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Introduction

The Chernoff √ n-Lemma, see Lemma 2 in Ref. 5, is known as a key tool in the theory of semigroup approximations, see, for example, Ref. 8 (Chapter III, Section 5) and Ref. 24. A large variety of applications of the Chernoff approximation method (in the strong operator topology) one finds in a recent survey Ref. 3 (Section 2). For the reader convenience and for motivation of the present notes we show this lemma in the following below.

Lemma 1.1. Let bounded operator C on a Banach space X (C ∈ L(X)) be a contraction, i.e., C ≤ 1. Then {e t(C-1 } t≥0 is a norm-continuous contraction semigroup on X and one has the estimate

(C n -e n(C-1) )x ≤ √ n (C -1)x , (1.1) 
for all x ∈ X and natural n ∈ N.

Proof. To prove the inequality (1.1) we use the representation

C n -e n(C-1) = e -n ∞ m=0 n m m! (C n -C m ) . (1.2) 
To proceed we insert

(C n -C m )x ≤ (C |n-m| -1)x ≤ |m -n| (C -1)x , (1.3) 
into (1.2) to obtain by the Cauchy-Schwarz inequality the estimate:

(C n -e n(C-1) )x ≤ (C -1)x e -n ∞ m=0 n m m! |m -n| ≤ { ∞ m=0 e -n n m m! |m -n| 2 } 1/2 (C -1)x , x ∈ X , (1.4) 
Note that the sum in the right-hand side of (1.4) can be calculated explicitly. This gives the value n, which yields (1.1).

The aim of the present notes is to scrutinise the following issues related to the the Chernoff estimate. First, we modify for contractions on a Banach space X the √ n-estimate (1.1) and apply new estimates à la Chernoff (see Section 2 and Section 3) in the proof of the Chernoff product formula for strongly continuous semigroups (C 0 -semigroups) in the strong operator topology, cf. Ref. 3. Second, we use the idea of the probabilistic approach [START_REF] Cachia | Operator-Norm Approximation of Semigroups by Quasi-sectorial Contractions[END_REF][START_REF] Zagrebnov | Comments on the Chernoff √ n-lemma[END_REF] , that proving the Chernoff estimate in the strong operator topology (Section 2), to uplift it to the operator-norm estimate for a special class of contractions: the quasisectorial contractions, see Section 4. Finally, in Section 5 we use the operator-norm Chernoff estimate for illustration of its direct application in the approximation theory of holomorphic C 0 -semigroups for m-sectorial generators (that is, for quasi-sectorial contractions) in a Hilbert space. This allows to prove, besides the Euler approximation formula, the operator-norm convergence with optimal rate of the Dunford-Segal approximants [START_REF] Gomilko | On convergence rates in approximation theory for operator semigroups[END_REF] .

We warn the readers against a confusion between our probabilistic approach [START_REF] Cachia | Operator-Norm Approximation of Semigroups by Quasi-sectorial Contractions[END_REF][START_REF] Zagrebnov | Comments on the Chernoff √ n-lemma[END_REF] to alternative proof of the Chernoff estimate and a probabilistic approach to representation of C 0 -semigroups 18 exploited in Ref. 10 for developing the approximation theory of operator semigroups.

The 3

√ n-Lemma and Product Formulae

We start by a technical lemma. It is a revised version of the estimate (1.1). Our variational estimate (2.5) in 3 √ n-Lemma 2.1 and the probabilistic approach are, in a certain sense, more flexible than (1.1). Indeed, a revised scheme of the proof will be used later (Section 4) for uplifting the convergence of the Chernoff and the Lie-Trotter product formulae to the operator-norm topology.

Lemma 2.1. ( 3 √ n -Lemma)
Let C be a contraction on a Banach space X. Then {e t(C-1 } t≥0 is a norm-continuous contraction semigroup on X and one has the estimate

(C n -e n (C-1) ) x ≤ n 2 n 2 x + n (1 -C) x , n ∈ N , (2.5) 
for all x ∈ X and n > 0. For the optimal value of the parameter n :

* n := 4 n x (1 -C) x 1/3 , (2.6) 
in the right-hand side of (2.5) we obtain estimate

(C n -e n (C-1) ) ≤ 3 2 3 √ n 2 (1 -C) 2/3 , (2.7) 
which we call the 3 √ n -Lemma.

