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1 Abstract

2 Epilepsies are characterized by electrophysiological crises in the brain,
3 which were first observed thanks to electroencephalograms. However, it is
4 known that seizures originating from one or more specific regions may or
5 may not spread to the rest of the brain, while the exact mechanisms are
6 unclear. We propose three computational models at the neural network
7 scale to study the underlying dynamics of seizure propagation, understand
8 which specific features play a role, and relate them to clinical or exper-
9 imental observations. We consider both network features, such as the
10 internal connectivity structure and single neuron model, and input prop-
11 erties in our characterization. We show that a paroxysmal input leads to
12 a dynamical heterogeneity inside the network, non-trivially related with
13 its architecture, which may or may not entrain it into a seizure. Although
14 hard to anticipate because of the intricate nature of the instability in-
15 volved, the seizure propagation might be circumvented upon acting on
16 the network during a specific time window. As we deal with a complex
17 system, which seems to depend non trivially on various parameters, we
18 propose a probabilistic approach to the propagative/non-propagative sce-
19 narios, which may serve as a guide to control the seizure by using appro-
20 priate stimuli.

21

2 Significance: Our computational study shows the specific role that the

23 inhibitory population can have and the possible dynamics regarding the propa-
2 gation of seizure-like behavior in three different neuronal networks. The study
»s  conducts in this paper results from the combination of structural aspects and
% time-continuous measures, which helps us unravel the internal dynamics of the
27 network. We show the existence of a specific time window favorable to the
s reversal of the seizure propagation.

» 1 Introduction

30 Epilepsy is one of the most common neurological diseases (Beghi, 2019),
s which can take numerous forms. It is associated with the presence of electro-
22 physiological seizures, usually recorded in humans using electroencephalogram
1 (EEG). However, EEG recordings do not allow us to probe the activity of each
s neuron within the network. More recently, the recording carried out with mi-
s croelectrode arrays made it possible to obtain spike information of the order of
s a hundred neurons (Peyrache et al., 2012; Dehghani et al., 2016).

¥ It has then been observed that the neuronal activity does not necessarily
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s correspond to synchronized spikes of the whole neuron population, as previously
» modeled (Computational Neuroscience in Epilepsy, 2008) and can be modeled at
w different scales from cellular to whole-brain levels(Depannemaecker, Destexhe,
aJirsa, & Bernard, 2021; Depannemaecker et al., 2020). In fact, it turns out that
«2 the dynamics of neural networks during seizures are more complex (Jiruska et
« al., 2013), and the mechanisms of propagation at different scales are poorly
« understood.

s We take as a starting point examples of seizures where the inhibitory net-
s work is strongly recruited, while excitatory cells’ firing is diminished. Fig.1
a7 shows three seizures from a patient who was recorded using Utah-arrays, be-
4 fore resection surgery in a case of untractable epilepsy. From these intracranial
s recordings, 92 neurons have been identified and isolated and were classified
5o into two groups: Fast-Spiking (FS) neurons and Regular-Spiking (RS) neu-
s rons, based on spike shape, autocorrelograms, and firing rates (Peyrache et
2 al., 2012). Remarkably, direct cell-to-cell functional interactions were observed,
ss which demonstrated that some of the FS cells are inhibitory while some of the
s« RS cells are excitatory (see details in (Peyrache et al., 2012)). The three seizures
55 shown in Fig.1 were taken from the analysis of (Dehghani et al., 2016) (see this
ss paper for details), and are shown with the firing rate of each population of cells.
57 During the seizure, we can observe a plateau of high activity of FS cells, and a
ss  strongly reduced activity of RS cells. This phenomenon of unbalanced dynamics
5o between RS and FS cells was only seen during seizures in this patient (Dehghani
o et al., 2016). It shows that, in these three examples, the seizure was manifested
e by a strong “control” by the inhibitory FS cells, which almost silenced exci-
e tatory RS cells. It is interesting to see that a very different conclusion would
&3 be reached if no discrimination between RS and FS cells was performed, which

e underlies the importance of recording inhibitory cells during seizures.
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Figure 1: Examples of inhibitory recruitment during seizures: (a) Raster
plot of three different seizures from the same patient, 92 neurones where identi-
fied 24 putatives inhibitory cells (red) and (68) putative excitatory cells (green)
(b) Corresponding firing rate of the putative inhibitory population (red) and the
putative excitatory population (green). A plateau of high activity of the puta-
tive inhibitory cells can be observed during the seizure (highlighted in dashed
purple oval). Done with data from (Dehghani et al., 2016).

6 The region of the brain where the seizure starts is called the seizure focus,
s although in certain patients it is distributed over several foci (Nadler & Spencer,
&7 2014), then the seizure spreads to other regions of the brain. When another such
e region is reached, it can in turn display a seizure, or manage to control it, thus
e preventing its spread to further regions.

70 In order to gain understanding on the dynamics underlying this type of mech-
7 anisms, we study the response of networks composed of three different neuron
2 models (Adaptive exponential Integrate and fire (AdEx), Conductance-based
7z Adaptive Exponential integrate-and-fire (CAdEx), and Hodgkin-Huxley (HH)
7+ models) interacting through conductance-based synapses, to an incoming parox-
7 ysmal (seizure-like) perturbation. We observe two types of behavior: one where
7 the incoming perturbation transfers to the excitatory population, thus making

77 its activity stronger than the input, and the other where only the inhibitory
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7 population strongly increases its activity, thus controlling the perturbation. We
7 then propose a more precise approach, based on the AdEx network, that mixes
s structural and dynamical ingredients in order to unravel key aspects of the
s mechanisms into play. Focusing on the different input connectivity profiles for
&2 each node in the network, we are able to build separate groups of neurons that
& display significantly different dynamics with respect to the perturbation. Fi-
s mnally, we study the possibility of a proactive approach, based on the application

s of an extra stimulus with the aim of reversing the propagative behavior.

« 2 Material and methods

&« 2.1 Computational models

8 We use for this study a mathematical model of electrophysiological activity
s based on ordinary differential equations, describing the dynamics of the neuron’s
o membrane potential through their interactions.

a1 Each model of neuron of the network is described by the equation (13) of
» the Adaptative Exponential integrate and fire (AdEx) model (Naud, Marcille,

i3 Clopath, & Gerstner, 2008).

dV V-V
C— =gr(Fr — V) + grAr exp M —w+ Lsyn (1)
dt Ar
dw
Tw =a(V—-Ep) —w

o« When the membrane potential crosses a threshold, a spike is emitted, and the
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s system is reset as in the equation (16).

V - Vg
if V> Vp then (2)
w—w+b
% Parameters used for the excitatory (RS) and inhibitory (FS) populations are

o7 respectively V; = =50 mV and V; = —48 mV, D; = 2 mV and D; = 0.5 mV,
6 b =100 pA and b = 0 pA, and 7, = 1000 ms for RS. For both population:
w C, = 200 pF, gg = 10 nS, E; = —65 mV, a = 0 nS, Vyesetr = —65 mV,
100 trefractory = O IS.

