Recent Advances on Anthracene-based Photoinitiators of Polymerization
Frédéric Dumur

To cite this version:
Frédéric Dumur. Recent Advances on Anthracene-based Photoinitiators of Polymerization. European Polymer Journal, 2022, 169, pp.111139. 10.1016/j.eurpolymj.2022.111139. hal-03615922

HAL Id: hal-03615922
https://hal.science/hal-03615922
Submitted on 22 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Recent Advances on Anthracene-based Photoinitiators of Polymerization

Frédéric Dumur*

* Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France

frederic.dumur@univ-amu.fr

Abstract

Photopolymerization is an active research field, and this intense research activity is supported by the numerous and emerging applications related to this polymerization technique. Especially, the historical UV approach is more and more discarded in favour of visible light photopolymerization making use of cheap, lightweight, compact, low intensity and energy-saving light sources that are light-emitting diodes (LEDs). With aim at developing photoinitiators fitting with these light sources, anthracene has been identified as a promising scaffold for the design of photoinitiators of polymerization. In this review, an overview of the recent advances concerning anthracene-based photoinitiators is provided. To evidence the interest of these structures, comparisons with benchmark photoinitiators will be provided.

Keywords

Photoinitiator; anthracene; photopolymerization; LED; low light intensity

1. Introduction

During the past decade, photopolymerization has been the focus of intense research efforts, resulting from the transition currently existing between the traditional UV photopolymerization in favour to the next generation of photoinitiating systems activable under low light intensity and in the visible range.[1–19] Nowadays, photopolymerization is used in a wide range of applications ranging from coatings, adhesives, 3D and 4D printing and microelectronics.[20–29] Emergence of visible light photopolymerization is supported by the recent safety concerns raised by the traditional UV photopolymerization.[30] Indeed, UV light can be at the origin of eye damages and skin cancers.[30–32] Ozone is also produced during UV photopolymerization what constitutes a serious drawback for the manipulator.[33] To end, UV photopolymerization also entails high running costs related to the use of expensive irradiation setups but also to the high energy consumption of these devices. Face to these considerations, a great deal of efforts has been devoted to develop cheaper and more environmentally friendly polymerization processes. In this field, visible light photopolymerization exhibit several advantages compared to UV photopolymerization. Notably, cheap light sources such as Light-Emitting Diodes (LEDs) can be used. Interest of LEDs also relies in the low heat release, enabling to carry out polymerizations at room temperature.[34] A higher light penetration of the incident light can also be obtained in the
visible range. Notably, if the light penetration is limited to 600 µm at the best at 320 nm, this latter can range between a few millimetres until 5 cm by irradiating between 400 and 800 nm (See Figure 1).[12,35]

Figure 1. Light penetration in a polystyrene latex with an average diameter of 112 nm. Reprinted with permission from Bonardi et al.[35]

Photopolymerization can also be carried out in solvent-free conditions, avoiding the release of volatile organic compounds (VOCs).[33] To end, a spatial and a temporal control can also be obtained what constitute serious advantages compared to the solution-phase polymerization. However, if visible light photopolymerization seems to be an appealing approach, several drawbacks still exist. Notably, a lower reactivity of visible light photoinitiators compared to that of UV photoinitiators is often mentioned.[10,11,36–47] This is directly related to the use of less energetic irradiation wavelengths. Visible light photoinitiators also often impose a residual colour to the final coatings, these molecules being strongly coloured molecules. At present, visible light photoinitiating systems capable to bleach are still scarce in the literature, even if a few examples based on chalcones, diketopyrrolopyrroles and other structures have recently been reported. In order to develop highly efficient photoinitiating systems, a wide range of structures have been examined over the years, ranging from copper complexes,[47–62] to dithienophospholes,[63] iron complexes,[38,40,64–69] polioxometalates,[70,71] iridium complexes,[72–79] naphthalimides,[46,80–95] dihydroantraquinones,[96] perovskites,[97,98] chalcones,[28,44,45,99–109] diketopyrrolopyrroles,[110–112] camphorquinones,[113,114] iodonium salts,[80,115–121] push-pull dyes,[65,122–135] helicenes,[136,137] Schiff bases,[138] chromones and flavones,[139–141] benzophenones,[142–149] metal organic framework (MOFs),[64,150,151] squaraines,[43,152–154] carbazoles,[36,155–162] triphenylamines,[163] acridones,[164,165] zinc complexes,[166] coumarins,[42,167–177] phenazines,[178] phenothiazines,[179] 2,3-diphenylquinoxaline derivatives,[180,181] porphyrins,[182,183] curcumin,[184–187] cyclohexanones[188–191] perylenes,[41,192–194] thioxanthones,[195–206] pyrenes,[37,207–213] acridine-1,8-diones,[214–216] and cyanines. [217–219,219–221] Thanks to the different structures examined, photoinitiating systems activable from the near UV/visible range until the near-infrared region have been proposed. With aim at investigating new structures, anthracene has been identified as a promising scaffold, this dye being successfully used as a
UV photoinitiator. Anthracene is a polyaromatic structure extensively used in Organic Electronics for the design of dyes for solar cells,[222] singlet emitters for organic light-emitting diodes[223] or fluorescent probes.[224,225] Interest for this structure was notably motivated by its low oxidation potential facilitating its incorporation in multi-layered devices.[226] However, the scope of application of anthracene also includes photopolymerization. To illustrate this, anthracene was notably used as the dye for the sensitization of cationic initiators such as onium salts,[227–236], as an oxygen scavenger or as a photosensitizer for free radical polymerizations.[237,238] By mean of light-induced controlled radical polymerization of methacrylates, light responsive metal–organic framework (MOF) were also prepared.[239] However, use of anthracene was not limited to sensitization and anthracene has also been investigated as a photo and thermal stabilizer for monomers.[240] Recently, anthracene was also examined as an annihilator in combination with various photosensitizers for triplet-triplet annihilation-based up-conversion polymerizations.[220] Using this approach, near-infrared light could be used as safe irradiation sources. By the unique ability of anthracene to photodimerize under UV light, anthracene when conveniently substituted was also used as a monomer for various applications. Notably, surface patterning using a photomask,[241] on-surface synthesis of two-dimensional polymers,[242] hierarchical patterning of self-wrinkling[243] can be cited as relevant examples. By using anthracene as the monomer, synthesis of microporous ladder polymers by photodimerization was beneficial for the design of porous structures usable for advanced separation and catalysis.[244] If anthracene was used in the past as a monomer and as a UV photosensitizer for cationic and free radical polymerizations, dyes absorbing in the visible range were also elaborated with this scaffold, enabling to develop approximately ten different families of visible light photoinitiators. In this review, an overview of the recent advances concerning the design of visible light photoinitiators of polymerization is provided. By mean of chemical engineering, highly efficient photoinitiators could be prepared. To evidence the interest of these structures, comparisons with benchmark photoinitiators and structures previously reported in the literature is established.

2. Anthracene-based photoinitiators of polymerization

2.1. Anthracene-based chalcones

Chalcones are natural dyes that can be found in numerous fruits, vegetables and flowers.[245–248] Chalcones are also well-known to dimerize upon photoexcitation, resulting in the formation of cyclobutane rings by a [2+2]cycloaddition and this strategy was notably applied to the crosslinking of polymer chains.[45,249] However, chalcones can also be used as dyes for the sensitization of iodonium salts. In 2014, a series of chalcones was investigated for the first time as photoinitiators of polymerization for the free radical polymerization of acrylates.[107] In this series of four chalcones, photoinitiating ability of the anthracene-based dye was compared to that of four other chalcones varying by the structure of the electron-donating groups (See Figure 2). Examination of their UV-visible absorption properties in acetonitrile revealed the absorption maxima of chalcones to redshift from CPD-1 ($\lambda_{\text{max}} = 315$
nm) to CPD-2 ($\lambda_{\text{max}} = 329$ nm), CPD-3 ($\lambda_{\text{max}} = 361$ nm), CPD-4 ($\lambda_{\text{max}} = 401$ nm) and CPD-5 ($\lambda_{\text{max}} = 435$ nm), attributable to an improvement of the electron-donating ability from a benzene ring (CPD-1) to dimethylaminobenzene in CPD-5 (See Figure 3). Notably, due to the presence of weak electron donors in CPD-1-CPD-3, absorption spectra of the different chalcones remained strongly UV-centred. Conversely, for CPD-4 and CPD-5 bearing stronger electron donating groups, a significant push-pull effect could occur within these structures, red-shifting their absorption spectra compared to CPD-1-CPD-3 and extending their absorption range. Thus, absorption spectra extending from 300 until 500 nm could be determined. In this series of chalcones, anthracene was identified as the best electron-donating group after dimethylaminobenzene, by the position of the intramolecular charge transfer (ICT) band. Considering the absorption spectra of CPD-4 and CPD-5, polymerization tests were carried out with a laser diode at 457 nm (100 mW/cm²) and a LED at 462 nm (10 mW/cm²).

