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Cost of observability inequalities for elliptic equations in 2-d
with potentials and applications to control theory*

Sylvain Ervedoza† Kévin Le Balc’h‡

March 22, 2022

Abstract

The goal of this article is to obtain observability estimates for non-homogeneous elliptic equations in the
presence of a potential, posed on a smooth bounded domain Ω in R2 and observed from a non-empty open subset
ω ⊂ Ω. More precisely, for V ∈ L∞(Ω;R), our main result shows that, when Ω ⊂ R2 has a finite number of
holes, the observability constant of the elliptic operator −∆ + V , with domain H2(Ω) ∩ H1

0 (Ω), is of the form
C exp

(
C‖V‖1/2L∞(Ω) log1/2 (

‖V‖L∞(Ω)
))

where C is a positive constant depending only on Ω and ω. Our methodology
of proof is crucially based on the one recently developed by Logunov, Malinnikova, Nadirashvili, and Nazarov
[LMNN20], in the context of the Landis conjecture on exponential decay of solutions to homogeneous elliptic
equations in the plane R2. The main difference and additional difficulty compared to [LMNN20] is that the
zero set of the solutions to elliptic equations with source term can be very intricate and should be dealt with
carefully. As a consequence of these new observability estimates, we obtain new results concerning control
of semi-linear elliptic equations in the spirit of Fernández-Cara, Zuazua’s open problem concerning small-time
global null-controllability of slightly super-linear heat equations.
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1 Introduction

1.1 Quantitative unique continuation and Landis conjecture
We first present the problem of quantitative unique continuation property for elliptic operators and its link with
the Landis conjecture on exponential decay of solutions to elliptic equations.

Let Ω be an open bounded smooth connected set of RN , ω ⊂ Ω be a non-empty open set and P be an elliptic
operator on Ω. The unique continuation property for P is as follows

(Pu = 0 in Ω and u = 0 in ω) ⇒ u ≡ 0 in Ω. (UCP)

When the coefficients of P are analytic in Ω, it is a well-known fact, see [Mik78], that u is analytic on Ω so (UCP)
trivially holds. However, even with C∞ coefficients, there is no reason to hope for more than C∞ solutions.

In 1939, Carleman introduced in [Car39] a new method to prove unique continuation property for 2D smooth
(not necessary analytic) elliptic operators. Basically, it is based on weighted L2-energy inequalities. This type of
estimate, now referred to as Carleman estimates, were generalized and systematized by Hörmander and others for
a large class of differential operators in arbitrary dimensions, see [LRL12] and references therein. For instance,
when P is the Laplace operator −∆, with an appropriate choice of ϕ, one can prove, see for instance [FI96, IP02],
that there exists a constant C = C(Ω, ω) > 0 such that for every s > 1 and u ∈ H2(Ω) ∩ H1

0(Ω), we have

s3 ‖esϕu‖2L2(Ω) + s ‖esϕ∇u‖2L2(Ω) 6 C
(
‖esϕ(−∆u)‖2L2(Ω) + s3 ‖esϕu‖2L2(ω)

)
. (Carleman)

The estimate (Carleman) immediately gives the following quantitative unique continuation property

‖u‖L2(Ω) 6 C
(
‖−∆u‖L2(Ω) + ‖u‖L2(ω)

)
(u ∈ H2(Ω) ∩ H1

0(Ω)), (QUCP)

for some constant C > 0 that depends on Ω, ω.
In this article, we focus on operators of the form P = −∆ + V with V ∈ L∞(Ω). First, by applying (Carleman),

one easily checks that, taking s > C(1 + ‖V‖2/3L∞(Ω)) for some C sufficiently large, we obtain

‖u‖L2(Ω) 6 C exp
(
C‖V‖2/3L∞(Ω)

) (
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
(u ∈ H2(Ω) ∩ H1

0(Ω)). (1.1)

A natural question when looking at (1.1) is the optimality of the constant C exp(C‖V‖2/3L∞(Ω)) in terms of its
dependence with respect to ‖V‖L∞(Ω). Thus, in all the following, the constants C > 0 can vary from line to line,
can depend on Ω and ω but do not depend on ‖V‖L∞(Ω).

Note that we shall also refer to the best constant C∗V in the estimate

‖u‖L2(Ω) 6 C∗V
(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
(u ∈ H2(Ω) ∩ H1

0(Ω)), (1.2)

as the cost of observability, as inequalities of the form (1.2) can also be considered as observability estimates.
In fact, estimating this constant has attracted of lot of attention in the last years, and is related to the Landis

conjecture on exponential decay that we present in the next paragraph.
In the late 1960’s, see [KL88], Landis conjectured the following: for V ∈ L∞(RN) and ε > 0,

(−∆u + Vu = 0 in RN and |u(x)| 6 exp(−|x|1+ε) in RN) ⇒ u ≡ 0 in RN . (Landis)

One can see (Landis) as an unique continuation property at infinity. The decay rate exp(−|x|1+ε) seems to be a
natural barrier, by considering the function u(x) = exp(−C

√
1 + |x|2) for a suitable constant C > 0.
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Landis conjecture was first disproved by Meshkov in 1991 in the case of complex-valued potentials V . In fact,
the work [Mes91] exhibits in the plane R2 a counterexample to (Landis):

∃V ∈ L∞(R2;C) and u . 0, −∆u + Vu = 0 in R2 and |u(x)| 6 exp(−|x|4/3) in R2. (Meshkov)

[Mes91] also shows that this is the right scale: for V ∈ L∞(RN) and ε > 0, we have

(−∆u + Vu = 0 in RN and |u(x)| 6 exp(−|x|4/3+ε) in RN) ⇒ u ≡ 0 in RN . (1.3)

Actually, from (Meshkov), a scaling argument leads to the optimality of (1.1) for complex-valued potentials
V ∈ L∞(Ω;C) with Ω ⊂ R2. Moreover, the proof of (1.3) directly comes from the same scaling argument applied
to (1.1)1. This illustrates the strong link between the Landis conjecture and the quantification of the observability
estimate for non-homogeneous elliptic equations in terms of the potential.

The case of real-valued potentials has been addressed in [BK05] and is more tricky. So far, (Landis) is still a
conjecture in the case of real-valued potentials. Some versions of Landis conjecture are known under additional
assumptions on V , in particular positivity conditions, see for instance [KSW15, KW15, Dav20, DW20, Ros20,
SS21]. It is worth mentioning that a scaling argument would prove the Landis conjecture for real-valued potential
assuming that for V ∈ L∞(Ω;R), u ∈ H2(Ω) ∩ H1

0(Ω), we have

‖u‖L2(Ω) 6 C exp
(
C‖V‖1/2L∞(Ω)

) (
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
. (1.4)

But (1.4) is still a conjecture.
A breakthrough was achieved recently in the 2-d case in the work [LMNN20], which proves that for V ∈

L∞(R2;R), there exists C > 0 sufficiently large such that

(−∆u + Vu = 0 in R2 and |u(x)| 6 exp(−C|x| log1/2(1 + |x|)) in R2) ⇒ u ≡ 0 in R2. (1.5)

In particular, (1.5) directly implies (Landis) for V ∈ L∞(R2;R).
Based on [LMNN20], the goal of this article is to discuss the cost of observability of non-homogeneous elliptic

equations −∆ + V in function of the potential V ∈ L∞(Ω;R) in the two-dimensional case.

1.2 Main results
The first main result of the article is the following one, whose proof will be given in Section 2.

Theorem 1.1. Let Ω be a smooth simply connected bounded domain of R2, ω be a non-empty open subset of Ω.
Then there exists a constant C = C(Ω, ω) > 0 such that for every u ∈ H2(Ω)∩H1

0(Ω) and real-valued potential
V ∈ L∞(Ω;R),

‖u‖L2(Ω) 6 C exp
(
C‖V‖1/2L∞(Ω) log1/2 (

‖V‖L∞(Ω)
)) (
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
. (1.6)

In the sequel, we use the following notation for the constant of observability in (1.6)

CV = C exp
(
C‖V‖1/2L∞(Ω) log1/2 (

‖V‖L∞(Ω)
))
. (1.7)

Before going further, let us point several important issues in Theorem 1.1.
The estimate (1.6) is a better estimate than (1.1), but it is restricted to the cases Ω ⊂ R2 and V real-valued.

Recall that for complex-valued potentials V the best estimate one can hope for, in dimension 2 and higher, is (1.1).
As mentioned above, this optimal result comes from (Meshkov), see [Mes91].

1Indeed, for u, V satisfying the conditions in the left hand side of (1.3), for all R > 1, uR(x) = u(Rx) and VR(x) = R2V(Rx) satisfy
−∆uR + VRuR = 0 in RN and |uR(x)| 6 exp(−|Rx|4/3+ε) in RN . Accordingly, applying (1.1) to Ω = B(0, 2), ω = B(0, 2) \ B(0, 1) and χRuR
where χR = χ(R·) with χ ∈ C∞c (B(0, 2)) and χ ≡ 1 in B(0, 1),

‖uR‖L2(B(0,1)) 6 ‖χRuR‖L2(B(0,2)) 6 C exp(C‖V‖2/3∞ R4/3)
(
‖−2∇χR · ∇uR − (∆χR)uR‖L2(B(0,2)) + ‖uR‖L2(B(0,2)\B(0,1))

)
so that, using that ‖−∇χR · ∇uR‖L2(B(0,2)) 6 CR2 ‖uR‖L2(B(0,2)\B(0,1)), which easily comes from multiplying the equation of uR by |∇χR |

2uR, we
get, for all R > 0,

‖u‖L2(B(0,R)) 6 CRN/2+2 exp(C‖V‖2/3∞ R4/3) exp(−R4/3+ε).

Since the right-hand side goes to zero as R→ ∞, we easily deduce that u vanishes identically in RN , hence (1.3).
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Our result is strictly limited to the 2-d case. In 1-d, the situation is much easier and one can easily obtain
the optimal observability estimate (1.4) for V ∈ L∞(Ω;C), see Section 5.1 below. In dimension 3 and higher, for
real-valued potentials, the problem is widely open, and the best estimate until today is still (1.1).

As already mentioned, Theorem 1.1 is closely related to the recent work [LMNN20]. First of all, Theorem 1.1
conjugated with a scaling argument directly leads to (1.5) but the converse is not so simple, and one cannot deduce
easily Theorem 1.1 from (1.5). Moreover, [LMNN20, Corollary 2.5] also gives that for Ω a smooth 2 dimensional
compact Riemannian manifold without boundary, V ∈ L∞(Ω;R) and any solution u satisfying the homogeneous
elliptic equation −∆u + Vu = 0 in Ω, we have ‖u‖L∞(Ω) 6 CV ‖u‖L∞(ω), where CV > 0 is as in (1.7). Therefore,
our main improvements compare to [LMNN20] are the following: we are considering bounded domains, and
thus boundary issues; we allow non-homogeneous source terms in the equation −∆u + Vu. Both issues require
significant adaptations from the work [LMNN20] as the proof of [LMNN20, Corollary 2.5] strongly depends on
the function u under consideration, in particular through its nodal set {x ∈ Ω , u(x) = 0}. Indeed, estimate (1.6) is
proved for any u ∈ H2(Ω) ∩ H1

0(Ω), for which the zero set might be extremely intricate.
There is a logarithm loss in (1.7) in comparison with the expected estimate (1.4). We do not know if this is

only technical or if this is sharp for real valued potentials V ∈ L∞(Ω;R), Ω ⊂ R2.
Let us also point out the fact, that since V is real-valued, considering the real part <(u) and imaginary part

functions =(u) instead of u if needed, we can further assume that u is real-valued, which we will always do in the
following. Therefore, the sign of the function u will be properly defined, and we will be able to use Harnack’s
estimates in the areas in which u does not vanish, which will turn out to be useful in the proof of Theorem 1.1.

In Theorem 1.1, we assume that Ω is simply connected. This is mainly a technical hypothesis, and we explain
in Section 3 how to extend Theorem 1.1 to connected domains Ω ⊂ R2 having a finite number of holes and prove
the following result.

Theorem 1.2. Let Ω be a smooth bounded domain of R2 with a finite number N ∈ N of holes (Hi)i∈{1,...,N}, and ω
be a non-empty open set included in Ω.

Then there exists a constant C = C(Ω, ω) > 0 such that for every u ∈ H2(Ω) ∩ H1
0(Ω) and V ∈ L∞(Ω;R),

estimate (1.6) holds.

Here, the main idea to prove this result is to rely on a three sphere inequality inside Ω (see Theorem 3.3 below),
and on Theorem 1.1 to estimate u in a neighborhood of the external boundary and of the holes.

The arguments to obtain a three sphere inequality inside Ω, developed in Theorem 3.3, are very close to the
ones developed in Theorem 1.1, but need to be suitably adapted, in particular due to the fact that the nodal sets of
functions u ∈ H2(Ω) ∩ H1

0(Ω) may intersect in an intricate manner the spheres under consideration for the three
sphere argument.

1.3 Applications to control theory
In this part, we first present results and open questions about null-controllability of parabolic equations, mainly
due to Fernández-Cara and Zuazua. Motivated by these open problems, we establish new results about control of
elliptic equations that can be obtained as an application of our main results Theorem 1.1 and Theorem 1.2.

1.3.1 Null-controllability of parabolic equations as a motivation.

Let T > 0, Ω be a smooth bounded domain RN , ω ⊂ Ω be a non-empty open set, QT = (0,T )×Ω, qT = (0,T )×ω,
V = V(t, x) ∈ L∞(QT ) (possibly complex valued), F ∈ L2(QT ), u0 ∈ L2(Ω), and consider the following parabolic
equation 

∂tu − ∆u + V(t, x)u = F, in (0,T ) ×Ω,
u = 0 on (0,T ) × ∂Ω,
u(0, ·) = u0 in Ω.

(1.8)

By a parabolic Carleman estimate, see [FCG06, Lemma 1.3], one can prove that for every F ∈ L2(QT ), u0 ∈ L2(Ω),
the solution u to (1.8) satisfies the observability estimate

‖u(T, ·)‖L2(Ω) 6 C exp
(
C

(
1
T

+ T‖V‖L∞(Ω) + ‖V‖2/3L∞(Ω)

)) (
‖F‖L2(QT ) + ‖u‖L2(qT )

)
. (1.9)
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By duality, see [Cor07, Theorem 2.44], (1.9) leads to a small-time null-controllability result for the controlled
parabolic equation 

∂ty − ∆y + V(t, x)y = h1ω, in (0,T ) ×Ω,
y = 0 on (0,T ) × ∂Ω,
y(0, ·) = y0 in Ω.

(1.10)

In (1.10), at time t ∈ (0,T ), y(t, ·) : Ω→ C is the state while h(t, ·) : ω→ C is the control.
More precisely, for every T > 0, y0 ∈ L2(Ω), there exists h ∈ L2(qT ) such that the solution y of (1.10) satisfies

y(T, ·) = 0 and we have

‖y‖L2(QT ) + ‖h‖L2(qT ) 6 C exp
(
C

(
1
T

+ T‖V‖L∞(Ω) + ‖V‖2/3L∞(Ω)

))
‖u0‖L2(Ω) . (1.11)

Using (Meshkov), the article [DZZ08] shows the optimality in small time of (1.9) then the optimality in small
time of (1.11) for V ∈ L∞(QT ;C). According to the elliptic case, it is natural to expect better cost estimates than
(1.11) for V ∈ L∞(QT ;R), but this is open even in the 1d case.

In [FCZ00], Fernández-Cara and Zuazua considered the semi-linear parabolic equation
∂ty − ∆y + f (y) = h1ω, in (0,T ) ×Ω,
y = 0 on (0,T ) × ∂Ω,
y(0, ·) = y0 in Ω,

(1.12)

where f ∈ C1(R;R) such that f (0) = 0. They prove two results for (1.12):
• (Positive result) If f (s) = o|s|→+∞(|s| log3/2(|s|)) then (1.12) is small-time globally null-controllable, i.e. for

every T > 0, for every y0 ∈ L∞(Ω), there exists h ∈ L∞(qT ) such that the solution y of (1.12) satisfies y(T, ·) = 0.
The proof of this positive result is strongly related to the cost estimate (1.9) for solutions of (1.8).
• (Negative result) For p > 2, if f is defined by f (s) =

∫ |s|
0 logp(1+ |s̃|) ds̃, s ∈ R, (1.12) is not small-time (even

large-time) globally null-controllable.
These two results lead to the following open problem: if | f (s)| ∼ |s| logp(1+ |s|), as |s| → +∞ with p ∈ [3/2, 2],

is (1.12) small-time/large-time globally null-controllable? Despite several works on this problem, this is still an
open question in general. Note that in [AT02], the authors prove that even in the dissipative case, i.e. f (s) =

s logp(1 + |s|) for some p > 2, small-time global null-controllability of (1.12) does not hold. Recently, the second
author proves in [LB20] that if f satisfies | f (s)| = o|s|→+∞(|s| log2(|s|)), and f is semi-dissipative, including in
particular the case f (s) = ±|s| logp(1 + |s|) with p < 2, then (1.12) is large-time globally null-controllable. Similar
questions for semi-linearities depending on the gradient of the solution are also considered in [DFCGBZ02].

1.3.2 New control results for linear and semi-linear elliptic equations in 2D

Motivated by the questions raised by the previous part on null-controllability of parabolic equations, we give new
control results for elliptic equations in the two-dimensional case that are based on Theorem 1.1.

Let Ω be a smooth bounded domain of R2 having a finite number of holes, ω be a non-empty open subset of
Ω and V ∈ L∞(Ω;R) be a real-valued potential.

For F ∈ L2(Ω), we consider the linear elliptic control problem{
−∆y + V(x)y = F + h1ω in Ω,
y = 0 on ∂Ω.

(1.13)

From Theorem 1.1 and a duality argument, we have the following result.

Theorem 1.3. Let Ω be a smooth bounded domain of R2 having a finite number of holes, ω be a non-empty open
subset of Ω and V ∈ L∞(Ω;R) be a real-valued potential.

For every F ∈ L2(Ω), one can find a pair (y, h) ∈ [H2(Ω) ∩ H1
0(Ω)] × L2(ω) satisfying (1.13) and

‖y‖H2(Ω) + ‖h‖L2(ω) 6 CV ‖F‖L2(Ω) , (1.14)

where CV is given by (1.7). Moreover, this construction can be done such that, given F ∈ L2(Ω), the operator
V ∈ L∞(Ω) 7→ (yV , hV ) ∈ H2(Ω)×L2(ω), where (yV , hV ) corresponds to the above pair associated to a potential V,
satisfies the following property: if (Vk)k∈N converges strongly in L∞(Ω) toward V, then (yVk , hVk ) weakly converges
as k → ∞ to (yV , hV ) in H2(Ω) × L2(ω).
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Remark 1.4. Theorem 1.3 is specific to the two-dimensional case and real-valued potentials. In fact, it is some
kind of dual statement of Theorem 1.1 (when Ω is simply connected) or Theorem 1.2 (when Ω is multiply con-
nected) and similar remarks apply, in particular: in the multi-dimensional case when V ∈ L∞(Ω;C), Ω ⊂ RN , The-
orem 1.3 holds true with CV replaced by C exp(C‖V‖2/3L∞(Ω)), as a consequence of (1.1); in 1-d, for V ∈ L∞(Ω;C),

Theorem 1.3 holds true with CV replaced by C exp(C‖V‖1/2L∞(Ω)), by duality with Theorem 5.1 presented in Sec-
tion 5.1 below.