101 In order to compare some of the results obtained with the AdEx model
102 we used two other models of neuronal activity. First the Conductance-based
03 Adaptive Exponential integrate-and-fire model (CAdEx), which solves some of
104 the limitation of the AdEx model (Gérski, Depannemaecker, & Destexhe, 2021).

105 The equation are as follow:

dV V -V
CEZQL(EL—V)‘FQLAT eXp( T) +ga(BEa—V)+ 1 (3)

Ar
L S
dt 14 exp (VZ:\V)

106 When the membrane potential crosses a threshold, a spike is emitted, and the

07 system is reset as in the equation (16).

V = Vg
if V>Vp then (4)

ga — ga+06ga

108 Parameters used for inhibitory (FS) populations are: ¢, = 10 nS, E; =
w —65mV, Vp=-50mV, ga =0.nS, E4=-70mV,, dgs = 0nS, C =200 pF,
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w Ap = 0.5 ms, Vi = —45 mV, Is = 0.0 nA, refractory = 5 ms, Vieger =
wm —65mV, taus = 0.01 ms, Ay = 0.5 mV and for the excitatory (RS): g; = 10 nS,
w Ep = —65 mV, Vo = =50 mV, dga = 1 nS, E4 = —65 mV, dga = 1 nS,
us C' =200 pF, Ap =2 mV, Vi = =30 mV, Is = 0.0 nA, trefractory = D ms,
s Vieset = =65 mV, taug =1.0s, Ay =1mV

115 Then we use the Hodgkin-Huxley model (Hodgkin & Huxley, 1952), hereafter

us  denoted HH, with the following equations:

av

Cm%

=—q(E —V)—gxn*(V — Eg) — gnam®h(V — Ena) + Lyn  (5)

u7  with gating variables (in ms):

dn 0.032(15. =V + V) 10. -V + Vp

— = 1.—n)—0.5 _ 6

&t~ (emp(5mrav) gy D OB (6)
118

dh 17. -V 4+ Vp 4.

— =0.128 —)(1.— h) — 7

i exp( 18 )( ) 1+ezp(40'7;/_+VT) (7)

119

dm  0.32(13. -V + Vy) 1 —m) 0.28(V — Vi — 40.)

A (eap( B 1) Ccon ==y 1)

120 With C,,, = 200 pF, E; = —65 mV, En, = 60 mV, Fx = —90 mV,
2 g =10 nS, gnve = 20 nS, gx = 6 1S, Vieze = —50 mV, Vipipn = —52 mV.

122 For all types of neuron models, the parameters have been chosen in bio-
13 physical range (see (Naud et al., 2008; Gérski et al., 2021; Hodgkin & Huxley,
e 1952; Hille, 1992)) in order to keep the basal asynchronous irregular activities
s (Brunel, 2000) into a range of firing rate coherent with experimental observa-
s tions (El Boustani, Pospischil, Rudolph-Lilith, & Destexhe, 2007).

127 The network is built according to a sparse and random (Erdos-Renyi type)
s architecture where a fixed probability of connection between each neurons is set

120 t0 5%. We considered a network model of ten thousand neurons, built according
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130 to specific properties of the cortex. This network is made of an inhibitory
m  (FS) and an excitatory (RS) population, respectively representing 20% and
2 80% of the total size of the system as previouly done in (Carlu et al., 2020) The
133 communication between neurons occurs through conductance-based synapses.

1 The synaptic current is described by the equation (21).

133 Where Ep = 0 mV is the reversal potential of excitatory synapses and E; =

s —80 mV is the reversal potential of inhibitory synapses. gg and gy, are respec-

17 tively the excitatory and inhibitory conductances, which increase by quantity

1 Qg = 1.5nS and Q7 = 5 nS for each incoming spike. The increment of conduc-

o tance is followed by an exponential decrease according to the equation (22).
dgE/I _Ye/1

= 10
dt Tsyn ( )

140 with 74y, =5 ms

141

142 The network thus formed receives an external input, based on the activity
1z of a third population (excitatory) of the same size as the excitatory population.
us  Each of its neurons is connected to the rest of the network according to the
s same rule as mentioned earlier (fixed probability of 5 % for each connection).
us This external population produces spikes with a Poissonian distribution at a
w7 given tunable rate. The external perturbation that mimics the incoming seizure
us occurs through the augmentation of this firing rate.

149 The shape of the latter is described by the equation (23).
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Vpert(t) = B+ v (eap(—(t = Ty)2/ (2.5 72,))  H(~(t = T1))
(1)

+H(—(t = To)) % H(t = T1) + exp(—(t — T2)* /(2. ¥ 735¢)) x H(t — Tb))

150 where H is the heaviside function and 8 = 6 Hz is the basal constant input.
11 This function takes the general form of a high plateau, where T7 and T, are
12 the times when the perturbation reach its beginning and end respectively, and
153« defines its maximal height. 7,, and 7,55 are respectively time constants

1« associated with the exponential rise and decay of the perturbation.

s 2.2 Coarse graining and continuous analysis

156 In order to analyse in details what mechanisms are at play in the network
157 during a seizure-like event, we resort to a combination of two methods : a so-
18 called structural coarse-graining, that is we gather neuron models in n groups
150 according to their inhibitory in-degree (the number of inhibitory connections
wo they receive, we justify this approach in the body), and we study their time
161 evolution through statistics of their membrane potential (mean and alignment)
12 over these groups. In other words, at each integration time step, we will obtain
13 1 values of mean membrane potentials, one for each group, as well as n values
16« of Kuramoto order parameter (measuring alignment in groups).

165 To obtain the Kuramoto order parameter, we first transform the single neu-
16 rons membrane potentials into phase variables by applying a linear mapping
wr v; € [V, Vp] — 07[0,7]. Then the Kuramoto order parameter is computed

s through the equation (24).

. 1 o
Rexpil = N Zexp it (12)
J
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169 R € [0,1] gives the degree of “alignment” (if it persists in time, one would
o say synchronization) : R = 1 implies full alignment , while R = 0 implies no
wm alignment whatsoever. ¥ € [0, 7] tells us the mean phase of the transformed
w2 variables (directly related to the mean membrane potential).

173 Let us mention one caveat here. The membrane potentials are not mapped
s on the full circle, to avoid artificial periodicity of the obtained angles: having
ws V' = Vg is not the same as having V' = Vp. One may thus ask why such a mea-
e sure is used instead of the usual measures of dispersion such as the standard
w  deviation. We use the Kuramoto order parameter because it gives a naturally
s normalized quantity, thus allowing a direct comparison of what is happening at
o each time step. We acknowledge that it would be formally possible to use a nor-
180 malized version of standard deviation, but the normalization procedure involved
111 would not be as intuitive. Besides, the Kuramoto order parameter allows direct
12 calculation of higher order types of alignment by using the generalized version:
13 adding an n multiplier to the exponential would give a measure of the degree
18« of partitioning into n clusters, which can turn out to be useful in subsequent

185 studies.

s 2.3 Code Accessibility

187 The code/software described in the paper is freely available online at [URL
s redacted for double-blind review]. The code is available as Extended Data and

189 is run on Linux operating system.