Photosensitizers

<table>
<thead>
<tr>
<th>CPD-1</th>
<th>CPD-2</th>
<th>CPD-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPD-4</th>
<th>CPD-5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Co-initiators

<table>
<thead>
<tr>
<th>Iod</th>
<th>NVK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Acrylate monomer

<table>
<thead>
<tr>
<th>TMPTA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Sacrificial amine

<table>
<thead>
<tr>
<th>MDEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Reference compound

<table>
<thead>
<tr>
<th>Eosin Y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Chemical structures of CPD-1-CPD-5, the acrylate monomer and different additives.
Examination of the photoinitiating ability of CPD-4 during the free radical polymerization (FRP) of trimethylolpropane triacrylate (TMPTA) upon irradiation with a laser diode emitting at 457 nm revealed the three-component CPD-4/Iod/NVK (0.5%/3%/3% w/w) photoinitiating system to furnish a monomer conversion of 25% after 400 s, lower than that obtained with CPD-5 (55%). Due to the lack of absorption at 457 nm, no polymerization was detected for the other dyes (CPD-1-CPD-3). Comparison with the reference system Eosin-Y/methyldiethanolamine (MDEA) (0.1%/3% w/w) revealed the CPD-4-based three-component system to exhibit lower photoinitiating ability than the reference system which could led to a TMPTA conversion of 30% in the same irradiation conditions. To support the polymerization process of TMPTA, a mechanism reported numerous times for various three-component dye/Iod/NVK photoinitiating systems was proposed by the authors.[1,250–252] Thus, upon photoexcitation of the dye (r1), a photoinduced electron transfer towards the electrophilic iodonium salt can occur, generating Ph• upon decomposition of Ph2I• (see r2). If Ph• radicals are inherently initiating species capable to initiate the FRP of TMPTA, Ph• radicals can also react with N-vinylcarbazole (NVK), furnishing new radicals Ph-NVK• (r3) exhibiting a higher reactivity than Ph• radicals.

\[
\text{dye} \rightarrow \text{dye}^\ast (hv) \quad \text{(r1)}
\]

\[
\text{dye}^\ast + \text{Ph}_2\text{I} \rightarrow \text{dye}^{\ast\ast} + \text{Ph}_2\text{I}^\ast \quad \text{and} \quad \text{Ph}_2\text{I}^\ast \rightarrow \text{Ph}^\ast + \text{Ph-I} \quad \text{(r2)}
\]

\[
\text{Ph}^\ast + \text{NVK} \rightarrow \text{Ph-NVK}^\ast \quad \text{(r3)}
\]

In 2020, the combination of anthracene and ferrocene (CPD-10 and CPD-11) was examined for the FRP of polyethylene glycol (600) diacrylate (PEG-diacrylate) (See Figure 4).[99] For comparison, a series of chalcones bearing iodo or methoxy-substituents (CPD-6-CPD-9) was prepared.
Compared to the reference system (blank control) only composed of the two-component Iod2/EDB (1.5%/1.5%, w/w) system that furnished a final monomer conversion of 49% in thin films in laminates after 200 s of irradiation, significant differences in terms of final monomer conversions could be found between CPD-10 and CPD-11, differing by the position of the anthracene moiety. Indeed, when anthracene was used as an electron donor, a final monomer conversion of only 31% could be obtained with the three-component CPD-10/Iod2/EDB (1.5%/1.5%/1.5% w/w/w) system whereas the conversion could be increased up to 80% with the three-component CPD-11/Iod2/EDB (1.5%/1.5%/1.5% w/w/w) system. In this case, anthracene is included in the acetophenone moiety. In these different systems, higher final monomer conversions were obtained when ferrocene was used as an electron donor, as exemplified with CPD-7, CPD-9 or CPD-11. Only CPD-8 furnished a lower monomer conversion (40%), resulting from the adverse electron donating effect of the methoxy group on acetophenone.
Figure 5. Photopolymerization profiles of PEG-diacylate using the three-component dye/Iod2/EDB (1.5%/1.5%/1.5% w/w/w) system upon irradiation at 405 nm with a LED. Reprinted with permission of Chen et al. [99]

Table 1. Final monomer conversion obtained at 405 nm for PEG-diacylate using three-component photoinitiating systems chalcone/Iod2/EDB (1.5%/1.5%/1.5% w/w/w) in thin films.

<table>
<thead>
<tr>
<th>Chalcone initiating systems in PEG-diacylate</th>
<th>CPD-6</th>
<th>CPD-7</th>
<th>CPD-8</th>
<th>CPD-9</th>
<th>CPD-10</th>
<th>CPD-11</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCs</td>
<td>79.5%</td>
<td>73.5%</td>
<td>40.3%</td>
<td>74.7%</td>
<td>30.5%</td>
<td>79.5%</td>
<td>49%</td>
</tr>
</tbody>
</table>

Photolysis experiments carried out to investigate the high efficiency of the three-component systems revealed the chalcone/EDB interaction to be faster than that observed for the chalcone/Iod2 combination. Therefore, occurrence of a polymerization process resulting from the concomitant existence of an oxidative and a reductive cycle was proposed (See Figure 6). Upon photoexcitation of the chalcone, a photoinduced electron transfer towards the iodonium salt can occur, inducing its decomposition and the formation of Ph• radicals. Parallel to this, chalcone can also react in the excited state with EDB, in a reductive process, generating α-aminoalkyl radicals EDB•-[14]. Efficiency of the photoinitiating system also relies in the ability of the photosensitizer to be regenerated. Indeed, dye• can be reduced by the sacrificial amine EDB. Parallel to this, dye• can also react with EDB, regenerating the dye to its initial redox state (See Figure 6).
In 2021, a series of anthracene-based chalcones in which anthracene was used as the electron donor was examined as photoinitiators for 3D printing applications (See Figure 7).[104] In this series of dyes and considering that the same electron donor was used, similar absorption maxima could be determined between 387 and 389 nm. It therefore clearly indicates the weak contribution of the acetophenone group on the electronic delocalization. Indeed, even when the methoxy-substituted aromatic ring of acetophenone was replaced by a pyridine, a thiophene or a pyrrole moiety, no modification of the absorption maxima was detected. Due to the polyaromaticity of anthracene, a broad absorption band extending from 350 until 500 nm could be found for all chalcones, making CPD-12-CPD-18 suitable candidates for photopolymerization experiments carried out at 405 nm. For comparison, a narrower absorption spectrum was found for 9,10-dibutoxyanthracene (DBA), no absorption existing beyond 420 nm. (See Table 2 and Figure 8).
Figure 7. Chemical structures of chalcones CPD-12-CPD-18.

Table 2. Light absorption properties of anthracene-based chalcones CPD-12-CPD-18.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max} (nm)</th>
<th>ε_{max} (M$^{-1}$cm$^{-1}$)</th>
<th>$\varepsilon_{405\text{mm}}$ (M$^{-1}$cm$^{-1}$)</th>
<th>$\varepsilon_{470\text{mm}}$ (M$^{-1}$cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD-12</td>
<td>389</td>
<td>8300</td>
<td>7300</td>
<td>400</td>
</tr>
<tr>
<td>CPD-13</td>
<td>388</td>
<td>7600</td>
<td>6900</td>
<td>550</td>
</tr>
<tr>
<td>CPD-14</td>
<td>388</td>
<td>8100</td>
<td>7400</td>
<td>450</td>
</tr>
<tr>
<td>CPD-15</td>
<td>387</td>
<td>7300</td>
<td>6800</td>
<td>1350</td>
</tr>
<tr>
<td>CPD-16</td>
<td>389</td>
<td>9300</td>
<td>8000</td>
<td>600</td>
</tr>
<tr>
<td>CPD-17</td>
<td>387</td>
<td>8700</td>
<td>7200</td>
<td>650</td>
</tr>
<tr>
<td>CPD-18</td>
<td>389</td>
<td>6800</td>
<td>7000</td>
<td>900</td>
</tr>
<tr>
<td>DBA</td>
<td>384</td>
<td>11000</td>
<td>9400</td>
<td>0</td>
</tr>
</tbody>
</table>
To investigate the FRP of TMPTA in laminate, in thin films and upon irradiation at 405 nm with a LED, different three-component chalcone/Iod2/EDB (0.5%/1%/1%, w/w/w) photoinitiating systems were used. Noticeably, the seven chalcones gave final monomer conversions ranging from 45% for CPD-14 and CPD-18 up to 61% for CPD-17. Noticeably, best monomer conversions could be obtained for all chalcones comprising on the acetophenone moiety a group different from an aromatic ring. The highest monomer conversions were obtained with CPD-15-CPD-17 (~61%), comprising a pyridine, a thiophene or a pyrrole moiety. (See Table 3). For comparison, only a conversion of 5% was obtained with the two-component Iod2/EDB (1%/1%, w/w) system, evidencing the crucial role of chalcones in radical generation.

The higher reactivity of chalcones bearing heterocycles was confirmed during the CP of (3,4-epoxycyclohexane) methyl 3,4-epoxycyclohexylcarboxylate (EPOX) investigated under air at two different wavelengths, namely 405 and 470 nm. Here again, the two-component photoinitiating systems based on compounds CPD-15-CPD-17 could give higher monomer conversions than the reference DBA/Iod2 (0.5%/1%, w/w) system (43, 52 and 47% vs. 38% for the DBA-based system) at 405 nm. The same holds true at 470 nm, with EPOX conversions of 33, 36 and 27% after 600 s for CPD-15-CPD-17. Conversely, only a monomer conversion of 6% was obtained with DBA at 470 nm. This drastic difference can be assigned to the weak absorption of DBA at 470 nm, adversely affecting its photoinitiating ability. These results clearly demonstrate the crucial role of the substitution pattern of chalcones on their photoinitiating abilities. Indeed, from the optical viewpoint, no difference in terms of absorption maxima can be found between the different dyes. Other parameters than the absorption properties such as the rate constant of interaction with the different additives, the
reactivity of the generated radicals in turn govern the efficiency of the photoinitiating systems. Finally, investigation of the reactivity of CPD-15-CPD-17 by mean of photolysis experiments revealed similar photolysis kinetics for the chalcone/Iod2 and the chalcone/EDB combinations, certainly constituting the strength of the corresponding three-component photoinitiating systems. Consequently, both the oxidative and reductive processes can contribute to the generation of initiating species. Finally, 3D printing experiments could be carried out with the most reactive photoinitiating systems based on CPD-16. Upon irradiation at 405 nm, 3D patterns of remarkable spatial resolutions could be obtained (See Figure 9). Especially, EPOX was selected as the appropriate monomer for 3D printing experiments as a lower shrinkage is observed with this monomer compared to monomers such as TMPTA. Indeed, shrinkage is a major issue in the 3D printing technology.

Table 3. TMPTA and EPOX conversions obtained upon irradiation for 600 s with LEDs emitting at 405 and 470 nm

<table>
<thead>
<tr>
<th>PISs</th>
<th>TMPTA/%</th>
<th>EPOX/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dyes/Iod2/EDB</td>
<td>dyes/Iod2</td>
</tr>
<tr>
<td>CPD-12</td>
<td>57</td>
<td>39</td>
</tr>
<tr>
<td>CPD-13</td>
<td>51</td>
<td>37</td>
</tr>
<tr>
<td>CPD-14</td>
<td>45</td>
<td>21</td>
</tr>
<tr>
<td>CPD-15</td>
<td>60</td>
<td>43</td>
</tr>
<tr>
<td>CPD-16</td>
<td>60</td>
<td>52</td>
</tr>
<tr>
<td>CPD-17</td>
<td>61</td>
<td>47</td>
</tr>
<tr>
<td>CPD-18</td>
<td>45</td>
<td>33</td>
</tr>
<tr>
<td>Blank</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>DBA</td>
<td>-</td>
<td>38</td>
</tr>
</tbody>
</table>

*under LED@405 nm irradiation; b under LED@470 nm irradiation.

