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Abstract
Named entities are among the most relevant type of information that can be used to properly index dig-
ital documents and thus easily retrieve them. It has long been observed that named entities are key to
accessing the contents of digital library portals as they are contained in most user queries. However, most
digitized documents are indexed through their OCRed version which include numerous errors. Although
OCR engines have considerably improved over the last few years, OCR errors still considerably impact
document access. Previous works were conducted to evaluate the impact of OCR errors on named entity
recognition and linking techniques separately. In this article, we experimented with a variety of OCRed
documents with different levels and types of OCR noise to assess in depth the impact of OCR on named
entity processing. We provide a deep analysis of OCR errors that impact the performance of named entity
recognition and linking. We then present the resulting exhaustive study and subsequent recommendations
on the adequate documents, the OCR quality levels and the post-OCR correction strategies required to
perform reliable named entity recognition and linking.

1. Introduction
Large quantities of printed documents are scanned and archived as images. Text extraction using
optical character recognition (OCR) systems is then necessary for indexing documents, which is
an essential feature for the accessibility to these documents. Unfortunately, the quality of OCR
output is imperfect and sometimes far from the actual expected text, known as the ground truth.
Compared to the costly efforts that can be spent fixing OCR errors, it is considered that the quality
of OCR outputs is sufficient to read and explore documents. However, several studies show that
the effectiveness of systems processing OCR output texts might be considerably harmed by OCR
errors (Ittner et al. 1995; Lopresti 2009).

The quality of the generated texts using OCR engines depends on their algorithms and on
the parameter settings of the scanner used to digitize documents as well as on the quality of the
original image and the nature of the document. For example, generated text from recent/historical
newspapers and normal/damaged manuscripts do not usually have the same quality. Reasonable
levels of OCR errors have relatively little impact on the human ability to read the documents.
However, the text resulting from OCR is the one used for indexing. Subsequently, if some words
have been wrongly recognized by the OCR, they will be indexed with their errors. This represents
a serious problem for document indexing and retrieval.
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Named entities are useful in many applications in Web search (Guo et al. 2009). A study has
shown that named entities (NEs) are the first point of entry for users in a search system (Gefen
2014). It is estimated that four out of five user queries on the Gallicaa contain at least one
NE (Chiron et al. 2017). Thus, properly recognising NEs can be considered more important than
properly recognising other words. In order to improve the quality of user searches in a system, it
is thus necessary to ensure the quality of these particular terms.

Named entity recognition (NER) is a traditional natural language processing (NLP) task used
for many information retrieval applications (Petkova and Croft 2007; Guo et al. 2009) such as
indexing and text mining. NER emerged in the middle of the 90′s (Grishman and Sundheim
1996). It aims to locate specific terms in a given text and to categorize them into a set of pre-
defined classes. Three main classes are usually used for named entity labeling: person, location,
and organization (Nadeau and Sekine 2007).

Combined or subsequent to NER, named entity linking (NEL) connects NEs to external
knowledge bases such as Wikipediab, Wikidatac, DBpedia (Lehmann et al. 2015), GeoNamesd,
YAGO (Suchanek et al. 2007) and Google Knowledge Graphe. This allows differentiating ambigu-
ous geographical locations or names (e.g. the mention Paris can be linked to several cities or
people), and implies that the descriptions from the knowledge bases can be used for semantic
enrichment.

However, NER and NEL are especially challenging for large quantities of documents as the
diversity of NEs is increasing with the size of the collections. In the case of digitized documents,
represented by their OCRed version which may contain numerous OCR errors, NEs are partic-
ularly affected, as stated by (Chiron et al. 2017). To perform NER and NEL, many techniques
were developed in the literature over the last 25 years. These techniques can be classified into
rule-based and machine learning-based approaches. For rule-based methods, rules are extracted
manually. They are related to linguistic descriptions, trigger words and lexicons of proper names
(also known as gazetteers). These rules use patterns and regular expressions in order to locate
NEs, classify them and link them to knowledge bases. The machine-learning approaches, on the
other hand, aim to extract rules autonomously using large corpora. In the presence of OCR errors,
rule-based methods are clearly hampered and unable to override the degradation generated by
the OCR. However, machine learning methods introduce sufficient flexibility to be adapted to
processing noisy text.

Recent works have analysed the impact of OCR errors on NER (Hamdi et al. 2020) and
NEL (Linhares Pontes et al. 2019). More precisely, they analysed different levels and types of
OCR degradation and their impact on the performance of NER and NEL systems. They con-
cluded that OCR is strongly related to the drop in performance of these tasks. For instance, the
performance of NER systems drops from 90% to 60% when the character error rate exceeds 20%
while the results on NEL systems decrease around 10 percentage point when the OCR error rates
are respectively 4% and 15% at the character and word levels.

The present work proposes to extend the analysis of these previous works (Linhares Pontes
et al. 2019; Hamdi et al. 2020) with a deep analysis of OCR errors over the noisy collections. We
define and study types of character/word errors and in which way they impact the performance
of NER and NEL systems. In order to do that, we study five aspects related to general OCR
errors and compare them with human-generated misspellings, including length effects, erroneous
character positions, segmentation errors (named entity boundaries), Levenshtein distance and edit

aGallica is the digital library portal of the National Library of France.
bhttp://www.wikipedia.org
chttps://www.wikidata.org
dhttp://www.geonames.org
ehttps://developers.google.com/knowledge-graph

http://www.wikipedia.org
https://www.wikidata.org
http://www.geonames.org
https://developers.google.com/knowledge-graph
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operations. These observations allowed us to give several suggestions on how to implement effec-
tive OCR post-processing approaches when intending to perform named entity recognition and
linking.

The rest of this paper is organized as follows: in Section 2, we describe typical NER and NEL
approaches. Section 2.3 studies the impact of OCR on many NER and NEL systems processing its
outputs. Section 3 consists of two parts. The first one concerns the datasets, with an overview of
the NER and NEL datasets used. The second part outlines the impact of OCR errors on NER and
NEL systems from a global point of view, using results on clean and noisy OCRed texts. Based on
the resulting observations, we propose an in-depth analysis of the types of OCR errors and their
impact on NER and NEL in Section 4. Finally, Section 5 concludes the paper.

2. Related work
This paper studies NER and NEL applied to OCRed documents. Consequently, we first introduce
the main underlying NER and NEL approaches, and then review works related to the impact of
OCR quality on the performance on NE processing.

2.1 Named entity recognition
NER systems aim to locate named entities in a given sequence of words, and to assign them a label
(e.g. PER for persons, LOC for locations and ORG for organizations). Many NER approaches
annotate texts using the IOB tagging scheme, where each token is marked as being inside (I),
outside (O) or at the beginning (B) of an entity of a certain class. The sentence “Paris Hilton
visited Paris”, is for instance to be labeled as follow: B PER I PER O B LOC.