» 3 Results

101 In this section we show how, in networks of various neuron models, a parox-
12 ysmal external stimulation can trigger a crisis or not, depending on various

13 parameters. We show how the situations differ from model to model and what

10
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104 are the common features. Then, we turn ourselves to a structural analysis based
15 on mean firing rates of individual neuron models to guide a particular coarse-
196 graining, which we use as a filter to observe the dynamics and gain further
17 understanding, from both qualitative and quantitative perspectives. Finally we
18 show how this study can guide proactive approach to reduce the chances of crisis

19 propagation.

w» 3.1 Propagative and Non-propagative behaviors
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Figure 2: Firing rate of the network populations in response to a per-
turbation: propagative and non-propagative behaviors (respectively left and
right columns) for AdEx model ((a) and (b)), with amplitude of perturbation
a = 80Hz and Tysope = 100ms ; CAdEx model ((c) and (d)) with @ = 7T0Hz
and Tsope = 80ms ; HH model (e) with o = 60Hz and 7g0pe = 60ms and (f)
with o = 140H z and 7j0pe = 60ms. [FIGURE MODIFIED]

201 In this study we assume that the networks depicted in the previous section

11
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22 represent a small cortical area receiving connections from an epileptic focus.
203 Specifically, the arrival of the seizure is modeled by a sudden rise in the firing
24 rate of the external (afferent) Poisson region where the crisis comes from, or
25 originates. In other words, we are not concerned with how crises originate
206 (epileptogenesis), but how they can propagate. Therefore, we will frame our
27 analysis into two main behaviors : propagative, i.e the network develops an
208 excitatory firing rate greater than the input, which makes it able to propagate
200 the crisis to efferent regions, and non-propagative behavior where the excitatory
a0 firing rate is lower than the input, thus attenuating the incoming signal.

u As mentioned (and detailed) in the method section, the perturbation starts
212 with an exponential growth followed by a plateau and ends with an exponential
a3 decrease, going back to the basal level, see blue curves in Fig.2). We show
214 in this figure the response of the various networks to this type of disturbance.
25 Here we can distinguish between two classes of macroscopic differences between
216 propagative and non-propagative scenarios : one where the difference is binary
27 (AdEx and CAdEx), ie the network either features

218 a very strong increase in the firing rate of the inhibitory and excitatory
219 populations, either the sharp increase in the firing rate concerns the inhibitory
20 population only, thus strongly limiting the activity of the excitatory population
a1 (consequently preventing the disturbance from spreading to the next region).
22 From this perspective, the propagative scenario can be understood as a loss
223 of balance between excitatory and inhibitory firing rates, which the network
24 struggles to find once the excitatory population has exploded. Interestingly
25 these two scenarios can occur for the same global shape of the perturbation
26 but changing only the noise and network realizations. It must be noted that
27 the 200H z maximum frequencies measured here are the results of the temporal

28 binning of the global spiking dynamics, taken as T' = 5ms, which corresponds to

12
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29 the refractory time of the single neurons in Adex and CAdEx. Upon choosing
20 a shorter binning, e.g T = 1lms, higher frequency peaks are observed, going
a1 up to 800Hz, thus hinting at overall faster dynamics. The second class (HH)
2 shows a rather continuous difference between propagative and non-propagative
23 behaviors, depending on the amplitude of the perturbation (this will become
21 clearer in the next section). This said, there is still some degree of stiffness in
235 the HH scenario, where the non-propagative case shows peaks of both excitatory

26 and inhibitory activities at the beginning and end of the plateau.
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Figure 3: Grid search on the amplitude and slope of the incoming
perturbation for each network. Panels (a) and (b) show the number of re-
alizations which propagate, respectively for Adex and CAdEx networks. Panels
(c) and (d) show respectively, for HH networks, the means and standard devia-
tions (over realizations) of the difference of firing rates between excitatory and
Poisson populations (A firing rate = ve — Upois), averaged over the length of
the platean.[FIGURE MODIFIED)]
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= 3.2 Parameter search

238 To study how the shape of the perturbation affects the networks response, we
29 screened different time constants of the exponential growth rates and maximum
20 amplitude of the plateau with 100 seeds (for both network and noise realizations)
21 for each couple of values, see Fig.3)

202 and probed, in the case of AdEx and CAdEx (respectively (a) and (b),
a3 the number of realizations which did not yield propagative behavior. In the
a4 HH case, the perspective is a little different : we chose to show two figures,
us  displaying means and standard deviations over realizations of the difference
26 in firing rate between excitatory and Poisson populations (averaged over the
27 plateau), A firing rate = v. — Vpois rate (respectively (c) and (d)). As can
28 be expected, for all networks (AdEx, CAdEx and HH) the amplitude of the
29 perturbation plays a determinant role in the type of scenario we eventually find
20 (propagative or not), however in opposite directions and of different nature.
s Indeed, for both AdEx and CAdEx, increasing the amplitude increases the
»2  chance of having a propagative scenario for a fixed slope, in a binary fashion,
»3  while in the case of HH the contrary is observed, and in a continuous fashion.
4 Furthermore, in AdEx and CAdEx networks, we observe that when the arrival
255 of the disturbance is abrupt (i.e. small time constant for exponential growth),
6 it is systematically propagative, no matter which amplitude is considered in the
»7 range [60 — 120Hz]. On the other hand, if the perturbation rises sufficiently
s slowly (i.e. large exponential time constant), it does not significantly affect
9 the excitatory population of the network. These observations show that we are
20 dealing with a phenomenon where dynamics play a crucial role. Also, we observe
s a slight coupling effect between slope and amplitude : for higher amplitudes,
x2 the propagation range extends to slower perturbations. On the contrary, in

3 the HH network, it seems that the slope does not play any major role, hinting

14
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x4 at a much less dynamical effect : the difference manifest themselves as local
»%s equilibria of the networks under considerations, reached no matter the time
6 course. Moreover, the standard deviations, besides showing no clear dependence
27 on neither amplitude nor slope, are very small compared to the means, thus
xs evidencing that noise neither plays any significant part here. These observations
xe highlight once again deep differences between the two types of network and their
o respective phenomenology.

mn Interestingly, in the case of AdEx and CAdEx, there exists a limit, bi-stable
o region where the perturbation may or may not propagate in the network, de-
a3 pending on the noise realisation. Thus, the global scenario does not trivially
as depend on the amplitude and time constants of the perturbation in this region,
;s which, besides being of primary importance in the case of seizure propagation,
s also makes it a perfect candidate to study more deeply the internal mechanisms

o7 at play, and will thus be the main focus of the remainder of this paper.

s 3.3 Influence of structural aspects on the dynamics

279 In the following, we turn our attention to the bi-stable region of AdEx and
20 CAdEx networks, where the two behaviors are present, and investigate what
2 can be the source of the divergence. There are two main differences between
22 the simulations under consideration: the realization of the network structure
23 and the realization of the external input, as both rely on random number gener-
2 ators. We have therefore successively fixed each of them, and observed that the
25 two behaviors were still present. Also, the global scenarios were indistinguish-
2 able from those showed so far. First, this allows us to fix the network structure
27 (which will become determinant in this part) without losing the richness of the
28 phenomenology. Second, this tells us that what shapes the distinction between

20 the two phenomena is more complex than a single question of structure, or real-
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20 ization of the input. Another perspective is then needed to explore the internal
20 dynamics of the network in both scenarios. As the models into consideration
22 have very large number of dimensions, as well as quite intricate structures, brute
23 force analytical approaches are simply not conceivable.