Proof. Since operator C is bounded and C ≤ 1, the operator (1 -C) is generator of a norm-continuous contraction semigroup since:

e -t (1-C) ≤ e -t ∞ m=0 t m m! C m ≤ 1 , t ≥ 0 . (2.8)
For proving the estimate (2.5) we use representation

C n -e n(C-1) = e -n ∞ m=0 n m m! (C n -C m ) .
(2.9)

Then we split the sum (2.9) into two parts: the central part for |m-n| ≤ n and the tails for |m -n| > n . Optimisation of the splitting parameter n in (2.5) yields the best estimate (2.7).

For evaluation the tails we use the Tchebychëv inequality. Let X n ∈ N 0 be the Poisson random variable with the rate parameter n ∈ N, that is, with the probability distribution P{X n = m} = n m e -n /m! . Then one gets for expectation: E(X n ) = n, and for variance: Var(X n ) := E((X n -E(X n )) 2 ) = n. That being so, the Tchebychëv inequality yields

P{|X n -E(X n )| > } ≤ Var(X n ) 2 n
, for any n > 0.

(2.10)

Note that although for any x ∈ X there is an evident bound: (C n -C m ) x ≤ 2 x , when estimating (2.9) we shall also use below inequalities

(C n -C m ) x = C n-k (C k -C m-n+k ) x ≤ |m -n| C n-k (1 -C) x , k = 0, 1, . . . , n , (2.11) 
that keep difference: (1 -C) x. Then by C ≤ 1 and by the Tchebychëv inequality (2.10) we obtain the estimate for tails:

e -n |m-n|> n n m m! (C n -C m ) x ≤ e -n |m-n|> n n m m! • 2 x = P{|X n -E(X n )| > n } • 2 x ≤ n 2 n 2 x .
(2.12)

To evaluate the central part of the sum (2.9), when |m -n| ≤ n , note that by virtue of (2.11):

(C n -C m )x ≤ |m -n| C n-[ n ] (1 -C)x (2.13) ≤ n (1 -C) x .
Then we obtain:

e -n |m-n|≤ n n m m! (C n -C m ) x ≤ n (1 -C) x , x ∈ X , (2.14) 
for n ∈ N. Estimate (2.14), together with (2.12), yield (2.5) for all u ∈ X and n > 0.

Minimising the estimate (2.5) with respect to parameter n > 0 one gets for n the optimal value (2.6) and

n * n 2 2 x + * n (1 -C) x = 3 2 3 √ n (4 x ) 1/3 (1 -C) x 2/3 , (2.15)
for all x ∈ X and n ∈ N. As a consequence, (2.5) and (2.15) yield (2.7), which is the 3 √ n -Lemma.

Theorem 2.1. (Chernoff product formula [START_REF] Chernoff | Note on product formulas for operator semigroups[END_REF][START_REF] Chernoff | Product formulas, nonlinear semigroups and addition of un-bounded operators[END_REF] ) Let Φ : t → Φ(t) be a function from R + 0 to contractions on X such that Φ(0) = 1. Let {U A (t)} t≥0 be a contraction C 0 -semigroup, and let domain D ⊂ dom(A) be a core of related generator A.

If the function Φ(t) has a strong right-derivative Φ (+0) at t = 0 (that is, Φ (+0)x exists for any x ∈ dom(Φ (+0))) and if

Φ (+0) x := lim t→+0 1 t (Φ(t) -1) x = -A x , (2.16 
)

for all x ∈ D, then lim n→∞ [Φ(t/n)] n x = U A (t) x , (2.17) 
for all t ∈ R + 0 and x ∈ X.

