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Abstract

Our work aims to obtain 3D reconstruction of hands and
manipulated objects from monocular videos. Reconstruct-
ing hand-object manipulations holds a great potential for
robotics and learning from human demonstrations. The su-
pervised learning approach to this problem, however, re-
quires 3D supervision and remains limited to constrained
laboratory settings and simulators for which 3D ground
truth is available. In this paper we first propose a learning-
free fitting approach for hand-object reconstruction which
can seamlessly handle two-hand object interactions. Our
method relies on cues obtained with common methods for
object detection, hand pose estimation and instance seg-
mentation. We quantitatively evaluate our approach and
show that it can be applied to datasets with varying levels
of difficulty for which training data is unavailable.

1. Introduction
Joint reconstruction of hand-object interactions in the

context of object manipulation has a broad range of prac-
tical applications in robotics and augmented reality. Yet,
reliable and generic models for recovering 3D hand-object
configurations from images do not exist to date. Learning-
based approaches typically do not generalize beyond their
specific training domains. Furthermore, obtaining precise
3D annotations for supervision is tedious and requires addi-
tional sensors. Existing datasets rely on depth data [10, 16],
visible marker equipment [14, 52] or multiple views [6, 44,
56, 68]. Moreover, such datasets typically feature a limited
number of objects [46, 57, 60, 61] while still requiring man-
ual annotations [10] or post-processing [56, 68]. Synthetic
rendering techniques can be used to create labeled datasets
with a larger number of objects, however, the resulting im-
ages lack realism in terms of appearance and grasp config-
urations [19, 45, 67].

Developing an RGB-only method to retrieve 3D hand-
object configurations for diverse objects would enable scal-

Figure 1: Hand-object reconstructions: We present an
optimization-based method to fit 3D parametric hand model
and a known object model to 2D estimates. Our method is
generic and can be applied across a variety of recent video
datasets presenting hand-object interactions [12, 16, 42].
Our method can also handle reconstruction of images with
left and right hands.

ing up the datasets, and help the field move towards in-the-
wild scenes. In this work, we argue for an optimization-
based approach for its robustness across domains. Re-
cent progress in 2D detection of objects and 3D pose es-
timation of isolated hands makes it possible to obtain a
good initialization when fitting 3D hand-object poses to
these estimates. Nevertheless, this is still very challenging
due to depth ambiguities, occlusions, noisy 2D estimates
and can result in physically implausible configurations. In
our analysis, we show improvements over independent fits
when considering a joint hand-object fitting framework with
several interaction constraints. We take inspiration from
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PHOSA [65], a recent work showing promising results for
fitting 3D human bodies and objects, relying on object seg-
mentation and human pose estimation models.

Several approaches propose to explore the complemen-
tarity between fitting and learning approaches for hu-
man body shape estimation. Fitting for learning has
been explored for reconstructing human bodies, either
semi-automatically [37] or via learning with fitting in-the-
loop [30]. Recently, applying fitting on sign language
videos has shown benefits for training isolated hand re-
construction models [31]. [41] shows that hand pseudo-
labelling and automatic filtering using spatial and tempo-
ral consistency allows to improve the hand pose estimation
branch of a model trained for joint hand-object pose esti-
mation. Different from these works, we fit hand and ob-
ject meshes which represent a more complex scene. [16]
presents a similar approach by fitting hand-object configu-
rations to RGB-D videos to later use in training; however,
the reliance on a depth sensor significantly reduces its ap-
plicability to unconstrained images.

In this work, we propose a method which reconstructs
the hand and manipulated object from short RGB video
clips, assuming an approximate model for the target object
is available. We investigate the strengths and limitations of
our approach in challenging scenarios and present results
on challenging scenes which are not currently handled by
learning methods for joint hand-object pose estimation. Our
code is publicly available at https://github.com/
hassony2/homan.

Our contributions are the following: (i) We propose a
fitting-based approach for hand-object reconstruction from
a video clip; (ii) We present a detailed quantitative eval-
uation analyzing different components of our optimization
method and compare to learning-based models [18] on a
standard benchmark [16]; (iii) We demonstrate qualitatively
the capabilities of our framework to generalize on uncon-
strained videos and two-hand reconstructions.