Figure 9. 3D patterns obtained upon polymerization of EPOX at 405 nm using the two-component CPD-16/Iod2 (0.5%/1%, w/w) system. Reprinted with permission from Liu et al.[80]
In 2021, CPD-14 was revisited by another group, except that the methoxy group of CPD-14 was replaced by an ethoxy group in CPD-19, unaffected the optical properties (See Figure 10).[253] In this interesting work, influence of the cis/trans isomerization of chalcones on the photoinitiating ability was studied. A comparison between an anthracene and a triphenylamine-based chalcone (CPD-19 and CPD-20) was also established.

In this interesting work, influence of the cis/trans isomerization of chalcones on the photoinitiating ability was studied. A comparison between an anthracene and a triphenylamine-based chalcone (CPD-19 and CPD-20) was also established.

![Figure 10. Chemical structures of CPD-19 and CPD-20, and DVE-3.](image)

Indeed, photolysis experiments done in acetonitrile as the solvent revealed CPD-19 to rapidly isomerize contrarily to CPD-20, for which no isomerization was detected in solution. While examining the CP of triethyleneglycol divinyl ether (DVE-3) upon irradiation at 405 nm with a LED (45 mW/cm²), a final monomer conversion of 88% could be obtained with CPD-20 using the two-component CPD-20/Iod2 (1.0%/2.0%, w/w) photoinitiating system contrarily to only 62% with the two-component CPD-19/Iod2 (1.0%/2.0%, w/w) system. Therefore, the structure/performance relationship was clearly evidenced.

Monochacones were not the only structures to be studied as photoinitiators of polymerization and a series of six bis-chalcones based on anthracene CPD-21-CPD-26 were also examined as potential photoinitiators (See Figure 11).[191] Interestingly, in these structures, the substitution pattern of the central cyclic ketones had no incidence on the absorption spectra of the different dyes so that all dyes showed an absorption maximum at 250 nm. An additional broad absorption band extending from 300 until 450 nm could be observed for all dyes so that polymerization tests could be carried out at 405 nm (See Figure 12 and Table 4).
Figure 11. Chemical structures of CPD-21-CPD-26 and TA.

Figure 12. UV-visible absorption spectra of CPD-21-CPD-26 in acetonitrile. Reproduced with permission of Xu et al. [191]
Table 4. Light absorption properties of CPD-21-CPD-26: absorption maxima wavelength (λ_{max}) as well as the molar extinction coefficients at λ_{max} (ε_{max}) and at 405 nm ($\varepsilon_{405\text{ nm}}$), respectively.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max} (nm)</th>
<th>ε_{max} (M$^{-1}$ cm$^{-1}$)</th>
<th>$\varepsilon_{405\text{ nm}}$ (M$^{-1}$ cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD-21</td>
<td>250</td>
<td>81800</td>
<td>5400</td>
</tr>
<tr>
<td>CPD-22</td>
<td>250</td>
<td>113300</td>
<td>7400</td>
</tr>
<tr>
<td>CPD-23</td>
<td>250</td>
<td>149600</td>
<td>9900</td>
</tr>
<tr>
<td>CPD-24</td>
<td>250</td>
<td>178400</td>
<td>11500</td>
</tr>
<tr>
<td>CPD-25</td>
<td>250</td>
<td>175900</td>
<td>12000</td>
</tr>
<tr>
<td>CPD-26</td>
<td>250</td>
<td>129500</td>
<td>7800</td>
</tr>
</tbody>
</table>

Noticeably, investigation of the FRP of (oxybis(methylene))bis(2-ethylpropane-2,1,3-triyl) tetraacrylate (TA) upon irradiation at 405 nm in thick and in thin films using the three-component chalcone/Iod2/EDB (0.1%/2%/2%, w/w/w) systems revealed that no direct correlation was existing between molar extinction coefficients and final monomer conversions. Indeed, as shown in the Table 5, if CPD-24 could maintain a higher TA conversion both in thick and thin films (81 and 74% respectively), conversely CPD-25 and CPD-26 were efficient dyes in thin films (73 and 76% yield respectively) whereas low conversions were obtained in thick films (41 and 53% respectively). On the opposite, CPD-21 could reach a TA conversion as high as 90% in thick film whereas the conversion was limited to 66% in thin films.

Table 5 Final monomer conversions obtained during the FRP of TA upon irradiation at 405 nm with a LED for 400 s using the three-component chalcone/Iod2/EDB (0.1%/2%/2%, w/w/w) systems.

<table>
<thead>
<tr>
<th>FCs (in thick films)</th>
<th>CPD-21</th>
<th>CPD-22</th>
<th>CPD-23</th>
<th>CPD-24</th>
<th>CPD-25</th>
<th>CPD-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>~90%</td>
<td>~41%</td>
<td>~68%</td>
<td>~81%</td>
<td>~41%</td>
<td>~53%</td>
<td></td>
</tr>
<tr>
<td>FCs (in thin films)</td>
<td>CPD-21</td>
<td>CPD-22</td>
<td>CPD-23</td>
<td>CPD-24</td>
<td>CPD-25</td>
<td>CPD-26</td>
</tr>
<tr>
<td>~66%</td>
<td>~68%</td>
<td>~60%</td>
<td>~74%</td>
<td>~73%</td>
<td>~76%</td>
<td></td>
</tr>
</tbody>
</table>

2.2. Anthracene-based acridinedione

Acridinediones (ADs) are a class of laser dyes operating in the blue-green region.[254] Due to the simultaneous presence of an heterocyclic nitrogen atom and two carbonyl groups that respectively act as electron donor and as electron acceptors, an efficient push-pull effect exists within these structures.[255–257] In 2013, an anthracene-substituted acridine-1,8-dione CPD-27 was synthesized and its photoinitiating ability compared to that of a pyrene analogue CPD-28 (See Figure 13).[215]
Figure 13. Chemical structures of CPD-27 and CPD-28.

From the absorption viewpoint, shapes of the absorption spectra of CPD-27 and CPD-28 were similar except that the absorption spectrum of CPD-28 was redshifted by ca. 50 nm compared to CPD-27. Molar extinction coefficients around 15000 M⁻¹.cm⁻¹ were found for the two dyes at the absorption maximum (See Figure 14).

Figure 14. UV-visible absorption spectra of CPD-27 and CPD-28 in acetonitrile. Reprinted with permission of Xiao et al. [215]

Photopolymerization of EPOX in the presence of the three-component AD/Iod/NVK (3%/2%/3%, w/w/w) system under air upon irradiation with a Xe-Hg lamp (> 330 nm, 56 mW/cm²) furnished monomer conversions of 34 and 48% after 500 s of irradiation with CPD-27 and CPD-28 respectively. While using a LED emitting at 405 nm, only CPD-28 could initiate a polymerization, peaking at 28% despite the weak absorption of CPD-28 at this wavelength. Conversely, despite the high molar extinction coefficient at 405 nm, no polymerization was detected with the three-component CPD-27/Iod/NVK (3%/2%/3%, w/w/w) system. While using a halogen lamp of low intensity (370-800 nm range, 12 mW/cm²), similar monomer conversions were obtained with the two-component CPD-28/Iod (3%/2%, w/w) system and the three-component CPD-28/Iod/NVK (3%/2%/3%, w/w/w) system, the monomer conversions being respectively of 59 and 60%. Consistent with the results obtained with the Xe-Hg lamp, no polymerization was detected with CPD-27, the halogen lamp displaying a lower light intensity than the Xe-Hg lamp. Once again, the crucial importance of the
substitution pattern was demonstrated with this comparison between the photoinitiating ability of anthracene and pyrene-based dyes.

2.3. Anthracene-based 1,8-naphthalimides

1,8-Naphthalimides are fluorescent compounds that found applications in research fields such as light emitting devices for the design of electroluminescent materials,[258] as electron transport materials for inverted solar cells [259] electron acceptors for polymer solar cells,[260] or fluorescent probes for optical sensors.[261–264] Due to the easiness of synthesis, 1,8-naphthalimides were also used as photoinitiators of polymerization.[46,80–95] In 2014, the first anthracene-substituted 1,8-naphthalimide CPD-29 was proposed by Lalevée and coworkers (See Figure 15). Unfortunately, due to the lack of substitution on the naphthalimide core, absorption of CPD-29 remained located in the UV range so that this dye was unsuitable for visible light experiments.[89] Face to these considerations, in 2016, another strategy was used, consisting in incorporating the anthracene moiety in the naphthalimide core.[93] As specificity, CPD-30 is a well-known anticancer agent named azonafide which is still under use in medicine.[265,266] By extending the aromaticity of the naphthalimide core, a significant redshift of the absorption spectrum could be found compared to CPD-29. As shown in the Figure 16, the absorption spectrum of CPD-30 was broad, extending from 350 to 500 nm, the maximum being located at 431 nm (ε = 7970 M⁻¹.cm⁻¹). Based on its absorption, CPD-30 was an appropriate dye for irradiation at 405 and 455 nm with LEDs. Noticeably, examination of its photoinitiating ability at 405 and 455 nm during the CP of EPOX with two-component and three-component systems revealed the two-component CPD-30/Iod (0.5%/2%, w/w) system to be unable to initiate polymerizations at the two wavelengths. Conversely, upon introduction of NVK, conversions of 63 and 57% could be obtained at 405 and 455 nm respectively while using the three-component CPD-30/Iod/NVK (0.5%/2%/3%, w/w/w) system. By analogy with previous photoinitiating systems reported in the literature, the formation of Ph-NVK⁺ cation was proposed as the initiating species in the three-component photoinitiating system. Indeed, as demonstrated with the two-component CPD-30/Iod (0.5%/2%, w/w) system, the radical cation CPD-30⁺ is not sufficiently reactive to initiate the CP of EPOX. However, CPD-30⁺ can react with NVK, producing the highly reactive Ph-NVK⁺ cation, capable to initiate the CP of EPOX. Noticeably, bleaching properties could be evidenced with the two-component CPD-30/Iod system, enabling to manufacture colourless coatings.
Figure 15. Chemical structures of CDP-29 and CDP-30, different monomers and additive.

Figure 16. UV-visible absorption spectra of CDP-30 in acetonitrile. Reprinted with permission of Zivic et al. [93]

Table 6. EPOX conversions obtained under air upon exposure to different light sources for 800 s in the presence of CDP-30/Iod (0.5%/2%, w/w) or CDP-30/Iod/NVK (0.5%/2%/3%, w/w/w).