NER approaches appeared in the 1990’s (Grishman and Sundheim 1996), and the early systems
relied on rule-based approaches. Rules used in those systems are defined by humans and based
on dictionaries, trigger words and linguistic descriptors. Such techniques require a lot of time
and effort to be extracted and handled. Thus they cannot easily be updated to new types of texts or
entities. To overcome this problem, the efforts on NER are largely dominated by machine learning
techniques such as fully supervised learning, semi-supervised learning, unsupervised learning, and
more recently deep learning.

Fully supervised approaches to NER include support vector machines (SVM) (Asahara and
Matsumoto 2003) and maximum entropy models (Borthwick et al. 1998), as well as sequential
tagging methods such as hidden Markov models (Bikel et al. 1998), and conditional random fields
(CRFs) (Filannino et al. 2013). These approaches, similarly to rule-based methods, rely on hand-
crafted features, which are challenging and time-consuming to develop, and may be costly to
update and generalize to new data.

More recently, neural networks have been shown to outperform other supervised algorithms
for NER. The first neural network-based system has been developed in 2011 (Collobert et al.
2011). It reached very competitive results for NER in comparison to previous machine learning
works. Therefore, many NER systems using neural networks architectures have been proposed
and have shown their abilities to outperform all previous systems. Most deep learning NER
models are based on BiLSTM (Dernoncourt et al. 2017; Peters et al. 2017) or Transformer
architectures (Vaswani et al. 2017; Devlin et al. 2019; Boros et al. 2020a). However, BiLSTM
models, with a CRF top-layer as tag decoder, dominate existing models (Lample et al. 2016; Ma
and Hovy 2016). Deep learning-based approaches rely on word and character distributed repre-
sentations. Common algorithms for such context-independent word embeddings include Google
word2vec (Goldberg and Levy 2014) and Stanford Glove (Pennington et al. 2014). Many other
works have been proposed to enrich word representations with sub-word and contextual informa-
tion, such as ELMo (Peters et al. 2018), Flair (Akbik et al. 2019) and BERT (Devlin et al. 2019).
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The effectiveness of NER systems using neural networks is due to their ability to be updated and
generalized. These systems can jointly learn effective features with model parameters directly
from the training dataset, instead of relying on hand-crafted features developed for a specific
dataset.

2.2 Named entity linking
As we mentioned in the introduction, the aim of the NEL task is to map named entities to their
corresponding entities in a knowledge base (KB) (Shen et al. 2015), where KBs contain a set of
named entities and a set of documents.

As with NER, NEL methods based on neural networks (Ganea and Hofmann 2017; Le and
Titov 2018) have shown an ability to outperform models based on hand-crafted features that learn
from data on the base of manually selected features. Neural network-based methods include all
variants of deep learning techniques, such as transfer learning (Linhares Pontes et al. 2020b),
reinforcement learning (Fang et al. 2019) or multi-task learning (Martins et al. 2019b) to analyze
features, relationships, and complex interactions among features, which allow a better analysis of
documents and improve their performance. These methods combine context-aware words, spans
and entity embeddings with neural similarity functions to analyze the context of mentions and
correctly disambiguate them to a KB. To disambiguate named entities, NEL systems are based on
three steps:

(1) generate all potential entities to each linkable NE;
(2) rank the candidate entities;
(3) predict unlinkable mentions of extracted NEs.

More precisely, the generation of candidate entities consists in retrieving the related entity
mentions from a KB that refer to mentions in a document. To do so, NEL systems have used dictio-
naries (Guo et al. 2013) and search engines (Han and Zhao 1999) or expanded surface forms from
the local document (Zhang et al. 2011). They ranked then selected candidates to the most likely
mention from the KB. Many state-of-the-art methods have been proposed to analyse and rank
these candidates such as name string comparison (Zheng et al. 2010), entity popularity (Guo et al.
2013), entity type (Dredze et al. 2010), textual context (Li et al. 2013), and coherence between
mapping entities (Cucerzan 2007). Once candidates from the KB are ranked, the last module
checks for each mention whether the input NE matches with the target top-ranked NE.

Many other studies developed end-to-end systems, which jointly handle NER and NEL. Early
works were based on engineered features (Sil and Yates 2013; Luo et al. 2015). Neural network-
based systems were then proposed to capture the mutual dependency between NER and NEL. The
first neural systemf has been proposed by Kolitsas et al. (2018). Their method first generates all
potential NEs and then learns similarity features based on contextual embeddings in order to dis-
ambiguate these mentions. Then, many other neural architectures have been proposed using either
BiLSTM (Martins et al. 2019a) or BERT (Broscheit 2019; Chen et al. 2019). More recently, Cao
et al. (2021) implemented the mGENRE system, which takes advantage of language connections
to predict and link NEs of multiple languages.

2.3 Natural language processing of OCRed documents
Despite decades of research on OCR, outputs of such systems often contain errors especially when
the OCR input document is damaged, old or badly digitized. OCR systems are always located at
the beginning of pipeline processes and their errors might have a negative impact and can be

fhttps://github.com/dalab/end2end_neural_el

https://github.com/dalab/end2end_neural_el
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sometimes harmful for further tasks. For this reason, many researchers have studied the problems
relating to processing text data from noisy sources. Those studies where led in order to understand
the effects of optical recognition errors on text analysis routines and eventually estimate which
zones of digitized documents may require a prior error correction process.

Many works have been done in the field of NLP to process noisy data (Lopresti 2005). For
instance, Lopresti (2009) have considered a text analysis pipeline consisting of sentence boundary
detection, tokenization and part-of-speech tagging of noisy unstructured text data. They reported
that on the sentence boundary task for example, the insertion errors have more destructive impact
than character deletion errors, while OCR substitution errors are worse on part-of-speech tagging.
More recently, Nguyen et al. (2019) proposed an analysis of OCR errors on many collections of
historical documents obtained from digital libraries. They showed that 81.49% of OCRed words
contain two erroneous characters and that characters such as ‘b’, ‘d’, ‘m’ and ‘n’ are more easily
misrecognized than others. The effects of processing noisy texts have also been studied on many
other NLP tasks such as machine translation (Yaser 2005), document summarization (Jing et al.
2003) and topic modelling (Mutuvi et al. 2018).

Several works focused on information retrieval from noisy data (Croft et al. 1994). Chiron et al.
(2017) proposed a method to estimate the impact of OCR errors on the use of digital libraries.
They built an OCR error model using a large corpus of OCRed documents aligned with their cor-
responding gold standard. Their model estimated the risk that a user’s query might fail to match
with the targeted documents. Taghva et al. (1996) showed that moderate OCR errors have no
desperate impact on the effectiveness of classical information retrieval measures. Other studies
focused on the impact of OCR errors on the classification of pathology reports for cancer noti-
fication (Zuccon et al. 2012). They concluded that OCR errors even with modest rates are not
perceptible for extracting cancer notification items.