204 Let us then take a step back and investigate the relationship between the
25 firing rate of each neuron and its number of afferent (input) connections of

w6 the three kinds: excitatory (N;Z2¢), inhibitory (N/"") and Poissonian (N[9%).

inp inp inp

7 Fig.4(a) shows the average firing rates (vX ¥ and vV ) measured over the whole

208 non-propagative (NP) scenario for each neuron in the AdEx network (simply
20 defined as the total number of spikes divided by the total integration time,
20 after having discarded a transient), plotted as a function of the three different
s connectivity profiles.

302 Note here that averaging over simulations for the sake of robustness might
s be a delicate matter, as we might lose constitutive differences in the process.
;4 As we are dealing with highly variable situations, we have to make compro-
ws 1mises between generalizability and relevance. Therefore, we start with a single
w6 realization to then guide larger and more systematic investigations.

307 Interestingly, we see a much stronger influence coming from the inhibitory
w8 in-degree than from the Poissonian and excitatory ones. Counter-intuitively,
w0 it even seems that excitatory in-degree has barely any effect at all on total
s measured firing rates. Indeed, from the point of view of Pearson’s correlation,
su  inhibitory in-degree is much more (anti)-correlated with the firing rate than the
a2 excitatory in-degree (almost no correlation) or the Poissonian in-degree (little
a3 correlation). Note that we observe the same structure for propagative situations
s (results not shown). This said we can compile the previous results and analyze
a5 whether the most salient in-degrees (inhibitory and Poissonian) has any influ-

sis  ence on the difference between propagative and non-propagative situations, see
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Figure 4: Influence of connectivity on single neurons firing rates: (a)
Influence of poissonian (N} 97*), excitatory (N/52¢) and inhibitory (NiInT;h) input
connectivity on the firing rates of excitatory neurons (v¥), and inhibitory ones
(vNP) in non-propagative scenario (NP) of the AdEx network. The standard
pearson correlation coefficient p is estimated. (b) Time averaged single neu-
ron firing rates and differences in propagative vs non-propagative regimes, as a

function of both inhibitory and poissoiian in-degrees.[FIGURE MODIFIED)]
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ar Fig.4(b).

318 Here we see that the global dependency of the average single neuron firing
s10 rates on inhibitory and Poissonian connectivity does not qualitatively change
20 between propagative and non-propagative regimes. However, the difference dis-
321 plays an inverse dependency on both variables: despite maintaining the same
s22  general hierarchical structure, the crisis tends to compensate a little bit for it.
23 In other words, the neurons that are initially less firing, due to their struc-
324 tural properties, are the most impacted by the crisis. Furthermore, it must be
s noted that, although there is no correlation between inhibitory and Poissonian
26 in-degrees (as can be expected from random connectivities), we still see a slope
sz of the firing rate in the 2D+color representation, highlighting that they both
»s Pplay a role in the single neurons long term dynamics.

329 Although these results are not sufficient to explain the propagation or non-
s propagation behaviors, it is already worth pointing that, not only they establish
sn  a first link between structure and dynamics, but give insight on how differences
s of dynamics are correlated with structure, hence giving interesting leads on pos-
s sible ways of analyzing time-series. Indeed one can think of deploying algorithms
s to infer structural or functional connectivity from the spiking regimes of single
135 neurons in both “nominal” and crisis dynamics, as well as their difference.

336 However, it seems necessary from our current perspective to go deeper into
;37 the temporal evolution. In order to probe whether the differences in the indi-
18 vidual mean firing rates give single neurons specific roles in the dynamics, we
139 now start classifying in the AdEx network the indices of the neurons in the
s raster plot according to the total number of spikes they emit during the whole
s simulation. We chose for this purpose a representative propagative scenario for
s two reasons : 1) it is clearly the most consequential case in the context of seizure

us  dynamics and spreading, hence 2) if no distinction is visible here, the previous
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s static approach (in the sense “time-averaged”) would be of little dynamical rel-
us evance. The sequence of propagation of the perturbation then appears visually,
us  see Fig.5(a). We observe, in the case of propagation a fast cascade, which is con-
s sistent with the experimental observations (Neumann et al., 2017): the model
us  shows that some neurons are quickly "entrained” in a sequence at the onset of
uo  the seizure. In addition, there is no perfect synchronization of the action poten-
o tials of all neurons. This is an interesting result, coherent with the observations

31 on epilepsy in the last decade (Jiruska et al., 2013).
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Figure 5: Dynamics in propagative situation (AdEx): (a) Raster plot
of a simulation with propagative behavior, neuron indices are sorted according
to the number of spikes during the simulation. A ”cascade” phenomenon can
be observed when zooming on the onset of the perturbation propagation in
the excitatory population. (b) The same cascade phenomenon is observed when
neuron indices are sorted in function of the number of inhibitory inputs received.

352 Secondly, we examine the same situation, but sorting neuron indices as a
353 function of the number of inhibitory inputs they receive (as shown Fig. 5(b), as
34 it 18 the most influential structural feature we observed. Here too, the cascade
5 phenomenon is clearly visible, showing that the inhibitory input connectivity

16 has a central influence on the dynamics at play during the perturbation.

19
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Figure 6: Dynamics in propagative situation (CAdEx and HH): Same
plot as previously shown but for CAdEx network ((a) spike-sorting, (b) in-
hibitory in-degree sorting) and HH network ((c) spike-sorting, (d) inhibitory
in-degree sorting). Cascade phenomena are still observable in panels (a),(b)
and (d), hence showing its robustness, but not in (c), where propagation takes
a slightly different form, highlighting the contrast induced by different perspec-
tives on a single complex dynamics.[NEW FIGURE]

357 Fig.6 shows the same pictures for CAdEx and HH networks. We see here
s that CAdEx network’s behaviors are very similar to AdEx : sorting with firing
0 rate or inhibitory in-degree give very similar structures and we can distinguish
w0 here too the cascading effect at the onset of the perturbation, following the
1 indices. HH networks show quite a different phenomenology. First the two
2 sorting do not show the same structures, which hints at a more sublte mapping
3 between inhibitory in-degree and long-term single neuron model dynamics. In
;¢ the firing rate sorting, we can still distinguish 3 blocs of distinct activity, and
s thus of populations, corresponding to the 3 key periods of the simulation : before
w6 stimulation, at the onset, and during the stimulation. Interestingly it seems that

s7 before and during the stimulation different populations of neuron models are
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sss  distinctly mobilized. While before the stimulation, the central neurons (with
30 respect to their indices) are active, a double cascade contaminates the rest
s of them (towards higher and lower indices) at the onset, ending in a general
sn surge of activity. This must be contrasted with the in-degree sorting panel,
s2 where the cascade is more unidirectional, as the main activity slides from low
s connectivity indices (less connected) to the higher ones, until all neurons fire.
s This emphasizes the importance of the perspective chosen to analyse complex
a5 behavior.