<table>
<thead>
<tr>
<th>PIS</th>
<th>LED (405 nm)</th>
<th>LED (455 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD-30/Iod</td>
<td>np"</td>
<td>np"</td>
</tr>
<tr>
<td>CPD-30/Iod/NVK</td>
<td>63%</td>
<td>57%</td>
</tr>
</tbody>
</table>

np: no photopolymerization.
During the FRP of TMPTA, the low reactivity of the two-component CPD-30/Iod (0.5%/2%, w/w) photoinitiating system was confirmed. Indeed, if a moderate conversion was detected at 405 nm, no polymerization was observed at 455 nm. While using the three-component CPD-30/Iod/NVK system, a two-fold enhancement of the TMPTA conversion was detected at 405 nm (55% conversion) whereas a conversion of 49% could be obtained at 455 nm. Comparison with the benchmark bis-acylphosphine oxide (BAPO) revealed CPD-30 to furnish similar conversions.

Table 7. TMPTA conversions obtained in laminate upon exposure to different light sources for 400 s in the presence of CPD-30 based PISs (DNNDs: 0.5 wt% Iod 2wt%; NVK 3 wt% in the formulations). BAPO (0.5 wt%) PISs as references.

<table>
<thead>
<tr>
<th>PIS</th>
<th>LED 405 nm</th>
<th>LED 455 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD-30/Iod</td>
<td>29%</td>
<td></td>
</tr>
<tr>
<td>CPD-30/Iod/NVK</td>
<td>55%</td>
<td>49%</td>
</tr>
<tr>
<td>BAPO</td>
<td>56%</td>
<td>54%</td>
</tr>
</tbody>
</table>

Considering that the three-component CPD-30/Iod/NVK system can initiate both the FRP of TMPTA and the CP of EPOX upon irradiation at 405 nm, the concomitant cationic/radical polymerization of an EPOX/TMPTA blend (50%/50% w/w) was examined under air and in laminate, generating interpenetrated polymer networks (IPNs) (See Figure 17).

Figure 17. Photopolymerization profile of an EPOX/TMPTA blend (50%/50%, w/w) using the three-component CPD-30/Iod/NVK (0.5%/2%/3%, w/w/w) system under air (a) or in laminate (b) upon irradiation with a LED emitting at 405 nm. Reprinted with permission of Zivic et al. [93]
Interestingly, difference of EPOX and TMPTA conversions were found in laminate and under air. Thus, if EPOX and TMPTA conversion of 70% and 51% were respectively obtained under air, these values varied in laminate with a decrease of the EPOX conversion (40%) and a drastic improvement of the TMPTA conversion (75%) in laminate. Similar variations of the EPOX/TMPTA conversions have previously been reported in the literature for other photoinitiating systems.[89,94] Notably, part of the generated radicals are consumed by oxygen, adversely affecting the TMPTA conversion. Conversely, in laminate, the higher reactivity of radicals vs. cations support the higher TMPTA conversion compared to EPOX.

Thiol-ene photopolymerization of a trithiol/DVE-3 blend (57%/43%, w/w) in laminate using the two-component CPD-30/Iod (0.5%/2%, w/w) system upon irradiation with a LED emitting at 405 nm was also examined. Noticeably, an almost quantitative conversion of DVE-3 was observed whereas the conversion of trithiol remained limited to 41%. The high DVE-3 conversion can be assigned to the cationic polymerization of DVE-3 competing with the thiol-ene polymerization (See Figure 18). To support the thiol-ene polymerization, the mechanism detailed in equations r9-r11 was proposed.

![Figure 18. Photopolymerization profile of a trithiol/DVE-3 blend (40%/60%, n/n; 57%/43%, w/w) in laminate in the presence of CPD-30/Iod (0.5%/2%, w/w) upon the LED at 405 nm exposure; curve 1: DVE-3 (vinyl double bond) conversion; curve 2: trithiol (S−H) conversion. Reprinted with permission of Zivic et al. [93]](image)

\[
\begin{align*}
\text{Ph}^* + \text{RS-H} & \rightarrow \text{Ph-H} + \text{RS}^* \quad (r9) \\
\text{RS}^* + \text{R'-CH=CH}_2 & \rightarrow \text{R'-CH}^*-\text{CH}_2\text{SR} \quad (r10) \\
\text{R'}-\text{CH}^*-\text{CH}_2\text{SR} + \text{RS-H} & \rightarrow \text{R'-CH}_2-\text{CH}_2\text{SR} + \text{RS}^* \quad (r11)
\end{align*}
\]

Finally, polymerization in water was examined with CPD-30, using an original approach. Indeed, in order to render the photoinitiator water-soluble, appropriate functional groups such as sulfonate, carboxylate or ammonium can be introduced, implying a chemical modification of the dye. In this work, a chemistry-free approach was examined, consisting in encapsulating the dye in β-cyclodextrin. Precisely, after searching the macrocycle of appropriate size for azonafide, sulfobutylether-β-cyclodextrin was selected as the best candidate.[267] When tested as photoinitiator for the two-component [CPD-30/SBE-β-
CDJ/MDEA (0.3%/4%, w/w) system for hydroxyethylmethacrylate (HEMA) in water, hydrogels could be obtained after one hour or irradiation at 405 nm with a laser diode (110 mW/cm²). A monomer conversion of 68% and a water content of 70% were respectively determined. Interestingly, a clear photobleaching of the polymer was observed.

2.4. 9,10-Bis(ethynyl)-substituted anthracene

Polycyclic aromatic hydrocarbons (PAHs) are a large group of organic compounds only composed of carbons and hydrogens and comprising dyes such as anthracene, pentacene or rubrene. Due to their planarities and their polyaromaticities, these structures are often insoluble. To address this issue, introduction of triisopropylsilyl)ethynyl group proved to be an effective strategy and among structures 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) is a well-known semiconductor extensively used for the design of organic field effect transistors by solution process.[268,269] By introducing two triisopropylsilyl)ethynyl groups, TIPS-pentacene is soluble in most of the common organic solvents. This strategy was also applied to improve the solubility of anthracene. In 2012, CPD-31 was used in combination with Iod and tris(trimethylsilyl)silane ((TMS)₃SiH).[270] By the presence of two triisopropylsilyl)ethynyl groups, a significant redshift of the absorption spectrum of CPD-31 was found compared to anthracene (See Figure 19). By theoretical calculations, contribution of the ethynyl groups both in the HOMO and LUMO levels (where HOMO and LUMO respectively stand for highest occupied molecular orbital and lowest unoccupied molecular orbital) was demonstrated, resulting in an extension of the π-conjugation and reducing the HOMO-LUMO gap. An absorption maximum was found at 440 nm (ε = 40 000 M⁻¹.cm⁻¹) for CPD-31, perfectly fitting with the emission of the blue LED emitting at 462 nm or the emission of Xe lamp (380-740 nm range) (See Figure 19).

![Figure 19. UV-visible absorption spectra of anthracene (1) and CDP-31 (2) in tert-butylbenzene. Reprinted with permission of Tefhe et al. [270]](image)

From the fluorescence experiments, a strong interaction between Iod and CPD-31 could be evidenced, generating Ph⁺ radicals detectable by electron-spin resonance spin-trapping (ESR-ST) experiments. By hydrogen abstraction, Ph⁺ radicals can be converted as silyl radicals (TMS)₃Si⁺, capable to initiate the FRP of acrylates. Interestingly, photolysis of the three-
component CPD-31/(TMS):Si-H/Iod (0.5%/3%/2% w/w/w) system was slower than that of the two-component CPD-31/Iod (0.5%/2% w/w) system, evidencing that CPD-31 was partially regenerated during photolysis experiments. Regeneration of CPD-31 was assigned to the reaction of (TMS):Si• with An-Si•+, generating silylium cations (TMS):Si• capable to initiate the CP of epoxides. Overall, a mechanism summarized in equations r12-r16 was proposed.

\[
\begin{align*}
\text{CPD-31} & \rightarrow ^1\text{CPD-31} \quad (hv) & \quad (r12)
\\text{^1CPD-31} + \text{Ph}_2\text{I}^- & \rightarrow \text{CPD-31}^{••} + \text{Ph}• + \text{Ph-I} & \quad (r13)
\text{Ph•} + (\text{TMS})\text{Si}-\text{H} & \rightarrow \text{Ph-H} + (\text{TMS}):\text{Si}• & \quad (r14)
(\text{TMS}):\text{Si}• + \text{CPD-31}^{••} & \rightarrow (\text{TMS}):\text{Si}• + \text{CPD-31} & \quad (r15)
(\text{TMS}):\text{Si}• + \text{M} & \rightarrow (\text{TMS}):\text{Si-M}• & \quad (r16)
\end{align*}
\]

By cyclic voltammetry, the high reactivity of CPD-31•• towards the residual water existing in solvents or monomers was demonstrated, explaining why CPD-31 was only partially regenerated in equation (r15).[271] Examination of the photoinitiating ability of the two-component CPD-31/Iod (0.5%/2% w/w) system and the three-component CPD-31/(TMS):Si-H/Iod (0.5%/3%/2% w/w/w) system under air upon irradiation with a Xe-lamp confirmed the partial regeneration of the photosensitizer with the three-component system. Indeed, as shown in the Figure 20, a conversion of 83% was obtained with the three-component system vs. 45% for the two-component system after 400 s of irradiation.

![Figure 20](image.jpg)

Figure 20. Photopolymerization profiles of EPOX under air upon irradiation with a Xe-lamp using (1) CPD-31/Iod (0.5/2% w/w); (2) CPD-31/(TMS):Si-H/Iod (0.5/3/2% w/w). Reprinted with permission of Tefhe et al. [270]

It therefore demonstrated the higher photoinitiating ability of silylium (TMS):Si• cations compared to the CPD-31•• cations. The high reactivity of the three-component photoinitiating system was also assigned to the ability of silanes to convert the none initiating peroxyl radicals (formed by addition of oxygen) as new silyl radicals.[272–279] By using a LED
emitting at 462 nm, a slightly lower conversion was obtained with the three-component system, even after elongation of the polymerization time. Thus, a conversion of 70% was obtained after 700 s of irradiation, consistent with the low molar extinction coefficient of CPD-31 at 462 nm. Considering the photocatalytic behaviour of CPD-31 in three-component systems, comparisons were established with a reference metal complex i.e. Ir(ppy). Interestingly, CPD-31 could compete with the two reference photoinitiating systems, evidencing that purely organic compounds can rival with transition metal complexes (See Figure 21).

