the stimulation. Interestingly it seems that366

before and during the stimulation different populations of neuron models are367
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distinctly mobilized. While before the stimulation, the central neurons (with368

respect to their indices) are active, a double cascade contaminates the rest369

of them (towards higher and lower indices) at the onset, ending in a general370

surge of activity. This must be contrasted with the in-degree sorting panel,371

where the cascade is more unidirectional, as the main activity slides from low372

connectivity indices (less connected) to the higher ones, until all neurons fire.373

This emphasizes the importance of the perspective chosen to analyse complex374

behavior.375

Altogether these results show the relevance of adopting a perspective based376

on the inhibitory in-degree : it yields interesting insights on the internal or-377

ganisation of the network before and during the paroxysmal event. In the378

next section, we push further this analysis by comparing propagative and non-379

propagative scenario, and make use of the continuous measures introduced in380

Material and Methods.381

3.4 Continuous measures on subgroups of neurons382

We now move to a deeper investigation of the AdEx networks behavior, in383

order to better grasp the internal dynamical structure into play. We chose this384

model among the three because : 1) it is the simplest, which 2) reduces the385

computational burden for a more systematic analysis, although 3) it can still386

yield various types of single neuron dynamics (which makes it a relevant model387

per se) and 4) is widely use for neuronal network simulations. To achieve so, we388

first consider groups of neurons defined by their inhibitory in-degree. These are389

somewhat artificial, as they are only statistical reflections of topological aspects390

of the network (i.e, there is no reason to think a priori that all neurons having391

n inhibitory inputs would have more privileged links among themselves than392

with those having n + 1). However, they allow in principle a variable degree393
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of categorization, based upon the sampling of the inhibitory in-degree distri-394

bution, which eventually leads to different levels of (nonlinear) coarse-graining395

(although we will consider only one such sampling here). This is a first bottom-396

up step towards a coarser description of the system, and hence, may guide397

reliable modeling attempts at larger scales. Secondly, we switch our analysis to398

continuous variables, which allow a finer and more systematic analysis of the399

dynamics, as they don’t depend on spike times. Indeed, although spike tim-400

ings are the most accessible collective measures in real-life systems, which make401

them the most fitted candidates for “transferable” studies, we want here to take402

advantage of the virtues of mathematical modeling to probe the insides of these403

simulations, to then be able to draw conclusions on more accessible observables.404

We focus here uniquely on membrane potentials, as they are the closest proxy405

of the firing dynamics in the network and chose to use two main measures based406

on them: the mean µV and a modified Kuramoto order parameter R, which407

gives a naturally normalized measure of instantaneous alignment (or similarity)408

of the membrane potentials. Both are defined in time, over a class of neurons.409

Note here that the network connectivity is still held fixed, as these calculations410

require a lot of time and computational power, especially as we always consider411

50 noise realizations. We will give evidence of the robustness of our observations412

in the next part.413

414

Mean membrane potential in time415

We show in Fig.7(a)-(b) the mean membrane potential µV defined for each416

group of excitatory (RS) and inhibitory (FS) neurons in time, averaged over417

realizations (top row), and standard deviation over realizations (bottom row),418

in propagation (a) and non-propagation (b) scenarios. The different realizations419

refer here to the incoming noisy input, while the network structure is held fixed.420
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All the data presented from now are obtained by regrouping neurons having421

the exact same inhibitory in-degree, thus corresponding to a discrete one-to-one422

sampling of the input distribution. Note that, given the network architecture423

under consideration, the mean number of afferent inhibitory synapses, defined424

over both populations of neurons, is defined by µi = Ni × pconnect = 2000 ×425

0.05 = 100, whereNi is the total number of inhibitory neurons and pconnect is the426

connection probability, while the standard deviation is σi =
√
Ni × pconnect =427