376 Altogether these results show the relevance of adopting a perspective based
s7 - on the inhibitory in-degree : it yields interesting insights on the internal or-
ss  ganisation of the network before and during the paroxysmal event. In the
s next section, we push further this analysis by comparing propagative and non-
s propagative scenario, and make use of the continuous measures introduced in

1 Material and Methods.

w» 3.4 Continuous measures on subgroups of neurons

383 We now move to a deeper investigation of the AdEx networks behavior, in
s order to better grasp the internal dynamical structure into play. We chose this
35 model among the three because : 1) it is the simplest, which 2) reduces the
s computational burden for a more systematic analysis, although 3) it can still
37 yield various types of single neuron dynamics (which makes it a relevant model
s per se) and 4) is widely use for neuronal network simulations. To achieve so, we
30 first consider groups of neurons defined by their inhibitory in-degree. These are
w0 somewhat artificial, as they are only statistical reflections of topological aspects
s of the network (i.e, there is no reason to think a priori that all neurons having
s n inhibitory inputs would have more privileged links among themselves than

33 with those having n + 1). However, they allow in principle a variable degree
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s of categorization, based upon the sampling of the inhibitory in-degree distri-
w5  bution, which eventually leads to different levels of (nonlinear) coarse-graining
w6 (although we will consider only one such sampling here). This is a first bottom-
s7  up step towards a coarser description of the system, and hence, may guide
s reliable modeling attempts at larger scales. Secondly, we switch our analysis to
s continuous variables, which allow a finer and more systematic analysis of the
w0 dynamics, as they don’t depend on spike times. Indeed, although spike tim-
w1 ings are the most accessible collective measures in real-life systems, which make
a2 them the most fitted candidates for “transferable” studies, we want here to take
w03 advantage of the virtues of mathematical modeling to probe the insides of these
w0 simulations, to then be able to draw conclusions on more accessible observables.
ws  We focus here uniquely on membrane potentials, as they are the closest proxy
ws of the firing dynamics in the network and chose to use two main measures based
a7 on them: the mean py and a modified Kuramoto order parameter R, which
ws  gives a naturally normalized measure of instantaneous alignment (or similarity)
a0 of the membrane potentials. Both are defined in time, over a class of neurons.
a0 Note here that the network connectivity s still held fixed, as these calculations
a1 require a lot of time and computational power, especially as we always consider
a2 50 noise realizations. We will give evidence of the robustness of our observations
a3 in the next part.

414

as  Mean membrane potential in time

416 We show in Fig.7(a)-(b) the mean membrane potential py defined for each
sz group of excitatory (RS) and inhibitory (FS) neurons in time, averaged over
as  realizations (top row), and standard deviation over realizations (bottom row),
a0 in propagation (a) and non-propagation (b) scenarios. The different realizations

a0 refer here to the incoming noisy input, while the network structure is held fixed.
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a1 All the data presented from now are obtained by regrouping neurons having
a2 the exact same inhibitory in-degree, thus corresponding to a discrete one-to-one
w3 sampling of the input distribution. Note that, given the network architecture
24 under consideration, the mean number of afferent inhibitory synapses, defined
w5 over both populations of neurons, is defined by p; = N; X Peonnect = 2000 X
a6 0.05 = 100, where N; is the total number of inhibitory neurons and peonnect is the
w7 connection probability, while the standard deviation is o; = v/N; X Deonnect =
28 10. Besides, the groups are defined operationally, by grouping in the range
w29 n € [0,200] the neurons receiving n inputs. Thus, if no neuron receives n inputs,
a0 the group is not represented. Accordingly, having approximately 60 groups tells
a1 us that we sample the distribution from around +30, that is 30;.

432 We see from this figure that the inhibitory in-degree profile seems to play a
a3 major role in the overall dynamics. Indeed, as the perturbation is growing, we
w4 can first observe a strong effect on the mean membrane potential of every ex-
a5 citatory neuron, then followed by a low-potential cascade initiated from weakly
a6 coupled neurons and following the group structure. This latter effect is much
a7 clearer in the case of inhibitory neurons, where the cascade follows very well the
s input profile, in both propagative and non-propagative scenarios. Note that the
10 low-potential area can be easily understood as a high-firing regime: neurons fire
w0 as soon as they leave their resting potential, thus displaying very low values of
w1 membrane potential when calculated (and sampled) over time.

42 Interestingly these pictures show that, up to the decisive point of the crises,
w43 the continuous measures look very similar, thus hinting at an instantaneous
ws  finite-size fluctuation causing the whole network to explode. Also, it is note-
w5 worthy that the new “hierarchy” set by the cascade is conserved in the non-
ws propagative regime, while propagation seems to have an overall reset effect.

aa7 Also, we see from these graphs that there is a particular time window where
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wus  the variance of the mean membrane potential is larger for the most inhibitory-
wo  connected neurons, in both RS and FS populations (although it appears clearer
w0 for RS ones here, because of the need to rescale the FS colorbar to have com-
s parable results). We found that this time window defines the period when the
w2 network can actually switch to propagation: the high variance corresponds to
ss3  different times when various realizations “explode”, and thus defines a region of
s instability.

455 A central point to raise here is that what makes the difference between
6 propagative and non-propagative scenarios is most likely not an infinitesimal
«s7  instability defined from a macroscopic perspective, i.e, that is due to a positive
s eigenvalue of a Jacobian defined from a large scale representation (Mean-Field
o for example), otherwise the non-propagative behavior would simply not be ob-
wo  servable (as, except for chaotic dynamics, we do not observe unstable trajec-
w1 tories in phase space). Indeed, what differs between the various simulations is
w2 the noise realization of the external input, which may, or may not, bring the
%3 system to a point of instability. The external Poissonian drive, with finite-size
s fluctuations is thus constitutive of the scenarios we observe.