2. Related Work
We briefly review relevant literature on hand-object re-

construction, works that employ temporal constraints and
hand-object datasets.
Hand-object reconstruction. 3D pose estimation for
hands [22, 31, 45, 56, 67] and objects [15, 26, 36, 39, 43,
49, 63, 64] have often been tackled in isolation [38]. Joint
reconstruction of hands and objects has recently received in-
creased attention [8, 13, 16, 18, 19, 59]. Hasson et al. [19]
introduces an end-to-end model to regress MANO [53]
hand parameters jointly with object mesh vertices deformed
from a sphere. Works of [18, 59] assume a known object
model and regress a 6DOF object pose instead. Other meth-
ods focus on the grasp synthesis [11, 25, 58], or contact
modeling [5, 6] given a 3D object.

Interaction constraints are imposed to avoid collisions
and to encourage contact points. To achieve this, compet-
ing attraction and repulsion terms are employed in [11, 19].
Collision penalization is implemented either with approx-
imate shape primitives [3, 34, 48] or triangle meshes [2,
16, 17, 19, 23, 33, 50, 60, 65]. Similarly, in this work we
impose error terms in our joint hand-object fitting to favor
physically plausible interactions.

Recent work on monocular hand-object reconstruction
mostly adopts learning-based CNN models [16, 18, 19, 29,
38, 41, 59]. Such methods obtain promising results but re-
main limited to constrained datasets and lack generaliza-
tion. Moreover, learning-based methods are typically lim-
ited to the predefined number of hands and objects. In con-
trast, our method can reconstruct both single and two-hand
interactions detected in the image. Concurrent work of [8]
extends the optimization-based body-object reconstruction
method PHOSA [65] to perform hand-object fitting. While
our method shares similar optimization components with
[8], it differs by leveraging video data.
Temporal constraints. In case of video inputs, tempo-
ral constraints have been used for body motion estimation
in the context of neural networks [20, 24], or optimiza-
tion [1, 51]. For hands, [7] proposes a graph convolu-
tional approach to learn temporal dependencies. Hampali et
al. [16] make use of a temporal consistency term when fit-
ting hand-object configurations to RGB-D data. We explore
a similar term to obtain temporally smooth fits to RGB data
and initialize the optimization from the previous frame’s fit.
[41] propose to filter noisy hand reconstructions by detect-
ing implausible or inconsistent hand poses and jittering pre-
dictions over consecutive frames.
3D label acquisition for hand-object datasets. Recent ef-
forts aim to scale up data collection for 2D hand-object in-
teractions [55]. Due to the difficulty of annotating 3D in
images, several approaches for automatic label acquisition
have been proposed. [19] introduces ObMan, a synthetic
dataset obtained by rendering MANO hand model [53] au-
tomatically grasping ShapeNet objects [9]. The dataset
of [14] utilizes visible magnetic sensors while [52] rely
on force sensors which limit the range of posible grasps.
[16] presents the HO-3D dataset where labels result from
automatic fits to RGB-D data. [6] collects a dataset for 3D
printed object models in a restricted capture setup. Very re-
cently, [10] and [32] propose to collect annotations using
hybrid methods to collect reliable labels. In this work, we
use the HO-3D benchmark for quantitative evaluations. We
also show qualitative results for videos in-the-wild where
3D ground truth is not available.

3. Automatic labelling of 3D hands and objects
We first describe the optimization-based fitting proce-

dure, consisting of estimating 2D detections (Section 3.1),
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Figure 2: Joint hand-object fitting: We independently initialize the hand and object poses based on 2D detections and
segmentations. We refine this configuration with interaction-based constraints to obtain our final joint fitting.

initializing 3D hand and object poses (Section 3.2), and
joint fitting (Section 3.3). An overview can be seen in Fig-
ure 2.

Our method takes a video of hand-object manipulation as
input. We assume that an exact or approximate object model
representing the manipulated object is provided and use the
ground-truth camera intrinsic parameters when available.

3.1. Obtaining 2D hand-object evidence

2D hand and object detection. For each video, the first
step is to detect initial 2D bounding boxes. We use a recent
hand and manipulated object detector [55] to extract object
and hand bounding boxes in each frame. The hands are
predicted with left or right side labels. When the predicted
boxes do not match the known properties of the dataset in
terms of object presence, hand number or hand sides, we
discard the detections for the given frame, and recover de-
tections through tracking in a subsequent step.
Tracking. We apply an off-the-shelf 2D bounding box
tracker [47] which relies on Kalman filtering [35] to extract
hand and object tracks from the noisy per-frame detections.
This step allows to recover missed or discarded detections,
and produces hand and object bounding box candidates for
the full video clip.