Figure 21. Comparison of the photoinitiating ability of (1) Ir(ppy)/Si-O-TMS/H/Iod (0.2 %/3 %/ 2% w/w); (2) CPD-31/TMS-Si-O-H/Iod (0.5 %/3 %/ 2% w/w) during the CP of EPOX under air upon irradiation at 462 nm. Reprinted with permission of Tefhe et al. [270]

Ph• and (TMS)Si• are good initiating radicals formed in equations r13 and r14 so that their photoinitiating abilities was examined during the FRP of TMPTA. As shown in the Figure 22, a final monomer conversion of 45% could be obtained with the three-component photoinitiating system upon irradiation with a Xe lamp, greatly higher than that obtained with its parent structure i.e. anthracene (almost no conversion detected).
Figure 22. Conversion determined during the FRP of TMPTA in laminate using (1) CPD-31 (0.5%) and (2) CPD-31/(TMS)Si–H/Iod (0.5%/3%/2% w/w/w) upon irradiation with a Xe lamp. Reprinted with permission of Tefhe et al. [270]

With aim at designing soluble dyes, an interesting approach was developed in 2004 with the synthesis of 9,10-bis(phenylethynyl)-1,8-dimethoxyanthracene (CPD-32) in which the two methoxy groups could improve the solubility of dyes while red-shifting the absorption of CPD-32 towards the visible range. Interestingly, CPD-32 was used as a photosensitizer for the sensitization of photoacid generators such as N-trifluoromethyldulfonyloxy-1,8-naphthalimide (NAI-105) or Iod2 (See Figure 23). All experiments were carried out at 488 nm with an Ar ion laser.

Figure 23. Chemical structures of CPD-32 and the photoacid generator.

Interestingly, sensitivity of the CPD-32/NAI-105 combination was greatly higher than that of the CPD-32/Iod2 combination. Besides, examination of photoacid generation in solution with an acid-base indicator revealed the acid concentration to be lower for the CPD-32/NAI-105 system compared to that of the CPD-32/Iod2 combination. To support these unexpected results, an unfavorable back electron transfer from the photoacid generator to the photosensitizer was suggested as the main explanation.[281–283]
2.5. Anthracene-based phenothiazine

Phenothiazine as well as carbazole or triphenylamine are aryl amines commonly used for the design of photoinitiators due to their good electron donating abilities. In 2019, a series of anthracenes substituted with different electron-donating groups CPD-33-CPD-36 was designed and synthesized as initiators for the FRP of hexanediol diacrylate (HDDA) (See Figure 24).[284]

![Chemical structures of anthracene-based phenothiazine CPD-35, different reference compounds, Iod3 and HDDA.](image)

Figure 24. Chemical structures of anthracene-based phenothiazine CPD-35, different reference compounds, Iod3 and HDDA.

In this series of dyes, the most redshifted absorption was found for the dye comprising phenothiazine as the electron-donating group (494 nm) i.e. CPD-35. This absorption maximum is close to that observed for CPD-34 (See Figure 25 and Table 3). Considering their absorption
spectra extending from 380 to 550 nm, polymerization tests were carried out at 460 and 520 nm. Unfortunately, due to the lack of solubility of CPD-36 in HDDA, this dye was not investigated for further experiments.

Figure 25. UV-visible absorption spectra of CPD-33-CPD-36 in THF. Reprinted with permission of Xue et al. [284]

Under blue light, all two-component dye/Iod3 (0.2%/2% w/w) photoinitiating systems showed higher polymerization rates than the reference camphorquinone (CQ)/triethanolamine (TEOA) (0.2%/2% w/w) system. Besides, after 100 s of irradiation at 460 nm, almost similar HDDA conversions could be obtained. A different situation was found at 520 nm, based on differences of molar extinction coefficients. Thus, monomer conversions followed the order of molar extinction coefficients, the highest monomer conversion being obtained for CPD-35, with a monomer conversion of 70% after 250 s similar to that obtained for the reference CQ/TEOA system (See Figure 26). Conversely, due to the lower absorption of CPD-33 at 520 nm, the HDDA conversion remained limited to 50%.

Table 8. Light absorption properties of AND1-AND4.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max} (nm)</th>
<th>ε_{max} (M$^{-1}$cm$^{-1}$)</th>
<th>$\varepsilon_{460\text{max}}$ (M$^{-1}$cm$^{-1}$)</th>
<th>$\varepsilon_{520\text{max}}$ (M$^{-1}$cm$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPD-33</td>
<td>437</td>
<td>38 300</td>
<td>40 400</td>
<td>1 100</td>
</tr>
<tr>
<td></td>
<td>461</td>
<td>40 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-34</td>
<td>468</td>
<td>50 300</td>
<td>47 600</td>
<td>3 900</td>
</tr>
<tr>
<td></td>
<td>490</td>
<td>48 600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-35</td>
<td>494</td>
<td>40 600</td>
<td>33 700</td>
<td>16 800</td>
</tr>
<tr>
<td>CPD-36</td>
<td>478</td>
<td>53 700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In 2020, the group of Tang and coworkers revisited phenothiazine-based anthracenes by modifying the spacer between the two partners (CPD-37 and CPD-38).[285] In this case, a double bond was introduced instead of a triple bond (See Figure 27).

![Figure 26. Polymerization profiles of HDDA using dye/Iod3 (0.2%/2%, w/w) and CQ/TEA (0.2%/2% w/w) upon irradiation at (a) 460 nm (b) 520 nm. Reprinted with permission of Xue et al. [284]](image)

Considering the similarity of structures between CPD-37, CPD-38 and CPD-35, similar absorption spectra were found for the three dyes. Notably, for CPD-37 and CPD-38, a broad absorption band extending from 300 until 530 nm could be determined, the absorption maxima peaking at 430 nm (See Figure 28). Considering their respective absorption, light-induced polymerization reactions could be carried out at 405, 460, and 520 nm with LEDs.
Examination of the FRP of ethoxylated trimethylolpropane triacrylate (ETPTA) using the two-component dye/Iod3 (0.2%/2% w/w) system upon irradiation at different wavelengths revealed a direct correlation between ETPTA conversion and molar extinction coefficients (See Figure 29). Noticeably, upon irradiation at 405 nm, conversions of 98% within 2 s were obtained with the two dyes. Consistent with a low absorption at 520 nm, a decrease of the monomer conversion was observed. Besides, it could still reach monomer conversions of 83 and 90% with CPD-37 and CPD-38 respectively after 120 s of irradiation. Besides, while increasing the photosensitizer content from 0.2 to 0.4 wt%, the ETPTA conversion could increase from 83 to 90% using the two-component CPD-38/Iod3 (0.2%/2% w/w) system.

Figure 29. Photopolymerization profiles of ETPTA using the two-component dye/Iod3 (0.2%/2% w/w) using different light sources. Reprinted with permission of Zhao et al.[285]
2.6. Triazine derivatives

Increase of the molecular weight constitutes an effective strategy to address the migratability issue. In 2012, a trifunctional photoinitiator based on the triazine core and anthracene CPD-41 was proposed and its photoinitiating ability compared to that of a trifunctional photoinitiator based on pyrene or benzophenone CPD-38 and CPD-39 (See Figure 30).[148]

![Chemical structure of the different triazine-based photoinitiators CPD-39-CPD-41, and different additives.](image)

Figure 30. Chemical structure of the different triazine-based photoinitiators CPD-39-CPD-41, and different additives.

In fact, several other reasons can be cited to support the development of polyfunctional photoinitiators: reduced release of photolysis products or less smell resulting from a reduced volatility. Due to the presence of three functional groups per photoinitiator, high molar extinction coefficients could be determined, notably for CPD-40 ($\varepsilon = 38,000 \text{ M}^{-1}\text{.cm}^{-1}$) or CPD-41 ($\varepsilon = 8,500 \text{ M}^{-1}\text{.cm}^{-1}$). Interestingly, while replacing pyrene by anthracene, a redshift of the absorption maximum was found (404 nm for CPD-41 vs. 348 nm for CPD-40). Conversely, for CPD-39, the molar extinction coefficient remained low (330 M$^{-1}$\text{.cm}^{-1} at 330 nm) (See Figure 31).
When tested as photoinitiators of polymerization for the CP of EPOX, addition of silane to the dye/Iod combination greatly improved the monomer conversions as well as the polymerization rates. In fact, no EPOX conversion was detected with the different two-component photoinitiating systems (See Figure 32). Conversely, conversions of 90, 80 and 70% were respectively obtained with CPD-39, CPD-40, and CPD-41 incorporated in three-component dye/(TMS):Si−H/Iod (1%/3%/2% w/w/w) upon irradiation with a Xe-Hg lamp for 400 s under air. Benefits of designing trifunctional photoinitiators was demonstrated by comparing the EPOX conversion obtained with pyrene and CPD-40. Thus, the conversion increased from 50 to 70% upon irradiation with a Xe−Hg lamp. Upon visible light irradiation, a decrease of the polymerization efficiency from CPD-41 to CPD-40 and CPD-39 was determined, consistent with the molar extinction coefficients of the different dyes. Notably, due to the lack of absorption of CPD-39 in the visible range, no polymerization was detected with the three-component system for this dye. Noticeably, an efficient photobleaching was found with the CPD-41 and CPD-40-based photoinitiating systems during the CP of EPOX under visible light (use of halogen lamp).