Proof. Consider the bounded approximations {A n (s)} n≥1 of generator A:

A n (s) := 1 -Φ(s/n) s/n , s ∈ R + , n ∈ N . (2.18)
Note that these operators are m-accretive:

(A n (s) + ζ 1) -1 ≤ (Re(ζ)) -1
for Re(ζ) > 0 and for any n ∈ N. By Φ(t) ≤ 1 together with (2.18) and condition (2.16) we obtain e -t An(s) ≤ 1, but also

lim n→∞ A n (s) x = A x , (2.19) 
for all x ∈ D and any s ∈ R + . Then, given that D = core(A), by virtue of the 

:= Φ(t/n): [Φ(t/n)] n x -e -t An(t) x = ([Φ(t/n)] n -e n(Φ(t/n)-1) ) x ≤ 3 2 3 √ n (4 x ) 1/3 (1 -Φ(t/n)) x 2/3 , x ∈ X . (2.21) 
Since by (2.19) one gets for any x ∈ D and uniformly on (0, t 0 ]: 

lim n→∞ 3 √ n (1 -Φ(t/n)) x 2/3 = lim n→∞ t 2/3 n -1/3 A n (t) x 2/3 =
lim n→∞ [Φ(t/n)] n x = U A (t) x , x ∈ D . (2.24)
Note that by density of D and by the uniform estimate [Φ(t/n)] n xe -t An(t) x ≤ 2 x the convergence in (2.23) can be extended to all x ∈ X. Indeed, it is known that on the bounded subsets of L(X) the topology of point-wise convergence on a dense subset D ⊂ X coincides with the strong operator topology, see, e.g., Ref. 14 (Chapter III, Lemma 3.5). As a consequence, the limit (2.23), when being extended to x ∈ X, and limit (2.20) yield the extension of (2.24) to (2.17).

The limit (2.17) that involves derivative (2.16) is called the Chernoff product formula for contractive C 0 -semigroup {U A (t)} t≥0 in the strong operator topology, cf. Ref. 8 (Chapter III, Section 5a.). Proposition 2.1. (Lie-Trotter product formula [START_REF] Chernoff | Product formulas, nonlinear semigroups and addition of un-bounded operators[END_REF][START_REF] Trotter | On the products of semigroups of operators[END_REF] ) Let A, B and C be generators of contraction C 0 -semigroups on X. Suppose that algebraic sum

Cx = Ax + Bx , (2.25) 
is valid for all x ∈ D, where domain D = core (C). Then the semigroup {U C (t)} t≥0 can be approximated on X in the strong operator topology by the Lie-Trotter product formula: (2.27)

e -tC x = lim n→∞ (e -tA/n e -tB/n ) n x , x ∈ X , ( 2 
Note that if x ∈ D, then derivative Φ (+0)x = lim t→+0 1 t (Φ(t) -1) x = -(A + B) x .
(2.28)

Now we are in position to apply Theorem 2.1. This yields (2.26) for generator C := (A + B).

Corollary 2.1. Extensions of the strongly convergent Lie-Trotter product formula of Proposition 2.1 to quasi-bounded and holomorphic semigroups follows through verbatim.

More Chernoff 's Estimates

In this section we show a one more Chernoff-type estimate (see (3.29)), which is of a different nature than variational estimate (2.5) ( 3 √ n-Lemma 2.1). In fact, it is a kind of improvement of the original Chernoff estimate (1.1) ( √ n-Lemma 1.1), which is still restricted to convergence in the strong operator topology.

Theorem 3.1. Let C ∈ L(X) be contraction on a Banach space X. Then {e t(C-1 } t≥0 is a norm-continuous contractive semigroup on X and the following estimate

(C n -e n(C-1) ) x ≤ n 2 (C -1) 2 x + e 2 3 (C -1) 3 x , (3.29) 
holds for all n ∈ N and x ∈ X.

Proof. The first assertion is proven in Lemma 2.1, see (2.8).

To prove inequality (3.29) we use the telescopic representation:

C n -e n(C-1) = n-1 k=0 C n-k-1 (C -e (C-1) ) e k(C-1) . (3.30) 
To proceed we exploit that operator C ∈ L(X) is bounded and therefore

C -e (C-1) = - 1 2 (1 -C) 2 -(1 -C) 3 ∞ m=3 (-1) m m! (1 -C) m-3 , (3.31)
for the operator-norm convergent series. Hence, owing to C ≤ 1 one gets estimate

∞ m=3 1 m! (1 -C) m-3 ≤ 1 6 e 1-C ≤ e 2 6 . (3.32) 
Then on account of (3.30) -(3.32) and (2.8) we obtain inequality (3.29).