For the Epic-Kitchens dataset, the real number of visible
hands is unknown. We automatically select video clips for
which at least one object and one hand track extend over
more then 20 consecutive frames after tracking.
Segmentation. The key image evidence we rely on for fit-
ting is 2D segmentation. We extract instance masks M̂obj

for each tracked object detection using the instance segmen-
tation head of the PointRend [28]. Similar to PHOSA [65],
we use a model pretrained on the COCO [40] dataset. How-
ever, while [65] fits objects among the COCO categories,
our target everyday objects are often not present among the
COCO classes. For each object detection, we use the mask
associated to the highest class activation of the PointRend
instance classifier. We observe this class-agnostic approach
to perform well in most cases. To account for hand occlu-

sions, we extract the COCO masks associated to the person
class M̂hand for the tracked hand boxes, see the Section B
of the supplemental material for additional details.

3.2. Independent pose initialization

Hand initialization. We employ the recent publicly avail-
able hand pose estimator FrankMocap [54] to estimate the
initial hand articulated poses, as well as the hand location
and scale in pixel space. We recover an estimated depth
using the world scale of the hand and the exact intrinsic
camera parameters when available. When the exact camera
intrinsic parameters are unknown, we approximate the focal
length given the specifications of the camera, and assume
the central point is at the center of the pixel image.
Object initialization. We use the 2D object segmenta-
tion to initialize the object pose for the 3D model asso-
ciated to the target video clip. To obtain pose candidates
for the first video frame, we sample random rotations uni-
formly in SO(3) and use the radius of the instance bound-
ing box to estimate the 3D center of the provided mesh in
the first frame. We update the object depth minimizing the
difference between the diagonals of the projected model’s
tight bounding box and the predicted detection in the least
squared sense. We then compute a translation update in the
camera plane, minimizing the difference between the cen-
ters of the projected object model and the detection given
a fixed depth. We repeat these two steps until convergence
to recover an estimate of the object translation. We fur-
ther optimize the object pose using differentiable render-
ing. We optimize the object pose with a pixel squared loss
on the difference between the differentiably rendered object
mask and the PointRend [28] object segmentation follow-
ing PHOSA [65]. As for PHOSA, our object loss is hand-
occlusion aware: only pixels which are not associated with
the person label are taken into account. For each subsequent
frame, we use the object pose from the previous frame as
initialization and further refine it with differentiable render-
ing as described above. This process results in as many can-
didate motion initializations as there are candidate object
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poses. In practice, the number of candidate initializations is
empirically set to 50.

We select the object motion candidate for which the av-
erage IoU score between the rendered mask and the target
occlusion mask is highest.

3.3. Joint fitting

Independent hand-object fits are often inaccurate and do
not take into account interaction-based constraints. We re-
fine the initial hand-object poses leveraging both coarse and
fine-grained manipulation priors.

Optimized parameters. The goal of our fitting is to find
the optimal hand and object pose parameters for a sequence
of T consecutive frames. For each frame, we optimize 3D
translations Dhand, Dobj , 3D global rotations Rhand, Robj

as well as θ hand pose parameters. Additionally, we opti-
mize a shared hand scale shand.

We optimize the articulated MANO [53] model in the
latent pose space θ. Given the θ pose parameters, the
MANO model differentiably outputs 3D hand vertex coor-
dinates centered on the middle metacarpophalangeal joint
Vc
hand = MANO(θ). Following [58], we use a pose latent

subspace of size 16.
We optimize the hands and object rotation Rhand, Robj

using the 6D continuous rotation representation [66] and
optimize the 3D translation Dhand, Dobj in metric camera
space. When we use approximate object meshes, we ad-
ditionally optimize a scalar scaling parameter sobj which
allows the object’s size to vary. We also allow hand ver-
tices to scale by a factor shand which is shared across the T
frames. The hand vertices in camera coordinates V3d

hand are
estimated as following:

V3d
hand = shand(RhandVc

hand) +Dhand. (1)

The object vertices V3d
obj are estimated as a rigid transfor-

mation of canonically oriented model vertices Vc
obj :

V3d
obj = sobj(RobjVc

obj) +Dobj . (2)

Next, we describe the individual error terms that we mini-
mize during fitting.
Object silhouette matching (Lobj). We use a differentiable
renderer [26] to render the object maskMobj and compare
it to the reference segmentation mask M̂obj . This error term
is occlusion-aware as in [65]. No penalization occurs for
the object silhouette being rendered in pixel regions M̂hand

where hand occlusions occur. We write this error as:

Lobj = ||(1− M̂hand) ◦ (Mobj − M̂obj)||22 (3)

Projected hand vertices (Lv2d). We constrain the hand po-
sition by penalizing projected vertex offsets from the initial
vertex pixel locations Vhand

2d predicted by FrankMocap [54].