465 To gain more insight into the diversity of dynamics across neuron groups,
w6 we turn our attention to a measure of alignment, or synchronisation, namely

w7 the Kuramoto order parameter R.

ws Kuramoto order parameter

469 We show in Fig.8(a)-(b) the Kuramoto order parameter R defined for each
w0 group of excitatory (RS) and inhibitory (FS) neurons in time, averaged over
wm  realizations (top row), and standard deviation over realizations (bottom row),
w2 in propagation (a) and non-propagation (b) scenarios.

a3 The cascade previously observed is clearly visible for the average R, in the

s form of a “desynchronization cascade”. We note here that this illustrates a
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Figure 7: Mean membrane potential over subgroups of neurons for
each group defined as a function of their incoming inhibitory connections, aver-
aged over 50 noise realizations (17 non-propagative and 33 propagative). Color
maps correspond for each group to the average membrane potential (top) and
standard-deviation (bottom) across noise realizations in the propagative sit-
uations (a) and non-propagative situations (b) for both excitatory (RS) and
inhibitory (FS) populations. The blue windows highlight the (time) region
where the system either switches to a propagative regime, or remains stable.
(c) Steady-state profiles (for fixed external input) of py for RS neurons, to-
gether with various profiles for different amplitudes of perturbation, captured
right before typical time of crisis, at respectively 1950ms (60Hz), 1950ms (80Hz),
1930ms (100Hz, as the crisis develops before 1950ms). Networks are the same
as previously analyzed, except when stated Net. 2. Standard errors estimated
over noise realizations are shown in shaded areas.[FIGURE MODIFIED]
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a5 recruitment process between two radically different regimes having nonetheless
ws  similar alignment features : a fluctuation-driven asynchronous irregular (AI)
a7 dynamics, where membrane potentials are mostly conditioned by the balance
as of inhibitory versus excitatory inputs, and a crisis characterized by high spik-
ao  ing and membrane potentials clamped by refractoriness. The desynchronization
w0 cascade thus establishes a strict limit between them, while showing a significant
s degree of symmetry : the times right before or right after the cascade are in-
a2 distinguishable, from the point of view of the inhibitory neurons, except at the
a3 end of the non-propagative regime. Interestingly in this case, it appears that
s« the misalignment of the neuron groups finally attained is constantly fueled by
a5 the network, thus hinting at a fundamentally out-of-equilibrium steady state.
a6 From the standard deviation perspective, two main features are worth pointing.
«7  First, we can again clearly observe the instability window, characterized by high
w8 standard deviation between realizations in propagative scenarios. Secondly, we
a0 can observe a significant variability between the various cascades observed in ex-
w0 citatory cells (particularly the low indices), while a very weak one for inhibitory
21 ones. In other words, the excitatory cascade may take various forms in both
w2 propagative and non-propagative scenarios, while the inhibitory one remains

103 quite robust, even with respect to the non-equilibrium state mentioned before.

« 3.5 Dynamic versus static approach

405 We have seen that changing the slope and the amplitude of the signal may
w6 trigger (or not) a crisis, thus hinting that the time evolution of the perturbation
w7 is central. Then we observed a hierarchical structure setting in from the point of
w8 view of continuous measures, following the perturbation. However, fundamen-
w0 tal questions remain: how much of this latter phenomenon is actually dynamic?

so  Would we find the same structures if we bombarded the network with a fixed
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so0 input at, say, 80H z? Can we observe the same structures for scenarios which
s2 are always, or never, propagative (no matter the noise realization) ? This would
s03 indicate that the structures observed thus far might have little to do with the
soa  crisis phenomenology itself but would either be the mere results of strong condi-
ss tioning of the network by the level of input (if static structures are similar), or
o6 simply not yield any explanation for the instability we observe (if always/never
so7  propagative scenarios show similar features).

508 We now turn our attention to Fig.7(c), which displays the static py profiles
s0 in RS population obtained for fixed external inputs (Stat. curves), together with
s the profiles captured at the typical onset of the crisis, for various amplitudes:
su  60Hz (never propagative), 80Hz (sometimes propagative) and 100Hz (always
sz propagative). The network realization is the same as previously analyzed, except
sis when explicitly stated (Net. 2), where we refer to another connectivity. For the
siu. 80Hz scenarios with the first network (the one we have been investigating so
sis  far), we kept the splitting of the realizations between propagative and non-
sis  propagative, to highlight the potential differences of structures.

517 First, as previously observed, the profiles obtained for propagative versus
si8  non-propagative regimes are very similar at the onset. Then, we clearly see
sio  that the uy profiles extracted from the dynamical situations (hereafter called
0 the dynamical profiles) are very different from the static ones.

521 Besides, it is worth pointing that the profile obtained for a 80Hz amplitude
s with a different random realization of the network (where all 50 noise realiza-
53 tions are put together, based on the previous observation that propagative and
s« non-propagative scenarios show very similar structures) is very similar to those
ss  already shown, with small standard error, which, together with the previous
so6  Oobservation that noise and network realizations seem to play similar roles, un-

so7  derlie a robust network phenomenology. Furthermore, we see that the profiles
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s obtained for 60Hz, 80Hz and 100Hz amplitudes are different. The nature of
s20  their differences is of great interest for low indices, where we observe that 60Hz
s and 100Hz profiles are located on opposite sides of the central 80Hz profile: their
s ordering in this region is consistent with that of their degree of instability we
s have observed so far. This said, the dynamical profiles yet show similar qual-
s33  itative features : they all are non-monotonous and display two well-separated
s parts. Indeed, for low indices (until 30) py is increasing with values starting
s around the lowest of the static profiles ( 10Hz), while their high indices part
s is more aligned with high static profiles. Interestingly, we see that for 60Hz
sv. and 80Hz the right part is well aligned with the static profile obtained for sim-
sis  ilar inputs. This does not seem to be the case for 100Hz, although the static
s  input simulation displays some instability, which makes their comparison less
se0  relevant. Although it is not straightforward to link py with the instantaneous
sa  regime, we have seen that low values can be associated with high firings (the
s22  neurons spending most of their time clamped at —65mV). This would help un-
si3 derstanding what is happening here: for higher values of amplitude, the less
ss  inhibitory-connected neurons are firing more, and can thus entrain the rest of
ss  the network.

546 Fig.8(c) shows the Kuramoto counterpart of the latter figure. Here the R
se7  profiles display structures quite different from those observed for uy . Indeed,
sis the various static profiles do not display such clear variability as for py, al-
ss0  though little differences can still be observed: high inputs seem to show more
sso  variability in low indices, while ending at higher values for higher indices. More
ssi  importantly, the dynamical profiles are here too very different, from the static
ss2 ones, and among themselves. Besides, propagative and non-propagative simu-
3 lations show little differences here too, and the profiles corresponding to same

s+ amplitude (80Hz) and different network architecture (Net. 2) also overlap here.
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sss  Interestingly we can also observe that the 60Hz and 100Hz profiles are different
sss and located apart from the 80Hz, although they also show different magnitudes
ss7 of their inverted peaks. Given that the ordering of these magnitudes are not
sss  consistent with the various degrees of instability, we suggest that the position
sso  of the peak might be the relevant criterion. This would be consistent with the
sso  observations we made thus far, and confirm our previously suggested scenario:
ss1 as the more we approach the center group, the more neurons are considered
s (gaussian distribution), the green peak (100Hz) tells us that more neurons have
s undergone the desynchronization cascade we mentioned earlier, that is, more
s« neurons have already “switched side” and entered a high firing regime, thus
sss  giving more inertia to the cascade phenomenon. The middle scenario (80Hz)
sso  would then sit on a tipping point, that is a point separating two radically dif-
ss7  ferent dynamical regimes of the system.