For f ∈ C1(R;R) such that f (0) = 0 and F ∈ L2(Ω), let us deal with the semi-linear elliptic control problem{
−∆y + f (y) = F + h1ω in Ω,
y = 0 on ∂Ω.

(1.15)

From similar arguments as in [FCZ00] and Theorem 1.3, we prove the following result.

Theorem 1.5. Let Ω be a smooth bounded domain of R2 having a finite number of holes, ω be a non-empty open
subset of Ω, and f ∈ C1(R;R) such that f (0) = 0.

We have the following dichotomy.
• (Positive result) If f (s) = o|s|→+∞(|s| logp(|s|)), p < 2, then for every F ∈ L2(Ω), there exists a pair (y, h) ∈

[H2(Ω) ∩ H1
0(Ω)] × L2(ω) satisfying (1.15).

• (Negative result) For p > 2, setting fp(s) =
∫ |s|

0 logp(1 + |s̃|) ds̃, for s ∈ R, there exists F ∈ L2(Ω) such that
for every h ∈ L2(ω), the elliptic equation (1.15) has no solution y ∈ H2(Ω) ∩ H1

0(Ω).

Actually, we will prove that the positive result of Theorem 1.5 holds true assuming the weaker asymptotic
condition on f

lim
|s|→∞

f (s)
|s| log2(|s|)

· log
(
1 +

∣∣∣∣∣ f (s)
s

∣∣∣∣∣) = 0. (1.16)

Remark 1.6. Again, the positive result of Theorem 1.5 is specific to the two-dimensional case. In N-d with N > 2,
a similar positive result holds true assuming f (s) = o|s|→+∞(|s| log3/2(|s|)), even when f is assumed to be complex
valued, and this can be proved following the arguments in [FCZ00] based on classical Carleman estimates for the
elliptic equation in dimension N (as in (Carleman)). In 1-d, a positive result can be proved assuming only that
f (s) = o|s|→+∞(|s| log2(|s|)), using the specific one-dimensional Carleman estimate in Theorem 5.1.

Remark 1.7. The negative result of Theorem 1.5 in fact holds true in any dimension, and can be proven similarly,
and shows that there exists semi-linearities of the order of |s| logp(1 + |s|) as |s| → ∞ for some p > 2 for which
there are no solution to the elliptic equation (1.15) for some choices of source terms F ∈ L2(Ω).

We believe that, even if the results of Theorem 1.5 do not allow to answer the open question in the work of
Fernández-Cara and Zuazua [FCZ00] concerning the global null-controllability of the semi-linear heat equation,
it sheds some light to this problem and might suggest that it | f (s)| = o(|s| logp(1 + |s|)), as |s| → +∞ for some
p < 2, then (1.12) is globally null-controllable, at least in space dimension 1, but to our knowledge, this is still an
open problem.

1.4 Strategy of the proof of Theorem 1.1
In this part, we present the strategy of the proof of Theorem 1.1 and the main arguments of each step. This strategy
actually closely follows the approach of [LMNN20], and we will explain at the end of this section where it differs
from [LMNN20].

The proof of Theorem 1.1 is divided into seven main steps.

• Step 1: Reduction to concentric balls. Noting that here, Ω is assumed to be simply connected, using
Riemann mapping theorem, we first reduce Theorem 1.1 to the case where ω and Ω are two concentric balls
centered at 0.

• Step 2: Reduction to a L∞ observability inequality. By using local elliptic regularity and Sobolev embed-
dings, we reduce the proof of (1.6) to the proof of a similar observability inequality replacing the L2-norms
of the left hand side and second right hand side terms by L∞-norms, see (2.2) thereafter.
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• Step 3: Reduction to smooth functions with 0 as a regular value. By a density argument, mainly based
on Sard’s lemma and approximation by smooth functions of H2-functions, we reduce the proof of (2.2)
to the proof of (2.2) for smooth functions with 0 as a regular value and being constant on the boundary
(for simplicity of notations and avoid the case of ∂Ω being a 0 level set, we will take this constant on the
boundary being non-zero). Accordingly, the functions u which will be considered up to the end have a
well-structured set of zeros, formed by smooth disjoints Jordan curves, which do not intersect the boundary.

• Step 4: Construction of a positive solution ϕ of (−∆ + V)ϕ = 0 in a suitable perforated domain. We
perform a perforation process depending on the set of zeros of the function u such that the perforated domain
has a small Poincaré constant, denoted by a parameter ε > 0, that enables to construct a positive solution
to the elliptic operator −∆ + V in this new domain. In this step, we shall first classify the zero level sets of
u, consisting of smooth disjoint Jordan curves, into two parts: the “big curves” and the “small curves”. The
“small curves” determine small domains in which the Poincaré constant is small so nice estimates can be
obtained in these areas. We also deduce that the solution satisfies a uniform bound either from above or from
below, in the connected components delimited by the “big curves”. The next point consists in perforating
the domain Ω using sufficiently small disks in a sufficiently large number, avoiding the “big curves”, 0 and
xmax, the point at which |u| is maximal. The resulting perforated domain has a small Poincaré constant so
one can construct a positive solution ϕ of (−∆ + V)ϕ = 0 satisfying appropriate bounds in this new domain.
In the following, we will call this solution a multiplier. Note that at the end of this step ε has to be chosen
such that ε 6 C‖V‖−1/2

L∞(Ω).

• Step 5: A quasiconformal change of variable. Thanks to the positive multiplier of the previous step,
we reduce the inhomogeneous elliptic equation −∆ + V to an homogeneous divergence elliptic operator
by a suitable change of unknowns in the perforated domain. We then apply the theory of quasiconformal
mappings that enables to recast the divergence elliptic equation into a Laplace equation: ∆h = 0. The last
point of this step is to control how the quasiconformal change of variable transforms the perforated domain
of the previous step to another perforated domain. In particular, the holes, which were disks before, will be
transformed into holes which still cannot be too flattened by this quasiconformal transform. Note that at the
end of this step ε has to be chosen such that ε 6 C‖V‖−1/2

L∞(Ω) log−1/2(‖V‖L∞(Ω)).

• Step 6: A Carleman estimate in a perforated domain. We now employ a Carleman estimate in Ω to a
cut-off version of h which vanishes in a neighborhood of the holes of the domain. The truncated terms near
the holes of the perforated domain will be treated with Harnack inequalities taking the parameter s in the
Carleman estimate such that s > Cε−1, i.e. s > C‖V‖1/2L∞(Ω) log1/2(‖V‖L∞(Ω)). This combination of arguments
will prove quantitative unique continuation estimates on the solution h in the perforated domain.

• Step 7: From the Carleman estimate to the observability inequality. We now come back to the original
variable u to deduce from the observability inequality satisfied by h in the perforated domain the observ-
ability inequality for u in the whole domain. Here, we crucially use the fact that the perforation process in
Step 4 avoids the point xmax.

Steps 4, 5, and 6 are crucially inspired by the methodology in [LMNN20] that focuses on the case of the
homogeneous elliptic equation −∆u + Vu = 0. Still, our strategy differs from the one in [LMNN20] in several
points.

Step 3, reducing the proof of the observability estimates to smooth functions having 0 as a regular value, is
new. Since we want a result valid for any u ∈ H2(Ω)∩H1

0(Ω), in principle, the zero level set of u can be extremely
intricate. Here, by some easy density argument, we reduce the problem to proving the observability inequality to
smooth functions u for which 0 is a regular value. This gives some structure on the zero level set of u, which is
simply formed by several smooth Jordan curves which do not intersect one to another (nor themselves).

Step 4, although strongly inspired by [LMNN20], contains one new ingredient, which is the classification
of the zero level set of u into two parts, small and big parts. This is new compared to [LMNN20], since when
considering solutions of −∆u + Vu = 0, a curve of the zero level set of u cannot be included in a too small ball,
except in the trivial case u = 0. In fact, in the case handled by [LMNN20], there are no small curves in the zero
level set of u.

Step 5 is very similar to [LMNN20], even if we need to give an additional argument to remove the source term
f = −∆u + Vu and obtain the equation ∆h = 0.

Step 6 is also strongly inspired by [LMNN20], but differs from it since it relies only on a Carleman estimate and
Harnack’s inequality. Indeed, the approach in [LMNN20, Section 6.1] based on Carleman estimate (which gives
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Landis conjecture in 2d for solutions u decaying faster than exp(−C|x| log3/2(|x|)) instead of exp(−C|x| log1/2(|x|)),
see [LMNN20]) would give (1.6) with a slightly worse bound, of the form C exp(C‖V‖1/2L∞(Ω) log3/2(‖V‖L∞(Ω))). We
thus improve the argument of [LMNN20] based on Carleman estimates to obtain (1.6) with CV as in (1.7). We
believe that this technical improvement is interesting by itself because it enables to generalize the toy problem
[LMNN20, Theorem 5.1] in the multi-dimensional case without logarithm loss.

Let us finally mention that the treatment of the boundary ∂Ω is another difficulty in the proof of Theorem 1.1
compared to [LMNN20], which we take into account by considering smooth functions u having 0 as a regular
value and being a non-zero constant on the boundary, thus guaranteeing that the zero level set of u does not
intersect the boundary ∂Ω.

1.5 Organization of the paper
Section 2 is dedicated to the proof of the main result of the paper, i.e. the quantitative unique continuation result
given in Theorem 1.1. Section 3 provides the proof of Theorem 1.2. Section 4 is devoted to the proof of the control
results for elliptic equations, given in Theorem 1.3 and Theorem 1.5. We end the article in Section 5 by giving
some complementary results related to observability inequalities.

Acknowledgements. The authors are indebted to Karim Kellay for interesting discussions which led to an
improvement of our results and a simplification of our arguments.

2 Proof of the observability inequality given in Theorem 1.1
Let Ω be a smooth simply connected bounded domain of R2 and ω be a non-empty open subset of Ω. Let us take
V ∈ L∞(Ω;R). The goal of this section is to prove Theorem 1.1, i.e. to prove the observability inequality (1.6),
associated to the elliptic operator −∆ + V .

2.1 Step 1: Reduction to concentric balls
The goal of this first step is to reduce the proof of Theorem 1.1 to the case where ω and Ω are two concentric balls
centered at 0.

Fact 2.1. Without loss of generality, one can assume that

ω = B(0, r) ⊂ Ω = B(0,R), ∂Ω = ∂B(0,R), for some 0 < r < R. (2.1)

Proof. Up to a translation argument, recalling that ω is non-empty, one can assume that 0 ∈ ω.
By Riemann mapping theorem up to the boundary, see [Bel15, Theorem 8.2], we know that there exists

Φ : Ω→ B(0, 1), one-to-one, such that

Φ ∈ H(Ω), Φ ∈ C∞(Ω), Φ(0) = 0, 0 < c 6 |Φ′| 6 C in Ω,

whereH(Ω) denotes the set of holomorphic functions on Ω.
By the open mapping theorem, Φ maps ω to a neighborhood of 0 that contained B(0, r) for some r > 0.
For u ∈ H2(Ω) ∩ H1

0(Ω), by using Cauchy-Riemann’s equation, setting û := u ◦ Φ−1, a straightforward
computation gives

∆û(x) = |∇<(Φ−1)|2∆u(Φ−1(x)) ∀x ∈ B(0, 1).

So setting V̂ = |∇<(Φ−1)|2V ◦ Φ−1, we obtain that û satisfies the following elliptic equation in B(0, 1)

−∆û + V̂û = |∇<(Φ−1)|2(−∆u(Φ−1) + V(Φ−1)u(Φ−1)) in B(0, 1).

Moreover, û = 0 on ∂B(0, 1) as u = 0 on ∂Ω and the image of ∂Ω through Φ coincides with ∂B(0, 1).
Hence the proof of the observability inequality (1.6) for û in the unit disk B(0, 1) with the observation set

B(0, r) immediately leads to (1.6) for u by coming back to the original variable.
Therefore we shall assume without loss of generality that there exist two positive constants 0 < r < R such

that (2.1) holds true (here R = 1 in the proof). �
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ω
Ω

B(0, r) B(0,R)Φ

Figure 1: Image of Ω by the bi-holomorphism Φ of Step 1.

2.2 Step 2: Reduction to a L∞ observability inequality
The goal of this second step is to reduce the L2 observability inequality (1.6) to a L∞ observability inequality.

Fact 2.2. Let ω0 ⊂⊂ ω. Then the observability inequality

‖u‖L∞(Ω) 6 CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L∞(ω0)

)
(u ∈ H2(Ω) ∩ H1

0(Ω)), (2.2)

with CV as in (1.7), implies (1.6).

Proof. Recall that H2(Ω) ⊂ L∞(Ω) so the two sides of the inequality (2.2) are finite because u ∈ H2(Ω).
Sobolev embedding and local elliptic regularity give that for some positive constant C > 0, for all u ∈ H2(Ω),

‖u‖L∞(ω0) 6 C ‖u‖H2(ω0) 6 C
(
‖−∆u‖L2(ω) + ‖u‖L2(ω)

)
6 C

(
‖−∆u + Vu‖L2(ω) + (1 + ‖V‖L∞(Ω)) ‖u‖L2(ω)

)
6 CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
. (2.3)

So by gathering (2.2) and (2.3), this directly yields (1.6). �

In the following, we will assume

ω0 = B(0, r0), for some r0 ∈ (0, r),

where r is the radius of ω (recall (2.1)).

2.3 Step 3: Reduction to smooth functions with 0 as a regular value
For simplicity, we will deal only with smooth functions u such that 0 is a regular value of u (meaning that for all
x ∈ Ω with u(x) = 0, ∇u(x) , 0) and such that u equals to a non-zero constant on ∂Ω. Let us callU this set:

U = {u ∈ C∞(Ω;R) ; 0 is a regular value of u and u is a non-zero constant on ∂Ω}. (2.4)

Lemma 2.3. For any u ∈ H2(Ω) ∩ H1
0(Ω), there exists a sequence (un)n∈N of elements ofU which converges to u

in H2(Ω).

Proof. Equivalently to the statement of Lemma 2.3, we will show that for u ∈ H2(Ω) ∩ H1
0(Ω;R) and ε > 0, we

can find uε ∈ U such that ‖u − uε‖H2(Ω) 6 ε.
By [Eva10, Section 5.3.3, Theorem 3], the closure of C∞(Ω) for the H2(Ω) topology is H2(Ω) so there exists

u1 ∈ C∞(Ω) such that
‖u − u1‖H2(Ω) 6 ε.

We then recall that there exists a lifting operator R : H3/2(∂Ω) × H1/2(∂Ω) → H2(Ω) such that for all
(g0, g1) ∈ H3/2(∂Ω) × H1/2(∂Ω), R(g0, g1) ∈ H2(Ω) and (R(g0, g1)|∂Ω, ∂nR(g0, g1)|∂Ω) = (g0, g1), and for all
(g0, g1) ∈ C∞(∂Ω)2, R(g0, g1) ∈ C∞(Ω) (see e.g. [LM72, Theorem 8.3 and Remark 3.3]).

Accordingly, u1 −R(u1|∂Ω, ∂nu1|∂Ω) belongs to H2
0(Ω)∩C∞(Ω). Now, since by definition the closure of C∞c (Ω)

for the H2(Ω) topology is H2
0(Ω), there exists u2 ∈ C∞c (Ω) such that

‖u2 − (u1 − R(u1|∂Ω, ∂nu1|∂Ω))‖H2(Ω) 6 ε.
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It follows that u3 = u2 + R(0, ∂nu1|∂Ω) satisfies

‖u3 − u‖H2(Ω) 6 ‖u2 − (u1 − R(u1|∂Ω, ∂nu1|∂Ω))‖H2(Ω) + ‖R(u1|∂Ω, 0)‖H2(Ω) + ‖u − u1‖H2(Ω)

6 ε + C‖u − u1‖H2(Ω) 6 Cε,

since, using the continuity of the lifting operator R from H3/2(∂Ω) × H1/2(∂Ω) to H2(Ω) and u ∈ H1
0(Ω),

‖R(u1|∂Ω, 0)‖H2(Ω) 6 ‖u1‖H3/2(∂Ω) 6 C‖u1 − u‖H3/2(∂Ω) 6 C‖u1 − u‖H2(Ω).

Let us further note that u3 ∈ C∞(Ω) and that u3|∂Ω = 0.
We now use Sard’s lemma to get the existence of some positive parameters γ ∈ (0, ε) such that 0 is not a

critical value of the function u4 = u3 + γ.
By construction, ‖u4 − u‖H2(Ω) 6 Cε, and u4 belongs to the set U defined in (2.4): u4 belongs to C∞(Ω), is a

non-zero constant on ∂Ω, and has 0 as regular value. This proves the result since ε > 0 is arbitrary, by replacing ε
by ε/C. �

From Lemma 2.3, since the topology of H2(Ω) allows to pass the limit in each terms of (2.2) (recall that in
dimension 2, H2(Ω) ⊂ L∞(Ω)), we directly obtain the following result.

Fact 2.4. The observability inequality

‖u‖L∞(Ω) 6 CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L∞(ω0)

)
(u ∈ U), (2.5)

with CV as in (1.7), implies (2.2).

2.4 Step 4: Construction of a positive multiplier in a suitable perforated domain
We now begin the proof of (2.5). From now on, we fix u ∈ U, and we set

f := −∆u + Vu in Ω,

which belongs to L2(Ω) since u ∈ H2(Ω) and V ∈ L∞(Ω).
This step consists in constructing a suitable perforation of the domain Ω in order to construct a domain in

which the Poincaré constant is small, and such that the perforations we add do not meet some particular nodal
lines of u. Then in this perforated domain, because the Poincaré constant is small, one can construct a positive
solution ϕ satisfying −∆ϕ + Vϕ = 0, which we will call a multiplier hereafter.

2.4.1 Decomposition of the nodal sets of u

Let us denote by Z the nodal set of u:
Z := {x ∈ Ω ; u(x) = 0}.

The first important property of this set is that, since u ∈ U, recalling the definition (2.4), Z is the union of smooth
compact connected curves contained in Ω which do not intersect each other. In other words, we have that for some
set of index J,

Z = ∪ j∈JC j, C j are disjoint smooth Jordan curves that do not intersect ∂Ω.

By classical differential geometry arguments, we have the following result.