To compute the current 2D vertex locations, we project the
MANO [53] vertices V3D

hand to the pixel plane using the
camera projection operation Π. This error is written as:

Lv2d = ||Π(V3D
hand)− V̂2d

hand||22 (4)

Hand regularization (Lpca). Given that we optimize the
articulated hand pose, we regularize the optimized hand
pose. As in [4, 19, 54], we apply a mean square error term
to the PCA hand components Lpca = ||θ||22 to bias the esti-
mated hand poses towards statistically plausible configura-
tions.
Scale (Lscale). Similarly to PHOSA[65], when we allow
the elements in the scene to scale, we penalize deviations
from category-level average dimensions.
Smoothness (Lsmooth). We further leverage a simple
smoothness prior over the T sampled frames Lsmooth =∑T−1

t=1 ||V3D
t+1 −V3D

t ||22 which encourages minimal 3D ver-
tex variances across neighboring frames for both hands and
objects as in [16].
Coarse interaction (Lcentroid). Following [65], we penal-
ize the squared distance between hand and object centroids
when the predicted hand and object boxes overlap to encode
a coarse interaction prior. As we assume the object scale to
be provided, this error only impacts the rigid hand pose, ef-
fectively attracting the hand towards the interacted object.
In case of multiple hands, all overlapping hand-object pairs
of meshes are considered.
Collision (Lcol). We rely on a recent collision penaliza-
tion term introduced to enforce non-interpenetration con-
straints between multiple persons in the context of body
mesh estimation [23]. The collision error Lcol is com-
puted for each pair k, l of estimated meshes. We compute
Lk,l
col =

∑
i Φk(Vi

l ). Where Φk is the negative truncated
signed distance function (SDF) associated to the mesh k,
Φk(V) = max(0,−SDF (V)).

Lcol =
∑
k,l

Lk,l
col (5)

This formulation allows to handle any number of visible
hands and objects in the scene.
Local contacts. Hands interact with objects by establishing
surface contacts without interpenetration. We experiment
with the hand-object heuristic introduced by [19]. We re-
purpose this loss which has been introduced in a learning
framework to our optimization setup. This additional term
encourages the contacts to occur at the surface of the object
by penalizing the distance between hand vertices the closest
object vertex for hand vertices in the object’s vicinity. We
refer to the supplemental material Section C for additional
details.

The final objective L is composed of a weighted sum
of the previously described terms, where the weights are
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empirically set to balance the contributions of each error
term.

L = λobjLobj + λv2dLv2d

+λpcaLpca + λscaleLscale + λsmoothLsmooth

+λcentroidLcentroid + λlocalLlocal + λcolLcol

(6)

While [65] adapt the weights for their optimization for
each object categories, we fix the weight parameters empir-
ically and keep them constant across all experiments. We
refer to Section C of the supplemental material for exact
weight values and additional implementation details.

4. Experiments
We first define the evaluation metrics (Section 4.1) and

the datasets (Section 4.2) used in our experiments. Then,
we provide an ablation to measure the contribution of each
of our optimization objective terms (Section 4.3). We inves-
tigate the sensitivity of our approach to the quality of the 2D
estimates (Section 4.4). Next, we compare our approach to
the state of the art (Section 4.5). Finally, we provide quali-
tative results for in-the-wild examples (Section 4.6).

4.1. Metrics

The structured output for hand-object reconstruction is
difficult to evaluate with a single metric. We therefore rely
on multiple evaluation measures.
Object metrics. We evaluate our object pose estimates by
computing the average vertex distance. Common objects
such as bottles and plates often present plane and revolution
symmetries. To account for point matching ambiguities, we
further report the standard pose estimation average closest
point distance (add-s) [64].
Hand metrics. We follow the standard hand pose esti-
mation protocols [16, 68] and report the procrustes-aligned
hand vertex error and F-scores. We compare the hand joint
predictions using average distances after scale and transla-
tion alignment. When investigating the results of the joint
fitting, we additionally report the average hand vertex dis-
tances without alignment.
Interaction metrics. Penetration depth (mm): We re-
port the maximum penetration depth between the hand and
the object following previous work on hand-object interac-
tions [6, 18, 19, 25]. Contact (%): We also report the con-
tact percentage following [25]. When ground truth contact
binary labels are available, we report contact accuracy, as
we further detail in the supplemental material Section C .