Examination of the FRP of TMPTA upon a Xe−Hg lamp irradiation revealed the use of the three-component dye/(TMS):Si−H/Iod system to be required in order to get a monomer conversion both in laminates and under air. Indeed, while using the two-component dye/Iod systems, no polymerization could be detected. The high reactivity of the three-component systems was ascribed to the concomitant formation of Ph• and R:Si• free radicals capable to overcome the oxygen inhibition.
Figure 32. Photopolymerization profiles of TMPTA upon irradiation with a Xe-Hg lamp in laminate in the presence of (1) CPD-39/Iod (1%/2% w/w), (2) CPD-39/(TMS)Si–H/Iod (1%/3%/2% w/w), (3) CPD-40/(TMS)Si–H/Iod (1%/3%/2% w/w), and (4) CPD-41/(TMS)Si–H/Iod (1%/3%/2% w/w). Reprinted with permission of Tefhe et al.[148]

Trifunctional photoinitiators also proved to be efficient photoinitiators in combination with amines such as N-methyl diethanolamine MDEA. In fact, comparison of the TMPTA conversions obtained under laminates and upon irradiation with a Xe-Hg lamp revealed the monomers conversion to be higher with the two-component CPD-40/MDEA (1%/5% w/w) system (70% conversion after 400 s) vs. 60% for the three-component CPD-40/(TMS)Si–H/Iod (1%/3%/2% w/w) system. This remarkable reactivity was assigned to the formation of MDEA•(−H) radicals well-known to be sufficiently reactive to initiate the FRP of TMPTA[286] but also, to a lesser extent to CPD-40 to induce a hydrogen abstraction reaction with the monomer upon photoexcitation (See equations r17 and r18).

\[\text{CPD-40} + \text{MDEA} \rightarrow (\text{CPD-40})^* + \text{MDEA}^* \rightarrow (\text{CPD-40-H})^* + \text{MDEA}^* \] \hspace{1cm} (r17)

\[^* \text{CPD-40+ M} \rightarrow (\text{CPD-40-H})^* + \text{M}(-H)^* \] \hspace{1cm} (r18)

2.7. Push-pull dyes

Push-pull dyes are promising structures for the design of photoinitiators due to the possibility to finely tune the position of the intramolecular charge transfer (ICT) band by controlling the strength of both the electron-donating and electron-accepting groups.[287] Besides, beyond the position of the ICT band, solubility of dyes in resins is another major issue that should be considered. Thus, if CPD-42 and CPD-43,[133] CPD-44[128] or CPD-45[127]
showed suitable absorption properties, the lack of solubility in EPOX impeded photopolymerization of this monomer (See Figure 33).

In light of these results, in 2021, less extended push-pull dyes based on anthracene were proposed as photoinitiators for HDDA.[288] In the work developed by Nie and coworkers, an extremely weak electron acceptor was used for CPD-47, namely a formyl group (See Figure 33). For comparison, an anthracene substituted with a methoxy group i.e. CPD-46 was also examined. As shown in the Figure 34, CPD-46 exhibited a similar absorption spectrum than anthracene, with four broad absorption bands. However, compared to anthracene, a redshift by ca 15 nm was observed. Upon introduction of an electron-withdrawing group, a complete modification of the absorption spectrum was found for CPD-47, with the appearance of an ICT band at 437 nm. Compared to CPD-46, a more extended absorption spectrum was found for CPD-47.

![Figure 33. Chemical structures of different anthracene-based push-pull dyes.](image)

![Figure 34. UV-visible absorption spectra in methanol. Reprinted with permission of Xue et al.[288]](image)
Examination of the FRP of HDDA at 385 nm revealed unexpected photopolymerization results in laminate. Thus, at low light intensity (2 mW/cm²), no polymerization was detected with the two-component CPD-47/Iod3 (0.2%/1% w/w) whereas a conversion as high as 80% could be obtained after 600 s of irradiation at 385 nm (See Figure 35). While increasing the LED intensity to 10 mW/cm², a conversion of 35% could be obtained with CPD-47. Besides, an unusual inhibition time of 200 s was determined. Noticeably, if anthracene exhibits the lowest molar extinction coefficient of the series, upon irradiation with a LED of 10 mW/cm², a slower polymerization was observed but the final monomer conversion obtained after 600 s of irradiation was similar to that of the two-component CPD-46/Iod3 system, evidencing that the molar extinction coefficient was not the only parameter governing the reactivity of photosensitizer. The rate constant of interaction with Iod3, the redox properties of photosensitizers are other parameters governing the reactivity.

![Figure 35. Photopolymerization profiles of HDDA in the presence of dye/Iod3 (Iod3: 1 wt%; dye: 0.2 wt%) under 385 nm LED irradiation; (a) 2 mW/cm²; (b) 10 mW/cm². Reprinted with permission of Xue et al.[288]](image)

The unexpected behaviour of CPD-47 was confirmed during the photolysis experiments. Experiments done in acetonitrile revealed CPD-47 to photodimerize in solution within a few minutes. When combined with Iod3, an induction time of four minutes was evidenced, followed by a fast photobleaching of the solution. From these different experiments, it was concluded that CPD-47 was unable to directly photosensitize Iod3 whereas its photodimer could do.

2.8. 9,10-Dialkylthio/dialkoxy-anthracene

Hexaarylbiimidazoles are commonly used as initiators for free radical polymerization in industry. Hexaarylbiimidazoles are notably characterized by a low sensitivity to oxygen but also to a good thermal stability facilitating their storage.[289–292] In this family, 2,2-bis(2-chlorophenyl)-4,4,5,5-tetraphenyl-1,2-biimidazole (BCIM) is the most representative example. However, their absorptions are strongly UV centered so that these initiators need to be
sensitized in the visible range. In 2019, a series of six anthracene derivatives CPD-48-CPD-53 substituted by dialkylthio or dialkylxlo substituents at the 9,10-positions was developed for the sensitization of hexaarylbiimidazoles (See Figure 36).[293]

Figure 36. Chemical structures of dialkylthio and dialkylxlo-substituted anthracenes CPD-48-CPD-53, different additives and reference compounds.

Due to the presence of electron donating groups, all dyes showed a broad absorption extending from 325 nm until 450 nm. Considering that for all dyes, molar extinction coefficients higher than 6000 M⁻¹.cm⁻¹ could be determined at 405 nm, polymerization experiments could be carried out in the visible range. In this series of dyes, compared to 9,10-dibutoxyanthracene (DBA) which is a benchmark photoinitiator,[55] all thio-substituted dyes CPD-48-CPD-51 showed a redshifted absorption compared to the alkoxy-substituted ones (CPD-52 and DBA), evidencing that thioalkyl groups were better electron donating groups than alkoxy groups (See Figure 37). Upon irradiation at 365 nm with a LED, an enhancement of the polymerization rate and final monomer conversions could be evidenced for all alkylthio-substituted dyes compared to the alkoxy-substituted dyes (See Figure 38). Comparisons with
reference photoinitiating systems based on 4,4′,4″-methanetriyltris(N,N-dimethylaniline) (LCV)/BCIM, 2-methyl-1-(4-methylthiophenyl)-2-morpholine-1-propanone (CPD-54)/BCIM or 4,4′-bis(diethylamino)benzophenone (CPD)/BCIM systems revealed the anthracene-based photoinitiating systems to outperform the reference ones.

![Figure 37. UV-visible absorption spectra of dyes in THF. Reprinted with permission of Lei et al.[293]](image)

Table 9. UV-visible absorption properties of dyes in THF.

<table>
<thead>
<tr>
<th>dyes</th>
<th>λ<sub>max</sub> (nm)</th>
<th>ε<sub>λ<sub>max</sub></sub> M<sup>-1</sup>.cm<sup>1</sup></th>
<th>ε<sub>365 nm</sub> M<sup>-1</sup>.cm<sup>1</sup></th>
<th>ε<sub>405 nm</sub> M<sup>-1</sup>.cm<sup>1</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>DBA</td>
<td>385</td>
<td>8000</td>
<td>5400</td>
<td>6640</td>
</tr>
<tr>
<td>CPD-48</td>
<td>411</td>
<td>13 360</td>
<td>6500</td>
<td>10 100</td>
</tr>
<tr>
<td>CPD-49</td>
<td>412</td>
<td>12 580</td>
<td>5700</td>
<td>9500</td>
</tr>
<tr>
<td>CPD-50</td>
<td>417</td>
<td>15 560</td>
<td>7240</td>
<td>12 860</td>
</tr>
<tr>
<td>CPD-51</td>
<td>416</td>
<td>12 060</td>
<td>6400</td>
<td>10 560</td>
</tr>
<tr>
<td>CPD-52</td>
<td>382</td>
<td>15 100</td>
<td>8500</td>
<td>13 300</td>
</tr>
</tbody>
</table>

![Figure 38. Polymerization profiles of HDDA upon irradiation at 365 nm with different photoinitiating systems dye/BCIM, CPD-53 and BCIM without dye UV-LED, [BCIM] = 5 × 10⁻² M, [dye] = 5 × 10⁻³ M, [CPD-54] = 5 × 10⁻³ M, [LCV] = 3 × 10⁻² M, [CPD-53] = 5 × 10⁻² M. Reprinted with permission of Lei et al.[293]](image)
Finally, DBA and CPD-48 were tested as photosensitizers for the photolithography of dry film photoresist upon irradiation at 405 nm. Micro-patterns of high resolution could be obtained with the two dyes used as photosensitizers for BCIM. Interestingly, colorless photoresists could be obtained with the two dyes, resulting from the ability of anthracene to dimerize. Noticeably, alkylthio-substituted anthracene showed faster photobleaching abilities than the alkoxy ones, enabling to avoid inner filter effect and to improve the depth of cure of the different patterns.

2.9. Anthracene-based metal organic frameworks (MOFs).

Organic dyes have been extensively used as visible light photosensitizers. However, inorganic structures or hybrid structures have not been excluded from this interest. In this field, metal organic frameworks (MOFs) that are composed of metal cations coordinated to organic ligands have been used as photocatalysts for various chemical transformations.[294–299] MOFs have also been the focus of intense research efforts as photoinitiators of polymerization. In this field, iron-based metal organic frameworks have been developed as photocatalysts for free radical and cationic polymerizations in the near UV/visible range.[64] Atom transfer radical polymerization (ATRP) mediated by transition metal catalysts constitutes an efficient tool for designing polymers of complex architectures.[300–306] Recently, photoinduced ATRP has been proposed as an efficient strategy enabling to get a spatial and a temporal control of the chain extension.[307–310] Typically, photoinduced ATRP relies in the in-situ generation of a Cu(I) complex by reduction of a Cu(II) precursor by the photocatalyst. In 2016, an anthracene-based MOF i.e. NNU-32 was examined as photocatalyst for photoinduced ATRP.[311] In order to incorporate anthracene inside the indium-based MOF, a tetracarboxylated anthracene derivative was used (See Figure 39).