Fact 2.5. For every j ∈ J, C j satisfies the following properties:
• (Jordan curve) C j separates Ω into exactly two connected components denoted by OC j , the interior of C j,

strictly contained in Ω, and EC j , the exterior of C j,
• (Separation and Sign property) there exists an open connected neighbourhood V j of C j contained in Ω such

that: V j ∩ Z = C j; for every x0, x1 ∈ V j ∩ EC j , u(x0)u(x1) > 0; for every x0, x1 ∈ V j ∩ OC j , u(x0)u(x1) > 0.

We then separate the nodal sets Z of u into two parts, depending on a parameter ε > 0, a small parameter that
will be fixed later.

Namely, we consider the following property: for j ∈ J, C j satisfies the property (P-ε) if

∀x0 ∈ C j, ∀r ∈ (0, ε], ∂B(x0, r) ∩ C j , ∅. (P-ε)
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C ∈ Z1
ε

C ∈ Z2
ε

Figure 2: An example of nodal set of u.

Accordingly, we write

J1
ε = { j ∈ J, C j satisfies (P-ε)}, J2

ε = { j ∈ J, C j does not satisfy (P-ε)}, (2.6)

which of course forms a partition of J:
J = J1

ε ∪ J2
ε .

We then decompose Z accordingly:

Z = Z1
ε ∪ Z2

ε , with Z1
ε := ∪ j∈J1

ε
C j and Z2

ε := ∪ j∈J2
ε
C j. (2.7)

In Figure 2, we have represented the nodal set of u by distinguishing the curves that belong to Z1
ε and Z2

ε .
Roughly speaking, Z1

ε corresponds to the large components of the nodal set of u, while Z2
ε corresponds to the small

ones.
Then, by construction and a connectedness argument, we have that for every j ∈ J2

ε , there exists x j ∈ C j such
that C j ⊂ B(x j, ε). Accordingly, the Poincaré constant in OC j should be of the order of ε2. In particular, if ε2 ‖V‖L∞
is small enough, from the fact that u satisfies −∆u + Vu = f in OC j and vanishes on C j, Lax-Milgram lemma gives
‖∇u‖L2(OC j )

6 C ‖ f ‖L2(Ω).
The next proposition makes this idea precise, and also states that each connected component of O of Ω \ Z1

ε

then corresponds to open sets in which the solution enjoys a uniform bound, either from above, or from below.

Proposition 2.6. There exist two constants C > 0 and c > 0 such that for every ε > 0 satisfying

ε2 ‖V‖L∞(Ω) 6 c, (2.8)

the following holds.
• For each connected component C of Z2

ε ,

‖u‖H1
0 (OC) + ‖u‖L∞(OC) 6 C‖ f ‖L2(OC). (2.9)

• For each connected component O of Ω \ Z1
ε , we have(

∀x ∈ O, u(x) > −C ‖ f ‖L2(Ω)

)
or

(
∀x ∈ O, u(x) 6 C ‖ f ‖L2(Ω)

)
. (2.10)

Remark 2.7. In the case f = 0, we obtain that u ≡ 0 in OC when C is a connected component of Z2
ε , which is in

apparent contradiction with the fact that 0 is a regular value of u. This is due to the fact that if f = 0, the set Z2
ε is

empty, in agreement with [LMNN20, Lemma 6.14].

Remark 2.8. Actually, from a scaling argument, one can obtain a more precise estimate than (2.9), namely, under
the condition (2.8), for each connected component C of Z2

ε ,

‖u‖L2(OC) + ε‖u‖L∞(OC) + ε ‖∇u‖L2(OC) 6 Cε2 ‖ f ‖L2(Ω) .
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Before going into the proof of Proposition 2.6, let us first define the Poincaré constant.

Definition 2.9. Let O be a smooth bounded domain of R2. The Poincaré constant CP(O) is the smallest constant
for which we have the Poincaré inequality

∀u ∈ H1
0(O), ‖u‖2L2(O) 6 CP(O)2 ‖∇u‖2L2(O) .

For later use, let us recall that if O1 ⊂ O2 then CP(O1) 6 CP(O2) and that CP(B(R)) = C0,PR for an universal
constant C0,P > 0.

Proof of Proposition 2.6. In the following proof, the constants C > 0 can vary from line to line, but they are
always independent of ε > 0.

Take C ⊂ Z2
ε . We know from (P-ε), (2.7) and a connectedness argument that there exists x0 ∈ C such that

OC ⊂ B(x0, ε) so in particular we have CP(OC) 6 CP(B(x0, ε)) 6 C0,Pε.
We have that u ∈ H1

0(OC) satisfies −∆u + Vu = f in OC. By multiplying by u, and integrating by parts, we
obtain the following energy identity ∫

OC

|∇u|2 dx +

∫
OC

Vu2 dx =

∫
OC

f u dx.

We then deduce by using Young’s inequality and Poincaré’s inequality that

‖∇u‖2L2(OC) 6 ‖V‖L∞(Ω) ‖u‖
2
L2(OC) + ‖ f ‖L2(Ω) ‖u‖L2(OC) 6

(
C2

0,Pε
2 ‖V‖L∞(Ω) +

1
2

)
‖∇u‖2L2(OC) +

C2
0,Pε

2

2
‖ f ‖2L2(Ω) .

Taking C2
0,Pε

2 ‖V‖L∞(Ω) 6 1/4, we obtain ‖∇u‖2L2(OC) 6 2C2
0,Pε

2 ‖ f ‖2L2(Ω), which leads to

‖u‖L2(OC) 6 Cε2 ‖ f ‖L2(Ω) , ‖∇u‖L2(OC) 6 Cε ‖ f ‖L2(Ω) , (2.11)

for some constant C > 0, and this of course implies the first part of (2.9).
To prove the L∞-estimate in (2.9), we write −∆u = −Vu + f =: g in OC. From (2.11), we have that

‖g‖L2(OC) 6 ‖Vu‖L2(OC) + ‖ f ‖L2(OC) 6 Cε2 ‖V‖L∞(OC) ‖ f ‖L2(OC) + ‖ f ‖L2(OC) 6 C ‖ f ‖L2(OC) .

Then, we use de Giorgi’s method in the spirit of [GT83, Section 8.1, Theorem 8.1], see Lemma A.1 to obtain that

‖u‖L∞(OC) 6 C ‖ f ‖L2(Ω) . (2.12)

Here, we underline that the constant C does not depend on the measure of OC. Since this point is important for
our argument, we provide the proof of Lemma A.1 in Appendix. Also note that the scaling argument sketched in
Remark 2.8 would provide the better estimate ‖u‖L∞(OC) 6 Cε ‖ f ‖L2(Ω).

To prove property (2.10), we proceed as follows. First, let us fix a connected component O of Ω \ Z1
ε .

It is obvious that u cannot change sign in connected components of O \ ∪C∈Z2
ε
OC, since there are no x ∈

O \ ∪C∈Z2
ε
OC for which u(x) = 0. Indeed, such x would necessarily belong to Z2

ε and thus to some Jordan curve
C0 ∈ Z2

ε . Thus, we should have x ∈ OC0 , which would contradict x ∈ O \ ∪C∈Z2
ε
OC.

Let us now proceed by contradiction and take x0 and x1 in O such that u(x0) > C ‖ f ‖L2(Ω) and u(x1) <
−C ‖ f ‖L2(Ω), where C is as in (2.9) and set

O+ = {x ∈ O \ ∪C∈Z2
ε
OC, with u(x) > 0}, O− = {x ∈ O \ ∪C∈Z2

ε
OC, with u(x) < 0}.

Since for all x ∈ ∪C∈Z2
ε
OC, from (2.12), we necessarily have |u(x)| 6 C ‖ f ‖L2(Ω), it is clear that x0 and x1 belong

to O \ ∪C∈Z2
ε
OC, and thus x0 ∈ O+, and x1 ∈ O−.

By using the separation property of Fact 2.5, it is easy to see that Ω \ Z1
ε is locally connected so its connected

components are open hence they are path-connected.
Take γ : [0, 1]→ O a continuous path such that γ(0) = x0 and γ(1) = x1. Then set

t0 = sup{t ∈ [0, 1] ; γ(t) ∈ O+}.
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Disk of radius ε

Figure 3: The perforation process.

Since x1 ∈ O−, we necessarily have t0 < 1, and, since x0 ∈ O+, t0 > 0. Besides, by construction u(γ(t0)) = 0, so
that γ(t0) ∈ C0 for some C0 ∈ Z2

ε , and for all t > t0, γ(t) ∈ O− ∪ ∪C∈Z2
ε
OC. Now, since C0 is a Jordan curve, O+ is

neighborhood of C0 in EC0 .
We then set

t1 = sup{t ∈ (t0, 1] ; γ(t) ∈ OC0 }.

It is clear that t1 < 1, due to the fact that γ(1) = x1 < OC0 . Besides, by construction, we have that γ(t1) ∈ C0 and
thus there exists α > 0 such that for all t ∈ (t1, t1 + α], γ(t) ∈ O+. This contradicts the definition of t0. �

2.4.2 A perforation process

The next step is to construct a suitable perforation of the domain Ω which avoids the nodal set Zε
1 , and which, for

convenience, will also avoid the point in which the function u achieves its maximum on Ω.
Let us take xmax ∈ Ω such that

|u(xmax)| = sup
Ω

|u|. (2.13)

We then get the following lemma.

Lemma 2.10. For all C0 > 5, for every ε > 0, there exist finitely many C0ε-separated closed disks of radius ε,
whose union is denoted by Fε, satisfying the following properties:
• these disks are C0ε-separated from each other, from Z1

ε , from ∂Ω, from xmax and from 0,
• the set Z1

ε ∪ Fε ∪ ∂Ω is a 6C0ε-net in Ω, meaning that for all x ∈ Ω, B(x, 6C0ε) ∩ (Z1
ε ∪ Fε ∪ ∂Ω) , ∅.

• the set
Ωε := Ω \ (Z1

ε ∪ Fε) (2.14)

satisfies CP(Ωε) 6 Cε for some constant C > 0 depending on C0 but independent of ε.

In Figure 3, we have represented the perforated domain.

Proof. Let C0 > 5. Among the union of separated closed disks of radius (C0 + 1)ε in Ω \ Z1
ε , choose a maximal

family for the inclusion, and denote by F̃ε the union of disks of radius ε with the same centers as the one of the
previous family. By construction, the disks of F̃ε are C0ε separated one from another, from Z1

ε and from ∂Ω.
Besides, for all x ∈ Ω, B(x, (2C0 + 1)ε) ∩ (Z1

ε ∪ F̃ε ∪ ∂Ω) , ∅, otherwise one could add B(x, (C0 + 1)ε) to the
maximal family of separated closed disks of radius (C0 + 1)ε considered above.

We then set
Fε = F̃ε \ {disks of F̃ε which intersects B(0,C0ε) or B(xmax,C0ε) }.

It is then clear that the disks of Fε are C0ε-separated from each other, from Z1
ε , from ∂Ω, from xmax and from 0,

i.e. that the first item of Lemma 2.10 holds.
Let us prove the second item of Lemma 2.10.
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For x ∈ Ω, if B(x, (3C0 + 3)ε) ∩ {0, xmax} = ∅, then we necessarily have that B(x, (2C0 + 1)ε) ∩ (Z1
ε ∪ Fε ∪

∂Ω) = B(x, (2C0 + 1)ε) ∩ (Z1
ε ∪ F̃ε ∪ ∂Ω) since Fε and F̃ε differ only in B(0, (C0 + 2)ε) ∪ B(xmax, (C0 + 2)ε) and

B(x, (2C0 + 1)ε) ∩ (B(0, (C0 + 2)ε) ∪ B(xmax, (C0 + 2)ε)) = ∅. Therefore, if B(x, (3C0 + 3)ε) ∩ {0, xmax} = ∅, we
necessarily have B(x, (2C0 + 1)ε) ∩ (Z1

ε ∪ Fε ∪ ∂Ω) , ∅.
For x ∈ Ω such that B(x, (3C0+3)ε)∩{0, xmax} , ∅, we necessarily have that B(x, (3C0+4)ε)\(B(0, (3C0+3)ε)∪

B(xmax, (3C0 + 3)ε)) , ∅. Accordingly, taking x0 ∈ B(x, (3C0 + 4)ε) \ (B(0, (3C0 + 3)ε) ∪ B(xmax, (3C0 + 3)ε)), we
necessarily have that B(x0, (3C0 +3)ε)∩{0, xmax} = ∅, so that the previous argument applies and B(x0, (2C0 +1)ε)∩
(Z1

ε∪Fε∪∂Ω) , ∅. Since B(x, (5C0+5)ε) contains B(x0, (2C0+1)ε), we thus get B(x, (5C0+5)ε)∩(Z1
ε∪Fε∪∂Ω) , ∅.

The second item of Lemma 2.10 follows from the above analysis since 6C0 > max{2C0 + 1, 5C0 + 5} for
C0 > 5.

The third item of Lemma 2.10 is an immediate corollary of Lemma 3.1 in [LMNN20], due to the fact that the
set Z1

ε satisfies the key property (P-ε). �

In the sequel, it will be useful to choose a very large C0. For simplicity, from now on, we set C0 = 18 · 322

(this choice will be made clearer later).

2.4.3 Construction of the positive multiplier in the perforated domain

Based on the fact that the Poincaré constant CP(Ωε) can be made arbitrarily small by Lemma 2.10, applying
Lemma 3.2 in [LMNN20], we derive the existence of a positive multiplier ϕ in Ωε.

Lemma 2.11. There exist two positive constant C > 0 and c > 0 such that for every ε > 0, satisfying (2.8), there
exists a solution ϕ of {

−∆ϕ + Vϕ = 0 in Ωε,
ϕ = 1 on ∂Ωε,

(2.15)

and ϕ̃ = ϕ − 1 satisfies
ϕ̃ ∈ H1

0(Ωε) and ‖ϕ̃‖∞ 6 Cε2 ‖V‖L∞(Ω) . (2.16)

Note that ε > 0 still is a free parameter, but it will always be taken such that Proposition 2.6 and Lemma 2.11
hold.

Moreover, since u is smooth, Z1
ε is made of smooth curves, and ϕ is thus smooth on any connected component

of Ωε, taking value one on the boundary of each connected component. We can thus extend ϕ by 1 in Ω \ Ωε,
which yields a continuous function ϕ in Ω.

2.5 Step 5: A quasiconformal change of variable
The next step is to use a quasiconformal change of variable to recast the elliptic problem −∆u + Vu = f in Ω into
an harmonic equation. This part closely follows [LMNN20, Section 4], except for the introduction of ψ in Lemma
2.13 to remove the source term.

2.5.1 An homogeneous elliptic divergence equation

The first step is to rewrite the elliptic problem −∆u + Vu = f in Ω into an equation of divergence form without
source term.

Unfortunately, we are not able to do it in the whole set Ω directly, but only in the set

Ω′ε = Ω \ Fε, (2.17)

i.e. a set which is slightly larger than the set Ωε = Ω \ (Z1
ε ∪ Fε) defined in (2.14).

Using the equation of ϕ in (2.15), it is clear that, setting v = u/ϕ in Ωε, we have ∇ · (ϕ2∇v) = fϕ in Ωε. In fact,
since Ω′ε = Ωε ∪ Z1

ε , and u vanishes on Z1
ε , a straightforward adaptation of [LMNN20, Lemma 4.1] yields that the

equation ∇ · (ϕ2∇v) = fϕ also holds in Ω′ε. To be more precise, we get the following result.

Lemma 2.12. The function v defined in Ω′ε by

v :=
u
ϕ

in Ω′ε, (2.18)

belongs to H1(Ω′ε) and satisfies in the weak sense

∇ · (ϕ2∇v) = fϕ in Ω′ε. (2.19)
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Next, we remove the source term fϕ of (2.19) as follows.

Lemma 2.13. There exists an unique weak solution ψ ∈ H1
0(Ω′ε) of{

∇ · (ϕ2∇ψ) = fϕ in Ω′ε,
ψ = 0 on ∂Ω′ε.

(2.20)

Besides, there is a positive constant C > 0 (independent of ε) such that

‖ψ‖L∞(Ω′ε) 6 C ‖ f ‖L2(Ω) . (2.21)

Proof. First, the solvability of the divergence equation (2.20) directly comes from [GT83, Section 8.2, Theorem
8.3] and from the bounds (2.16).

For the L∞-bound (2.21), we use de Giorgi’s method as in the proof of [GT83, Section 8.1, Theorem 8.1], see
Lemma A.1. The important point is that the constant C > 0 can be made independent of ε, which is the reason
why we recall for the sake of completeness the proof of Lemma A.1 in Appendix. �

We then simply set
v̂ = v − ψ in Ω′ε, (2.22)

where v is defined in (2.18) and ψ is defined in Lemma 2.13. From Lemma 2.12, Lemma 2.13. and the second
point of Proposition 2.6, i.e. (2.10), we deduce the following result.

Corollary 2.14. The function v̂ belongs to H1(Ω′ε) and satisfies in the weak sense

∇ · (ϕ2∇v̂) = 0 in Ω′ε. (2.23)

Moreover, there exists a positive constant C > 0 (independent of ε) such that for every disk D ⊂ Fε,(
∀x ∈ Ω′ε \ D, dist(x,D) < C0ε, v̂(x) > −C ‖ f ‖L2(Ω)

)
or (
∀x ∈ Ω′ε \ D, dist(x,D) 6 C0ε, v̂(x) < C ‖ f ‖L2(Ω)

)
,

where Fε and C0 are defined in Lemma 2.10.

2.5.2 A quasiconformal change of variable

We then use the theory of quasiconformal mappings, which roughly speaking guarantees that solutions to homo-
geneous elliptic divergence equations behave as harmonic functions, see e.g. [AIM09].

Lemma 2.15. There exists an homeomorphic mapping L of Ω = B(0,R) into itself such that
• L is a K-quasiconformal mapping of Ω into itself, with K satisfying

1 6 K 6 1 + Cε2 ‖V‖L∞(Ω) , (2.24)

• L(0) = 0,
• h = v̂ ◦ L−1 satisfies ∆h = 0 in L(Ω′ε), is constant on ∂Ω and belongs to H2

loc(L(Ω′ε)) and to H2 in a
neighborhood of ∂Ω.