2.3.1 OCR errors and Named-Entity Recognition
Concerning named entity recognition, several works have been done to extract named entities
from diverse text types such as outputs of OCR Hamdi et al. (2019), automatic speech recognition
(ASR) systems (Favre et al. 2005), informal text messages and noisy social network posts (Ritter
et al. 2011). An exhaustive survey on NER on historical documents was recently published
(Ehrmann et al. 2021). Palmer and Ostendorf (2001) described an approach for improving named
entity extraction from ASR systems outputs by explicitly modeling errors through the use of confi-
dence scores. In a similar setting, Miller et al. (2000) studied the NER performance under a variety
of spoken and OCRed data. They trained a NER system on both clean and noisy input material
and observed that performance degraded linearly as a function of word error rate. They concluded
that results may lose about 8 points of F-score with only 15% of word error rate. Rodriquez et al.
(2012) reported that manual correction of OCR output do not result in a clear improvement of
NER results. Many other studies took interest in named entity extraction from digitized historical
journals (Grover et al. 2008), broadcast news (Gotoh and Renals 2000) and religious monologues,
scientific books and medical emails (Maynard et al. 2001).

Recently, two studies showed that neural network NER models are better able to alleviate OCR
errors compared to traditional machine learning approaches (van Strien et al. 2020; Hamdi et al.
2019; Boros et al. 2020b). However, even with neural networks, NER performances considerably
decrease when applied on OCRed documents. van Strien et al. (2020) conducted a large-scale
analysis of the impact of OCR errors on several NLP tasks. They found that the impact on NER
is less significant than on other tasks such as dependency parsing and sentence segmentation.
Interestingly, the damaging effect seems greater on geo-political entities than person names or
dates. Hamdi et al. (2019) focused on NER. They processed five noisy datasets using a BiLSTM
NER system and reported that NER F1-score drop about 30 percentage points when the error rate
is around 20%. Huynh et al. (2020) then applied a post-OCR correction method on these datasets
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and showed that the OCR impact can be considerably attenuated by only correcting OCR words
with up to two erroneous characters.

Additional related work proposed to create collections for NER on digitised Chinese docu-
ments (Lawrie et al. 2020). The aim of building such collections is to support the full context of
NER over OCRed text and to improve NER performance. The methodology proposed for building
OCR/NER collections is to convert blocks of text into images and then to extract the text from
images using OCR. Finally, they generated OCRed text enriched with NER annotations.

2.3.2 OCR errors and Named-Entity Linking
Concerning NEL, we previously evaluated the performance of state-of-the-art named entity link-
ing approaches over digitized documents with different levels of OCR quality (Linhares Pontes
et al. 2019). We simulated OCR mistakes on contemporary datasets and analyzed the perfor-
mance of Ganea and Hofmann (2017) and Le and Titov (2018) systems on these data. Ganea
and Hofmann embed entities and words in a common vector space and use a neural attention
mechanism over local context windows to select words that are informative for the disambigua-
tion decision. Le and Titov relied on representation learning and learn embeddings of mentions,
contexts, and relations to reduce the amount of human expertise required to construct the system
and make the analysis more portable across languages and domains. In our analysis, the perfor-
mance of these systems decreased around 20% when OCR errors, at the character and word levels,
reached rates of 5% and 15% respectively.

In addition to OCR errors, works in digital humanities deal with historical documents that may
contain spelling variations from modern languages, which can be difficult to recognize because
spelling conventions may be reformed from time to time. Some works focused on the use of avail-
able NEL approaches to analyze historical data (van Hooland et al. 2013; Munnelly and Lawless
2018; Ruiz and Poibeau 2019). Other works studied the development of features and rules to
improve specific-domain NEL (Heino et al. 2017) or entity types (Brando et al. 2016). Moreover,
some studies focused on the effect of problems frequently encountered in historical documents
on NEL (Linhares Pontes et al. 2020a). They represented the entities in a continuous space and
combined them with a neural attention mechanism to analyze context words and candidate entity
embeddings to disambiguate mentions in historical documents. In addition, they developed several
modules to handle the multilingualism and errors related to OCR engines.

Similarly to van Strien et al. (2020), we propose in the next sections to study the impact of
OCR quality on NLP tasks, specifically NER and NEL, however, running detailed analysis over
noisy data. Unlike previous work, we use larger corpora for evaluation without relying on post-
correction. The datasets used in this work cover several languages and the noisy version contains
different types of degradation that might be related to storage or digitization processes. Finally we
present a deep analysis of the OCR quality and provide different types and levels of OCR errors
required to perform reasonably reliable NER and NEL approaches.

3. Resources
Processing named entities in a noisy context is very common with historical content, since the text
to be analysed is almost always resulting from a digitization and an OCR process. Few annotated
datasets (with named entities and their links) in a noisy context aligned with their ground truth
are publicly available to assess the impact of OCR errors on those tasks. As the main objective of
this paper is to have a deep analysis of OCR error categories for NER/NEL tasks, we first review
experiments on the global impact of OCR errors. To this end, we start with an overview of the
two publicly available datasets we used. We then present how we simulated degradations of the
digitization process and their OCR errors. Finally, we present the obtained results from the point
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of view of OCR quality, using the classical measures that are character error rate (CER) and word
error rate (WER).

3.1 Datasets
3.1.1 Named entity recognition datasets
First, we focused on NER on a publicly available datasetg presented by Hamdi et al. (2020). These
corpora are based on dataset presented in the conference on natural language learning in 2002 and
2003 (CoNLL-02 and CoNLL-03). Then, we performed some operations to synthesize real OCR
errors. These resources consist of 3 datasets covering 3 languages : English, Spanish and Dutch.
Each dataset is cut into the 3 subsets that are commonly used in machine learning, i.e. training set,
development set and test set. For each corpus (English, Dutch and Spanish), degraded images and
noisy texts extracted by the OCR as well as the aligned version with clean data at the word and
the character levels are provided.

Named entities are classified into 4 pre-defined categories: PER for persons, LOC for loca-
tions, ORG for organisations and MISC for miscellaneous, which is used to annotate all NEs not
belonging to any of the other three classes.

3.1.2 Named entity linking datasets
For NEL experiments, we used a publicly available dataseth, presented in Linhares Pontes et al.
(2019). As for NER datasets, this corpora are based on degraded versions of clean existing NEL
datasets:

• AIDA-CoNLL dataset (Hoffart et al. 2011) is based on CoNLL-03 data that was used for the
NER task. This dataset is divided into AIDA-train for training, AIDA-A for validation, and
AIDA-B for testing. This dataset contains 1,393 Reuters news articles and 27,817 linkable
mentions.