10. Besides, the groups are defined operationally, by grouping in the range428

n ∈ [0, 200] the neurons receiving n inputs. Thus, if no neuron receives n inputs,429

the group is not represented. Accordingly, having approximately 60 groups tells430

us that we sample the distribution from around ±30, that is 3σi.431

We see from this figure that the inhibitory in-degree profile seems to play a432

major role in the overall dynamics. Indeed, as the perturbation is growing, we433

can first observe a strong effect on the mean membrane potential of every ex-434

citatory neuron, then followed by a low-potential cascade initiated from weakly435

coupled neurons and following the group structure. This latter effect is much436

clearer in the case of inhibitory neurons, where the cascade follows very well the437

input profile, in both propagative and non-propagative scenarios. Note that the438

low-potential area can be easily understood as a high-firing regime: neurons fire439

as soon as they leave their resting potential, thus displaying very low values of440

membrane potential when calculated (and sampled) over time.441

Interestingly these pictures show that, up to the decisive point of the crises,442

the continuous measures look very similar, thus hinting at an instantaneous443

finite-size fluctuation causing the whole network to explode. Also, it is note-444

worthy that the new “hierarchy” set by the cascade is conserved in the non-445

propagative regime, while propagation seems to have an overall reset effect.446

Also, we see from these graphs that there is a particular time window where447
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the variance of the mean membrane potential is larger for the most inhibitory-448

connected neurons, in both RS and FS populations (although it appears clearer449

for RS ones here, because of the need to rescale the FS colorbar to have com-450

parable results). We found that this time window defines the period when the451

network can actually switch to propagation: the high variance corresponds to452

different times when various realizations “explode”, and thus defines a region of453

instability.454

A central point to raise here is that what makes the difference between455

propagative and non-propagative scenarios is most likely not an infinitesimal456

instability defined from a macroscopic perspective, i.e, that is due to a positive457

eigenvalue of a Jacobian defined from a large scale representation (Mean-Field458

for example), otherwise the non-propagative behavior would simply not be ob-459

servable (as, except for chaotic dynamics, we do not observe unstable trajec-460

tories in phase space). Indeed, what differs between the various simulations is461

the noise realization of the external input, which may, or may not, bring the462

system to a point of instability. The external Poissonian drive, with finite-size463

fluctuations is thus constitutive of the scenarios we observe.464

To gain more insight into the diversity of dynamics across neuron groups,465

we turn our attention to a measure of alignment, or synchronisation, namely466

the Kuramoto order parameter R.467

Kuramoto order parameter468

We show in Fig.8(a)-(b) the Kuramoto order parameter R defined for each469

group of excitatory (RS) and inhibitory (FS) neurons in time, averaged over470

realizations (top row), and standard deviation over realizations (bottom row),471

in propagation (a) and non-propagation (b) scenarios.472

The cascade previously observed is clearly visible for the average R, in the473

form of a “desynchronization cascade”. We note here that this illustrates a474
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Figure 7: Mean membrane potential over subgroups of neurons for
each group defined as a function of their incoming inhibitory connections, aver-
aged over 50 noise realizations (17 non-propagative and 33 propagative). Color
maps correspond for each group to the average membrane potential (top) and
standard-deviation (bottom) across noise realizations in the propagative sit-
uations (a) and non-propagative situations (b) for both excitatory (RS) and
inhibitory (FS) populations. The blue windows highlight the (time) region
where the system either switches to a propagative regime, or remains stable.
(c) Steady-state profiles (for fixed external input) of µV for RS neurons, to-
gether with various profiles for different amplitudes of perturbation, captured
right before typical time of crisis, at respectively 1950ms (60Hz), 1950ms (80Hz),
1930ms (100Hz, as the crisis develops before 1950ms). Networks are the same
as previously analyzed, except when stated Net. 2. Standard errors estimated
over noise realizations are shown in shaded areas.[FIGURE MODIFIED]
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recruitment process between two radically different regimes having nonetheless475

similar alignment features : a fluctuation-driven asynchronous irregular (AI)476

dynamics, where membrane potentials are mostly conditioned by the balance477

of inhibitory versus excitatory inputs, and a crisis characterized by high spik-478

ing and membrane potentials clamped by refractoriness. The desynchronization479

cascade thus establishes a strict limit between them, while showing a significant480

degree of symmetry : the times right before or right after the cascade are in-481

distinguishable, from the point of view of the inhibitory neurons, except at the482

end of the non-propagative regime. Interestingly in this case, it appears that483

the misalignment of the neuron groups finally attained is constantly fueled by484

the network, thus hinting at a fundamentally out-of-equilibrium steady state.485

From the standard deviation perspective, two main features are worth pointing.486

First, we can again clearly observe the instability window, characterized by high487

standard deviation between realizations in propagative scenarios. Secondly, we488

can observe a significant variability between the various cascades observed in ex-489

citatory cells (particularly the low indices), while a very weak one for inhibitory490

ones. In other words, the excitatory cascade may take various forms in both491

propagative and non-propagative scenarios, while the inhibitory one remains492

quite robust, even with respect to the non-equilibrium state mentioned before.493