Proof. Let us first consider a real-valued function v̂ ∈ H1
loc(B) for some ball B of R2 and such that ∇ · (ϕ2∇v̂) =

0 in B for some real-valued ϕ satisfying 0 < c < ϕ(x) < C < +∞ in B.
By Poincaré lemma, see for instance [LMNN20, Section 6.5], one can then find a function ṽ ∈ H1

loc(B) such
that ϕ2v̂x = ṽy and ϕ2v̂y = −ṽx. Setting w = v̂ + iṽ, we easily check that w is a solution to the Beltrami equation

∂w
∂z̄

= µ
∂w
∂z

in B,

with the Beltrami coefficient

µ =
1 − ϕ2

1 + ϕ2 ·
v̂x + iv̂y

v̂x − iv̂y
, (2.25)

where we set µ = 0 when ∇v̂ = 0.
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Note that, since Ωε is not simply connected, w and ṽ cannot be a priori defined in the whole set Ωε. However,
since v̂ is well-defined in Ωε, we can safely define the Beltrami coefficient µ by (2.25) in Ω′ε, and we further have,
by Lemma 2.11,

‖µ‖L∞(Ωε) 6

∥∥∥∥∥∥1 − ϕ2

1 + ϕ2

∥∥∥∥∥∥
L∞(Ωε)

6 Cε2 ‖V‖L∞(Ω) . (2.26)

We then extend µ by zero outside Ω′ε to the whole complex plane, and remark that µ has compact support.
We then use [AIM09, Theorem 5.3.2] to obtain the existence of a K-quasiconformal homeomorphism Ψ of the

complex plane such that Ψ ∈ H1
loc(C), Ψ satisfies the Beltrami equation

∂Ψ

∂z̄
= µ

∂Ψ

∂z
in C,

and K =
1+sup |µ|
1−sup |µ| . In our case, according to (2.26), we have (2.24).

The function v̂ ◦ Ψ−1 is harmonic in Ψ(Ω′ε). Indeed, for any ball B included in Ω′ε, one can define w ∈ H1
loc(B)

such that v̂ = <(w) and w, Ψ solve the same Beltrami equation. Stoilow factorization theorem [AIM09, Theorem
5.5.1] then implies that there is a holomorphic function W such that w = W ◦ Ψ in B, and therefore the harmonic
function <(W) satisfies v̂ = <(W) ◦ Ψ so we have v̂ ◦ Ψ−1 = <(W) is a harmonic function in Ψ(B). Since B is
arbitrary in Ω′ε, v̂ ◦ Ψ−1 is harmonic in Ψ(Ω′ε).

Since Ψ(Ω) is a simply connected domain which does not fill the whole plane, by Riemann mapping theorem,
see [Bel15, Theorem 8.2], there exists α : Ψ(Ω) → Ω, one-to-one, such that α is holomorphic in Ψ(Ω) and
α(Ψ(0)) = 0. The mapping L = α ◦ Ψ from Ω onto itself is a K-quasiconformal mapping from Ω onto itself with
L(0) = 0. Then the function h = v̂ ◦ L−1 = v̂ ◦ Ψ−1 ◦ α−1 is a harmonic function in L(Ω′ε), as a composition of a
harmonic function with a holomorphic function.

Besides, following the construction of h, recalling that u is constant on ∂Ω, it is clear that h is constant on
L(∂Ω) = ∂Ω. Thus, since h is a harmonic function in L(Ω′ε), it belongs to H2 of any compact subset of L(Ω′ε) and
in a neighborhood of ∂Ω hence h ∈ H2

loc(L(Ω′ε)) and h is H2 in a neighborhood of ∂Ω. �

Remark 2.16. Note that we have used Riemann mapping theorem for the proof of Lemma 2.15, this is the main
reason explaining why we present Theorem 1.1 in the case of a simply connected domain Ω independently.

2.5.3 Image of the perforated domain by the quasiconformal mapping

We conclude this part by the distortion of distances through quasiconformal mapping, which is precisely given by
Mori’s theorem, see [Ahl66, Chapter III, Section C]: for a K-conformal mapping L of B(0,R) into itself, for all
z1, z2 ∈ B(0,R),

1
16

∣∣∣∣∣ z1 − z2

R

∣∣∣∣∣K 6 |L(z1) − L(z2)|
R

6 16
∣∣∣∣∣ z1 − z2

R

∣∣∣∣∣1/K . (2.27)

Based on this result, it is not difficult to prove that the balls of Fε are not two much distorted by the map L, see
the lemma afterwards.

Lemma 2.17. Let L be the mapping as in Lemma 2.15.
There exist a positive constant c > 0 such that for every ε > 0 satisfying

ε2 ‖V‖L∞(Ω)

(
log

(R
ε

)
+ log

(
R
r0

))
6 c, (2.28)

• L(ω0) contains B(0, r0/32),
• the images of the disks of Fε (recall its definition in Lemma 2.10) are contained in disks (D′j) j∈J of size

ε′ = 32ε, indexed by j ∈ J, that are (C0ε/32 − 64ε)-separated from each other, from L(Z1
ε ), from ∂Ω (= L(∂Ω)),

and from L(xmax).

Proof. To prove that L(ω0) contains B(0, r0/32) when condition (2.28) holds, we simply use the first inequality of
(2.27): if |z1| > r0, then |L(z1)| > |z1|

KR−K+1/16 > r0(r0/R)K−1/16. Therefore, if (r0/R)K−1 > 1/2, L(ω0) contains
B(0, r0/32). It thus remains to check that, using the estimate (2.24), the condition (r0/R)K−1 > 1/2 simply follows
from the condition

ε2 ‖V‖L∞(Ω) log
(

R
r0

)
small enough.
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To prove that disks of Fε are contained in disks of size 32ε, it is sufficient to prove that

|za − zb| 6 ε⇒ |L(za) − L(zb)| 6 32ε

For za and zb in Ω with |za − zb| 6 ε, we have by the second inequality of (2.27),

|L(za) − L(zb)| 6 16|ε|1/KR1−1/K ,

which is thus bounded by 32ε if (R/ε)1−1/K 6 2, that is if

(K − 1) log
(R
ε

)
6 K log(2) 6 2 log(2).

if we assume that K 6 2 (which can be done without loss of generality by taking ε2 ‖V‖L∞(Ω) smaller if necessary).
Therefore, using the estimate (2.24), the image of the disks (B(x j, ε)) j∈J of Fε are contained in disks of size 32ε
of the form (B(L(x j), 32ε)) j∈J if

ε2 ‖V‖L∞(Ω) log
(R
ε

)
is small enough.

To estimate the separation between two disks of the form (B(L(x j), 32ε)) j∈J , using that the (x j) j∈J are C0ε separated
and the same argument as above, the centers (L(x j)) j∈J are C0ε/32 separated provided

ε2 ‖V‖L∞(Ω) log
(R
ε

)
is small enough.

The balls (B(L(x j), 32ε)) j∈J are thus (C0/32 − 64)ε separated.
Using similar arguments, we can also prove that the disks B(L(x j), 32ε) j∈J are (C0ε/32 − 32ε) separated from

L(Z1
ε ), ∂Ω, and from L(xmax). �

Remark 2.18. Note that we have used Mori’s theorem in a disk to quantify precisely the distortion induced by
the map L. This is the second main reason for dealing with a simply connected domain Ω in Theorem 1.1.

Before ending this step of the proof, let us set ω′0 = B(0, r0/32), r′0 = r0/32, ε′ = 32ε and remark that by
construction, and recalling the choice C0 = 18 · 322, for which we have C0/32 − 64 = 16 · 32, the disks (D′i)i∈I

given by Lemma 2.17 are 16ε′-separated from each other, from L(Z1
ε ), from ∂Ω, and from L(xmax).

Then, as a straightforward application of Corollary 2.14, Lemma 2.15 and Lemma 2.17, (2.21), we prove the
following result.

Corollary 2.19. Under the assumptions of Lemma 2.17, there exists a constant C > 0 independent of ε such that
for every disk D′ as in Lemma 2.17, we have(
∀x ∈ L(Ω′ε) \ D′ with dist(x,D′) < 16ε′, h(x) > −C ‖ f ‖L2(Ω)

)
or

(
∀x ∈ L(Ω′ε) \ D′ with dist(x,D′) < 16ε′, h(x) 6 C ‖ f ‖L2(Ω)

)
. (2.29)

From now on, we assume that ε > 0 always satisfies (2.8), (2.28) and also

ε 6 r0/323. (2.30)

Note that the smallness condition (2.30) does not appear previously but it will be used in the next part.

2.6 Step 6: A Carleman estimate for the Laplace equation in a perforated domain
The next step is to use a Carleman estimate for the Laplace operator in the ball Ω = B(0,R), and to apply it to a
suitably cut-off version of h, absorbing the terms arising from the cut-off using Harnack’s inequality.

17



2.6.1 An elliptic Carleman estimate in a ball

To start with, we begin by stating a Carleman estimate for the Laplace operator in the ball Ω = B(0,R).
Let us take

β(x) =
√

R2 + 1 −
√
|x|2 + 1, (x ∈ B(0,R)),

and, for λ > 1, set
α(x) = eλβ(x), (x ∈ B(0,R)). (2.31)

We recall the following classical Carleman estimate, see Appendix A.3 for a proof that mainly comes from
[FI96].

Proposition 2.20. There exist constants C > 0, λ > 1, and s0 > 1, depending on r′0, R, such that for every s > s0
and every y ∈ H2(B(0,R)), constant on ∂B(0,R), ỹ = yesα satisfies∫

Ω

| − ∆ỹ − s2|∇α|2ỹ|2 dx +

∫
Ω

|s∇α · ∇ỹ|2 dx + s3
∫

Ω

|ỹ|2 dx + s
∫

Ω

|∇ỹ|2 dx + s3
∫
∂Ω

|ỹ|2 dσ

6 C
‖(∆y)esα‖2L2(Ω) + s3

∫
ω′0

|ỹ|2 dx
 . (2.32)

The first two left hand side terms of the previous Carleman estimate (2.32) are usually not mentioned although
they appear naturally in the classical computations for deriving Carleman estimates. Here, as we will use them
afterwards, we shall keep it.

2.6.2 A Carleman estimate in a perforated domain conjugated with Harnack inequality

We would like to apply the previous Carleman estimate to h, but h is defined only in L(Ω′ε) and is only H2
loc in

L(Ω′ε) and near the boundary ∂Ω. We therefore introduce a smooth cut-off function χ taking value 0 on B(0, 3)
and value 1 on R2 \ B(0, 4), and set

y(x) =


h(x)

∏
j∈J

χ

 x − x′j
ε′

 for x ∈ L(Ω′ε),

0 for x ∈ Ω \ L(Ω′ε),

(2.33)

where the family (x′j) j∈J denotes the centers of the disks (D′j) j∈J introduced in Lemma 2.17.
From Lemma 2.15, we have that y ∈ H2(Ω) and is constant on ∂Ω. We are then in position to apply the

Carleman estimate (2.32) to y. Starting from there, and based on Harnack’s inequality to deal with the cut-off

terms, recalled in Theorem A.2, we prove the following result.

Proposition 2.21. There exist a > 0 and C > 0 such that for all s > s0 satisfying

sε′ > a, (2.34)

we have ∫
Ω

|y|2 dx +

∫
Ω

|∇y|2 dx +

∫
∂Ω

|y|2 dσ 6 C2e2Cs‖h‖2L∞(L(Ω′ε)∩ω′0) + C2e2Cs‖ f ‖2L2(Ω). (2.35)

Remark 2.22. It is worth mentioning that (2.34) gives that s > Cε−1 and ε′ 6 ‖V‖−1/2
L∞(Ω) log−1/2(‖V‖L∞(Ω))

by (2.28) so s > C‖V‖1/2L∞(Ω) log1/2(‖V‖L∞(Ω)). Then, the quantitative observability estimate (2.35) on the perfo-
rated domain will lead to the expected observability estimate (2.5) on the whole domain with CV of the form
C exp(C‖V‖1/2L∞(Ω) log1/2(‖V‖L∞(Ω))). Note that the Carleman approach in [LMNN20], only leads to a weaker ob-

servability estimate (2.5) with an observability constant of the form C exp(C‖V‖1/2L∞(Ω) log3/2(‖V‖L∞(Ω))). The new
ingredient here is to use the second term in the left hand side of the Carleman estimate (2.32). Recall that this
improvement in comparaison with [LMNN20, Section 6.1] leads to the generalization of [LMNN20, Theorem
5.1] in the multi-dimensional case without logarithm loss.
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Proof. In the following proof, the constants C > 0 are allowed to vary from line to line but they do not depend on
ε and s.

Setting ỹ = yesα, we get∫
Ω

|s∇α · ∇ỹ|2 dx + s3
∫

Ω

|ỹ|2 dx + s
∫

Ω

|∇ỹ|2 dx + s3
∫
∂Ω

|ỹ|2 dσ

6 C

∥∥∥∥∥∥∥∥

∆,∏

j∈J

χ

 x − x′j
ε′

 h

 esα

∥∥∥∥∥∥∥∥
2

L2(Ω)

+ Cs3
∫
ω′0

|ỹ|2 dx,

where we have used the notation [A, B] = AB − BA for the commutator of two operators A and B.
Now, the gradient of the cut-off functions

(
χ((· − x′j)/ε

′)
)

j∈J
are supported in disjoint separated sets since the

balls D′j are 16ε′-separated sets. Thus for all s > s0,∫
Ω

|s∇α · ∇ỹ|2 dx + s3
∫

Ω

|ỹ|2 dx + s
∫

Ω

|∇ỹ|2 dx + s3
∫
∂Ω

|ỹ|2 dσ 6 Cs3
∫
ω′0

|ỹ|2 dx

+ C
∑
j∈J

(
1
|ε′|4
‖hesα‖2L2(B(x′j,4ε

′)\B(x′i ,3ε
′)) +

1
|ε′|2
‖|∇h|esα‖2L2(B(x′j,4ε

′)\B(x′j,3ε
′))

)
. (2.36)

We thus look locally around each ball D′j, and first derive from (2.36) nice estimates on h in annulus of the
form B(x′j, 8ε

′)\B(x′j, ε
′) for j ∈ J. Since we will deal differently with these terms depending if B(x′j, 8ε

′)∩B(r′0/2)
is empty or not, we define J1 as the set of indexes j ∈ J such that B(x′j, 8ε

′) ∩ B(r′0/2) = ∅, and we set J2 = J \ J1.
We will also use the notation C(x′j, ε

′) = B(x′j, 4ε
′) \ B(x′j, 3ε

′) in the sequel of the proof.

We first focus on the case B(x′j, 8ε
′) ∩ B(r′0/2) = ∅, i.e. j ∈ J1, and we point out that the weight function α

satisfies the following properties: α is radial, α is decreasing, there exists c > 0 such that infΩ\B(0,r′0/2) |∇α| > c.
Accordingly, using that ỹ vanishes on B(x′j, 2ε

′), and the properties of the weight function, when B(x′j, 8ε
′) ∩

B(r′0/2) = ∅, setting x′′j = x′j − 6ε′x′j/|x
′
j|, Poincaré’s estimate in the one-dimensional case (integrating along a

radial line) yields the existence of a constant C > 0 independent of ε′ such that for all j ∈ J1,∫
B(x′′j ,ε

′)
|ỹ|2 dx 6 C(ε′)2

∫
B(x′j,8ε

′)
|∇α · ∇ỹ|2 dx.

Using then that ỹ = hesα in B(x′′j , ε
′), it follows that( s

ε′

)2
e

2s infB(x′′j ,ε
′ ) α
|B(x′′j , ε

′)| inf
B(x′′j ,ε

′)
|h|2 6 C

( s
ε′

)2 ∫
B(x′′j ,ε

′)
|h|2e2sα dx

6 C
( s
ε′

)2 ∫
B(x′′j ,ε

′)
|ỹ|2 dx 6 Cs2

∫
B(x′j,8ε

′)
|∇α · ∇ỹ|2 dx. (2.37)

We now set C(x′j, ε
′) = B(x′j, 4ε

′) \ B(x′j, 3ε
′). With our choice of cut-off functions, we have, for all j ∈ J1,∫

C(x′j,ε
′)

(
1

(ε′)4 |h|
2 +

1
(ε′)2 |∇h|2

)
e2sα dx

6 Ce
2s supC(x′j ,ε

′ ) α
|C(x′j, ε

′)|

 1
(ε′)4 sup

C(x′j,ε
′)
|h|2 +

1
(ε′)2 sup

C(x′j,ε
′)
|∇h|2

 . (2.38)

Using (2.37), (2.38), we get from (2.36) that for all s > s0,

s3
∫

Ω

|y|2e2sα dx + s
∫

Ω

|∇y|2e2sα dx + s3
∫
∂Ω

|y|2e2sα dσ +
∑
j∈J1

( s
ε′

)2
e

2s infB(x′′j ,ε
′) α
|B(x′′j , ε

′)| inf
B(x′′j ,ε

′)
|h|2

6 Cs3
∫
ω′0

|y|2e2sα dx + C
∑
j∈J1

e
2s supC(x′j ,ε

′ ) α
|C(x′j, ε

′)|

 1
(ε′)4 sup

C(x′j,ε
′)
|h|2 +

1
(ε′)2 sup

C(x′j,ε
′)
|∇h|2


+ C

∑
j∈J2

(
1
|ε′|4
‖hesα‖2L2(C(x′j,ε

′)) +
1
|ε′|2
‖|∇h|esα‖2L2(C(x′j,ε

′))

)
. (2.39)
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Now, using ∆h = 0 in the annulus B(x′j, 8ε
′) \ B(x′j, ε

′) (for any j ∈ J and in particular for j ∈ J1) and that h
has a strict sign in this set up to a constant C‖ f ‖L2(Ω) by (2.29), the Harnack’s inequality, see Theorem A.2, implies
the existence of a constant C > 0 such that

sup
B(x′j,7ε

′)\B(x′j,2ε
′)
|h| + sup

B(x′j,4ε
′)\B(x′j,3ε

′)
ε′|∇h| 6 C

 inf
B(x′j,7ε

′)\B(x′j,2ε
′)
|h| + ‖ f ‖L2(Ω)

 . (2.40)

We now remark that:
• the ratio of the measures of the sets B(x′′j , ε

′) and C(x′j, ε
′) = B(x′j, 4ε

′) \ B(x′j, 3ε
′) is bounded from below

and from above independently from ε′;
• since the sets (C(x′j, ε

′)) j∈J are disjoints,∑
j∈J1

e
2s supC(x′j ,ε

′) α
|C(x′j, ε

′)| 6 |Ω|e2s‖α‖L∞ (Ω) ;

• there exists c > 0 independent from ε′ such that, for all j ∈ J1

sup
C(x′j,ε

′)
α 6 inf

B(x′′j ,ε
′)
α − cε′.