• AQUAINT dataset (Guo and Barbosa 2014) is composed of 50 short news documents (250-
300 words) from the Xinhua News Service, the New York Times, and the Associated Press.
This dataset contains 727 mentions.

• ACE2004 dataset (Guo and Barbosa 2014) is a subset of the ACE2004 coreference
documents with 57 articles and 306 mentions, annotated through crowdsourcing.

• MSNBC dataset (Guo and Barbosa 2014) is composed of 20 news articles from 10 different
topics (two articles per topic: Business, U.S. Politics, Entertainment, Health, Sports, Tech &
Science, Travel, News).

3.1.3 Simulation of noisy data
Both datasets follow the same process of construction. Due to the lack of real noisy annotated data,
they were built by synthesizing the process of text extraction from digitized documents. First, this
was done by generating clean images from raw text coming from NER-NEL datasets. To simulate
the noise induced by digitization, they then used the DocCreator tooli developed by Journet et al.
(2017). This tool provides many filters to apply various degradations to document images such as
blurring, bleeding-through, ink degradation, holes and more.

In order to simulate OCRed versions, the raw texts are extracted from the NER and NEL anno-
tated corpora. They are then converted into images which have been contaminated by injecting
common OCR degradation when using a scanner. Using the tesseract OCR engine, the noisy texts

ghttps://zenodo.org/record/3877554
hhttps://zenodo.org/record/3490333
ihttp://doc-creator.labri.fr/

https://zenodo.org/record/3877554
https://zenodo.org/record/3490333
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Figure 1. Sample of noisy images.

are then extracted from the degraded document images. Finally, the original and noisy texts are
aligned using the RETASj tool, to match the annotations from the original corpus to the noisy
version.

Four types of degradation are applied to both datasets: the character degradation adds small
ink spots on characters due to the age of documents. The phantom degradation simulates eroded
characters that can occur after successive uses of documents. The bleed-through simulates the ink
from the back side of a page, appearing on its front side. The blurring adds a blurring effect. Each
of these types of degradation are performed at two levels in the NER datasets: LEV-1 level where
noises are applied rarely and LEV-2 where they are applied more frequently. On the NEL dataset,
only the LEV-1 has been applied. Figure 1 shows an original image and its degraded version.

Two additional degradations have been defined: LEV-0 and LEV-MIX. LEV-0 is the re-OCRred
version of original images with no degradation added. It aims to provide a baseline of the OCR
engine with a clean image. LEV-MIX is more of a real-world example, representing the result
of simultaneously applying the four types of degradation at LEV-1 to the original texts. Table 1
outlines the CER and WER percentages for each OCRed version of test sets. These results are
close to OCR error rates with real-life collections (Holley 2009).

jhttps://github.com/Early-Modern-OCR/RETAS

https://github.com/Early-Modern-OCR/RETAS
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NER dataset NEL dataset

English Dutch Spanish AIDA ACE2004 AQUAINT MSNBC

CER WER CER WER CER WER CER WER CER WER CER WER CER WER

LEV-0 1.7 8.5 1.6 7.8 0.7 4.8 1.0 3.9 0.8 3.0 0.4 2.0 1.1 2.3

Bleed-through LEV-1 1.8 8.5 1.7 8.2 0.8 4.9 1.0 3.9 0.7 3.0 0.4 1.9 0.3 1.6

LEV-2 1.8 8.6 1.8 8.9 0.8 5.4 – – – – – – – –

Blurring LEV-1 6.3 20.0 5.9 22.0 3.0 12.0 1.8 5.4 1.3 3.8 0.6 2.2 0.9 3.2

LEV-2 41.3 54.0 27.0 44.7 19.5 29.9 – – – – – – – –

Char deg. LEV-1 3.6 21.8 4.5 25.1 2.1 14.2 3.4 16.9 2.5 14.9 2.1 13.4 2.3 14.3

LEV-2 4.3 23.7 6.4 31.6 2.7 16.3 – – – – – – – –

Phantom deg. LEV-1 1.7 8.8 1.6 8.0 0.8 5.5 1.1 5.6 0.8 4.6 0.5 4.0 0.5 3.4

LEV-2 1.8 10.0 1.7 8.4 0.9 5.9 – – – – – – – –

LEV-MIX 6.9 22.8 5.8 22.2 3.5 11.9 4.8 18.2 4.8 15.4 2.5 13.7 3.1 15.4

Table 1. OCR errors rates on NER and NEL datasets at the character and the word levels.

3.2 Global impact of OCR errors on NER/NEL
Neural networks as well as the training process have several hyper-parameters such as character
embedding dimension, character-based token embedding, LSTM dimension, token embedding
dimension, etc. The same parameters for training and testing have been used for both OCRed and
clean datasets. In order to quantitatively estimate the impact of OCR errors on the NER and NEL
tasks, we highlighted our previous works (Hamdi et al. 2020; Linhares Pontes et al. 2019) over
the clean corpora and the noisy simulated ones.

3.2.1 Impact of OCR errors on NER
All experiments we will perform in this article are exposed in Hamdi et al. (2020). The first one
was conducted over clean corpora. Then, the same experiment was run on the OCRed datasets. We
evaluated four NER systems, one machine learning-based system and three deep learning-based
systems. As results showed that deep learning-based systems have very similar performances and
outperform the machine learning-based system, we reuse in this paper the results obtained by
the BiLSTM-CNN-CRF modelk (Ma and Hovy 2016). The model uses a forward LSTM and a
backward LSTM that encode the left and right contexts, respectively. The forward and backward
LSTM pair is referred to as a bidirectional LSTM (BiLSTM). Then, a CRF layer generates the
most probable sequence of predicted labels from surrounding words. In order to get the best pos-
sible performances, we adapted this architecture to only use word and character embeddings. For
the character-level embedding, the system induces character-level features using a convolutional
neural network (CNN) engine. It therefore adds to each word vector a new feature in the form of
a character-based vector. Character features can be character embedding and character types (i.e.
uppercase, lowercase, numbers, punctuation marks, special characters). For the word embedding
level, we used the FastText (Bojanowski et al. 2017) embedding as this is a word-fragment based
model that can usually handle unseen words, and it still generates one vector per word. Finally, the
character-level representation vector is concatenated with the word embedding vector to feed the
BiLSTM network. Finally, the output vectors of BiLSTM are used as inputs to the CRF layer to
jointly decode the best label sequence. The word embedding model of our system relies on the pre-
trained word embedding FastText model (Grave et al. 2018), while the character embedding was
trained on our data. To remedy issues with out-of-vocabulary (OOV) words, we use both character-
based and subword-based embeddings computed with FastText (Bojanowski et al. 2017). This

kThe model is publicly available: https://github.com/kermitt2/delft

https://github.com/kermitt2/delft
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method is able to retrieve embeddings for unknown words by incorporating subword informa-
tion. These systems convert the input sequence of words into a sequence of fixed-size vectors
(x1,x2,...,xn), i.e. the word-embedding part, and return another sequence of vectors (h1,h2,...,hn)
that represents named entity labels at every step of the input. This tool achieved impressive results
on two linguistic sequence labeling tasks: POS tagging with an accuracy exceeding 97% and
named entity recognition with a F1-score of 91% (Ma and Hovy 2016). Results are detailed in
Table 2.