3.5 Dynamic versus static approach494

We have seen that changing the slope and the amplitude of the signal may495

trigger (or not) a crisis, thus hinting that the time evolution of the perturbation496

is central. Then we observed a hierarchical structure setting in from the point of497

view of continuous measures, following the perturbation. However, fundamen-498

tal questions remain: how much of this latter phenomenon is actually dynamic?499

Would we find the same structures if we bombarded the network with a fixed500
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input at, say, 80Hz? Can we observe the same structures for scenarios which501

are always, or never, propagative (no matter the noise realization) ? This would502

indicate that the structures observed thus far might have little to do with the503

crisis phenomenology itself but would either be the mere results of strong condi-504

tioning of the network by the level of input (if static structures are similar), or505

simply not yield any explanation for the instability we observe (if always/never506

propagative scenarios show similar features).507

We now turn our attention to Fig.7(c), which displays the static µV profiles508

in RS population obtained for fixed external inputs (Stat. curves), together with509

the profiles captured at the typical onset of the crisis, for various amplitudes:510

60Hz (never propagative), 80Hz (sometimes propagative) and 100Hz (always511

propagative). The network realization is the same as previously analyzed, except512

when explicitly stated (Net. 2), where we refer to another connectivity. For the513

80Hz scenarios with the first network (the one we have been investigating so514

far), we kept the splitting of the realizations between propagative and non-515

propagative, to highlight the potential differences of structures.516

First, as previously observed, the profiles obtained for propagative versus517

non-propagative regimes are very similar at the onset. Then, we clearly see518

that the µV profiles extracted from the dynamical situations (hereafter called519

the dynamical profiles) are very different from the static ones.520

Besides, it is worth pointing that the profile obtained for a 80Hz amplitude521

with a different random realization of the network (where all 50 noise realiza-522

tions are put together, based on the previous observation that propagative and523

non-propagative scenarios show very similar structures) is very similar to those524

already shown, with small standard error, which, together with the previous525

observation that noise and network realizations seem to play similar roles, un-526

derlie a robust network phenomenology. Furthermore, we see that the profiles527
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obtained for 60Hz, 80Hz and 100Hz amplitudes are different. The nature of528

their differences is of great interest for low indices, where we observe that 60Hz529

and 100Hz profiles are located on opposite sides of the central 80Hz profile: their530

ordering in this region is consistent with that of their degree of instability we531

have observed so far. This said, the dynamical profiles yet show similar qual-532

itative features : they all are non-monotonous and display two well-separated533

parts. Indeed, for low indices (until 30) µV is increasing with values starting534

around the lowest of the static profiles ( 10Hz), while their high indices part535

is more aligned with high static profiles. Interestingly, we see that for 60Hz536

and 80Hz the right part is well aligned with the static profile obtained for sim-537

ilar inputs. This does not seem to be the case for 100Hz, although the static538

input simulation displays some instability, which makes their comparison less539

relevant. Although it is not straightforward to link µV with the instantaneous540

regime, we have seen that low values can be associated with high firings (the541

neurons spending most of their time clamped at −65mV). This would help un-542

derstanding what is happening here: for higher values of amplitude, the less543

inhibitory-connected neurons are firing more, and can thus entrain the rest of544

the network.545

Fig.8(c) shows the Kuramoto counterpart of the latter figure. Here the R546

profiles display structures quite different from those observed for µV . Indeed,547

the various static profiles do not display such clear variability as for µV , al-548

though little differences can still be observed: high inputs seem to show more549

variability in low indices, while ending at higher values for higher indices. More550

importantly, the dynamical profiles are here too very different, from the static551

ones, and among themselves. Besides, propagative and non-propagative simu-552

lations show little differences here too, and the profiles corresponding to same553

amplitude (80Hz) and different network architecture (Net. 2) also overlap here.554

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481321doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481321
http://creativecommons.org/licenses/by-nc-nd/4.0/