![Figure 39. Chemical structure of NNU-32. Reprinted with permission of Li et al. [311]](image-url)

From the absorption viewpoint, these structures are promising due to their panchromatic behaviours. Indeed, as shown in the Figure 40, the absorption spectrum extends
from 300 until 800 nm, resulting from energy and/or ligand-to-metal charge transfer processes.[312,313]

![UV-visible absorption spectrum of NNU-32 and the anthracene-based ligand](image)

Figure 40. UV-visible absorption spectrum of NNU-32 and the anthracene-based ligand. Reprinted with permission of Li et al. [311]

By electron paramagnetic resonance (EPR), appearance of an EPR signal upon visible light irradiation of MOF was evidenced, suggesting the formation of free radicals on the ligand. Interestingly, this ability to photogenerate radicals was also demonstrated with the free ligand. While monitoring the intensity of the EPR signal over time, a rapid increase of the signal could be demonstrated, reaching a saturation within 3 min. In order to investigate photoinduced ATRP processes, the following four-component NNU-32/ethyl α-bromo-isobutyrate/Cu(Br)$_2$/N,N,N′,N″,N‴-pentamethyldiethylenetriamine (PMDETA) system was used for the FRP of iso-butyl methacrylate (iso-BMA) upon irradiation at 520 nm with a monochromatic light. After 10 hours of irradiation, polymer chains of controlled size could be obtained (polydispersity index = 1.11) with a monomer conversion of 71%. Living nature of the polymerization process was also demonstrated, no monomer conversion being detected in the absence of light.

2.10. Anthracene-based thioxanthone

Thioxanthones are efficient photoinitiators in combination with tertiary amines. However, with aim at red-shifting the absorption of thioxanthone, the combination of thioxanthone and anthracene within a unique structure was examined as soon as 2007.[314] Previous to this work, the same authors, namely the group of Yagci and coworkers have developed a series of thioxanthone comprising a thiol group[315] or an acetic acid group[316,317] so that the hydrogen donor was directly connected to the dye, enabling to develop mono-component photoinitiating system. In the present case, the thioxanthone-anthracene combination could act as a mono-component system without additional hydrogen donors. From the absorption viewpoint, CPD-55 could be prepared in one step upon reaction of anthracene with thiosalicylic acid in concentrated acid. The dye could be prepared in 80% yield, according to the synthesis depicted in the Scheme 1.
Interestingly, absorption spectrum of CPD-55 was broad, extending from 300 to 450 nm so that a Hg-lamp was used as the light source for photopolymerization (See Figure 41).

Photopolymerization of MMA under air, in DMF, and in the absence of air revealed the crucial role of oxygen for photoinitiating. Indeed, under inert atmosphere, no polymerization processes could be carried out. This behaviour is unexpected considering that for most of the radical initiators, oxygen inhibits FRP processes. Noticeably, the CPD-55/MDEA combination only furnished a low monomer conversion, evidencing its poor reactivity with the co-initiator. Comparison of the monomer conversions obtained by using CPD-55 or a mixture of anthracene, thioxanthone and MDEA revealed the conversion to be improved for CPD-55. Especially, for the thioxanthone-anthracene combination, no polymerization was detected in the absence of MDEA, evidencing that for the mixture, presence of a hydrogen donor was required.

As other advantage of CPD-55, photopolymerization of styrene could be efficiently initiated with this dye whereas most of the radical photoinitiators only exhibit low reactivity towards styrene due to high quenching rate constants. Noticeably, an improvement of the monomer conversion could even be obtained upon introduction of MDEA in the solutions. Based on the different experiments, an initiating mechanism could be postulated. Notably, presence of oxygen being required to get high monomer conversion and the presence of hydrogen donors being not required to get a polymerization, the formation of instable endoperoxides by reaction of CPD-55 with oxygen upon irradiation was proposed. Precisely, upon photoexcitation of CPD-55, triplet excited states of CPD-55 can be quenched by oxygen, generating singlet oxygen. Singlet oxygen can add on the anthracene moiety, leading to CPD-
In a second step, photoexcitation of the endoperoxide CPD-55-O2 can form alkoxy or peroxy radicals capable to initiate free-radical polymerization. Indeed, endoperoxides are well-known to be photochemically and thermally instable so that initiating radicals can be formed by decomposition of endoperoxides (See Scheme 2). In 2013, initiating species formed by CPD-55 upon photoexcitation with oxygen were identified by mean of laser flash photolysis, fluorescence and phosphorescence spectroscopy.[318] Notably, photoluminescence experiments carried out on photopolymerized PMMA revealed CPD-55 to be connected to the polymer chains. Besides, a deeper insight into the photoluminescence properties of polymers revealed the π-conjugation of the thioxanthone chromophore to be interrupted so that two decomposition products issued from the endoperoxide adducts were suggested as being the initiating species (See Scheme 2).

Scheme 2. Mechanism of FRP of methyl methacrylate using CPD-55 as photoinitiator in the presence of oxygen. Reprinted with permission of Balta et al. [318]

In 2013, a more soluble version of CPD-55 was proposed, bearing an alkyl chain for improving its solubility.[319] Interestingly, CPD-56 was soluble in highly polar solvents such as DMF and even water, but also in less polar solvents such as chloroform or THF. From the absorption viewpoint, an absorption spectrum superimposing that of CPD-55 was found, except that an additional tail was detected in the visible range due to the contribution of the triazole ring. With this dye, a dual behaviour could be evidenced. Indeed, if CPD-56 is an efficient mono-component photoinitiator, in the presence of triethylamine, an improvement of the butyl acrylate (BA) conversion was demonstrated, meaning that the amine was interacting with the thioxanthone moiety. Conversely, in the presence of oxygen, efficiency of the polymerization process was assigned to the formation of endoperoxides resulting from the reaction between oxygen and the anthracene moiety. Noticeably, if CPD-55 was an efficient initiator for the polymerization of styrene in combination with triethylamine, a different behaviour was found for CPD-56, resulting in low styrene conversions. Therefore, the
following mechanism could be proposed to support the polymerization efficiency in the different aforementioned conditions (See Scheme 3).

Scheme 3. The different mechanism occurring with CPD-56.

Over the years, several derivatives of CPD-55 have been prepared, based on 2-ethylanthracene (CPD-57)[320], anthracene-9-carboxylic acid (CPD-58)[321] and even 9,10-diphenylanthracene (CPD-59)[197] (See Figure 42). For all these derivatives, presence of oxygen was determined as being necessary to initiate a polymerization process. Considering that anthracene provides unexpected photoinitiating abilities to CPD-58, photoinitiating ability of the CPD-55 dimer i.e. CPD-60 was examined (See Figure 42). Using this approach, a traditional type II photoinitiator behavior could be recovered for CPD-60.[322] Notably, the FRP of MMA could only proceed under inert atmosphere. Comparison with the monomer conversion obtained with thioxanthone revealed CPD-60 to exhibit lower photoinitiating ability than its parent structure i.e. thioxanthone.
A summary of the different optical properties and the polymerization results is presented in the Table 10.

Table 10. Chemical structures, optical characteristics and summary of the polymerization results.