English Dutch Spanish

Clean 90.90 80.12 85.45

LEV-0 87.45 74.03 85.13

Bleed LEV-1 86.11 73.15 84.07

Bleed LEV-2 83.96 72.75 75.12

Blur LEV-1 71.03 63.77 68.79

Blur LEV-2 60.31 44.56 61.44

DegChar LEV-1 74.11 56.33 64.93

DegChar LEV-2 68.77 50.78 64.12

PhantChar LEV-1 87.01 73.18 77.21

PhantChar LEV-2 85.20 72.97 76.76

LEV-MIX 70.82 64.88 73.98

Table 2. Micro-averaged F1 scores using BiLSTM-CNN-CRF system (Ma and Hovy 2016) on NER clean and noisy
OCRed data.

The results show that the relative performance variations are essentially comparable for the
three languages. As expected, the accuracy of NER drops proportionally to the level of OCR
errors, which is itself related to the degradation type and level. Additionally, Table 2 shows that
NER results may drop 3 to 5 percentage points from clean data to LEV-0 OCRed data, the OCRed
synthesised data with no noise added. In other words, even with perfect storage and digitization,
NER accuracy may be affected by the OCR quality. For other types of degradation, taking English
as an example, the OCR word error rates vary from 8% to 50%, while NER F-score drop from
90% to 50%.

3.2.2 Impact of OCR errors on NEL
In this subsection, we give an overview of our previous work (Linhares Pontes et al. 2019) about
the impact of OCR errors on NEL. As Ganea and Hofmann’s and Le and Titov’s systems had
a similar impact on the performance generated by the OCRed documents, we reused the results
of the Ganea and Hofmann system to explain and link the impact of OCRed documents between
NER and NEL applications. We used the Ganea and Hofmann system instead of an end-to-end
NEL system in order to evaluate the impact of the OCR quality on entity disambiguation only
(using NER gold tags). This choice also allows us to evaluate the impact of OCR errors on the
end-to-end process for entity linking by using the outputs of the NER system as input to Ganea
and Hofmann’s NEL system (Section 4.7).

In order to analyze the impact of OCR degradation on the NEL task, experiments were con-
ducted using the system of Ganea and Hofmann (2017) on OCRed datasets. Ganea and Hofmann
proposed a deep learning modell that represents entities and words in a common vector space.

lThe model is publicly available: https://github.com/dalab/deep-ed

https://github.com/dalab/deep-ed
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Their model uses a neural attention mechanism over local context windows and a conditional ran-
dom field that collectively disambiguates the mentions in a document. Their model was pre-trained
using the word embedding model Word2Vec with vectors of 300 dimensions from the Wikipedia
corpus published in February 2014. Then, it was trained on the AIDA-CoNLL dataset (Hoffart
et al. 2011).

Table 3 shows the performance of the Ganea and Hofmann’s system (Ganea and Hofmann
2017) on datasets with multiple levels of OCR quality, in terms of micro-averaged F1 scores. It
can be seen that the CER and WER generated by OCR degradation are globally correlated to
the performance of NEL. While the LEV-0 and bleed degradation had the lowest CER and WER
levels and generated the least impact on the F1 scores, character degradation produced larger CER
and WER values and caused a bigger drop in the NEL performance. In contrast to the effect on
the NER datasets, the blur degradation had a similar impact on the NEL performance as the bleed
degradation. Among all datasets, ACE2004 was the most affected by OCR degradation, with a
drop of almost 20 percentage points for the LEV-MIX degradation.

AIDA ACE2004 AQUAINT MSNBC

Clean 0.914 0.889 0.902 0.935

LEV-0 0.904 0.791 0.887 0.917

Bleed LEV-1 0.904 0.791 0.891 0.917

Blur LEV-1 0.904 0.793 0.886 0.911

DegChar LEV-1 0.902 0.687 0.790 0.850

PhantChar LEV-1 0.904 0.787 0.880 0.910

LEV-MIX 0.904 0.686 0.804 0.846

Table 3. Micro-averaged F1 scores using Ganea and Hofmann’s system on NEL noisy OCRed data.

The combination of the OCR degradations (LEV-MIX) generated the highest CER and WER.
Despite high error rates, this does not appear to have a significant impact on the NEL performance
(decrease rate on the F1-scores up to 11%).

In spite of the complexity of the NEL task and the introduction of several types of errors, the
systems achieved robust results with limited document degradation (up to 5% WER). However,
degradations causing a stronger decrease in OCR performance had double the impact on NEL
performance.

4. In-depth OCR error analysis
This section contains a key contribution of this paper. We propose an in-depth analysis of OCR
errors and their impact on NER and NEL. Based on the conclusions from our analysis, one can
observe that some OCR errors have a stronger impact on the tasks of named entity recognition and
linking. Noting this is notably useful for the implementation of effective OCR post-processing
approaches related to NER and NEL.

As discussed in Section 3.2 and detailed by Hamdi et al. (2020) and Linhares Pontes et al.
(2019), the impact of OCR quality on NER and NEL is very similar regardless of the system or the
dataset used on each task. For NER, all the systems achieve satisfying results when the OCR error
rates are between 1% and 5% at the character level and 8% and 15% at the word level. Similarly
all NEL systems reach good results when the CER is less than 7% and the WER does not exceed
17%. From these rates, NER and NEL are harmed by OCR errors. For these reasons, we use
for each task one system and one dataset including all the noisy versions (Section 3). However,
the BiLSTM-CNN-CRF model and the system of Ganea and Hofmann (2017) showed slightly
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better results for NER and NEL respectively. We used the outputs of these systems to conduct our
analysis. In terms of corpora, we used the English CoNLL-03 corpus for NER and its extension
the AIDA corpus for NEL. Indeed, they are mostly used to evaluate state-of-the-art systems for
the two tasks separately rather than through an end-to-end approach. Our in-depth analysis aims
at covering the most relevant phenomena that define good strategies for post-OCR correction (edit
operations, Levenshtein distance, length effects, first character errors and segmentation errors).