Corollary 3.1. (Chernoff product formula) Let Φ : t → Φ(t) be a function from R + 0 to contractions on X such that Φ(0) = 1, which satisfies conditions of Theorem 2.1. Then lim n→∞ ([Φ(t/n)] n -e n(Φ(t/n)-1) ) x = 0 , x ∈ X , (3.33) 
and as a result one gets the product formula (2.17).

Proof. On account of Theorem 3.1 we obtain by (3.29) the estimate

([Φ(t/n)] n -e n(Φ(t/n)-1) ) x ≤ (3.34) t 2 2n n 2 t 2 (1 -Φ(t/n)) 2 x + 2 e 2 3 n 2 t 2 (1 -Φ(t/n)) 2 x , x ∈ X .
Note that by (2.19) for any t ∈ R + we have on the dense set D = core(A): 

lim n→∞ n t (1 -Φ(t/n)) x = A x , x ∈ D . ( 3 
(A n (t)) 2 x = A 2 , x ∈ D ⊂ dom(A 2 ) , (3.36) 
where 

A n (t) := (t/n) -1 (1 -Φ(t/n)), cf
([Φ(t/n)] n -e n(Φ(t/n)-1) ) x = 0 , x ∈ D . (3.37)
Then similarly to concluding arguments in Theorem 2.1, saying that on the bounded subsets of L(X) the topology of point-wise convergence on a dense subset D ⊂ X coincides with the strong operator topology, the limit (3.37) can be extended to x ∈ X. Now, given that D = core(A), by virtue of the Trotter-Neveu-Kato theorem we obtain the limit (2.20), and owing to (3.37) for x ∈ X, we deduce the Chernoff product formula (2.17).

Remark 3.1. Resuming the Chernoff

√ n-estimate (1.1), and its varieties: (2.5) and (3.29), we conclude that due to the terms with difference (C -1) x all of them contrôl only the strong convergence of the product formulae. By definition (2.18) the rates: R n (t), of these converges conditioned to x ∈ D have the following asymptotic form for t > 0 and large n ∈ N:

(a) For (1.1): R n (t) = A n (t) x / √ n . (b) For (2.5): R n (t) = A n (t) x 2/3 / 3 √ n . (c) For (3.29): R n (t) = A n (t) 2 x /n . Remark 3.2.
None of these three methods has an evident straightforward extension that could ensure the operator-norm convergence of the Chernoff product formula [START_REF] Zagrebnov | Notes on the Chernoff product formula[END_REF] . In the next Section 4 we show that only a relatively more sophisticated method (cf.(b)) based on the Tchebychëv inequality (Section 2) is, a fortiori, sufficiently accurate. Indeed, it allows an uplifting of convergence the Chernoff product formula to the operator-norm topology for quasi-sectorial contractions on a Hilbert space. We comment that D α ⊂ D π/2 = D (unit disc) and recall that a general contraction C satisfies a weaker condition:

W (C) ⊆ D.
Note that if operator C is a quasi-sectorial contraction, then 1 -C is an m-sectorial operator with vertex z = 0 and semi-angle α. Consequently, the numerical range: W (1 -C) ⊂ S α , for the closure of sector

S α := {z ∈ C \ {0} : | arg z| < α} .
Then for operator C the limits: α = 0 and α = π/2, correspond respectively to self-adjoint and to contraction operators, whereas for 1 -C they give a non-negative self-adjoint and an m-accretive (bounded) operators.

The resolvent of an m-sectorial operator A, with semi-angle α ∈ [0, α 0 ], for some α 0 < π/2 and vertex at z = 0, that is, for W (A) ⊂ S α , provides the first non-trivial example of a quasi-sectorial contraction. Indeed, the following assertion holds. Proposition 4.1. Let A be m-sectorial operator with semi-angle α ∈ [0, π/4] and vertex at z = 0. Then {F (t) := (1 + tA) -1 } t>0 is a family of quasi-sectorial contractions, such that numerical ranges W (F (t)) ⊂ D α for all t > 0.