Accordingly, for any constant C, we can choose s big enough to get that, for all j ∈ J1,( s
ε′

)2
e

2s infB(x′′j ,ε
′) α > C

(
1
ε′

)4

e
2s supC(x′j ,ε

′) α,

which is the case if (sε′)2e2csε′ > C, that is sε′ large enough, as in (2.34). We then derive from (2.39) and (2.40)
that there exists a > 0 large enough so that for all s > s0 and sε′ > a,

s3
∫

Ω

|y|2e2sα dx +

∫
Ω

|∇y|2e2sα dx + s3
∫
∂Ω

|y|2e2sα dσ

6 Cs3
∫
ω′0

|y|2e2sα dx + Ce2s‖α‖L∞ ‖ f ‖2L2(Ω) + C
∑
j∈J2

(
1
|ε′|4
‖hesα‖2L2(C(x′j,ε

′)) +
1
|ε′|2
‖|∇h|esα‖2L2(C(x′j,ε

′))

)
. (2.41)

We then focus on the case B(x′j, 8ε
′) ∩ B(r′0/2) , ∅, i.e. j ∈ J2. For these terms, we use some Cacciopoli’s

inequality. More precisely, we introduce a cut-off function η j such that η j = 1 in C(x′j, ε
′) and η j = 0 outside

B(x′j, 5ε
′)\B(x′j, 2ε

′), with ε‖∇η j‖L∞+ε2‖∆η j‖L∞ 6 C, and we multiply the equation ∆h = 0 in B(x′j, 5ε
′)\B(x′j, 2ε

′)
by e2sαη jh. By integrating by parts, we obtain∫

B(x′j,5ε
′)\B(x′j,2ε

′)
η j|∇h|2e2sα dx =

1
2

∫
B(x′j,5ε

′)\B(x′j,2ε
′)
|h|2∆(η je2sα) dx.

This entails

‖|∇h|esα‖2L2(C(x′j,ε
′)) 6 C

(
s2 +

1
ε′2

) ∫
B(x′j,5ε

′)\B(x′j,2ε
′)
|h|2e2sα dx.

So we get, using B(x′j, 5ε
′) \ B(x′j, 2ε

′) ⊂ B(x′j, 8ε
′) ⊂ ω′0 because ε satisfies (2.30),

∑
j∈J2

(
1
|ε′|4
‖hesα‖2L2(C(x′j,ε

′)) +
1
|ε′|2
‖|∇h|esα‖2L2(C(x′j,ε

′))

)
6 C

(
s2

|ε′|2
+

1
|ε′|4

) ∫
L(Ω′ε)∩ω′0

|h|2e2sα dx, (2.42)

which is less than Cs4‖h‖2L∞(L(Ω′ε)∩ω′0)e
2s‖α‖∞ for s satisfying (2.34).

Combining (2.41) and (2.42), and bounding the weight function esα from below by 1 and from above by
es‖α‖L∞ (Ω) leads to (2.35), hence to the conclusion of the proof of Proposition 2.21. �
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B(x′i , 2ε
′)

C(x′i , ε
′)

B(x′′i , ε
′)

0
×

Figure 4: The neighborhood of a disk D′i of the perforated domain.

2.7 Step 7: From the Carleman estimate to the observability inequality
We now prove (2.5) from Proposition 2.21, this will end the proof of Theorem 1.1.

Proof of (2.5). We choose ε small enough such that (2.8), (2.28) and (2.30) hold, and then s > a/(32ε) so that
(2.34) holds. These choices are done by choosing 1/ε and s of the order ‖V‖1/2L∞(Ω) log1/2 (

‖V‖L∞(Ω)
)
.

We will distinguish two cases, depending if x′max := L(xmax), where xmax is defined in (2.13) and L is the
quasiconformal map given by Lemma 2.15, is close to the boundary ∂Ω or not.

Let us first consider the case d(x′max, ∂Ω) > ε. Based on Lemma 2.17, we necessarily have B(x′max, ε) ⊂ L(Ω′ε).
Accordingly by the mean value property applied to the harmonic function h, we have

|h(x′max)| 6 π−1ε−2
∫

B(x′max,ε)
|h(z)| dz 6 π−1/2ε−1

(∫
B(x′max,ε)

|h(z)|2 dz
)1/2

.

Then using the fact that y = h on B(x′max, ε) by (2.33) (recall that the balls (B(x′j, ε
′)) j∈J are 16ε′ separated from

x′max by Lemma 2.17), Proposition 2.21 gives

|h(x′max)| 6 CeCs‖h‖L∞(L(Ω′ε)∩ω′0) + CeCs‖ f ‖L2(Ω),

We now come back to the variable v̂ = h ◦ L thanks to Lemma 2.15, this leads to

|v̂(xmax)| 6 CeCs‖v̂‖L∞(L−1(L(Ω′ε)∩ω′0)) + CeCs‖ f ‖L2(Ω).

Then, using again Lemma 2.17 that tells us that L−1(L(Ω′ε) ∩ ω
′
0) ⊂ ω0, we deduce

|v̂(xmax)| 6 CeCs‖v̂‖L∞(ω0) + CeCs‖ f ‖L2(Ω).

By using the definition of v̂ := v − ψ and Lemma 2.13, the bound (2.21), we deduce the following estimate on v

|v(xmax)| 6 CeCs‖v̂‖L∞(ω0) + CeCs‖ f ‖L2(Ω).

By Lemma 2.12, we recall that u = vϕ and using the punctual estimates on ϕ from Lemma 2.11, we deduce

‖u‖L∞(Ω) 6 CeCs‖u‖L∞(ω0) + CeCs‖ f ‖L2(Ω).

Recalling that s is of the order ‖V‖1/2L∞(Ω) log1/2 (
‖V‖L∞(Ω)

)
, the previous estimate coincides with (2.5).
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We next consider the case d(x′max, ∂Ω) 6 ε. Recalling Lemma 2.17, the disks (D′j) j∈J are 16ε′-separated from
∂Ω. In particular, using the definition of y in (2.33), we have y ≡ h in V2ε′ = {x ∈ Ω ; dist(x, ∂Ω) 6 2ε′}. We then
deduce from (2.35) that∫

V2ε′

|h|2 dx +

∫
V2ε′

|∇h|2 dx +

∫
∂Ω

|h|2 dσ 6 C2e2Cs‖h‖2L∞(L(Ω′ε)∩ω′0) + C2e2Cs‖ f ‖2L2(Ω). (2.43)

Now we recall that h is equal to some constant δ on ∂Ω by Lemma 2.15, so (2.43) immediately gives∫
V2ε′

|h|2 dx +

∫
V2ε′

|∇h|2 dx + δ2 6 C2e2Cs‖h‖2L∞(L(Ω′ε)∩ω′)
+ C2e2Cs‖ f ‖2L2(Ω). (2.44)

Choosing now a cut-off function η such that η ≡ 1 in R2 \ B(0,R(1 − ε′)) and η ≡ 0 in B(0,R(1 − 2ε′)) with
ε‖∇η‖L∞ + ε2‖∆η‖L∞ 6 C for some constant C independent of ε, we observe that h̃ = ηh satisfies

−∆h̃ = −2∇η · ∇h − (∆η)h in V2ε′ ,
h̃ = δ on ∂Ω,
h̃ = 0 on ∂B(0,R(1 − 2ε′)).

The maximum principle, see for instance [GT83, Section 3.3, Theorem 3.7], leads to∥∥∥h̃
∥∥∥

L∞(V2ε′ )
6 C

(
|δ| + ‖−2∇η · ∇h − (∆η)h‖L2(V2ε′ )

)
.

The constant C in the above estimate does not depend on ε (this can be proved as in Lemma A.1 for the distributed
term). Using now the property of η and the fact that d(x′max, ∂Ω) 6 ε(6 ε′), we obtain that

|h(x′max)| 6 C
(
|δ| + ε−1 ‖∇h‖L2(V2ε′ ) + ε−2 ‖h‖L2(V2ε′ )

)
.

With (2.44) and the fact that s and 1/ε are of the same order ‖V‖1/2L∞(Ω) log1/2 (
‖V‖L∞(Ω)

)
, we obtain

‖h‖L∞(Vε′ ) 6 CeCs‖h‖L∞(L(Ω′ε)∩ω′0) + CeCs‖ f ‖L2(Ω).

We now conclude exactly as in the first case. �

3 Extension to multiply connected domains
In this part, we present a strategy to extend Theorem 1.1 to the case of multiply connected domains having a finite
number of holes.

3.1 The case of a finite number of holes each one circled by ω
We first begin with the case of one hole circled by ω.

Theorem 3.1. Let Ω be a smooth bounded doubly connected domain of R2, assume that ω is a non-empty open
subset of Ω which circles the hole (that is, ω contains a Jordan curve γ such that the hole of Ω is in the interior of
γ).

Then there exists a constant C = C(Ω, ω) > 0 such that for every u ∈ H2(Ω) ∩ H1
0(Ω) and V ∈ L∞(Ω;R),

estimate (1.6) holds.

Proof. Since Ω is a doubly connected domain, i.e. a connected domain with a single hole calledH , which, without
loss of generality, can be assumed to contain a neighborhood of 0, such that ω circlesH , i.e. containing a Jordan
curve γ such thatH is in the interior Oγ of γ, we can construct a tubular neighborhood ω0 of γ such that ω0 ⊂⊂ ω,
ω0 circlesH , and a smooth cut-off function η such that η = 1 in Oγ \ ω0, and η vanishes outside Oγ.

Let u ∈ H2(Ω) ∩ H1
0(Ω), and write u = ηu + (1 − η)u. We will analyze each of the functions in the right

hand-side of this identity and show that they both satisfy the estimate (1.6).
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Setting Ωe = Ω ∪ Oγ, we easily check that the function ue = (1 − η)u, extended by 0 inH , is well-defined on
the simply connected domain Ωe, and satisfies ue ∈ H2(Ωe)∩H1

0(Ωe) and −∆ue +Vue = [∆, η]u+(1−η)(−∆u+Vu)
in Ωe, where V has been extended by 0 inH . We can then apply Theorem 1.1 to ue, and we get

‖ue‖L2(Ω) 6 ‖ue‖L2(Ωe) 6 CV

(
‖−∆ue + Vue‖L2(Ωe) + ‖ue‖L2(ω0)

)
6 CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖H1(ω0)

)
,

with CV of the form (1.7).
Since ω0 ⊂⊂ ω, we then simply use basic local elliptic regularity to get

‖u‖H1(ω0) 6 C(1 + ‖V‖∞)
(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
,

which yields, for a constant CV still of the form (1.7):

‖ue‖L2(Ω) 6 CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
. (3.1)

Estimating ui = ηu is slightly more delicate. The first point is to check that u can be extended to all the
exterior of Ω by setting ui = 0 outside Ω. Thus, ui now belongs to H2(Ωi) ∩ H1

0(Ωi) where Ωi denotes the exterior
domain Ωi = R2 \ H ; besides, since Ω is bounded, ui is compactly supported in some ball |x| 6 R. We then set
Vi = 1ΩV in Ωi, and we check that −∆ui + Viui = 1Ωη(−∆u + Vu) − [∆, η]u in Ωi. Of course Ωi is not simply
connected, so we cannot use directly Theorem 1.1. However, if we define Φ : z 7→ 1/z from C∗ to C∗, Ω̃i = Φ(Ωi)
is simply connected and bounded, ũi = ui ◦ Φ satisfies −∆ũi + Ṽiui = |∇<(Φ)|2(−∆ui(Φ) + Vi(Φ)ui(Φ)) in Ω̃i,
where Ṽi = Vi ◦ Φ, and ũi ∈ H2(Ω̃i) ∩ H1

0(Ω̃i) since ui vanishes in a neighborhood of infinity and thus ũi vanishes
in a neighborhood of 0. Therefore, we can apply Theorem 1.1 to ũi in Ω̃i with observation in ω̃0 = Φ(ω0):

‖ũi‖L2(Ω̃i) 6 C exp(C‖Ṽi‖
1/2
L∞(Ω̃i)

log1/2(‖Ṽi‖L∞(Ω̃i)))
(∥∥∥−∆ũi + Ṽiũi

∥∥∥
L2(Ω̃i)

+ ‖ũi‖L2(ω̃0)

)
.

Since ũi vanishes in a neighborhood of 0, and Ṽi also vanishes in a neighborhood of 0, we easily deduce, for some
constant CV of the form (1.7),

‖ui‖L2(Ωi) 6 CV

(
‖−∆ui + Viui‖L2(Ωi) + ‖ui‖L2(ω0)

)
.

Due to the form of ui and of −∆ui + Viui, similarly as for ue, we easily deduce, for some constant CV of the form
(1.7) that

‖ui‖L2(Ω) 6 CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
. (3.2)

Combining estimates (3.1)–(3.2), we immediately get estimate (1.6). �

In fact, an easy adaptation of the above proof left to the reader (which can be done by recurrence on the number
of holes for instance) gives the following result:

Theorem 3.2. Let Ω be a smooth bounded domain of R2 with a finite number N ∈ N of holes (Hi)i∈{1,...,N}, and
assume that ω is a non-empty open subset of Ω such that for each hole Hi of Ω (i ∈ {1, · · · ,N}), ω contains a
Jordan curve γi such that the interior of γi containsHi and no other holes of Ω.

Then there exists a constant C = C(Ω, ω) > 0 such that for every u ∈ H2(Ω) ∩ H1
0(Ω) and V ∈ L∞(Ω;R),

estimate (1.6) holds.

3.2 A three-sphere type inequality
The goal of this section is to prove the following result:

Theorem 3.3. Let Ω be a smooth bounded domain of R2 and r > 0.
Then there exists a constant δ ∈ (0, 1) such that for all x ∈ Ω with B(x, 210r) ⊂ Ω, for every u ∈ H2(Ω) and

real-valued potentials V ∈ L∞(Ω;R),

‖u‖L2(B(x,2r)) 6 CV

(
‖u‖L2(B(x,r)) + ‖−∆u + Vu‖L2(Ω)

)δ (
‖u‖L2(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δ
, (3.3)

and
‖u‖L∞(B(x,2r)) 6 CV

(
‖u‖L∞(B(x,r)) + ‖−∆u + Vu‖L2(Ω)

)δ (
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δ
, (3.4)

where CV is of the form (1.7).
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Proof. Without loss of generality, we can assume that

x = 0 and Ω = B(0, 210r).

The proof of Theorem 3.3 follows the one of Theorem 1.1, and we are thus going to point out how it should be
modified here, some very similar details being left to the reader.

Step 1. Mimicking Step 2 of the proof of Theorem 1.1, we check that, for (3.3), it is sufficient to prove for
r0 = r/2, ω0 = B(0, r0), V ∈ L∞(Ω;R) and u ∈ H2(Ω),

‖u‖L∞(B(0,2r)) 6 CV

(
‖u‖L∞(ω0) + ‖−∆u + Vu‖L2(Ω)

)δ (
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δ
. (3.5)

Note that (3.5) would also imply (3.4) immediately, and we thus focus on the proof of (3.5) from now on.
In fact, we will prove that there exist positive constants A, B, C and s0 such that for V ∈ L∞(Ω;R), for all

s > s0‖V‖
1/2
∞ log1/2(‖V‖∞), and u ∈ H2(Ω),

‖u‖L∞(B(0,2r)) 6 CeAs
(
‖u‖L∞(ω0) + ‖ − ∆u + Vu‖L2(Ω)

)
+ Ce−Bs‖u‖L∞(Ω). (3.6)

Indeed, optimizing in s > s0‖V‖
1/2
∞ log1/2(‖V‖∞), we easily find that, if

1
(A + B)

log
(

‖u‖L∞(Ω)

‖−∆u + Vu‖L2(Ω) + ‖u‖L∞(ω0)

)
> s0‖V‖1/2∞ log1/2(‖V‖∞),

we obtain

inf
s>s0‖V‖

1/2
∞ log1/2(‖V‖∞)

{
CeAs

(
‖u‖L∞(ω0) + ‖ − ∆u + Vu‖L2(Ω)

)
+ Ce−Bs‖u‖L∞(Ω)

}
= C

(
‖u‖L∞(ω0) + ‖ − ∆u + Vu‖L2(Ω)

)δ
‖u‖1−δL∞(Ω), with δ =

B
A + B

,

which implies (3.5).
If

1
(A + B)

log
(

‖u‖L∞(Ω)

‖−∆u + Vu‖L2(Ω) + ‖u‖L∞(ω0)

)
6 s0‖V‖1/2∞ log1/2(‖V‖∞),

then

inf
s>s0‖V‖

1/2
∞ log1/2(‖V‖∞)

{
CeAs

(
‖u‖2L∞(ω0) + ‖ − ∆u + Vu‖2L2(Ω)

)
+ Ce−Bs‖u‖L∞(Ω)

}
6 CeAs0‖V‖

1/2
∞ log1/2(‖V‖∞)

(
‖u‖L∞(ω0) + ‖ − ∆u + Vu‖L2(Ω)

)
,

which of course also implies (3.5).

Step 2. Similarly as in Step 3 of the proof of Theorem 1.1, we can also check that it is sufficient to check (3.6)
for functions u ∈ C∞(Ω̂;R), where Ω̂ = B(0, 211r), which are equal to a non-zero constant on ∂Ω̂, and for which 0
is a regular value.

From now on, we consider u ∈ C∞(Ω̂;R) which is equal to some non-zero constant on ∂Ω̂, and for which 0 is
a regular value, and we set

f := −∆u + Vu in Ω.

Step 3. We then consider the nodal set Z of u, i.e. Z = {x ∈ Ω̂ ; u = 0}, which, as in Step 4 of the proof of
Theorem 1.1, consists in the union of disjoint smooth Jordan curves indexed by J.

For ε > 0 to be fixed later, we introduce the property (P-ε) and partition Z and J as in (2.6)–(2.7) under the
form Z1

ε ∪ Z2
ε . We have the following variant of Proposition 2.6, whose proof is left to the reader as it is similar to

the one of Proposition 2.6:

Proposition 3.4. There exist two constants C > 0 and c > 0 such that for every ε ∈ (0, r) satisfying (2.8), the
following holds:
• For each connected component C of Z2

ε such that OC ⊂ Ω, estimate (2.9) holds.
• For each connected component O of B(0, 29r) \ Z1

ε , (2.10) holds.
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Note that, compared to Proposition 2.6, the difference is that the level set {u = 0} may cross Ω = B(0, 210r).
Therefore, the first property holds only for connected component C of Z2

ε such that OC ⊂ Ω, which guarantees that
the source term f = −∆u + Vu is known in OC. Furthermore, we cannot deduce the second property for connected
components of B(0, 210r)\Z1

ε , and we should slightly reduce the ball we are looking at, by considering for instance
the connected components O of B(0, 29r) \ Z1

ε as above (in fact it would work too for the connected components
of B(0, 210r − 2ε) \ Z1

ε ).
We then construct a perforation process similar to the one of Lemma 2.10 with xmax chosen such that

|u(xmax)| = sup
B(0,2r)

|u|.

More precisely, we use the following version of Lemma 2.10, which is in fact used in [LMNN20, Section 3]:

Lemma 3.5. For all C0 > 5, for every ε > 0, there exist C0ε-separated closed disks of radius ε, whose union is
denoted by Fε, satisfying the following properties:
• these disks are C0ε-separated from each other, from Z1

ε , from ∂Ω̂, from xmax and from 0,
• the set Z1

ε ∪ Fε is a 6C0ε-net in Ω̂, meaning that for all x ∈ Ω̂, B(x, 6C0ε) ∩ (Z1
ε ∪ Fε ∪ ∂Ω̂) , ∅.