<table>
<thead>
<tr>
<th>Dye</th>
<th>Chemical structure</th>
<th>Maximum absorption wavelength (nm)</th>
<th>Photoinitiating systems</th>
<th>Monomers</th>
<th>Light source</th>
<th>Monomer conversion</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1. Anthracene-based chalcones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-1</td>
<td></td>
<td>315</td>
<td>CPD/Iod/NVK (0.5%/3%/3% w/w/w)</td>
<td>TMPTA</td>
<td>457 nm</td>
<td>n.p. (^a)</td>
<td>[107]</td>
</tr>
<tr>
<td>CPD-2</td>
<td></td>
<td>329</td>
<td>CPD/Iod/NVK (0.5%/3%/3% w/w/w)</td>
<td>TMPTA</td>
<td>457 nm</td>
<td>n.p. (^a)</td>
<td>[107]</td>
</tr>
<tr>
<td>CPD-3</td>
<td></td>
<td>361</td>
<td>CPD/Iod/NVK (0.5%/3%/3% w/w/w)</td>
<td>TMPTA</td>
<td>457 nm</td>
<td>n.p. (^a)</td>
<td>[107]</td>
</tr>
<tr>
<td>CPD-4</td>
<td></td>
<td>401</td>
<td>CPD/Iod/NVK (0.5%/3%/3% w/w/w)</td>
<td>TMPTA</td>
<td>457 nm</td>
<td>25% (400 s)</td>
<td>[107]</td>
</tr>
<tr>
<td>CPD-5</td>
<td></td>
<td>435</td>
<td>CPD/Iod/NVK (0.5%/3%/3% w/w/w)</td>
<td>TMPTA</td>
<td>457 nm</td>
<td>55% (400 s)</td>
<td>[107]</td>
</tr>
<tr>
<td>CPD-6</td>
<td></td>
<td>-</td>
<td>CPD/Iod2/EDB (1.5%/1.5%/1.5 % w/w/w)</td>
<td>PEG-diacrylate</td>
<td>405 nm</td>
<td>79.5% (200 s)</td>
<td>[99]</td>
</tr>
<tr>
<td>CPD-7</td>
<td></td>
<td>-</td>
<td>CPD/Iod2/EDB (1.5%/1.5%/1.5 % w/w/w)</td>
<td>PEG-diacrylate</td>
<td>405 nm</td>
<td>73.5% (200 s)</td>
<td>[99]</td>
</tr>
<tr>
<td>CPD-8</td>
<td></td>
<td>-</td>
<td>CPD/Iod2/EDB (1.5%/1.5%/1.5 % w/w/w)</td>
<td>PEG-diacrylate</td>
<td>405 nm</td>
<td>40.3% (200 s)</td>
<td>[99]</td>
</tr>
<tr>
<td>CPD-9</td>
<td></td>
<td>-</td>
<td>CPD/Iod2/EDB (1.5%/1.5%/1.5 % w/w/w)</td>
<td>PEG-diacrylate</td>
<td>405 nm</td>
<td>74.7% (200 s)</td>
<td>[99]</td>
</tr>
<tr>
<td>CPD</td>
<td>CPD/Iod2/EBD</td>
<td>PEG-diacylate</td>
<td>405 nm</td>
<td>30.5% (200 s)</td>
<td>[99]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------------</td>
<td>---------------</td>
<td>--------</td>
<td>---------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-10</td>
<td>CPD/Iod2/EDB (1.5%/1.5%/1.5% w/w/w)</td>
<td>PEG-diacylate</td>
<td>405 nm</td>
<td>79.5% (200 s)</td>
<td>[99]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-12</td>
<td>CPD/Iod2 (0.5%/1%, w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>39% (600 s)</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-13</td>
<td>CPD/Iod2 (0.5%/1%, w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>37% (600 s)</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-14</td>
<td>CPD/Iod2 (0.5%/1%, w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>21% (600 s)</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-15</td>
<td>CPD/Iod2 (0.5%/1%, w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>43% (600 s)</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-16</td>
<td>CPD/Iod2 (0.5%/1%, w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>52% (600 s)</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-17</td>
<td>CPD/Iod2 (0.5%/1%, w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>47% (600 s)</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-18</td>
<td>CPD/Iod2 (0.5%/1%, w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>33% (600 s)</td>
<td>[104]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-19</td>
<td>CPD/Iod2 (1%/2%, w/w)</td>
<td>DVE-3</td>
<td>405 nm</td>
<td>62% (300 s)</td>
<td>[253]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-20</td>
<td>CPD/Iod2 (1%/2%, w/w)</td>
<td>DVE-3</td>
<td>405 nm</td>
<td>88% (300 s)</td>
<td>[253]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-21</td>
<td>CPD/Iod2/EBD (0.1%/2%/2%, w/w/w)</td>
<td>TA</td>
<td>405 nm</td>
<td>90% (400 s)</td>
<td>[191]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-22</td>
<td>CPD/Iod2/EBD (0.1%/2%/2%, w/w/w)</td>
<td>TA</td>
<td>405 nm</td>
<td>41% (400 s)</td>
<td>[191]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-23</td>
<td>CPD/Iod2/EBD (0.1%/2%/2%, w/w/w)</td>
<td>TA</td>
<td>405 nm</td>
<td>68% (400 s)</td>
<td>[191]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-24</td>
<td>CPD/Iod2/EBD (0.1%/2%/2%, w/w/w)</td>
<td>TA</td>
<td>405 nm</td>
<td>81% (400 s)</td>
<td>[191]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-25</td>
<td>CPD/Iod2/EBD (0.1%/2%/2%, w/w/w)</td>
<td>TA</td>
<td>405 nm</td>
<td>41% (400 s)</td>
<td>[191]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD</td>
<td>Structure</td>
<td>Reactivity</td>
<td>Epoxy</td>
<td>Lamp</td>
<td>Conversion (%)</td>
<td>Ref</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>CPD-26</td>
<td></td>
<td>250 CPD/Iod2/EBD (0.1%/2%/2%, w/w/w)</td>
<td>TA</td>
<td>405 nm</td>
<td>53% (400 s)</td>
<td>[191]</td>
<td></td>
</tr>
<tr>
<td>2.2. Anthracene-based acridinedione</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-27</td>
<td></td>
<td>369 AD/Iod/NVK (3%/2%/3%, w/w/w)</td>
<td>EPOX</td>
<td>Xe-Hg lamp</td>
<td>34% (500 s)</td>
<td>[215]</td>
<td></td>
</tr>
<tr>
<td>CPD-28</td>
<td></td>
<td>348 AD/Iod/NVK (3%/2%/3%, w/w/w)</td>
<td>EPOX</td>
<td>Xe-Hg lamp</td>
<td>48% (500 s)</td>
<td>[215]</td>
<td></td>
</tr>
<tr>
<td>2.3. Anthracene-based 1,8-naphthalimides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-29</td>
<td></td>
<td>< 400 CPD/Iod/NVK (0.5%/2%/3%, w/w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>n.p.</td>
<td>[89]</td>
<td></td>
</tr>
<tr>
<td>CPD-30</td>
<td></td>
<td>431 CPD/Iod/NVK (0.5%/2%/3%, w/w/w)</td>
<td>EPOX</td>
<td>405 nm</td>
<td>63% (800 s)</td>
<td>[89]</td>
<td></td>
</tr>
<tr>
<td>2.4. 9,10-Bis(ethynyl)-substituted anthracene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-31</td>
<td></td>
<td>440 CPD/(TMS)Si-H/Iod (0.5 %/3 %/ 2% w/w)</td>
<td>EPOX</td>
<td>462 nm</td>
<td>70% (700 s)</td>
<td>[270]</td>
<td></td>
</tr>
<tr>
<td>CPD-32</td>
<td></td>
<td>462 CPD/NAI-105</td>
<td>-</td>
<td>488 nm</td>
<td>-</td>
<td>[280]</td>
<td></td>
</tr>
<tr>
<td>2.5. Anthracene-based phenothiazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-33</td>
<td></td>
<td>437, 461 CPD/Iod3 (0.2%/2%, w/w)</td>
<td>HDDA</td>
<td>460 nm</td>
<td>~ 80% (100 s)</td>
<td>[284]</td>
<td></td>
</tr>
<tr>
<td>CPD-34</td>
<td></td>
<td>468, 490 CPD/Iod3 (0.2%/2%, w/w)</td>
<td>HDDA</td>
<td>460 nm</td>
<td>~ 80% (100 s)</td>
<td>[284]</td>
<td></td>
</tr>
<tr>
<td>CPD-35</td>
<td></td>
<td>494 CPD/Iod3 (0.2%/2%, w/w)</td>
<td>HDDA</td>
<td>460 nm</td>
<td>~ 80% (100 s)</td>
<td>[284]</td>
<td></td>
</tr>
<tr>
<td>CPD-36</td>
<td></td>
<td>478 CPD/Iod3 (0.2%/2%, w/w)</td>
<td>HDDA</td>
<td>460 nm</td>
<td>~ 80% (100 s)</td>
<td>[284]</td>
<td></td>
</tr>
<tr>
<td>CPD-37</td>
<td></td>
<td>430 CPD/Iod3 (0.2%/2% w/w)</td>
<td>ETPTA</td>
<td>405 nm</td>
<td>100% (20 s)</td>
<td>[285]</td>
<td></td>
</tr>
<tr>
<td>CPD-38</td>
<td></td>
<td>430 CPD/Iod3 (0.2%/2% w/w)</td>
<td>ETPTA</td>
<td>405 nm</td>
<td>100% (20 s)</td>
<td>[285]</td>
<td></td>
</tr>
<tr>
<td>2.6. Triazine derivatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPD-39</td>
<td></td>
<td>330 CPD/(TMS)Si-H/Iod (1%/3%/2% w/w/w)</td>
<td>EPOX</td>
<td>Xe-Hg lamp</td>
<td>90% (400 s)</td>
<td>[148]</td>
<td></td>
</tr>
<tr>
<td>CPD-40</td>
<td>348</td>
<td>CPD/(TMS)_Si-H/Iod (1%/3%/2% w/w/w)</td>
<td>EPOX</td>
<td>Xe-Hg lamp</td>
<td>90% (400 s)</td>
<td>[148]</td>
<td></td>
</tr>
<tr>
<td>CPD-41</td>
<td>404</td>
<td>CPD/(TMS)_Si-H/Iod (1%/3%/2% w/w/w)</td>
<td>EPOX</td>
<td>Xe-Hg lamp</td>
<td>90% (400 s)</td>
<td>[148]</td>
<td></td>
</tr>
</tbody>
</table>

2.7. Push-pull dyes

CPD-46	392	CPD/Iod3 (0.2%/1% w/w)	HDDA	385 nm	30% (600 s)	[288]
CPD-47	437	CPD/Iod3 (0.2%/1% w/w)	HDDA	385 nm	80% (600 s)	[288]
CPD-48	411	CPD/BCIM	HDDA	365 nm	67% (2000 s)	[293]
CPD-49	412	CPD/BCIM	HDDA	365 nm	80% (2000 s)	[293]
CPD-50	417	CPD/BCIM	HDDA	365 nm	-	[293]
CPD-51	416	CPD/BCIM	HDDA	365 nm	-	[293]
CPD-52	382	CPD/BCIM	HDDA	365 nm	-	[293]

2.9. Anthracene-based metal organic frameworks (MOFs)

| NNU-32 | 300-800 | NNU-32/ethyl \(\alpha\)-bromo-isobutyrate/Cu(Br)_2/PMDETA | iso-BMA | 520 | 71% (10 hours) | [311] |

\(^{\dagger}\) n.p.
3. Conclusion

To conclude, anthracene is a versatile scaffold that was at the basis of numerous visible light photoinitiators. Over the years, around 60 different structures have been investigated. Anthracene was notably used for the design of bioinspired chalcones and this family of dyes constitutes the most important group of molecules since more than 25 derivatives have been examined during the last three years. As the main finding, the different investigations revealed that used of anthracene as an electron donor in these structures was less favourable in terms of photoinitiating ability than when incorporated into the acetophenone moiety. Besides, polymerization results also revealed that use of heterocycles in the acetophenone moiety could greatly improve the final monomer conversions compared to chalcones comprising aromatic rings. When incorporated in naphthalimides, photoinitiators exhibiting good photobleaching properties could be obtained. Anthracene is a polyaromatic structure that can drastically reduce the solubility of dyes in resins and this point was evidenced with a series of push-pull dyes bearing indane-1,3-dione derivatives as electron acceptors. A great deal of efforts was also devoted to elaborate anthracene-based thioxanthone. In this case, and contrarily to what is commonly observed with type II photoinitiators, higher monomer conversions could be obtained in the presence of oxygen, what is rarely observed. Even if remarkable photoinitiating abilities have been demonstrated with anthracene-based dyes, a lot of works remains to be done. Indeed, future prospects will notably consist in developing water-soluble dyes, no anthracene-based chromophores being reported to date in the literature. Similarly, anthracene has only been investigated for the design of Type II photoinitiators. Besides, design of glyoxylate derivatives or oxime esters could contribute to drastically simplify the photocurable resins while maintaining high monomer conversions.

Acknowledgments

Aix Marseille University and the Centre National de la Recherche Scientifique (CNRS) are acknowledged for financial supports.

Conflicts of Interest

The authors declare no conflict of interest.

References

[58] A. Mau, C. Dietlin, F. Dumur, J. Lalevée, Concomitant initiation of radical and cationic polymerisations using new copper complexes as photoinitiators: Synthesis and

C. Brahmi, M. Benltifa, C. Vaulot, L. Michelin, F. Dumur, E. Gkaniatsou, C. Sicard, A. Airoudj, F. Morlet-Savary, L. Bousselmi, J. Lalevée, New Hybrid Fe-based

[186] W. Han, H. Fu, T. Xue, T. Liu, Y. Wang, T. Wang, Facilely prepared blue-green light sensitive curcuminoids with excellent bleaching properties as high performance

[294] T. Zhou, Y. Du, A. Borgna, J. Hong, Y. Wang, J. Han, W. Zhang, R. Xu, Post-synthesis modification of a metal–organic framework to construct a bifunctional photocatalyst for...