Interestingly we can also observe that the 60Hz and 100Hz profiles are different555

and located apart from the 80Hz, although they also show different magnitudes556

of their inverted peaks. Given that the ordering of these magnitudes are not557

consistent with the various degrees of instability, we suggest that the position558

of the peak might be the relevant criterion. This would be consistent with the559

observations we made thus far, and confirm our previously suggested scenario:560

as the more we approach the center group, the more neurons are considered561

(gaussian distribution), the green peak (100Hz) tells us that more neurons have562

undergone the desynchronization cascade we mentioned earlier, that is, more563

neurons have already “switched side” and entered a high firing regime, thus564

giving more inertia to the cascade phenomenon. The middle scenario (80Hz)565

would then sit on a tipping point, that is a point separating two radically dif-566

ferent dynamical regimes of the system.567

These latter observations show that, from the perspective of both mean568

membrane potential and Kuramoto order parameter calculated inside the groups569

formed from inhibitory in-degree, we are in the presence of a structured behavior570

which emerges from an intricate interaction between dynamics and architecture,571

and which cannot be recovered from static approaches. Moreover, the various572

sizes of the groups and their impact on the phenomena we observe highlight573

that multiscale dynamics is a hallmark of the observed scenarios.574

3.6 Can seizure propagation be controlled by external in-575

puts?576

Now that we have established how the structure of the dynamics allows or577

not the propagation of the paroxysmal perturbation (although the proximal578

cause relies on noise fluctuations), we investigate whether we could use the pre-579

vious finding of a strong instability window for the 80Hz dynamical scenario to580
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Figure 8: Kuramoto R of membrane potentials over subgroups of neu-
rons for each group defined as a function of their incoming inhibitory connec-
tions, averaged over 50 noise realizations (17 non-propagative and 33 propaga-
tive). Color maps correspond for each group to the average membrane potential
(top) and standard-deviation (bottom) across noise realizations in the propaga-
tive situations (a) and non-propagative situations (b) for both excitatory (RS)
and inhibitory (FS) populations. The blue windows highlight the (time) region
where the system either switches to a propagative regime, or remains stable.
(c) Steady-state profiles (for fixed external input) of R for RS neurons, together
with various profiles for different amplitudes of perturbation, captured right
before typical time of crisis, at respectively 1950ms (60Hz), 1950ms (80Hz),
1930ms (100Hz, as the crises develops before 1950ms). Networks are the same
as previously analyzed, except when stated Net. 2. Standard errors estimated
over noise realizations are shown in shaded areas.[FIGURE MODIFIED]
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alter the fate of the AdEx network dynamics. This approach is based on the581

following reasoning : we have observed, with a detailed analysis, the existence582

of a particular time window in the network under consideration (Net. 1) in583

this scenario, which implies a strong uncertainty on its global response. Thus,584

we want to design a stimulation protocol to reduce the chance of crisis propa-585

gation, based on this observation, but which does not require the same level of586

analysis, hence making it applicable inline and without the need of extensive587

computational power.588

To achieve so, we apply a Gaussian stimulation, with 10 ms time constant,589

two different amplitudes (1Hz and 5Hz), positive or negative, through a vari-590

ation of the external excitatory input. For simulations performed under the591

same conditions, the stimulations were applied at different times as detailed in592

Tables 1(a)-(b). These tables show, for a total number of 100 simulations (with593

same network structure but different noise realizations), among which 72 were594

propagative, what relative percentage of simulations has undergone a triggering595

and a cancellation of crisis respectively.596

We see that it is possible to somewhat “reverse” the situation, thanks to597

(or because of) the stimulation: in certain cases, it triggers a crisis propagation598

when none was initially occurring (Table 1(a)), and in other cases, it prevents599

one (Table 1(b)). We observe that if the possibility of “triggering” the propaga-600

tion by stimulation can take place for different times of peak, it remains more601

important when it occurs in the time window identified previously. This effect602

is even more visible in the reverse situation, in which propagation is prevented.603

A notably interesting case is that more than 50% of the crises are prevented604

if a stimulation of -5 Hz is applied in the same time window. This could open605

interesting leads in furthering qualitative comparisons between computational606

simulations and real-life situations, and eventually guide future interventions.607
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(a) time of peak +1Hz +5Hz -1Hz -5Hz
t = 1500ms 0.25 0.1786 0.2857 0.25
t = 1850ms 0.178 0.1786 0.2143 0.2143
t = 1950ms 0.0357 0.6071 0.2143 0.5
t = 1975ms 0.7143 1.0 0.25 0.28572
t = 2000ms 0.6071 1.0 0.0 0.0714
t = 2500ms 0.0 0.0 0.0 0.0

(b) time of peak +1Hz +5Hz -1Hz -5Hz
t = 1500ms 0.1806 0.1944 0.1528 0.1389
t = 1850ms 0.1389 0.1944 0.0972 0.1528
t = 1950ms 0.1528 0.2361 0.125 0.0694
t = 1975ms 0.0972 0.0 0.3472 0.3889
t = 2000ms 0.0139 0.0 0.25 0.5556
t = 2500ms 0.0 0.0 0.0 0.0972