4.1 Recognition and linking of contaminated named entities
Contaminated named entities are named entities that are wrongly recognized from the image by
the OCR process. As we mentioned earlier, NER and NEL systems are able in some cases to
face OCR errors and to correctly recognize and link NEs. However, in many cases NER and NEL
systems fail to overcome OCR errors.

To the best of our knowledge, all post-OCR research focused on general words Nguyen et al.
(2021). No previous research study has been conducted on the analysis OCR errors over named
entities. In order to study post-OCR on named entities, we have first extracted the contaminated
entities in all the noisy versions of our datasets. Then, we have identified among them the NEs
correctly recognized/linked and those wrongly recognized/linked in order to analyse them and
identify OCR aspects that impacted the effectiveness of NER and NEL systems. Table 4 shows the
percentages of contaminated and non-contaminated NEs on our datasets and the relative rates of
the NEs correctly tagged by the systems. We perform this analysis with several OCRed versions
of both datasets, each with varying error rates resulting from the injection of different types of
document image noise.

CoNLL-03 (NER) AIDA (NEL)

contaminated correctly contaminated correctly

entities recognized entities linked

LEV-0 4.11 98.87 0.42 100

Bleed-through 7.32 97.13 0.35 92.60

Phantom deg. 9.44 97.33 0.51 94.87

Char deg. 23.04 82.09 1.58 91.13

Blurring 28.78 79.61 0.62 100

LEV-MIX 31.17 70.36 1.47 92.39

Table 4. Percentages of contaminated named entities.

Table 4 shows that the recognition and linking of contaminated named entities is slightly
affected by OCR errors, particularly when the level of errors is low (LEV-0, bleed-through effects
and phantom degradation for NER; and LEV-0 and blurring for NEL). Despite higher CER and
WER values (3.4 and 16.9, respectively), AIDA does not contain as many contaminated named
entities as the CoNLL-03 dataset. Indeed, most tokens that were affected by the OCR degrada-
tion are not entities. Among the degraded entities, the main OCR errors in the AIDA dataset are:
deletion of characters (”outh Korea” and ”South Korea”), accent (”Jerusalém” and ”Jerusalem”),
uppercase character (”indonesia” and ”Indonesia”, and ”United states” and ”United States”), and
punctuation (”Australia.” and ”Australia”).

Unsurprisingly, the more NEs are contaminated, the more NER results are degraded. Things
are less clear with NEL. For example, the phantom degradation affected more NEs than the bleed-
through. However, more contaminated NEs are correctly linked in data with phantom degradation.
In addition, all the contaminated NEs in the blurred data are successfully linked despite the number
of contaminated NEs compared to other degraded data. These observations show that an additional
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analysis is required in order to understand different OCR aspects and their impact on NER and
NEL.

OCR errors directly affected contaminated entities but also uncontaminated entities. The per-
formance of NEL was worse for LEV-MIX and character degradation (Table 4). One of the
main reasons for this performance reduction is related to the context of these entities that were
contaminated by OCR errors and degraded the disambiguation analysis of these entities.

For this reason, we conducted five experiments to characterize contaminated NEs and find out
reasons why they are correctly or wrongly tagged by the NER and NEL systems. We have studied
known aspects related to general OCR errors including length effects, edit operations, distance
with original NEs, case sensitivity and segmentation errors.

4.2 Length effects
It was already observed that shorter words are more affected by OCR engines (Kukich 1992). This
section aims to examine this aspect on NE tokens. In practice, the length of OCRed tokens may
differ from the actual length of the tokens in the ground truth. For example, the OCRed token
“Japgfl” of length 6 comes from the ground truth (GT) word “Japan” of length 5. We therefore
analysed the effect of length over the OCRed tokens, since post-OCR algorithms focus on those
rather than on the GT tokens. To do so, we first categorized contaminated NEs according to the
length of their tokens and then identified among them those that were correctly tagged by the NER
and the NEL systems. Counts of correct/incorrect NE recognized according to their lengths on our
datasets are shown in Figure 2.

Figure 2. Length effects on NER in the CoNLL-03 dataset.

The analysis of OCRed token lengths (see Figure 2) shows two main findings. First, the vast
majority of contaminated tokens are of length between 4 and 10 (about 78%). Second, most tokens
outside this interval are correctly recognised despite OCR errors. We therefore suggest a post-OCR
correction of tokens of lengths between 4 and 10.

Contrary to NER, the length effect does not show a significant impact on NEL. The model is
mostly able to overcome OCR errors regardless of the entity length. Table 5 shows the number
of noisy entities in the AIDA dataset that are correctly (or incorrectly) linked according to their
lengths.
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Length #contaminated #correct #not correct

4 24 22 2

5 87 81 6

6 46 46 0

7 70 66 4

8 24 21 3

9 40 36 4

10 11 10 1

11 10 10 0

12 4 4 0

13 14 14 0

14 6 6 0

15 2 2 0

Table 5. Length effects on NEL in the AIDA dataset.

4.3 Levenshtein distance
The Levenshtein distance is a measure of the difference between two strings. It considers the
edit distance required to convert a string into another one based on classical edition operations
(insertion, deletion and substitution). With it, we can estimate the degree of modification that the
OCR degradation generated compared to the clean version and how this degradation affected the
performance of NER/NEL systems. Percentages of errors based on Levenshtein distances (edit
distances) of our datasets are shown in Figure 3. Depending on edit distance, there are single-
error tokens (e.g. “Spain” vs. “Span”) and multi-error tokens with edit distances higher than 1
(e.g. “Spain” vs. “Syin”). Mitton (1987) reported that single-error words largely exceed multi-
error words in OCR outputs. The edit distance is an important criteria for post-OCR approaches.
It helps to filter potential candidates and to select relevant ones. Figure 3 gives the distribution of
contaminated NEs (blue) in the CoNLL-03 corpus according to their Levenshtein distances with
the GT as well as with the number of NEs correctly recognised (orange) among them and those
wrongly recognised (gray).

Figure 3. Impact of Levenshtein distance on NER in the CoNLL-03 dataset.
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As Figure 3 shows, most OCR errors are single-error tokens with approximately 58.92% of the
occurrences. When it comes to multi-error tokens, most of them are of edit distance 2 (22.57% in
total). The rate of contaminated NEs correctly recognised is satisfactory when the edit distance is
larger than 2. However, from a distance of 6, the NER system cannot handle OCR errors anymore
since none of the NEs are correctly identified. Interestingly, NEs with edit distances 3, 4 and 5 that
are correctly recognised are almost always multi-token NEs and errors, with the errors distributed
over different tokens.

Regarding NEL, the OCR degradation on AIDA generated errors with a Levenshtein distance
of at most 4. Table 6 shows the number of NEs correctly linked accorded to the Levenshtein
distance between the noisy NEs and the corresponding ground truth.