4.2. Datasets

HO-3D [16] is the reference dataset which provides accu-
rate hand-object annotations during interaction for marker-
less RGB images. The users manipulate 10 objects from

the YCB [69] dataset, for which the CAD models are pro-
vided. The ground-truth annotations are obtained by fitting
the hand and object models to RGB-D evidence which as-
sumes limited hand motion. We present results on the stan-
dard test set composed of 13 videos with a total of 11525
frames depicting single-hand object manipulations.
Core50 [42] contains short sequences of unannotated im-
ages of hands manipulating 50 object instances from 10
everyday object categories such as cups, light bulbs and
phones. We manually associate 26 objects with approx-
imately matching 3D object models from the ShapeNet
dataset [9]. We further annotate hands being left or right
for each of the 11 video sequences available for each ob-
ject, resulting in 286 video clips and 86k frames.
Epic Kitchens [12] is an unscripted dataset which has
been collected without imposing constraints or equipment
beyond a head-mounted camera. In contrast to existing
datasets for which 3D information is available, it there-
fore presents natural hand-object interactions. This dataset
is however densely annotated with action labels which in-
clude the category of the object of interest. We focus on
a subset of common object categories: cups, plates, cans,
phones and bottles which are involved in a total of 3456 ac-
tion video clips. For each object category, we associate an
object model from the CAD ShapeNet [9] database. We as-
sume that the target manipulated object is the one with the
longest track in the associated action clip.

4.3. Contribution of error terms in fitting

As explained in Section 3, our method introduces several
error terms which determine the final reconstruction qual-
ity. We evaluate the contribution of the main error terms
on the HO-3D benchmark [16] in Table 1. We validate that
our joint reconstruction outperforms the naive composition
baseline, which is obtained by separately fitting the object
to the occlusion-aware object mask and the hand using the
hand-specific terms Lv2d and Lpca. When fitted indepen-
dently, the scale-depth ambiguity prevents an accurate es-
timate of the hand distance. As we use the ground-truth
object model, the 3D object pose can be estimated without
ambiguity using the camera intrinsic parameters. Joint fit-
ting improves the 3D pose estimates using both smoothness
and interaction priors. We observe that the coarse interac-
tion prior is critical towards improving the absolute hand
pose. When removing this error term, the hand pose er-
ror increases two-fold from 8.9 to 17.1cm. We observe
that the temporal smoothness term, while simple, provides
a strong improvement to both the hand and object pose es-
timates. Leveraging information across neighboring video
frames reduces the errors by 25% and 38% for the hand and
object, respectively. While the local interaction and col-
lision penalization terms only marginally change the hand
and object reconstruction scores, their impact can be quan-

5



Figure 3: Effect of error terms: Qualitative analysis show-
ing the effects of the various error terms for the hand-object
reconstruction accuracy on the HO-3D dataset. We high-
light visual evidence of local corrections attributed to the
local interaction [19] and collision [23] terms.

titatively observed in the interaction metrics. The collision
penalization terms reduce the average penetration depth by
a large factor (10.2mm vs 2.4mm). The local interaction
term [19] reduces both the interpenetration depth and the
contact percentage, which is defined as either exact surface
contact or interpenetration between the hand and the object.
Qualitatively, we observe that this term produces local cor-
rections in the vicinity of estimated contact points. Includ-
ing all error terms results in more plausible grasps, which
we illustrate in Figure 3 qualitatively.

While ground truth 3D poses are hard to annotate for
generic videos with hand-object manipulations, interaction
metrics such as penetration depth can be directly computed
from the predicted reconstructions. As the Core50 [42]
dataset presents only videos in which the object is actively
manipulated by the hand, we can additionally report con-
tact accuracy as proxies to evaluate the quality of the recon-
structed grasps. We report these two metrics on the Core50
dataset in Table 2 and confirm the benefit from our joint fit-
ting approach. Using joint fitting significantly increases the
contact accuracy from 7.3% to 89.5%, while only increas-
ing the average penetration depth by 0.6mm.