568 These latter observations show that, from the perspective of both mean
sso membrane potential and Kuramoto order parameter calculated inside the groups
s formed from inhibitory in-degree, we are in the presence of a structured behavior
sn which emerges from an intricate interaction between dynamics and architecture,
s and which cannot be recovered from static approaches. Moreover, the various
si3  sizes of the groups and their impact on the phenomena we observe highlight

sz that multiscale dynamics is a hallmark of the observed scenarios.

s 3.6 Can seizure propagation be controlled by external in-
576 puts?

577 Now that we have established how the structure of the dynamics allows or
ss  not the propagation of the paroxysmal perturbation (although the proximal

so  cause relies on noise fluctuations), we investigate whether we could use the pre-

ss0  vious finding of a strong instability window for the 80Hz dynamical scenario to
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Figure 8: Kuramoto R of membrane potentials over subgroups of neu-
rons for each group defined as a function of their incoming inhibitory connec-
tions, averaged over 50 noise realizations (17 non-propagative and 33 propaga-
tive). Color maps correspond for each group to the average membrane potential
(top) and standard-deviation (bottom) across noise realizations in the propaga-
tive situations (a) and non-propagative situations (b) for both excitatory (RS)
and inhibitory (FS) populations. The blue windows highlight the (time) region
where the system either switches to a propagative regime, or remains stable.
(c) Steady-state profiles (for fixed external input) of R for RS neurons, together
with various profiles for different amplitudes of perturbation, captured right
before typical time of crisis, at respectively 1950ms (60Hz), 1950ms (80Hz),
1930ms (100Hz, as the crises develops before 1950ms). Networks are the same
as previously analyzed, except when stated Net. 2. Standard errors estimated
over noise realizations are shown in shaded areas.[FIGURE MODIFIED]
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ss1  alter the fate of the AdEx network dynamics. This approach is based on the
s2  following reasoning : we have observed, with a detailed analysis, the existence
ses of a particular time window in the network under consideration (Net. 1) in
ssa  this scenario, which implies a strong uncertainty on its global response. Thus,
sss we want to design a stimulation protocol to reduce the chance of crisis propa-
sss  gation, based on this observation, but which does not require the same level of
se7  analysis, hence making it applicable inline and without the need of extensive
sss  computational power.

589 To achieve so, we apply a Gaussian stimulation, with 10 ms time constant,
s two different amplitudes (1Hz and 5Hz), positive or negative, through a vari-
s ation of the external excitatory input. For simulations performed under the
s same conditions, the stimulations were applied at different times as detailed in
s Tables 1(a)-(b). These tables show, for a total number of 100 simulations (with
s« same network structure but different noise realizations), among which 72 were
sss propagative, what relative percentage of simulations has undergone a triggering
sos and a cancellation of crisis respectively.

597 We see that it is possible to somewhat “reverse” the situation, thanks to
ss  (or because of) the stimulation: in certain cases, it triggers a crisis propagation
s0 when none was initially occurring (Table 1(a)), and in other cases, it prevents
s0 one (Table 1(b)). We observe that if the possibility of “triggering” the propaga-
sr tion by stimulation can take place for different times of peak, it remains more
s2 1mportant when it occurs in the time window identified previously. This effect
63 is even more visible in the reverse situation, in which propagation is prevented.
s« A notably interesting case is that more than 50% of the crises are prevented
s if a stimulation of -5 Hz is applied in the same time window. This could open
s interesting leads in furthering qualitative comparisons between computational

er simulations and real-life situations, and eventually guide future interventions.
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(a) | time of peak | +1Hz +5Hz -1Hz -bHz
t = 1500ms 0.25 0.1786 0.2857 0.25
t = 1850ms 0.178 0.1786 0.2143 0.2143
t = 1950ms 0.0357 0.6071 0.2143 0.5
t = 1975ms 0.7143 1.0 0.25 0.28572
t = 2000ms 0.6071 1.0 0.0 0.0714
t = 2500ms 0.0 0.0 0.0 0.0
(b) | time of peak | +1Hz +5Hz -1Hz -5bHz
t = 1500ms 0.1806 0.1944 0.1528 0.1389
t = 1850ms 0.1389 0.1944 0.0972 0.1528
t = 1950ms 0.1528 0.2361 0.125 0.0694
t = 1975ms 0.0972 0.0 0.3472 0.3889
t = 2000ms 0.0139 0.0 0.25 0.5556
t = 2500ms 0.0 0.0 0.0 0.0972

Table 1: Triggered and prevented events: (a) Percentage of triggered prop-
agation events, from an initial number of 38 non-propagative behaviors. High-
light in blue > 25% and in red > 50%. (b) Percentage of prevented events,
from 72 initially propagative behaviors. Highlighted in blue > 25% and in red
> 50%. The time of peak corresponds to the moment where the maximum of
the stimulus is reached, the amplitude corresponds to a variation of the external
input (see the main text)

« 4 Discussion

609 In this computational work we studied the response of various spiking neu-
s ral networks to paroxysmal inputs. We observed that the same networks can
su display various types of responses, depending on its nature (the neuron model
s used at its nodes), the shape of the perturbation (here we analysed particularly
a3 a plateau-like input with various slopes and amplitudes) and the realization of
s the random number generator. In the case of AdEx and CAdEx, two radically
es  different responses to a qualitatively similar incoming excitatory perturbation
616 are observed. Indeed, the latter could either contaminate the excitatory popu-
ez lation and thus allow the crisis to propagate to efferent areas, or be “controlled”
sis by the activity of the inhibitory population, keeping the excitatory population

s10  at a low activity level, thus preventing further propagation. The response of the
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e20 Tnetwork depends not only on the amplitude of the perturbation but also on the
e1  “speed” at which it occurs. This is consistent with experimental observations.
e Interestingly, in the case of a HH network, our investigations show very different
e23 network responses, where only the amplitude of the perturbation plays a role
e2a and where no variability on noise realizations is observed.