Distance #contaminated #correct #not correct

1 324 304 20

2 8 8 0

3 4 4 0

4 2 2 0

Table 6. Impact of Levenshtein distance on NEL in the AIDA dataset.

As shown in Table 6, the errors had a limited impact on the performance of the NEL system.
OCR errors are dominated by single-error tokens. The NEL system is based on a probability table
p(e|m) to identify the entity candidates related to the entity mention m. When the degraded men-
tion m does not have a corresponding entry in this probability table, the NEL approach cannot
correctly link it to the KB. For instance, the mention “Europe” exists in our probability table
(possible entity candidates: continent, band, music album, and so on) and can be disambiguated
to the correct candidate. However, the mentions “Europi”, “Europe.”, “Eurape”, and “europe”
(Levenshtein distance of 1 to “Europe”) do not exist in the probability table and, consequently, the
NEL system cannot disambiguate them because they do not have any corresponding candidate.
However, when these errors correspond to additional punctuation marks and lower/upper mistakes
(e.g. “france” and “France” or “france” and “France.”), a pre-processing method normalises the
mentions to fix these OCR errors. Moreover, a co-referencing method is used to find all men-
tions that refer to the same entity in a text. This process potentially links degraded mentions to
non-degraded mentions and thus allows the NEL system to correctly disambiguate some of the
degraded mentions and fixes these OCR errors. Moreover, a co-referencing method is used to find
all mentions that refer to the same entity in a text.

For the two tasks, the analysis indicates that most contaminated NEs are of edit distances 1 and
2 in both the CoNLL (81.49%) and the AIDA corpora (98.22%). When the Levenshtein distance
exceeds 2, errors are often distributed over different tokens of the degraded named entity. An edit
distance threshold 2 at the token level can therefore be defined for post-OCR approaches to filter
out irrelevant candidates.

4.4 Edit operations
In this section, we discuss in further details the impact of the different types of edit operations.
Three basic edit operation types can be performed:

• Substitution, where one character has been replaced by another.
• Deletion, where a character has simply not been recognized by the OCR.
• Insertion, where an additional character has been wrongly added.
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Contaminated named entities necessarily contain at least one type of modification (deletion,
insertion and substitution). Nguyen et al. (2019) demonstrated that in around 23% of OCRed
words, the three operations of deletion, insertion and substitution can appear together in the same
word. Based on that and on the edit distance analysis (Section 4.3), post-OCR algorithms should
pay more attention to single modification types instead of their combinations in order to filter
potential candidates. In this aim, we analysed the correlation of contaminated NEs and single-error
types. Figure 4 and Table 7 respectively show the corresponding distribution of contaminated NEs
in the CoNLL-03 and the AIDA corpora. We also show the relative rates of NEs correctly/wrongly
tagged in both corpora.

Figure 4. Impact of edit operations on NER in the CoNLL-03 dataset.

Insertion Deletion Substitution

contam. correct not correct contam. correct not correct contam. correct not correct

48 46 2 98 90 8 200 190 10

Table 7. Impact of edit operations on NEL in the AIDA dataset.

These results demonstrate two interesting facts. First, for NER, most of the contaminated
named entities with one OCR error either undergo a substitution or an insertion operation. Second,
the NEL corpus is clearly dominated by the substitution operation. On the other hand, the analysis
shows that the delete operation is easily handled by NER systems (79.5% NEs are correctly recog-
nised). For NEL in the AIDA corpus, contrary to NER, all the single-error NEs can be correctly
linked regardless of the error type.

Our suggestions for OCR post-processing methods is thus to focus on insertion and substitution
operations in order to filter potential candidates and mainly benefit to NER.

4.5 First character errors
In named entities the first character generally has more importance than the other characters, for
instance when it is a capital letter. This is illustrated by the fact that early systems for named entity
extraction only focused on capital letters (McDonald 1993; Mikheev 1999). These systems based
on capital letters were using them to identify and delimit named entities (in English). Each word
(or sequence of words) which did not occur in an ambiguous position (such as the beginning of a
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sentence, or in a capitalized title) with a capitalized first letter was considered as a named entity.
However, with OCR degradation, upper and lower case characters may be mixed up. NER results
are, therefore, very impacted by case modifications (e.g. Apple vs apple).

Mitton (1987) described that 7% of the misspellings of his dataset appeared at the first char-
acter. Misspellings can change the first character by another capitalized character (e.g.”Spain” vs.
”Opain”) or by a lower character (e.g. ”Spain” vs. ”spain”) or by another type of character (e.g.
”Spain” vs. ”;pain”). Table 8 shows the percentages of NEs impacted by errors at the first character
in NER and NEL.

CoNLL-03 AIDA

contaminated correctly contaminated correctly

recognized linked

Number of entities 822 250 209 197

Percentage 100% 30.41% 100% 94.25%

Table 8. Impact of first character errors on NER and NEL.

Results show that the NER system is very sensitive to the first character. Only 30.41% of the
NEs are correctly recognised in spite of errors at the first character. For NEL, upper and lower
letters have a lower impact since matching with KBs is not case-dependent. The NEL system is
able to correctly link the NEs even if the first character is wrongly lower-cased. However, a few
errors remain critical, such as the common substitution of a small case ”l” instead of large case
”I”, as in ”Iowa” and ”lowa”. In this case, the mention ”lowa” does not exist in the probability
table and, consequently, the NEL approach cannot link this mention to the KB.

In summary, when aiming at NER, we recommend post-OCR systems to specifically focus
on the correction of first character errors, since only 30% of the contaminated NEs are properly
recognized.

4.6 Segmentation errors
Also known as spacing errors, they occur in two cases:

• over-segmentation: when a word is split into several words (generally due to different text
alignments and spacing).

• under-segmentation: when multiple words are wrongly joined.

It is worth noting that over- and under-segmentation can occur simultaneously. In the case of
NEs, segmentation errors occur when a white space character is omitted between words in multi-
word NEs or when white space characters are erroneously inserted between two characters in at
least one token of a named entity.

Table 9 shows the percentages of NEs impacted by segmentation errors on the CoNLL-03
corpus. The impact is dramatic as only 19.25% of the contaminated NEs are correctly recognized.

contaminated correctly wrongly

recognized recognized

Number of entities 530 102 428

Percentage 100% 19.25% 80.75%

Table 9. Impact of segmentation errors on NER in the CoNLL-03 dataset.
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All types of degradation in the AIDA dataset generated a few cases of segmentation errors that
were correctly disambiguated by the NEL system.

In conclusion, together with first character errors, segmentation errors have the highest impact
on NER performance, and a similar yet weaker impact on NEL. To deal with segmentation errors,
post-OCR based on auto-encoders or language models could be used in future works to attempt
to decrease the impact of content degradation.