4.4. Sensitivity to estimated 2D evidence

Our method makes use of generic models for detection
and mask estimation and would directly benefit from more

Figure 4: Sensitivity to 2D detections: Dependence of our
3D reconstruction on the accuracy of the 2D evidence by
running our method with ground truth (GT) hand and object
detections and ground truth object masks for the HO-3D
dataset [16].

accurate detection, 2D hand pose estimation and instance
segmentation models. The reliance of our method on 2D
cues therefore allows it to benefit from additional efforts in
2D image annotation which is simpler compared to 3D an-
notation in practice. We investigate the dependence of our
method on the quality of the available 2D evidence. To in-
vestigate the expected improvements our method could gain
from stronger object detections, instead of using noisy de-
tections, we use the hand and object ground truth bounding
boxes provided for the HO-3D test set. We observe in Fig-
ure 4 the improvements we obtain from using the ground-
truth detections. Both hands and objects benefit from more
accurate detections, improving by 2cm when compared to
the tracking-by-detection estimates. To investigate the er-
rors which come from using noisy approximate instance
masks, we render the object and hand ground truth masks
and use them to guide our optimization. By relying on 2D
information, our approach suffers from limitations such as
depth ambiguities which can result from fitting to image
segmentation masks. Object asymmetries which rely on
color information can also be hard to resolved during fit-
ting. We observe that using ground truth hand and object
masks allows to further decrease the 3D pose errors. We
note that the object error decreases to 2cm and below 1cm
when comparing distances to closest points. When the ob-
ject model is available, our joint fitting method produces
highly accurate object poses in the presence of accurate 2D
evidence.

4.5. State-of-the-art comparison

Recent efforts for joint hand-object pose estimation in
camera space [18, 19, 59] have focused on direct bottom-up
regression of 3D poses. We compare the performance of our
fitting approach to recent learning-based methods for joint
hand-object reconstruction [18, 41] in Table 3.

While these learnt methods produce more accurate hand
predictions, their object predictions are instance specific.
As a direct consequence, the methods do not generalize to

1https://competitions.codalab.org/competitions/22485

6

https://competitions.codalab.org/competitions/22485


Hand Object Interaction
vertex mean mepe vertex mean add-s pen. depth contact

distance (cm)↓ aligned (cm) ↓ distance (cm) ↓ (cm) ↓ (mm) ↓ %
indep. composition 26.2 5.2 12.1 7.7 3.2 25.8
joint fitting 8.6 5.4 8.0 3.8 2.8 77.5

w/out local interactions 8.5 5.4 8.0 3.8 2.4 72.3
w/out collision 8.9 5.4 8.0 3.8 10.2 80.5
w/out coarse interaction 17.1 5.3 8.1 3.8 1.9 59.4
w/out smoothness 11.4 5.6 12.8 8.3 3.0 79.1

Table 1: Contribution of error terms: We show benefits of the joint modeling for hand-object interactions by the increased
reconstruction accuracy when compared to independent hand and object composition on the HO-3D [16] dataset. Our
smoothness and interaction terms impose additional constraints which improve the final hand-object pose reconstructions.

Dataset Contact Accuracy (%) ↑ Pen. Depth (mm) ↓
independent joint independent joint

Core50 7.3 89.5 0.6 1.2

Table 2: Results on Core50: Interaction errors for hand-
object fits obtained on the Core50 dataset. We observe sig-
nificantly improved contact accuracy with joint fitting over
independent fits at the expense of a minor cost of a 0.6mm
increase in penetration.

mesh F-score F-score generalizes to
Method error ↓ @5mm ↑ F@15mm ↑ unseen objects

Liu 2021 [41] 0.95 0.96 0.53 7
Hampali 2020 [16] 1.06 0.51 0.94 7
Hasson 2020 [18] 1.14 0.42 0.93 7

Joint fitting 1.47 0.39 0.88 3

Table 3: State-of-the-art-comparison: We compare the
hand performance of the single-view pose estimation base-
lines. Note that the reported results for [16] output hand
meshes only. Hasson 2020 [18], Liu 2021 [41] and our
method predict the hand-object meshes jointly. All methods
are trained only on the real images from the HO-3D train-
ing split and evaluated on the official test split through an
online submission1. The hand mesh error is reported after
procrustes alignment.

new objects at test time. In contrast, our generic fitting
method performs equally well across the seen and unseen
objects of the HO-3D test split, see Table 4.