625 A rich literature shows that seizures can be classified according to their
s onset/offset features described by bifurcation types(Saggio et al., 2020; Saggio,
sz Spiegler, Bernard, & Jirsa, 2017; Jirsa, Stacey, Quilichini, Ivanov, & Bernard,
s 2014). The most observed bifurcation at the onset of a seizure is a saddle-node
s20 bifurcation (Saggio et al., 2017), which is characterized by an abrupt change in
s20 the baseline of the electrophysiological signal (Jirsa et al., 2014). We observed in
a1 the current work that perturbations are always propagative in AdEx and CAdEx
sz networks when they rise abruptly in the network. There is here an interesting
s13 correspondence revealing the importance of the onset of seizure dynamics, as
s it has been shown from a clinical point of view (Lagarde et al., 2018). It is
s3s  worth noting that the absence of such phenomenology in HH networks (for the
s3  scenarios we considered) raises interesting questions in the modeling of seizure
s dynamics, but also more generally in neuronal networks : how the quantitative
e differences (number of variables) and qualitative differences (types of processes
s0 taken into account) in the single neuron models affect the global dynamics ?
sa0  Are more precise models always the best in all respects 7 This places back
s1 the importance of the the choice (of model, of parameters) in the center of the
sz discussion : by modeling a neuronal network and observing a phenomenon which
e3  resembles reality, we are not testing whether the specific ingredients we chose
eaa are constitutive of this phenomenon, but how they would be if they were chosen
&5 a priori. It is only the systematic cross-model observations and comparisons,

ss  that can yield such answer as necessary and sufficient ingredients to observe a
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s7 phenomenon.

648 Note that, in clinical observations, the most accessible measurements are
s0  made on a macroscopic scale. In the study proposed here, we observe the
oo activities at a smaller descriptive scale by building a network of neuron models.
ss1 We thus have a complex system of very high dimension, rendering a priori
e2 impossible to obtain a simple description of the dynamics, which motivates the
es3  statistical approach proposed here. With this type of analysis, we were able to
ea track in time key features of the underlying dynamics, especially those supported
65 by the structure of the network : inhibitory in-degree can be mobilized to explain
ess global differences in network response. Indeed, we proposed a coarse-grained
7 description of the network dynamics based on inhibitory in-degree, allowing us
68 tO capture internal processes that were not visible at first, and which play a
0 significant role in the global out-of-equilibrium dynamics. This opens the way
so to a flexible modeling framework of internal subpopulations, whose precision
s1 can be adapted to the most significant level of description, depending on the
ez context and the questions asked.

663 We have also established that not only this structure matters, but also its
ss Interaction with instantaneous finite-size fluctuations of the noise and the time
ss evolution of the global dynamics. These are all constitutive of the observed
sss  behaviors, and none can be neglected to understand them, which after all, is a
e7 universal feature of compler systems.

668 Also, our results showed that, for the AdEx network, there exists a time
s0 window, characterized by a high variance across noise realizations, during which
e0 it is possible to reverse the behavior by applying an appropriate stimulation.
e The use of a stimulus to interrupt a seizure has been applied in the past in the
e case of absence seizure (Rajna & Lona, 1989). These results have been used as

o3 bases of computational studies at the scale of the EEG (Taylor et al., 2014).
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e« Computational work on the response of a network model to stimuli to disrupt
ors  seizure-like activities has shown the importance of the precise timing of the
s stimulation (Anderson, Kudela, Cho, Bergey, & Franaszczuk, 2007). Then, the
o7 use of electrode stimulation has been developed in rodents (Pais-Vieira et al.,
ss  2016). These different approaches have been implemented, including deep brain
o stimulation, vagus nerve stimulation (Boon, Cock, Mertens, & Trinka, 2018) and
0 magnetic stimulation (Ye & Kaszuba, 2019). However, experimental recordings
1 of the response to stimuli do not allow us to understand the mechanisms of
e2 large populations of neurons. Indeed, even if progress in calcium imaging or in
es multi-electrode arrays has made it possible since this last decade to record a
s large number of neurons simultaneously, we do not yet have access to the exact
es structure of the network they constitute. The study presented here is thus a
es proof of concept, based on a specific network model.

687 This said, the advantage of such a computational study is two-fold. On
s the one hand, linking internal structure with measured dynamics could foster
s 1ore systematic interactions between experimentalists and theoreticians, with
s00 the constant goal of refining models to render them closer to reality and/or
s better at predicting real-life situations. On the other hand, it can shed lights
s2 on possible guidance for the design of new experimental protocols aimed at
3 preventing the spread (or generalization) of epileptic seizures.

604 Generally speaking, our models describe an interesting variety of network
ss dynamics in relation to the propagation of strong incoming perturbations. The
s studies on the dynamics of “crises” in networks of neuron models are a recent de-
sor  veloping field (Computational Neuroscience in Epilepsy, 2008; Naze, Bernard, &
es Jirsa, 2015; Rich, Hutt, Skinner, Valiante, & Lefebvre, 2020; Depannemaecker et
s90 al., 2021). Another approach proposes to study computationally how a network

70 can be stabilized by the means of an external modulatory stimulus and internal

35


https://doi.org/10.1101/2022.02.21.481321
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.21.481321; this version posted February 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

71 noise, and consequently, avoid the seizure-like regime (Rich et al., 2020). They
72 also show the specific implications of the inhibitory population. Thus recent
703 studies are complementary to offer an understanding of the different facets of
704 this phenomenon of seizure.

70 Future work should examine the large-scale consequences of these properties,
06 and for this, it will be necessary to design macroscopic population models that
77 capture the propagative/non-propagative aspects of the seizure, while taking

708 into account internal heterogeneities of the network (work in progress).
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= HEquations

Adex model:
dv V -V
C— =gr(FEL — V) + grAr exp T —w ~+ Lsyn (13)
dt Ar
dw
Tw g = a(V—-FEL)—w
V - Vg
if V> Vp then (14)
w—w+b

CAdEx model:

av V -V
C— =gr(ErL = V) + grLAr exp MRS +ga(Ea—V)+ 1 (15)
dt Ar
.. G | S——
dt 1+eXp(VZ;V)

836 (16)
V - Vg
if V> Vp then (16)
ga — ga +69a
HH model:
dVv
Cm

yra —qi(B; = V) — ggn*(V = Ex) — gnam®h(V — Eng) + Lgyn  (17)
s with gating variables (in ms):

dn  0.032(15. — V + Vi)

10. =V +Vp
o 1. —n) — 0.5eap(——— VT 1
0t~ (eap(B=VEVr) 1)( n) — 0.5exp( 0 n (18)
838
dh 17. -V + Vp 4.
=0.12 —)(1. = h) — 1
5 = 0-128eap(————)(1. = h) h (19)
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dm  0.32(13. -V + Vq)

0.28(V —Vr —40.)

— = 1—m)— 20
&t~ Temp(Bmrn) — 1) ™ T (o 20)
839
840
8a1 Conductance-based synapses:
Lyn = 95(Ep — V) +91(Er = V) (21)
d
Ye/1 _ _9E/1 (22)
dt Tsyn
842 External perturbation:
Vpert(t) = B+ a * (exp(—(t — T1)?*/(2. % 72))) * H(—(t — T})) (23
+H(—(t = To)) « H(t — T1) + exp(—(t — T2)?/ (2. % 73;;)) * H(t — T»))
843 Kuramoto order parameter:
. 1 - NV
RexpiV¥ = N Zexp it (24)
J
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