Table 1: Triggered and prevented events: (a) Percentage of triggered prop-
agation events, from an initial number of 38 non-propagative behaviors. High-
light in blue ≥ 25% and in red ≥ 50%. (b) Percentage of prevented events,
from 72 initially propagative behaviors. Highlighted in blue ≥ 25% and in red
≥ 50%. The time of peak corresponds to the moment where the maximum of
the stimulus is reached, the amplitude corresponds to a variation of the external
input (see the main text)

4 Discussion608

In this computational work we studied the response of various spiking neu-609

ral networks to paroxysmal inputs. We observed that the same networks can610

display various types of responses, depending on its nature (the neuron model611

used at its nodes), the shape of the perturbation (here we analysed particularly612

a plateau-like input with various slopes and amplitudes) and the realization of613

the random number generator. In the case of AdEx and CAdEx, two radically614

different responses to a qualitatively similar incoming excitatory perturbation615

are observed. Indeed, the latter could either contaminate the excitatory popu-616

lation and thus allow the crisis to propagate to efferent areas, or be “controlled”617

by the activity of the inhibitory population, keeping the excitatory population618

at a low activity level, thus preventing further propagation. The response of the619
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network depends not only on the amplitude of the perturbation but also on the620

“speed” at which it occurs. This is consistent with experimental observations.621

Interestingly, in the case of a HH network, our investigations show very different622

network responses, where only the amplitude of the perturbation plays a role623

and where no variability on noise realizations is observed.624

A rich literature shows that seizures can be classified according to their625

onset/offset features described by bifurcation types(Saggio et al., 2020; Saggio,626

Spiegler, Bernard, & Jirsa, 2017; Jirsa, Stacey, Quilichini, Ivanov, & Bernard,627

2014). The most observed bifurcation at the onset of a seizure is a saddle-node628

bifurcation (Saggio et al., 2017), which is characterized by an abrupt change in629

the baseline of the electrophysiological signal (Jirsa et al., 2014). We observed in630

the current work that perturbations are always propagative in AdEx and CAdEx631

networks when they rise abruptly in the network. There is here an interesting632

correspondence revealing the importance of the onset of seizure dynamics, as633

it has been shown from a clinical point of view (Lagarde et al., 2018). It is634

worth noting that the absence of such phenomenology in HH networks (for the635

scenarios we considered) raises interesting questions in the modeling of seizure636

dynamics, but also more generally in neuronal networks : how the quantitative637

differences (number of variables) and qualitative differences (types of processes638

taken into account) in the single neuron models affect the global dynamics ?639

Are more precise models always the best in all respects ? This places back640

the importance of the the choice (of model, of parameters) in the center of the641

discussion : by modeling a neuronal network and observing a phenomenon which642

resembles reality, we are not testing whether the specific ingredients we chose643

are constitutive of this phenomenon, but how they would be if they were chosen644

a priori. It is only the systematic cross-model observations and comparisons,645

that can yield such answer as necessary and sufficient ingredients to observe a646
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phenomenon.647

Note that, in clinical observations, the most accessible measurements are648

made on a macroscopic scale. In the study proposed here, we observe the649

activities at a smaller descriptive scale by building a network of neuron models.650

We thus have a complex system of very high dimension, rendering a priori651

impossible to obtain a simple description of the dynamics, which motivates the652

statistical approach proposed here. With this type of analysis, we were able to653

track in time key features of the underlying dynamics, especially those supported654

by the structure of the network : inhibitory in-degree can be mobilized to explain655

global differences in network response. Indeed, we proposed a coarse-grained656

description of the network dynamics based on inhibitory in-degree, allowing us657

to capture internal processes that were not visible at first, and which play a658

significant role in the global out-of-equilibrium dynamics. This opens the way659

to a flexible modeling framework of internal subpopulations, whose precision660

can be adapted to the most significant level of description, depending on the661

context and the questions asked.662

We have also established that not only this structure matters, but also its663

interaction with instantaneous finite-size fluctuations of the noise and the time664

evolution of the global dynamics. These are all constitutive of the observed665

behaviors, and none can be neglected to understand them, which after all, is a666

universal feature of complex systems.667

Also, our results showed that, for the AdEx network, there exists a time668

window, characterized by a high variance across noise realizations, during which669

it is possible to reverse the behavior by applying an appropriate stimulation.670