• the set
Ω̂ε := Ω̂ \ (Z1

ε ∪ Fε)

satisfies CP(Ω̂ε) 6 Cε for some constant C > 0 depending on C0 but independent of ε.

As in the proof of Theorem 1.1, we then set C0 = 18 · 322.
According to the last item of Lemma 3.5, for ε small enough as in (2.8), the following variant of Lemma 2.11

applies (again, its proof is left to the reader as it is based on the same ingredients as the one of Lemma 2.11):

Lemma 3.6. There exist two positive constant C > 0 and c > 0 such that for every ε > 0, satisfying (2.8), there
exists a solution ϕ of {

−∆ϕ + 1ΩVϕ = 0 in Ω̂ε,

ϕ = 1 on ∂Ω̂ε,

and ϕ̃ = ϕ − 1 satisfies (2.16).

Step 4. Mimicking Step 5 of the proof of Theorem 1.1, we introduce

v =
u
ϕ

in the set Ω′ε = B(0, 29r) \ Fε,

similarly as in (2.17), and v satisfies (2.19). We now introduce ψ solution of{
∇ · (ϕ2∇ψ) = fϕ1Ω in Ω̂′ε = Ω̂ \ Fε

ψ = 0 on ∂Ω̂′ε.

Using the same argument as in Lemma 2.13, there exists a positive constant C > 0 (independent of ε) such that

‖ψ‖L∞(Ω̂′ε) 6 C ‖ f ‖L2(Ω) . (3.7)

We then set v̂ = v − ψ in Ω′ε, and Corollary 2.14 applies: v̂ satisfies ∇ · (ϕ2∇v̂) = 0 in Ω′ε and we get the following
property: there exists a positive constant C > 0 such that for every disk D ⊂ Fε intersecting B(0, 29r),(
∀x ∈ Ω′ε \ D, dist(x,D) < C0ε, v̂(x) > −C ‖ f ‖L2(Ω)

)
or

(
∀x ∈ Ω′ε \ D, dist(x,D) < C0ε, v̂(x) 6 C ‖ f ‖L2(Ω)

)
,

where Fε is the collection of disks used in the construction of the perforated domain (based on Lemma 3.5).
We can then construct a quasiconformal mapping L of B(0, 29r) into itself satisfying the properties of Lemma

2.15, i.e. such that
h = v̂ ◦ L−1,

defined in L(Ω′ε), is harmonic in L(Ω′ε) and thus belongs to H2
loc(L(Ω′ε)).

Besides, provided ε > 0 satisfies (2.28), the distortion estimates of Lemma 2.17 apply. In particular, L(B(0, r0))
contains ω′0 = B(0, r′0) with r′0 = r0/32 (= r/64), and the images of the disks of Fε that intersect B(0, 29r) are
contained in disks (D′j) j∈J of size ε′ = 32ε, indexed by j ∈ J (which can intersect the boundary of B(0, 29r)), that
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are 16ε′-separated from each other, from L(Z1
ε ∩ B(0, 29r)), and from L(xmax). Similarly, one can prove, under the

condition (2.28), that
L(B(0, 4r)) ⊂ B(0, 27r).

Estimate (2.29) also applies and yields the existence of a constant C > 0 independent of ε such that for every
disk D′ as in Lemma 2.17,(
∀x ∈ L(Ω′ε) \ D′ with dist(x,D′) < 16ε′, h(x) > −C ‖ f ‖L2(Ω)

)
or

(
∀x ∈ L(Ω′ε) \ D′ with dist(x,D′) < 16ε′, h(x) 6 C ‖ f ‖L2(Ω)

)
.

From now on, ε is always assumed to satisfy estimates (2.8), (2.28) and also (2.30).

Step 5. Following Step 6 of the proof of Theorem 1.1, we apply the Carleman estimate (2.36) (with Ω =

B(0, 29r)) to y defined by

y(x) =


η(x)h(x)

∏
j∈J

χ

 x − x′j
ε′

 for x ∈ L(Ω′ε),

0 for x ∈ B(0, 29r) \ L(Ω′ε),

where the family (x′j) j∈J denotes the centers of the disks (D′j) j∈J introduced above, χ denotes a smooth cut-off

function χ taking value 0 on B(0, 3) and value 1 on R2 \ B(0, 4), and η is a smooth cut-off radial function taking
value 1 in B(0, 28r + 16ε′), vanishing identically outside B(0, 29r − 16ε′).

For this to be possible, from now on, we need to check that 29r − 16ε′ > 28r + 16ε′. This last condition is
guaranteed by (2.30).

Our goal is to prove the following result.

Proposition 3.7. For ε satisfying (2.8), (2.28), (2.30) and s as in (2.34), the function h of the previous step
satisfies:

s3
∫

L(B(0,27r))\(∪ j∈J B(x′j,4ε
′))

e2sα|h|2 dx 6 Cs4e2s‖α‖L∞ (B(0,29r)\B(0,28r)‖h‖2L2(L(Ω′ε))
+ Cs4

∫
ω′0

|h|2e2sα dx. (3.8)

Proof. Setting ỹ = yesα with α as in (2.31), we get by the Carleman estimate (2.36)∫
B(0,29r)

|s∇α · ∇ỹ|2 dx + s3
∫

B(0,29r)
|ỹ|2 dx + s

∫
B(0,29r)

|∇ỹ|2 dx

6 C

∥∥∥∥∥∥∥∥

∆, η∏

j∈J

χ

 x − x′j
ε′

 h

 esα

∥∥∥∥∥∥∥∥
2

L2(B(0,29r))

+ Cs3
∫
ω′0

|ỹ|2 dx. (3.9)

We shall then consider the first term in the right-hand side of (3.9):∥∥∥∥∥∥∥∥

∆, η∏

j∈J

χ

 x − x′j
ε′

 h

 esα

∥∥∥∥∥∥∥∥
2

L2(B(0,29r))

6 C
∑
j∈J

(
1
|ε′|4
‖ηhesα‖2L2(B(x′j,4ε

′)\B(x′i ,3ε
′)) +

1
|ε′|2

(
‖η|∇h|esα‖2L2(B(x′j,4ε

′)\B(x′j,3ε
′)) + ‖|∇η|hesα‖2L2(B(x′j,4ε

′)\B(x′i ,3ε
′))

))

+ C‖|∆η|h
∏
j∈J

χ

 x − x′j
ε′

 esα‖2L2(B(0,29r)) + C‖ |∇η| |∇h|
∏
j∈J

χ

 x − x′j
ε′

 esα‖2L2(B(0,29r)). (3.10)

The first term in the right hand side can be handled as in the proof of Proposition 2.21, depending where the
ball B(x j,

′ , 8ε′) is located. Namely, we distinguish the three following cases:

• B(x′j, 8ε
′) ∩ B(0, r′0/2) = ∅ and B(x′j, 8ε

′) ∩ B(0, 28r) , ∅, and we call J1 the set of such j ∈ J;

• B(x′j, 8ε
′) ∩ B(0, r′0/2) , ∅ and we call J2 the set of such j ∈ J;

• B(x′j, 8ε
′) ∩ B(0, 28r) = ∅, and we call J3 the set of such j ∈ J.
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We then discuss below how to handle the right hand side of (3.10) in each case:

• For j ∈ J1, i.e. for j such that B(x′j, 8ε
′) ∩ B(0, r′0/2) = ∅ and B(x′j, 8ε

′) ∩ B(0, 28r) , ∅, using that η = 1 in
B(x′j, 8ε

′) in this case, we can argue as in Proposition 2.21 and absorb the terms

∑
j∈J1

(
1
|ε′|4
‖ηhesα‖2L2(B(x′j,4ε

′)\B(x′j,3ε
′)) +

1
|ε′|2
‖η|∇h|esα‖2L2(B(x′j,4ε

′)\B(x′j,3ε
′))

)
by the left hand side of (3.9) for s such that sε′ is large enough.

• For j ∈ J2, i.e. for j such that B(x′j, 8ε
′) ∩ B(0, r′0/2) , ∅ since we also have η = 1 in B(x′j, 8ε

′) in this case,
similarly as in (2.42), using Cacciopoli’s inequality we obtain

∑
j∈J2

(
1
|ε′|4
‖ηhesα‖2L2(B(x′j,4ε

′)\B(x′j,3ε
′)) +

1
|ε′|2
‖η|∇h|esα‖2L2(B(x′j,4ε

′)\B(x′j,3ε
′))

)

6 C
(

s2

|ε′|2
+

1
|ε′|4

) ∫
L(Ω′ε)∩ω′0

|h|2e2sα dx. (3.11)

• For j ∈ J3, i.e. for j such that B(x′j, 8ε
′) ∩ B(0, 28r) = ∅, using again Cacciopoli’s inequality, it is straight-

forward to get

∑
j∈J3

(
1
|ε′|4
‖ηhesα‖2L2(B(x′j,4ε

′)\B(x′i ,3ε
′)) +

1
|ε′|2

(
‖η|∇h|esα‖2L2(B(x′j,4ε

′)\B(x′j,3ε
′)) + ‖|∇η|hesα‖2L2(B(x′j,4ε

′)\B(x′i ,3ε
′))

))

6 C
(

s2

|ε′|2
+

1
|ε′|4

)
e2s‖α‖L∞ (B(0,29r)\B(0,28r)‖h‖2L2(L(Ω′ε))

. (3.12)

To estimate the last terms in the right hand side of (3.10), we simply use that ∇η and ∆η are localized in B(0, 29r)\
B(0, 28r):

‖|∆η|h
∏
j∈J

χ

 x − x′j
ε′

 esα‖2L2(B(0,29r)) + ‖ |∇η| |∇h|
∏
j∈J

χ

 x − x′j
ε′

 esα‖2L2(B(0,29r))

6 Ce2s‖α‖L∞ (B(0,29r)\B(0,28r)‖h‖2H1(Ω\∪ j∈J B(x′j,3ε
′)).

Using again Cacciopoli’s inequality,

‖|∆η|h
∏
j∈J

χ

 x − x′j
ε′

 esα‖2L2(B(0,29r)) + ‖ |∇η| |∇h|
∏
j∈J

χ

 x − x′j
ε′

 esα‖2L2(B(0,29r))

6 C
(
s2 +

1
|ε′|2

)
e2s‖α‖L∞ (B(0,29r)\B(0,28r)‖h‖2L2(L(Ω′ε))

. (3.13)

Accordingly, we deduce from (3.9), (3.10), (3.11), (3.12) and (3.13) that there exists a > 0 such that for all
s > 1 satisfying (2.34), with ε = a/s,∫

B(0,29r)
|s∇α · ∇ỹ|2 dx + s3

∫
B(0,29r)

|ỹ|2 dx + s
∫

B(0,29r)
|∇ỹ|2 dx

6 Cs4e2s‖α‖L∞ (B(0,29r)\B(0,28r)‖h‖2L2(L(Ω′ε))
+ Cs4

∫
ω′0

|h|2e2sα dx. (3.14)

The estimate (3.8), i.e. Proposition 3.7 easily follows from (3.14). �

Step 6. To conclude (3.6), we follow the step 7 of the proof of Theorem 1.1. Namely, recall that the disks
D′j are 16ε′ separated from L(xmax). Namely, we choose ε satisfying estimates (2.8), (2.28), (2.30), and s is any
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number larger than a/(32ε), with a > 0 as in Proposition 3.7. All these choices lead to s > s0‖V‖
1/2
∞ log1/2(‖V‖∞),

for some s0 > 1 and independent from ‖V‖∞.
We use that B(L(xmax, ε

′)) ⊂ L(B(0, 27r)) \ (∪ j∈J B(x′j, 4ε
′)), so that, by the mean value property,

|h(L(xmax))|2 6
C
ε2

∫
B(L(xmax,ε′))

|h(z)|2 dz.

Accordingly, coming from Proposition 3.7, for s > s0‖V‖
1/2
∞ log1/2(‖V‖∞), we get

e2s infB(0,27r) α|h(L(xmax))|2 6
C
ε2

∫
B(L(xmax,ε′))

|h(z)|2e2sα dz 6
C
ε2

∫
L(B(0,27r))\(∪ j∈J B(x′j,4ε

′))
|h(z)|2e2sα dz

6 Cs6e2s‖α‖L∞ (B(0,29r)\B(0,28r)‖h‖2L2(L(Ω′ε))
+ Cs6e2s‖α‖L∞ (B(0,29r))

∫
ω′0

|h|2 dx.

Using now v̂ = h ◦ L, the bound (3.7) on ψ, and the bounds on ϕ, we deduce that for all s > 1 with (2.34),

‖u‖2L∞(B(0,2r)) 6 Cs6e−2sB0‖u‖2L∞(Ω) + Cs6e2sA0
(
‖u‖2L∞(ω0) + ‖ f ‖2L2(Ω)

)
, (3.15)

where
A0 = ‖α‖L∞(B(0,29r)) − inf

B(0,27r)
α, and B0 = inf

B(0,27r)
α − ‖α‖L∞(B(0,29r)\B(0,28r).

Since A0 > 0 and B0 > 0, choosing A > A0 and B ∈ (0, B0), we obtain (3.6) from (3.15) for any s > 1 satisfying
(2.34). �

3.3 Smooth bounded domains with a finite number of holes: Proof of Theorem 1.2
Proof of Theorem 1.2. Let Ω be a smooth bounded domain of R2 having a finite number of holes (Hi)i∈{1,··· ,N}, and
ω be a non-empty open subset of Ω.

For all i ∈ {1, · · · ,N}, there exists a smooth Jordan curve γi ⊂ Ω such that γi ∩ ω , ∅, and the interior of γi

contains Hi and no other holes of Ω. Since γi is compact, there exists Ri > 0 such that the tubular neighborhood
γi,Ri = {x, d(x, γi) < Ri} ⊂ Ω and there exists xi ∈ γi such that B(xi,Ri) ⊂ ω.

We then set r = 2−10 infi∈{1,··· ,N} Ri, ω0,i = B(xi, r) for i ∈ {1, · · · ,N}, ω0 = ∪i∈{1,··· ,N}ω0,i, and for k ∈ N, we set

ωk+1,i = ωk,i ∪ {B(x, 2r) with x ∈ γi such that B(x, r) ⊂ ωk,i}, and ωk+1 = ∪i∈{1,··· ,N}ωk+1,i.

Theorem 3.3 then gives us the existence of a positive constant δ ∈ (0, 1) such that (3.4) holds for all x ∈ Ω such that
B(x, 210r) ⊂ Ω, which can be easily transformed into: for all u ∈ H2 ∩H1

0(Ω) and V ∈ L∞(Ω;R), if B(x, 210r) ⊂ Ω,
we get

‖u‖L∞(B(x,2r)) + ‖−∆u + Vu‖L2(Ω)

6 CV

(
‖u‖L∞(B(x,r)) + ‖−∆u + Vu‖L2(Ω)

)δ (
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δ
, (3.16)

with CV as in (1.7).
We claim that for all k ∈ N,

‖u‖L∞(ωk) + ‖−∆u + Vu‖L2(Ω) 6 Cδk

V

(
‖u‖L∞(ω0) + ‖−∆u + Vu‖L2(Ω)

)δk (
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δk

.

Indeed, this can be proved by induction: it is straightforward when k = 0; to show the induction property, it
suffices to check that, applying (3.16), we get

‖u‖L∞(ωk+1) + ‖−∆u + Vu‖L2(Ω) 6 CV

(
‖u‖L∞(ωk) + ‖−∆u + Vu‖L2(Ω)

)δ (
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δ

6 Cδk+1

V

(
‖u‖L∞(ω0) + ‖−∆u + Vu‖L2(Ω)

)δk+1 (
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δk+1

.

Since all the curves (γi)i∈{1,··· ,N} are compact, there exists K ∈ N, depending only on (γi)i∈{1,··· ,N}, Ω, and r, such
that for all k > K, ωk = ωK = ∪i∈{1,··· ,N}γi,2r.
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By construction, this set ωK satisfies the assumption of Theorem 3.2, and accordingly, for CV of the form (1.7),
for every u ∈ H2(Ω) × H1

0(Ω) and V ∈ L∞(Ω;R),

‖u‖L2(Ω) 6 CV

(
‖u‖L2(ωK ) + ‖−∆u + Vu‖L2(Ω)

)
.

Accordingly, using bd 6 bp/p + dq/q for b, d > 0 and p, q ∈ [1,∞] with 1/p + 1/q = 1, for every u ∈
H2(Ω) × H1

0(Ω), V ∈ L∞(Ω;R), and a > 0

‖u‖L2(Ω) 6 CδK+1
V

(
‖u‖L∞(ω0) + ‖−∆u + Vu‖L2(Ω)

)δK (
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)1−δK

6 δKaC1+δ−K

V

(
‖u‖L∞(ω0) + ‖−∆u + Vu‖L2(Ω)

)
+ (1 − δK)

1
aδK/(1−δK )

(
‖u‖L∞(Ω) + ‖−∆u + Vu‖L2(Ω)

)
.

Next, there exists C > 0 independent of V such that for u ∈ H2(Ω) ∩ H1
0(Ω),

‖u‖L∞(Ω) 6 C‖ − ∆u‖L2(Ω) 6 C‖ − ∆u + Vu‖L2(Ω) + C‖V‖∞‖u‖L2(Ω).

Choosing then a > 0 such that
C‖V‖∞

aδK/(1−δK )
6

1
2
,

for instance with a = (2 + 2C‖V‖∞)1/δK
as a power of ‖V‖∞, we get

‖u‖L2(Ω) 6 2δK(2 + 2C|V‖∞)1/δK
C1+δ−K

V

(
‖u‖L∞(ω0) + ‖−∆u + Vu‖L2(Ω)

)
+ C ‖−∆u + Vu‖L2(Ω) .

Of course, this yields estimate (1.6) with CV of the form (1.7). �

4 Control of elliptic equations

4.1 Linear elliptic equations
The goal of this part is to prove Theorem 1.3. First, from Theorem 1.2, we deduce the following stronger observ-
ability inequality.

Corollary 4.1. Let Ω be a smooth bounded domain of R2 having a finite number of holes, and ω be a non-empty
open subset of Ω.

For every u ∈ H2(Ω) ∩ H1
0(Ω) and V ∈ L∞(Ω;R), we have

‖u‖H2(Ω) 6 CV

(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
, (4.1)

where CV is given by (1.7).

Proof. Take u ∈ H2(Ω) ∩ H1
0(Ω). From elliptic regularity in L2 for the Dirichlet-Laplacian, we have for some

constant C > 0, ‖u‖H2(Ω) 6 C ‖∆u‖L2(Ω). We then deduce

‖u‖H2(Ω) 6 C ‖∆u‖L2(Ω) 6 C(1 + ‖V‖∞)
(
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(Ω)

)
,

hence applying Theorem 1.2, estimate (1.6) yields (4.1). �

From Corollary 4.1 and a duality argument, we now move to the proof of Theorem 1.3.