4.6. In-the-wild 3D hand-object pose estimation

We test the limits of our approach and showcase the
strength of our method by comparing qualitatively to a
model trained for joint hand-object reconstruction [19].
Their model estimates the shape of the object by deform-
ing a sphere and therefore does not depend on known ob-

Object Hand
vertex dist (cm) ↓ add-s (cm) ↓ mepe ↓ aligned
Seen Unseen Seen Unseen mepe ↓

Ours 8.0 8.1 4.0 3.3 8.6 5.4
[18] 6.7 10.7 2.2 3.6 5.5 3.7

Table 4: Unseen objects: Vertex errors (cm) for estimated
hand and object meshes. Compared to [18], our method
performs similarly across seen and unseen objects.

ject models. However, given this object topology restric-
tion, this method has limited expressivity. It can only cap-
ture a subset of all object shapes which excludes everyday
objects such as mugs or cups, see Fig. 6. In comparison,
while our method makes stronger assumptions by relying
on an approximate object model, it is applicable to any ev-
eryday objects for which an approximate mesh can be re-
trieved without further limitations. Additionally, while the
manipulation reconstruction from [19] estimates the grasp
relative to the root joint of the hand, our method outputs
image-aligned predictions.

We further show that our method can be applied to the
challenging Epic-Kitchens dataset [12] which presents nat-
ural manipulation of common objects, see Fig. 5. Note that
our objective (6) is not restricted to a single hand-object
pair and naturally generalizes to multiple hands and objects.
To handle scenes with two hands in [12] we optimize (6)
with pairwise losses defined for both detected hands and
the detected object. We show results of two-hand manipula-
tions which represent the majority of examples in the target
dataset. While we observe cases of depth ambiguity, espe-
cially with almost plannar objects such as plates, we show
that our method can recover plausible reconstructions for
several object categories across a variety of hand poses.
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Figure 5: In-the-wild reconstructions: Our results on natural hand-object manipulations of the Epic-Kitchens dataset [12].
We present several success and failures of our method on the challenging Epic-Kitchens dataset. We highlight typical failure
modes for our method, in particular, object orientation errors resulting from depth ambiguity. We observe that our fitting
method recovers plausible interactions across different object categories and hand-object configurations.

Figure 6: Comparison with [19]: Qualitative comparison
of our fits to the ObMan-trained model [19] estimations on
the Core50 dataset.While our model requires an approxi-
mate mesh to be provided, it generalizes to objects of arbi-
trary topology.

5. Conclusions

We present a robust approach for fitting 3D hand-object
configurations to monocular RGB videos. Our method

builds on estimates from neural network models for de-
tection, object segmentation and 3D hand pose estimation
trained with full supervision. Due to the lack of supervi-
sion at similar scale for 3D hand-object interactions, we opt
for a fitting-based approach and demonstrate advantages on
several datasets. A key limitation of current methods that
estimate 6DOF object pose is the reliance on known ob-
ject models. Future work will consider automatic object
recovery to fully automate the hand-object reconstruction
process.
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APPENDIX
We first present additional qualitative results for the HO-

3D [16] dataset (Section A). Next, we analyze the 2D detec-
tion and segmentation performance of the general-purpose
estimators on the HO-3D [16] dataset (Section B). Finally,
we provide additional implementation details for our joint
hand-object optimization (Section C).

A. Qualitative results for HO-3D dataset
In Figure A.2, we compare qualitatively on the HO-3D

test set our joint fitting method with independent composi-
tion, which results from fitting the object and the hand with-
out interaction constraints independently on each frame. We
observe that the joint fitting allows to recover improved con-
figurations across various test objects and consistently im-
proves upon independent composition.

B. 2D evidence accuracy.
B.1. Evaluation of hand and object detection

We assess the performance of our procedure to recover
the detections and segmentation masks for the hands and
manipulated objects.

We use the 100 Days of Hands (100DOH) hand-object
detector [55] to predict hand and object bounding boxes.
Following [55], we evaluate hand detection accuracy by re-
porting average precision (AP) for predicted hand and ob-
ject boxes and set the intersection over union (IoU) thresh-
old to 0.5 on the HO-3D [16] train split. To compute ground
truth detections, we compute the tight bounding box around
pixel coordinates of the projected vertices for the objects
and the hand. For the hands, we post-process the detections
to recover square boxes. In Table. A.1 we report the AP
for hands and objects before and after tracking. We observe
that tracking [47] effectively allows us to recover valid de-
tections. The use of tracking improves AP by 24% and 12%
for hands and objects respectively.

B.2. Evaluation of hand and object segmentation

We evaluate the accuracy of our instance mask es-
timation procedure. We report the IoU between the

Hand AP Object AP

Without tracking 0.61 0.59
With tracking 0.85 0.71

Table A.1: Detection accuracy: Hand and object detection
precision using the 100DOH detector on the HO-3D [16]
train split. Tracking allows to retrieve reliable detections
both for hands and objects.