The use of a stimulus to interrupt a seizure has been applied in the past in the671

case of absence seizure (Rajna & Lona, 1989). These results have been used as672

bases of computational studies at the scale of the EEG (Taylor et al., 2014).673
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Computational work on the response of a network model to stimuli to disrupt674

seizure-like activities has shown the importance of the precise timing of the675

stimulation (Anderson, Kudela, Cho, Bergey, & Franaszczuk, 2007). Then, the676

use of electrode stimulation has been developed in rodents (Pais-Vieira et al.,677

2016). These different approaches have been implemented, including deep brain678

stimulation, vagus nerve stimulation (Boon, Cock, Mertens, & Trinka, 2018) and679

magnetic stimulation (Ye & Kaszuba, 2019). However, experimental recordings680

of the response to stimuli do not allow us to understand the mechanisms of681

large populations of neurons. Indeed, even if progress in calcium imaging or in682

multi-electrode arrays has made it possible since this last decade to record a683

large number of neurons simultaneously, we do not yet have access to the exact684

structure of the network they constitute. The study presented here is thus a685

proof of concept, based on a specific network model.686

This said, the advantage of such a computational study is two-fold. On687

the one hand, linking internal structure with measured dynamics could foster688

more systematic interactions between experimentalists and theoreticians, with689

the constant goal of refining models to render them closer to reality and/or690

better at predicting real-life situations. On the other hand, it can shed lights691

on possible guidance for the design of new experimental protocols aimed at692

preventing the spread (or generalization) of epileptic seizures.693

Generally speaking, our models describe an interesting variety of network694

dynamics in relation to the propagation of strong incoming perturbations. The695

studies on the dynamics of “crises” in networks of neuron models are a recent de-696

veloping field (Computational Neuroscience in Epilepsy , 2008; Naze, Bernard, &697

Jirsa, 2015; Rich, Hutt, Skinner, Valiante, & Lefebvre, 2020; Depannemaecker et698

al., 2021). Another approach proposes to study computationally how a network699

can be stabilized by the means of an external modulatory stimulus and internal700
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noise, and consequently, avoid the seizure-like regime (Rich et al., 2020). They701

also show the specific implications of the inhibitory population. Thus recent702

studies are complementary to offer an understanding of the different facets of703

this phenomenon of seizure.704

Future work should examine the large-scale consequences of these properties,705

and for this, it will be necessary to design macroscopic population models that706

capture the propagative/non-propagative aspects of the seizure, while taking707

into account internal heterogeneities of the network (work in progress).708
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Equations835

Adex model:

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
− w + Isyn (13)

τw
dw

dt
= a(V − EL)− w

if V ≥ VD then


V → VR

w → w + b

(14)

CAdEx model:

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
+ gA(EA − V ) + Is (15)

τA
dgA
dt

=
ḡA

1 + exp
(

VA−V
∆A

) − gA

(16).836

if V ≥ VD then


V → VR

gA → gA + δgA

(16)

HH model:

Cm
dV

dt
= −gl(El − V )− gKn4(V − EK)− gNam

3h(V − ENa) + Isyn (17)

with gating variables (in ms):837

dn

dt
=

0.032(15.− V + VT )

(exp( 15.−V+VT

5. )− 1.)
(1.− n)− 0.5exp(

10.− V + VT

40.
)n (18)

838

dh

dt
= 0.128exp(

17.− V + VT

18.
)(1.− h)− 4.

1 + exp( 40.−V+VT

5. )
h (19)
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dm

dt
=

0.32(13.− V + VT )

(exp( 13.−V+VT

4. )− 1.)
(1−m)− 0.28(V − VT − 40.)

(exp(V−VT−40.
5. )− 1.)

m (20)

839

840

Conductance-based synapses:841

Isyn = gE(EE − V ) + gI(EI − V ) (21)

dgE/I

dt
= −

gE/I

τsyn
(22)

External perturbation:842

νpert(t) = β + α ∗ (exp(−(t− T1)
2/(2. ∗ τ2on)) ∗H(−(t− T1))

+H(−(t− T2)) ∗H(t− T1) + exp(−(t− T2)
2/(2. ∗ τ2off )) ∗H(t− T2))

(23)

Kuramoto order parameter:843

R exp iΨ =
1

N

∑
j

exp iθvj (24)
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