Proof of Theorem 1.3. In the following proof, CV are positive constants that can vary from line to line but are
always of the form (1.7).

Take F ∈ L2(Ω), and introduce the functional

J(w) =

∫
Ω

| − ∆w + Vw|2 dx +

∫
ω

|w|2 dx −
∫

Ω

Fw dx, (w ∈ H2(Ω) ∩ H1
0(Ω)).
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By the observability inequality (4.1) from Corollary 4.1, we deduce that for all w ∈ H2(Ω) ∩ H1
0(Ω),

J(w) >
∫

Ω

| − ∆w + Vw|2 dx +

∫
ω

|w|2 dx −
1

4C2
V

∫
Ω

|w|2 dx −C2
V ‖F‖

2
L2(Ω)

>
1
2

(∫
Ω

| − ∆w + Vw|2 dx +

∫
ω

|w|2 dx
)
−C2

V ‖F‖
2
L2(Ω) (4.2)

>
1

2C2
V

‖w‖2H2(Ω) −C2
V ‖F‖

2
L2(Ω) . (4.3)

So the functional J is coercive on H2(Ω) ∩ H1
0(Ω). Since J is obviously of class C1 and strictly convex on

H2(Ω) ∩ H1
0(Ω), J admits a unique minimizer at w∗ ∈ H2(Ω) ∩ H1

0(Ω), satisfying the Euler-Lagrange equation∫
Ω

(−∆w∗ + Vw∗)(−∆w + Vw) dx +

∫
ω

w∗w dx =

∫
Ω

Fw dx, ∀w ∈ H2(Ω) ∩ H1
0(Ω). (4.4)

We set
y := −∆w∗ + Vw∗, (x ∈ Ω), h := −w∗1ω, (x ∈ ω).

From (4.4), we then deduce that

∀w ∈ H2(Ω) ∩ H1
0(Ω),

∫
Ω

y(−∆w + Vw) dx =

∫
Ω

Fw dx +

∫
ω

hw,

that is to say y ∈ L2(Ω) is a very weak solution to (1.13) in the sense of [QS07, Definition 3.1].
Using (4.2) and the fact that J(w∗) 6 J(0), we get

‖y‖L2(Ω) + ‖h‖L2(ω) 6 CV ‖F‖L2(Ω) . (4.5)

Now, let us define ỹ ∈ H1
0(Ω) as the unique weak solution to −∆ỹ = −Vy + F + h1ω ∈ L2(Ω). In particular, y

and ỹ are two very weak solutions to −∆Y = −Vy + F + h1ω in Ω with homogeneous Dirichlet boundary data. By
using [QS07, Appendix C, Theorem 49.1], we deduce that y = ỹ. Hence, y ∈ H1

0(Ω) satisfies (1.13). The estimate
(1.14) comes from (4.5) and a standard elliptic regularity result, since the source term −Vy + F + h1ω belongs to
L2(Ω).

It remains to study the sequential continuity of the application V ∈ L∞(Ω) 7→ (y, h) ∈ H2(Ω) × L2(ω) for a
given F ∈ L2(Ω), when H2(Ω) × L2(ω) is endowed with its weak topology. To make it easier to follow, given
V ∈ L∞(Ω), we denote by (yV , hV ) the controlled trajectory and the control constructed by the above process, and
by w∗V the minimizer of the functional JV on H2(Ω) ∩ H1

0(Ω).
Let V ∈ L∞(Ω) and (Vk)k∈N be a sequence in L∞(Ω) strongly converging to V . Then the sequence (Vk)k∈N is

uniformly bounded in L∞(Ω). According to (4.3), we deduce that the sequence (w∗Vk
)k∈N is uniformly bounded in

H2(Ω)∩H1
0(Ω), so up to a subsequence, (w∗Vkn

)n∈N weakly converges to some w∞ in H2(Ω)∩H1
0(Ω). Accordingly,

the controlled solutions (yVkn
= −∆w∗Vkn

+ Vkn w∗Vkn
)n∈N and the corresponding controls (hVkn

= −w∗Vkn
1ω)n∈N weakly

converge to y∞ = −∆w∞ + Vw∞, respectively h∞ = −w∞1ω, in L2(Ω), respectively L2(ω). Besides, according to
the bound (1.14), the family (yVkn

)n∈N is uniformly bounded in H2(Ω) ∩ H1
0(Ω), so it weakly converges to y∞ in

H2(Ω) ∩ H1
0(Ω). These convergences allow to pass to the limit in the equation −∆yVkn

+ Vkn yVkn
= F + hVkn

1ω in
Ω, and to obtain that y∞ ∈ H2(Ω) ∩ H1

0(Ω) such that

−∆y∞ + Vy∞ = F + h∞ in Ω.

It remains to check that (yV , hV ) in fact coincides with (y∞, v∞). In order to check this point, we multiply the
above equation by w ∈ H2(Ω) ∩ H1

0(Ω), and recalling y∞ = −∆w∞ + Vw∞ and h∞ = −w∞1ω, we find that for all
w ∈ H2(Ω) ∩ H1

0(Ω), ∫
Ω

(−∆w∞ + Vw∞)(−∆w + Vw) dx +

∫
ω

w∞w dx =

∫
Ω

Fw dx.

This implies that w∞ is a critical point for JV . But JV is strictly convex and therefore has only one critical point;
we conclude that necessarily w∞ = wV , and the controlled solution y∞ and the control h∞ necessarily coincide
with yV and hV . Therefore, the sequences (yVk )k∈N and (hVk )k∈N have only one weak accumulation point, so they
converge globally to yV , respectively hV , for the weak topology of H2(Ω), respectively L2(ω). �
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Remark 4.2. One can in fact prove the strong continuity of the application V ∈ L∞(Ω) 7→ (yV , hV ) ∈ H2(Ω) ×
L2(ω), based on the fact that the controlled solution yV and the control hV in fact minimizes the norm of ‖y‖2L2(Ω) +

‖h‖2L2(ω) among all functions (y, h) ∈ H1
0(Ω) × L2(ω) such that −∆y + Vy = F + h1ω in Ω. In particular, based on

this fact, it is not difficult to check that if (Vk)k∈N converges to V in L∞(Ω), the sequence (‖yVk‖
2
L2(Ω) + ‖hVk‖

2
L2(ω))k∈N

converges to ‖yV‖
2
L2(Ω) +‖hV‖

2
L2(ω) so that the sequence (yVk , hVk )k∈N strongly converges in L2(Ω)×L2(ω) to (yV , hV ).

The strong convergence of the sequence (yVk )k∈N to yV in H2(Ω) then easily follows from the equation. We do not
provide any further detail as we will not use this property in the following.

4.2 Semi-linear elliptic equations
4.2.1 Proof of the positive result of Theorem 1.5

The goal of this part is to prove the positive result of Theorem 1.5. The proof will be crucially inspired by the
fixed-point argument developed in [FCZ00, Theorem 1.2] and the control result in the linear case, i.e. Theorem 1.3.

As we have said, we are going to prove this result under the weaker assumption (1.16) on the semi-linearity f .

Proof of the positive result of Theorem 1.5. We introduce the function K(s) = |s|1/2 log1/2 (1 + |s|) , ∀s ∈ R. Note
that K(‖V‖L∞(Ω)) behaves as log(CV ) in the limit ‖V‖L∞(Ω) → ∞, where CV is defined in (1.7).

Let us define g ∈ C(R;R) as follows g(s) = f (s)/s, s , 0 and g(0) = f ′(0). First we remark that from the
assumption (1.16) on the semi-linearity f , we have that for every ε > 0, there exists Cε > 0 such that

K(g(s)) 6 ε log(2 + |s|) + Cε, ∀s ∈ R. (4.6)

Let F ∈ L2(Ω) and let us define

BR :=
{
z ∈ L∞(Ω) ; ‖z‖L∞(Ω) 6 R

}
,

for R sufficiently large which will be defined later.
For each z ∈ BR, we consider the linear system{

−∆y + g(z)y = F + h1ω in Ω,
y = 0 on ∂Ω.

(4.7)

According to Theorem 1.3, there exists a (yg(z), hg(z)) ∈ [H2 ∩ H1
0(Ω)] × L2(ω) such that yg(z) satisfies the elliptic

equation (4.7) and ∥∥∥yg(z)
∥∥∥

H2(Ω) +
∥∥∥hg(z)

∥∥∥
L2(ω) 6 exp

(
C

(
1 + K

(
‖g(z)‖L∞(Ω)

)) )
‖F‖L2(Ω) . (4.8)

We then introduce the map TR : BR → H2(Ω) ∩ H1
0(Ω), which to z ∈ BR associates the solution yg(z) ∈

H2(Ω) ∩ H1
0(Ω) given by Theorem 1.3.

We claim that the map TR satisfies the assumptions of Schauder’s fixed point theorem, provided R is chosen
large enough, as we will check next.

First, BR is a closed convex set for the topology of L∞(Ω).
Second, from (4.8), using the embedding of H2(Ω) into L∞(Ω), we have that for all z ∈ BR,∥∥∥yg(z)

∥∥∥
L∞(Ω) 6 C

∥∥∥yg(z)
∥∥∥

H2(Ω) 6 C exp
(
C

(
1 + K

(
‖g(z)‖L∞(Ω)

)) )
‖F‖L2(Ω)

6 CeC(1+ε log(2+R)+Cε) ‖F‖L2(Ω) (by (4.6))

6 CeCε (2 + R)εC ‖F‖L2(Ω) . (4.9)

Therefore, by taking ε sufficiently small such that εC = 1/2, we deduce from (4.9) that TR maps BR into itself for
R sufficiently large. From now on, we fix R such that TR maps BR into itself.

We also have from (4.9) thatTR(BR) is included in a ball of H2(Ω). Therefore, by Rellich’s compact embedding
theorem, TR(BR) is a compact subset of BR.

It remains to check that TR is continuous on BR for the L∞(Ω) topology. Let (zk)k∈N be a convergent sequence
of BR in L∞(Ω), and denote its limit by z. Then, since g is continuous in R (recall that f is C1 in R), g is uniformly
continuous on [−R,R], so that (g(zk))k∈N strongly converges to g(z) in L∞(Ω). According to Theorem 1.3, we
deduce that (yg(zk))k∈N weakly converges to yg(z) in H2(Ω). Using again Rellich’s compact embedding theorem, the
sequence (yg(zk)) strongly converges in L∞(Ω). The map TR is thus continuous on BR for the topology of L∞(Ω).
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We can then apply Schauder’s fixed point theorem to TR. There exists a fixed point y ∈ BR of TR, and this
fixed point y belongs to H2(Ω) ∩ H1

0(Ω), and satisfies, for some h = hg(y), the equation{
−∆y + g(y)y = F + h1ω in Ω,
y = 0 on ∂Ω.

Recalling that g(y)y = f (y) by construction, we have solved the semi-linear control problem (1.15). �

4.2.2 Proof of the negative result of Theorem 1.5

The goal of this part is to prove the negative result of Theorem 1.5. The proof is very similar to the one of [FCZ00,
Theorem 1.1].

Proof. Below we set p > 2 and we define the function f by f (s) =
∫ |s|

0 logp(1 + σ) dσ for s ∈ R.
Let us introduce a non-negative function ρ ∈ C∞c (Ω) such that ρ = 0 in ω and

∫
Ω
ρ dx = 1. Assume that

h ∈ L2(ω) together with y ∈ H2(Ω) ∩ H1
0(Ω) satisfy (1.15). We multiply (1.15) by ρ and integrate over Ω, we

obtain that
−

∫
Ω

∆yρ dx +

∫
Ω

f (y)ρ dx =

∫
Ω

Fρ dx.

We integrate by parts and use the parity of f , we find

−

∫
Ω

y∆ρ dx +

∫
Ω

f (|y|)ρ dx =

∫
Ω

Fρ dx. (4.10)

Taking into account that f is convex, we can introduce its conjugate f ∗. From Young’s inequality, we have∣∣∣∣∣∫
Ω

y∆ρ dx
∣∣∣∣∣ 6 ∫

Ω

ρ

∣∣∣∣∣∆ρρ
∣∣∣∣∣ |y| dx 6

1
2

∫
Ω

ρ f ∗(2∆ρ/ρ) dx +
1
2

∫
Ω

f (|y|)ρ dx.

We then deduce from (4.10) that∫
Ω

Fρ dx >
1
2

∫
Ω

f (|y|)ρ dx −
1
2

∫
Ω

ρ f ∗(2∆ρ/ρ) dx > −
1
2

∫
Ω

ρ f ∗(2∆ρ/ρ) dx. (4.11)

If we can construct ρ such that
ρ f ∗(2∆ρ/ρ) ∈ L1(Ω), (4.12)

from (4.11), we would obtain that for some positive constant C > 0,∫
Ω

Fρ dx > −C,

and taking F = −2C would give a contradiction.
Let us then show that there exists ρ ∈ C∞c (Ω) such that ρ = 0 in ω,

∫
Ω
ρ dx = 1 and (4.12) holds.

We first claim that
f ∗(s) ∼ p|s|1−1/p exp(|s|1/p), |s| → +∞. (4.13)

Indeed, we have by definition that f ∗(s) = supa∈R(as − f (a)), and this supremum is achieved at a critical point a
such that s − f ′(a) = 0, i.e. a = ( f ′)−1(s). Thus, f ∗(s) = s( f ′)−1(s) − f ( f ′−1(s)). Moreover, from the definition of
f , we have f ′(s) = sign(s) logp(1 + |s|), so we deduce that

f ∗(s) = s(exp(s1/p) − 1) −
∫ exp(s1/p)−1

0
logp(1 + σ)dσ. (4.14)

It is then straightforward to deduce (4.13) from (4.14).
Choose x0 ∈ Ω and r > 0 such that B(x0, r) is contained in Ω \ ω, and then take for m > 0,

ρ(x) =

{
c exp(−(r − |x − x0|)−m), for |x − x0| 6 r,
0, for |x − x0| > r.
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Easy computations lead to
|∆ρ|

ρ
∼

|x−x0 |→r−
m2(r − |x − x0|)−(2m+2).

So

f ∗
(
|∆ρ|

ρ

)
∼

|x−x0 |→r−
pm2(1−1/p)(r − |x − x0|)−(2m+2)(p−1)/p exp(m2/p(r − |x − x0|)−(2m+2)/p).

By using p > 2, the integrability condition (4.12) is satisfied for m > (2m + 2)/p, equivalently m > 2/(p − 2).
Therefore, with m > 2/(p− 2), we have constructed ρ ∈ C∞c (Ω) such that ρ = 0 in ω,

∫
Ω
ρ dx = 1 and (4.12) holds.

According to the above mentioned argument, this implies the existence of source terms F ∈ L2(Ω) such that for
every h ∈ L2(ω), the elliptic equation (1.15) has no solution y ∈ H2(Ω) ∩ H1

0(Ω). �

Remark 4.3. When there is no control, it is not difficult to check that, as soon as the semi-linear term f satisfies
f (s) = f (−s), f (s) > 0 for all s > 0, f (0) = 0, and lim|s|→∞( f (s)/s) = +∞, that there exist source terms F ∈ L2(Ω)
such that there is no solution y ∈ H2(Ω) ∩ H1

0(Ω) of −∆y + f (y) = F in Ω.
Indeed, choose ρ as the eigenvector of the operator −∆ with homogeneous Dirichlet boundary conditions on

∂Ω which corresponds to the first eigenvalue of the Dirichlet Laplacian (suitably normalized to get
∫

Ω
ρ(x) dx = 1).

Then we know that ρ > 0 in Ω, −∆ρ = λ1ρ in Ω, and ρ vanishes only on ∂Ω. Then doing as above, we can obtain
(4.10) and (4.11). But ρ f ∗(2∆ρ/ρ) = ρ f ∗(2λ1) clearly is in L2(Ω) since f ∗(2λ1) is finite under our assumptions.
Accordingly, we can conclude as before that if F satisfies∫

Ω

Fρ dx < −
1
2

f ∗(2λ1),

there is no solution y ∈ H2(Ω) ∩ H1
0(Ω) of −∆y + f (y) = F in Ω.

5 Complementary results

5.1 Observability inequality in the one-dimensional case
The goal of this part is to show that we can obtain the expected observability estimate (1.4) in the one-dimensional
case, in fact even when V is complex-valued.

Theorem 5.1. Let Ω be an open interval of R, ω be a non-empty open subset of Ω and V ∈ L∞(Ω;C).
Then there exists a constant C = C(Ω, ω) > 0 such that for every u ∈ H2(Ω) ∩ H1

0(Ω),

‖u‖L2(Ω) 6 C exp
(
C‖V‖1/2L∞(Ω)

) (
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
. (5.1)

Proof. Without loss of generality, we assume that ω strictly contains an interval of the form (a, b) for some a > 0,
and the interval Ω is of the form [A, B] with A < a < b < B.

We then choose a function α in C2([A, B];R+) such that

α(A) = α(B) = 0, α′(x) = 1 for x ∈ [A, a], α′(x) = −1 for x ∈ [b, B].

Now, for u ∈ H2(A, B) ∩ H1
0(A, B) and s > 1, we set v = esαu in [A, B]. Then v satisfies:{

(∂x − s∂xα)2v = esα∂xxu, in [A, B],
v(A) = v(B) = 0.

In particular, introducing w = (∂x − s∂xα)v, we have
(∂x − s∂xα)v = w, in [A, B],
(∂x − s∂xα)w = esα∂xxu, in [A, B],
v(A) = v(B) = 0.

(5.2)

Taking the L2(A, B) norm of each side of the second equation of (5.2), we get

‖esα∂xxu‖2L2(A,B) =

∫ B

A

(
|∂xw|2 + s2(∂xα)2|w|2 + s∂xxα|w|2

)
dx − s∂xα(B)|w(B)|2 + s∂xα(A)|w(A)|2

>

∫ B

A

(
|∂xw|2 + s2|w|2

)
dx −Cs2

∫ b

a
|w|2 dx,
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for C independent of s > 1.
Similarly, taking the L2(A, B) norm of each side of the first equation of (5.2), we obtain

‖w‖2L2(A,B) >

∫ B

A

(
|∂xv|2 + s2|v|2

)
dx −Cs2

∫ b

a
|v|2 dx,

again with C independent of s > 1. Combining these two estimates, we obtain∫ B

A

(
s2|∂xv|2 + s4|v|2

)
6 ‖esα∂xxu‖2L2(A,B) + Cs4

∫ b

a
|v|2 dx + Cs2

∫ b

a
|w|2 dx,

for some C independent of s. According to the definition of w, this yields, for some C independent of s > 1, that∫ B

A

(
s2|∂xv|2 + s4|v|2

)
dx 6 ‖esα∂xxu‖2L2(A,B) + Cs4

∫ b

a
|v|2 dx + Cs2

∫ b

a
|∂xv|2 dx,

Using v = uesα and Cacciopoli’s inequality (recall [a, b] ⊂⊂ ω), we finally get the existence of a constant C > 0
such that for all s > 1 and u ∈ H2(A, B) ∩ H1

0(A, B),

s4
∫ B

A
e2sα|u|2 dx 6 C

∫ B

A
e2sα|∂xxu|2 dx + Cs4

∫
ω

e2sα|u|2 dx.