Figure A.1: We qualitatively investigate the performance
of the 2D detection and segmentation models on the HO-
3D [16] train split. Outlined in red, we display segmen-
tation failures for hands or objects which are either due to
imprecise detections or occur despite good detections.

PointRend [28] outputs and the ground truth segmenta-
tion masks, which we obtain by rendering the ground truth
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Figure A.2: Reconstructions obtained from independent composition and joint fitting on HO-3D [16] dataset. We observe
that enforcing hand-object interaction constraints allows our method to recover plausible grasps and significantly improves
upon the naive independent composition baseline.

Detections Hand IoU Object IoU

Ground Truth boxes 0.63 0.74
Predicted boxes [55] 0.61 0.66

Table A.2: Segmentation accuracy: Hand and object seg-
mentation IoU for the PointRend mask estimates on the HO-
3D dataset [16].

meshes. As the hand ground truth meshes are unavailable
for the test split, we report results on the HO-3D train split.
As described in the method section of the main paper, we
select the mask produced for the most confident class pre-
diction for the object and the Person class for the hand. To
investigate the segmentation error which is due to bound-
ing box errors, we report IoU scores for the PointRend seg-
mentation head both using the tracked and the ground truth
detections in Table. A.2. As expected, segmentation masks
are more precise when using ground truth object boxes, es-
pecially for objects. Hence, our method would benefit from
more robust and accurate detections. We illustrate success
and failures for 2D mask extraction in Figure A.1.

C. Implementation details.
We describe details of our fitting implementation. Our

code and manually collected annotations will be made avail-
able upon publication.

Optimization procedure. Two of our error terms, the
collision and fine-grained interactions act locally and re-
quire a reasonable initial configuration to provide mean-
ingful gradients. We therefore obtain the final hand-object
reconstructions by performing two consecutive steps. We
first recover a coarse pose for the hand and the object us-
ing the data and coarse interaction and regularization terms
(Lobj ,Lv2d,Lpca,Lscale,Lsmooth,Lcentroid). We then re-
fine the optimized parameters using the full set of error

terms. Both steps are run for 200 optimization steps using
the Adam [27] optimizer. We use different learning rates
for various optimized parameters in order to distribute the
updates between articulated and rigid pose updates. We use
a fixed learning rate of 0.1 for the PCA components of the
MANO [53] articulated hand model and the continuous ro-
tation parameters [66]. For the translation and scale updates
we use a learning rate of 0.01.

Error terms weighting. We use the same weights to
balance the various error terms across all reconstructed
datasets. We empirically fix the weights to the following
values.
Data weights: λobj : 1, λv2d : 50
Regularization weights: λpca : 0.004, λscale : 0.001,
λsmooth : 2000
Interaction weights: λcentroid : 1, λlocal : 1, λcol : 0.001

Mesh preprocessing. In order to reason about collisions
and compute penetration depths, we preprocess the meshes
to make them watertight. We further uniformly downscale
the mesh to speed-up the rendering which is required to
compute the object silhouette loss Lobj . We compute water-
tight meshes for all ShapeNet models [9] using Manifold-
Plus [21]. We rely on ACVD [62] to uniformly resample
the object meshes, and set the target number of vertices to
1000 which we observe empirically to provide a satisfactory
trade-off mesh approximation and rendering speed.

Collision loss. Unlike PHOSA [65] which penalizes col-
lisions using a local loss [2] which acts at the mesh surfaces,
we use an implementation which relies on Signed Distance
Fields (SDF) [23]. We follow the original implementation,
using a grid size of 32 for the signed distance field.

Local interaction heuristic. We use the loss term intro-
duced by [19], which showed improved qualitative results
when used in the context of fully-supervised learning. We
accelerate computations by relying on the SDF computa-
tion from [23] to perform collision checking. We use the
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same parameters as in the original implementation for the
attractive and repulsive terms, 1cm and 2cm respectively.

Contact accuracy. We measure contact following [25],
where contact is defined as negative hand vertex values in
the object SDF.

Runtime. As we rely on learnt models for detection, seg-
mentation and initial hand pose estimation, pre-processing
10 frames of dimension 640*480 takes less than a second on
a Tesla V100 Nvidia GPU. The initial object fitting stage for
50 random object pose initialization takes around 10 second
per frame. The joint fitting runs at 14 iterations per iteration
in absence of collision and contact terms. With the fine-
grained interaction constraints, the iteration time increases
up to 4 iterations per second. In total, complete fitting of a
10 frame video clip takes between 2 and 3 minutes.
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