4.7 End-to-end named entity processing
Finally, in order to better understand how OCR errors are propagated from NER to NEL systems,
we propose to evaluate the overall impact of OCR errors in an end-to-end named entity linking
scenario. This scenario consists in both recognising (NER) and disambiguating (NEL) the entities
into a knowledge base (KB). This section analyses the cumulative errors of this two-step pipeline,
and evaluates to what extent this impacts the performance of NEL systems. We conducted two
experiments: one (NEL-only) based on the LEV-1 degradations (Section 3.2) and the other based
on the propagation of OCR errors between the NER and the NEL systems (we applied the NER
techniques on the OCRed version with errors, and then applied NEL directly on the output). The
OCRed versions were obtained by applying the degradation procedures detailed in Section 3.2 of
the paper (blurring, bleeding effect, phantom and character degradation) as well as the mix of all
degradations.

In order to compare the performance of the NEL system in the disambiguation-only (Section
3.2.2) and the end-to-end scenarios, we used our NER approach (BiLSTM-CNN-CRF) to recog-
nise the entities on the AIDA dataset and then Ganea and Hofmann’s approach to disambiguate
them to a KB. Table 10 shows the performance evolution between the NEL system only (from
Section 3.2.2) and the end-to-end combination for each OCR degradation. Table 3 shows the
impact of the propagation of OCR errors from NER to NEL. For comparative reasons we report
the results of the NEL-only experiments. Despite the good NEL performance in the NEL-only
scenario for all versions on the AIDA dataset, we can observe that the combination of NER and
NEL caused a performance drop of 12%. Among all OCR versions, the LEV-MIX achieved the
worst results.

OCR version NEL-only End-to-end NEL Performance loss

Clean 0.914 0.886 0.028

LEV-0 0.904 0.867 0.037

Bleed-through 0.904 0.868 0.036

Blurring 0.904 0.856 0.048

char deg. 0.902 0.788 0.114

Phantom deg. 0.904 0.865 0.039

LEV-MIX 0.904 0.784 0.120

Table 10. F-scores values of the OCR impact on the NEL-only and the end-to-end NEL performances in the AIDA
dataset, and its associated loss.

As Table 10 shows, the NEL-only model unsurprisingly outperforms the end-to-end model.
Linking the output of the NER system (end-to-end) is more complicated than disambiguating GT
named entities annotated in the clean version. In the noisy versions, it is clear that NER errors
on OCRed data are impacting the NEL process, leading to a performance drop of the end-to-end
model compared to the NEL-only model. Nevertheless, despite this drop, we can consider that the
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end-to-end NEL pipeline achieved good results (almost 0.8m in F-scores), which shows that the
combination of NER and NEL systems can provide satisfying results for OCRed documents even
without post-OCR correction. Recently, we proposed an analysis of the NEL process in order to
overcome some OCR errors in historical documents Linhares Pontes et al. (2020a), which can
improve the performance of NEL systems in OCRed documents.

4.8 Discussion
Huynh et al. (2020) showed that post-OCR correction algorithms are able to improve NER results
over noisy texts when error rates at the character and word levels respectively exceed 2% and
10%. However, this approach does not consistently increase NER performance and the results
sometimes remain far from those obtained with clean text. To address this shortcoming, we believe
that defining heuristics to assist post-OCR algorithms can remedy the issue in a more effective
way.

To perform our analysis, the selection of the dataset was thus intended to target and exhaust
a dataset with variable OCR types and a realistic number of errors. The spectrum of the analysis
is meant to be broad in the types of degradation rather than in the amount of data processed. As
shown in Section 3, the CoNLL-03 and AIDA corpora, which are frequently used in NER and
NEL tasks, contain diverse types of OCR errors, and the five aspects analysed in this section are
sufficiently distributed in the noisy versions of each of them. As a matter of fact, OCR error rates
in the CoNLL-03 corpus vary from 2% to 7% at the character level and from 8% to 23% at
the word level whereas in the AIDA corpus the character error rate is between 1% and 5% and
the word error rate is between 4% and 18% (cf. Table 1). Our findings suggest that the type
and breadth of OCR errors is independent of the performance of the NER and NEL systems. It is
mainly their extent that varies.

5. Conclusion
The recognition and linking of named entities in OCRed documents remains a challenge when
compared with the clean version of these documents (Hamdi et al. 2020; Linhares Pontes et al.
2019). The errors generated by OCR engines and degraded documents have an impact on the
performances of NER/NEL systems. Despite the recent progress achieved with neural networks
and post-OCR corrections systems, several improvements can be done in order to minimise the
impact of these errors and reduce the gap in the performance of these tasks between OCRed and
clean documents.

In order to identify the types of OCR errors and propose possible solutions to achieve this goal,
we presented an in-depth quantitative analysis of the types of OCR errors and their impact on the
performance of the NER and NEL tasks both jointly and separately. We selected a dataset that, on
the one hand, has annotations for both tasks, and on the other hand, contains variable OCR error
types. The study covers 5 types of OCR errors and the analysis of the impact on NER and NEL
output led to many interesting findings. The length effects demonstrated that most contaminated
NEs, which the NER/NEL systems fail to recognise/link, are of length between 5 and 15 charac-
ters. The edit distance analysis showed that most of the contaminated NEs contain either single-
or double-character errors. Post-OCR techniques should therefore be able to fix about 81.49%
of the impacted named entities with an edit distance threshold of 2. Moreover, our observations
showed that character deletion errors are the most easily overcome by NER/NEL systems contrary
to character insertion and substitution errors. Post-OCR algorithms are recommended to primarily

mPerformances are comparable to efficient state-of-the-art end-to-end systems on the AIDA dataset (Kolitsas et al. 2018;
van Hulst et al. 2020; Ravi et al. 2021)
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favor the correction of character substitutions, then insertions. For NEL, post-OCR can be lim-
ited to correct substitutions, as the edit operation analysis showed that the NEL system is able
to deal with errors generated from deletion and insertion. When it comes to the position of erro-
neous characters, our observations showed that NER systems are particularly vulnerable to errors
made with the first character notably when the case is changed. For NEL, however, case sensitiv-
ity has little impact, while the substitution of the first character did. Finally, the analysis showed
that segmentation errors had a very strong impact on NER performance. Post-OCR correction
techniques need to be tailored towards these kind of errors to best benefit the NER task.

In future works, we will extend our analysis to include space errors occurring at the end of
the row of multi-column documents which lead to block segmentation errors. We additionally
plan to rely on probabilities of OCR outputs at the character and the word levels to process NEs.
Using the background knowledge of this study, we could predict named entities and improve the
precision of NER and NEL systems. Another important point that we aim to study is NE-focused
OCR post-correction. Given the importance of NEs in the activity of the users of digital libraries,
post-OCR solutions geared towards NEs would have high impact on their access to information.
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