Accordingly, if V ∈ L∞(A, B), taking s4 > 4C‖V‖2L∞(A,B), for all u ∈ H2(A, B) ∩ H1
0(A, B), we get

s4

2

∫ B

A
e2sα|u|2 dx 6 2C

∫ B

A
e2sα| − ∂xxu + Vu|2 dx + Cs4

∫
ω

e2sα|u|2 dx.

Accordingly, fixing s = 2(
√

C‖V‖L∞(A,B))1/2 and bounding the weight function esα from below by 1 and from
above by exp(s‖α‖∞), we obtain (5.1). �

5.2 Observability inequality for positive solutions
The goal of this part is to underline that positivity induces nice observability estimates even in higher dimension,
as it was already noticed in the work [LB20] by the second author.

Theorem 5.2. Let Ω be a smooth bounded domain of RN , and ω a non-empty open subset of Ω.
Then there exists a constant C = C(Ω, ω) > 0 such that for every V ∈ L∞(Ω;R) and for every u ∈ H2(Ω) ∩

H1
0(Ω) which satisfies u > 0 in Ω,

‖u‖L2(Ω) 6 C exp
(
C‖V‖1/2L∞(Ω)

) (
‖−∆u + Vu‖L2(Ω) + ‖u‖L2(ω)

)
. (5.3)

Proof. Let us take β ∈ C2(Ω;R+) such that

β = 0 on ∂Ω, β > 0 in Ω, inf
Ω\ω
|∇β| > 0.

Such a function is known to exist, see for instance [TW09, Theorem 9.4.3].
Let u ∈ H2(Ω) ∩ H1

0(Ω) be non-negative in Ω, and set v = uesβ for some free parameter s > 1. We have that

∆v + s2|∇β|2v − 2s∇β · ∇v − s∆βv − Vv = −(−∆u + Vu)esβ in Ω. (5.4)

Let us multiply (5.4) by β, integrate in Ω and do integration by parts recalling that β = 0 on ∂Ω, we obtain∫
Ω

s2|∇β|2vβ dx + 2
∫

Ω

s|∇β|2v dx = −

∫
Ω

v∆β dx −
∫

Ω

sβ∆βv dx −
∫

Ω

(−∆u + Vu)esββ dx +

∫
Ω

Vvβ dx.

By using the properties of the weights and the fact that u, hence v, is non-negative, we deduce that for some C > 0
depending on Ω, ω and β,∫

Ω

s2βv dx +

∫
Ω

sv dx

6 C
(∫

ω

s2vβ dx +

∫
ω

sv dx +

∫
Ω

v dx +

∫
Ω

sβv dx +

∫
Ω

|V |vβ dx +

∫
Ω

| − ∆u + Vu|esββ dx
)
.
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The third and fourth terms of the right hand-side can be absorbed by the left hand-side of the inequality by taking
s sufficiently large, s > C; the fifth term in the right hand-side can be absorbed by the first one in the left hand
side term by assuming s > C(1 + ‖V‖1/2∞ ). Doing the choice s = C(1 + ‖V‖1/2∞ ), and bounding the weight esβ from
below by 1, and from above by exp(C(1 + ‖V‖1/2∞ )), we obtain

‖u‖L1(Ω) 6 C exp
(
C‖V‖1/2L∞(Ω)

) (
‖−∆u + Vu‖L1(Ω) + ‖u‖L1(ω) .

)
. (5.5)

Classical estimates on elliptic equation then enable to obtain (5.3) from (5.5). Details are left to the reader. �

A Appendix

A.1 Weak maximum principle
The following result is a weak maximum principle based on de Giorgi’s iteration.

Lemma A.1. Let Ω be a smooth bounded open set, and O be a smooth open set such that O ⊂ Ω. Take g ∈ L2(O),
ϕ ∈ L∞(O) such that 1/2 6 ϕ 6 3/2 in O. Let u ∈ H1

0(O) be the weak solution to ∇ · (ϕ2∇u) = g. Then there exists
a constant C > 0 depending on Ω but independent of O such that

‖u‖L∞(O) 6 C ‖g‖L2(O) .

Proof. In the proof, the constants C may vary from line to line, but they are only allowed to depend on Ω, not on
O.

By definition of a weak solution, u satisfies∫
O

ϕ2∇u · ∇v dx =

∫
O

gv dx, ∀v ∈ H1
0(O).

For k > 0 a free parameter, we choose v = (u − k)+ in the above identity (note that v ∈ H1
0(O)), and using the

punctual estimates on ϕ, we get ∫
O

|∇v|2 dx 6 4
∫
O

|gv| dx. (A.1)

Since v ∈ H1
0(O), extending v by 0 in Ω \ O and still denoting this extension by v, v can also be seen as an element

of H1
0(Ω). Since H1

0(Ω) embeds into Lp(Ω) for any p < ∞, we get, for some constant Cp(Ω) depending on p and
Ω: (∫

O

|v|p dx
)2/p

6 Cp(Ω)2
∫
O

|∇v|2 dx.

For simplicity, we choose p = 6 (in fact, any p > 4 would allow to conclude), so that we get:(∫
O

|v|6 dx
)1/3

6 C
∫
O

|∇v|2 dx. (A.2)

Using then (A.1) and (A.2), we get (∫
O

|v|6 dx
)1/3

6 C
∫
O

|gv| dx.

In other words, introducing the set
A(k) := {x ∈ O ; u(x) > k},

we have (∫
A(k)
|v|6 dx

)1/3

6 C
∫

A(k)
|gv| dx. (A.3)

Using Hölder’s inequality ∫
A(k)
|gv| dx 6

(∫
A(k)
|v|6 dx

)1/6 (∫
A(k)
|g|6/5 dx

)5/6

,
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so with (A.3) and Hölder’s estimate, we obtain(∫
A(k)
|v|6 dx

)1/6

6 C
(∫

A(k)
|g|6/5 dx

)5/6

6 C‖g‖L2(O)|A(k)|1/3. (A.4)

For h > k, A(h) ⊂ A(k) and v > h − k on A(h), so that for h > k,∫
A(k)
|v|6 dx >

∫
A(h)
|v|6 dx > (h − k)6|A(h)|. (A.5)

According to (A.4) and (A.5) together with Hölder’s estimate, we obtain that for all h > k > 0

(h − k)|A(h)|1/6 6 C ‖g‖L2(O) |A(k)|1/3,

i.e.

|A(h)| 6
(C ‖g‖L2(O)

h − k

)6

|A(k)|2, ∀h > k > 0.

Setting
M = 4C‖g‖L2(O)(2|Ω|)1/6,

and introducing the sequence given by kn = M(1 − 1/2n) for n ∈ N, we get, for all n ∈ N

|A(kn+1)| 6
(
C‖g‖L2(O)2(n+1)

M

)6

|A(kn)|2 6
26(n−1)

2|Ω|
|A(kn)|2.

Accordingly, for all n ∈ N,
26(n+1)|A(kn+1)|

2|Ω|
6

(
26n|A(kn)|

2|Ω|

)2

.

Since |A(k0)| 6 |Ω|, we easily check that for all n ∈ N,

26n|A(kn)|
2|Ω|

6
1
2n .

Letting n → +∞, we deduce that |A(M)| = 0. This proves that u 6 M in O. The other sense of the inequality can
be done in the same way. �

A.2 Harnack’s inequality
The goal of this part is to state an Harnack’s inequality for harmonic functions defined in an annulus.

Theorem A.2 (Harnack’s inequality). There exists C > 0 such that for all r > 0, and u ∈ L2(B(0, 8r) \ B(0, r))
satisfying for some γ > 0,

−∆u = 0, and u > −γ or u 6 γ in B(0, 8r) \ B(0, r),

we have

max
B(0,7r)\B(0,2r)

|u| 6 C
(

min
B(0,7r)\B(0,2r)

|u| + γ

)
, (A.6)

and

r‖∇u‖L∞(B(0,4r)\B(0,3r)) 6 C
(

min
B(0,7r)\B(0,2r)

|u| + γ

)
. (A.7)

Proof. Set ũ(x) = u(rx), then ũ ∈ L2(B(0, 8)\B(0, 1)) is harmonic and satisfies ũ > −γ or ũ 6 γ on B(0, 8)\B(0, 1).
We then apply the standard Harnack’s inequality, [GT83, Section 8.8, Corollary 8.21] to ũ + γ or ũ − γ to get

max
B(0,7)\B(0,2)

|ũ| 6 C
(

min
B(0,7)\B(0,2)

|ũ| + γ

)
,

then (A.6) by scaling.
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For the gradient estimate, we use [GT83, Chapter 3, Section 3.4, Theorem 3.9] with Ω = B(0, 7) \ B(0, 2) for
f = 0, dx = d(x, ∂Ω),

sup
x∈Ω

dx|∇ũ(x)| 6 C sup
x∈Ω
|ũ(x)|.

Accordingly,
‖∇ũ‖L∞(B(0,4)\B(0,3)) 6 sup

x∈Ω
|ũ(x)|.

Again, this provides (A.7) by recalling ũ(x) = u(rx) and (A.6). �

A.3 Carleman estimates
The goal of this part is to prove the Carleman estimate stated in Proposition 2.20. Actually, we will prove a more
general result.

Proposition A.3. There exist constants C > 0, λ > 1, and s0 > 1, depending on r′, R, such that for every s > s0
and every y ∈ H2(B(0,R)), ỹ = yesα satisfies∫

Ω

| − ∆ỹ − s2|∇α|2ỹ|2 dx +

∫
Ω

|s∇α · ∇ỹ|2 dx + s3
∫

Ω

|ỹ|2 dx + s
∫

Ω

|∇ỹ|2 dx + s3
∫
∂Ω

|ỹ|2 dσ

+ s
∫
∂Ω

|∂nỹ|2dσ 6 C
(
‖(∆y)esα‖2L2(Ω) + s3

∫
ω′
|ỹ|2 dx + s

∫
∂Ω

|∂θỹ|2 dσ
)
.

Proof of Proposition A.3. For y ∈ H2(Ω), ỹ = yesα satisfies

− ∆ỹ − s2|∇α|2ỹ + 2s∇α · ∇ỹ + s∆αỹ = (−∆y)esα, in Ω. (A.8)

We then write
S ỹ = −∆ỹ − s2|∇α|2ỹ, Aỹ = 2s∇α · ∇ỹ + 2s∆αỹ, (A.9)

and we get that

‖S ỹ‖2L2(Ω) + ‖Aỹ‖2L2(Ω) + 2
∫

Ω

Aỹ S ỹ dx 6 2‖(∆y)esα‖2L2(Ω) + 2s2‖∆α‖L∞(Ω) ‖ỹ‖2L2(Ω) . (A.10)

We then compute the cross product
∫

Ω
Aỹ S ỹ dx:∫

Ω

(−∆ỹ)(2s∇α · ∇ỹ) dx = s
∫

Ω

(2D2α(∇ỹ,∇ỹ) − ∆α|∇ỹ|2) dx − 2s
∫
∂Ω

∂nỹ∇α · ∇ỹdσ + s
∫
∂Ω

∂nα|∇ỹ|2 dσ,

∫
Ω

(−∆ỹ)(2s∆αỹ) dx = 2s
∫

Ω

∆α|∇ỹ|2 dx − s
∫

Ω

∆2α|ỹ|2 dx − 2s
∫
∂Ω

∂ny∆αỹdσ + s
∫
∂Ω

∂n∆α|ỹ|2 dσ,

∫
Ω

(−s2|∇α|2ỹ)(2s∇α · ∇ỹ) dx = s3
∫

Ω

∇ · (|∇α|2∇α)|ỹ|2 dx − s3
∫
∂Ω

∂nα|∇α|
2|ỹ|2 dσ,∫

Ω

(−s2|∇α|2ỹ)(2s∆αỹ) dx = −2s3
∫

Ω

∆α|∇α|2|ỹ|2 dx.

Combining all these computations, we obtain:∫
Ω

Aỹ S ỹ dx =

∫
Ω

|ỹ|2
(
2s3D2α(∇α,∇α) − s3∆α|∇α|2 − s∆2α

)
dx

+

∫
Ω

(2sD2α(∇ỹ,∇ỹ) + s∆α|∇ỹ|2) dx − 2s
∫
∂Ω

∂nỹ∇α · ∇ỹ dσ + s
∫
∂Ω

∂nα|∇ỹ|2 dσ

− 2s
∫
∂Ω

∂ny∆αỹ dσ + s
∫
∂Ω

∂n∆α|ỹ|2 dσ − s3
∫
∂Ω

∂nα|∇α|
2|ỹ|2 dσ. (A.11)

Next, we specify these computations to the case Ω = B(0,R), ω′1 = B(0, r′/2), ω′ = B(0, r′), and α as in (2.31).
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Easy computations show that

∇α = λα∇β,

D2α = λ2α∇β(∇β)t + λαD2β,

∆α = λ2α|∇β|2 + λα∆β,

2D2α(∇α,∇α) − ∆α|∇α|2 = λ4α3|∇β|2 + λ3α(2D2β(∇β,∇β) + ∆β|∇β|2).

Accordingly, there exist λ > 1 and a positive constant c0 > 0 such that for all x ∈ Ω \ ω′1 and ξ ∈ R2,

2D2αx(ξ, ξ) + ∆α(x)|ξ|2 > c0|ξ|
2, and 2D2αx(∇α(x),∇α(x)) − ∆α(x)|∇α(x)|2 > c0,

and, on ∂Ω,
∇α = ∂nα~n, with ∂nα 6 −c0, and ∂nα|∇α|

2 6 −c0.

There exists a constant C > 0 such that∥∥∥2D2α(∇α,∇α) − ∆α|∇α|2
∥∥∥

L∞(ω′1) +
∥∥∥∆2α

∥∥∥
L∞(Ω) +

∥∥∥2D2α + ∆αId
∥∥∥

L∞(Ω)

+ ‖∂nα‖L∞(∂Ω) + ‖∂n∆α‖L∞(∂Ω) + ‖∆α‖L∞(∂Ω) 6 C.

Using these estimates in the identity (A.11), we obtain:∫
Ω

Aỹ S ỹ dx > c0s3
∫

Ω

|ỹ|2 dx + c0s
∫

Ω

|∇ỹ|2 dx + c0s3
∫
∂Ω

|ỹ|2 dσ + c0s
∫
∂Ω

|∂nỹ|2 dσ

−Cs3
∫
ω′1

|ỹ|2 dx −Cs
∫
ω′1

|∇ỹ|2 dx −Cs
∫
∂Ω

∣∣∣∣∣∂θỹR

∣∣∣∣∣2 dσ

−Cs
∫

Ω

|ỹ|2 dx −Cs
∫
∂Ω

|∂ny||ỹ| dσ −Cs
∫
∂Ω

|ỹ|2 dσ.

In the third line, the part of the first term outside ω′1 can be absorbed by the first one of the first line by taking s
large enough, the part in ω′1 can be included in the first term of the second line. The second and the third terms of
the third line can be absorbed similarly by the two last terms of the first line by taking s large enough.

Therefore, there exists s0 > 1 such that for all s > s0,∫
Ω

Aỹ S ỹ dx >
c0

2
s3

∫
Ω

|ỹ|2 dx + c0s
∫

Ω

|∇ỹ|2 dx +
c0

2
s3

∫
∂Ω

|ỹ|2 dσ +
c0

2
s
∫
∂Ω

|∂nỹ|2 dσ

− 2Cs3
∫
ω′1

|ỹ|2 dx −Cs
∫
ω′1

|∇ỹ|2 dx −Cs
∫
∂Ω

∣∣∣∣∣∂θỹR

∣∣∣∣∣2 dσ.

Plugging this estimate in (A.10), we obtain that there exists a constant C > 0 such that for all s > s0,

‖S ỹ‖2L2(Ω) + ‖Aỹ‖2L2(Ω) + c0s3
∫

Ω

|ỹ|2 dx + c0s
∫

Ω

|∇ỹ|2 dx + c0s3
∫
∂Ω

|ỹ|2 dσ + c0s
∫
∂Ω

|∂nỹ|2 dσ

6 C‖(∆y)esα‖2L2(Ω) + Cs2 ‖ỹ‖2L2(Ω) + Cs3
∫
ω′1

|ỹ|2 dx + Cs
∫
ω′1

|∇ỹ|2 dx + Cs
∫
∂Ω

∣∣∣∣∣∂θỹR

∣∣∣∣∣2 dσ.

Recalling then the definition of Aỹ in (A.9), we easily get that

‖s∇α · ∇ỹ‖2L2(Ω) 6 ‖Aỹ‖2L2(Ω) + Cs2 ‖ỹ‖2L2(Ω) .

Accordingly, there exist s0 > 1 and a constant C > 0 such that for all s > s0,

‖S ỹ‖2L2(Ω) + ‖s∇α · ∇ỹ‖2L2(Ω) + c0s3
∫

Ω

|ỹ|2 dx + c0s
∫

Ω

|∇ỹ|2 dx + c0s3
∫
∂Ω

|ỹ|2 dσ + c0s
∫
∂Ω

|∂nỹ|2 dσ

6 C‖(∆y)esα‖2L2(Ω) + Cs3
∫
ω′1

|ỹ|2 dx + Cs
∫
ω′1

|∇ỹ|2 dx + Cs
∫
∂Ω

∣∣∣∣∣∂θỹR

∣∣∣∣∣2 dσ.
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To finish the proof of Proposition 2.20, we simply have to show that there exists a constant C > 0 such that for all
s > s0,

s
∫
ω′1

|∇ỹ|2 dx 6 C
(
s3

∫
ω′
|ỹ|2 dx + ‖(∆y)esα‖2L2(Ω)

)
.

In order to do that, we take a smooth cut-off function χ with

χ ∈ C2
c (ω′), χ = 1 in ω′1, 0 6 χ 6 1,

and we multiply equation (A.8) by χỹ and do integration by parts:∫
Ω

χ|∇ỹ|2 dx =

∫
Ω

(−∆y)esαχỹ dx +

∫
Ω

|ỹ|2
(

1
2

∆χ + s2|∇α|2 + s∇χ · ∇α
)
.

Accordingly, due to the fact that χ and its derivatives are supported in ω′,∫
ω′1

|∇ỹ|2 dx 6
∫

Ω

χ|∇ỹ|2 dx 6
1
s
‖(∆y)esα‖2L2(Ω) + Cs2

∫
ω′
|ỹ|2 dx.

This concludes the proof of Proposition A.3. �
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