Proof. Seeing that the spectrum σ(A) is a subset of the closure W (A) of numerical range W (A) ⊂ S α , by the estimate of resolvent:

(A -z 1) -1 ≤ dist(z, W (A)) -1
and by W (A) ⊆ S α we obtain the operator-norm bound

F (t) ≤ 1 t dist(1/t , -S α ) = 1 , t > 0 . (4.39)
As a consequence the family of operators {F (t)} t≥0 consists of contractions with numerical ranges W (F (t)) ⊂ D.

Next, for any u ∈ H ( u = 1) one gets (u, F (t)u) = (v t , v t )+t(Av t , v t ) ∈ S α , where v t := F (t) u. So, for all t > 0 numerical range W (F (t)) ⊆ S α .

Similarly, one finds that (u, (1 -

F (t))u) = t(v t , Av t ) + t 2 (Av t , Av t ) ∈ S α , that is, W (1 -F (t)) ⊆ S α , or W (F (t)) ⊆ (1 -S α ).
Then for all t > 0: Corollary 4.1. Let A be an m-sectorial operator with semi-angle α ∈ [0, π/4] and with vertex at z = 0. Then {e -t A } t≥0 is a holomorphic quasisectorial contraction semigroup with numerical ranges W (e -t A ) ⊂ D α for all t > 0 and one has the strongly convergent Euler limit: We also note that extension of Corollary 4.1 to semi-angle α ∈ [0, π/2) needs merely a more refined arguments, which were developed in Ref. 1. Proposition 4.2. Let operator C on a Hilbert space H be a quasi-sectorial contraction with semi-angle 0 ≤ α < π/2. Then for α < α < π/2

W (F (t)) ⊆ (S α ∩ (1 -S α )) ⊂ D.
s -lim n→∞ (1 + tA) -n = e -tA , t ≥ 0 . ( 4 
C n (1 -C) ≤ K α,α n + 1 , n ∈ N , (4.41) 
where K α,α is given by (4.45).

Proof. Since operator C is a quasi-sectorial contraction, the spectrum 

C n (1 -C) = 1 2πi ∂D α dz z n (1 -z) z 1 -C . (4.42)
If z belongs to resolvent set ρ(C) of C, then evaluation of the norm of resolvent:

(C-z1) -1 ≤ dist(z, W (C)) -1 , yields (z1-C) -1 ≤ dist(z, D α ) -1 for z ∈ ∂D α ⊂ ρ(C) in (4.42
). We consider the following parametrisation of the positively oriented contour ∂D α :

-for the arc(A, B) with end-points at A = e i(π/2-α ) sin α and at B = e i(3π/2+α ) sin α , we take z(t) = e it sin α with π/2 -α ≤ t ≤ 3π/2 + α ; -for the straight lines (1, A) and (B, 1), we take correspondingly z

-(s) = 1 -se -iα with s ∈ [0, cos α ] and z + (s) = 1 -se +iα with s ∈ [cos α , 0].
As a consequence, by definition of the (shortest) distance from z ∈ ∂D α to D α , denoted as dist(z, D α ), we obtain:

-(z1 -C) -1 ≤ (cos α sin(α -α)) -1 for | arg z| ≥ π/2 -α , where we used that dist(z, D α ) ∈ [cos α sin(α -α), (sin α -sin α)] for z ∈ arc(A, B), that is, for z ∈ {e it sin α } t∈[π/2-α , 3π/2+α ] ; -(z1 -C) -1 ≤ (|1 -z| sin(α -α)) -1 for | arg z| ≤ π/2 -α , that is, for z ∈ {1 -se ∓iα } s∈[0, cos α ] .
Then operator-norm estimate of the left-hand side in representation (4.42) takes the form

C n (1 -C) ≤ 1 2π 3π/2+α π 2 -α dt | sin α | n+1 |1 -e it sin α | cos α sin(α -α) + + 1 π cos α 0 ds |(1 -e iα s) n e iα s| s sin(α -α) (4.43) ≤ 2(sin α ) n+1 cos α sin(α -α) + cos α 0 ds (1 -s cos α ) 2 + s 2 (sin α ) 2 n/2 π sin(α -α) .
Taking into account convexity of the mapping:

s → (1 -s cos α ) 2 + s 2 (sin α ) 2 , for s ∈ [0, cos α ], one gets that (1 -s cos α ) 2 + s 2 (sin α ) 2 ≤ 1 -s cos α ,
which leads to inequality:

cos α 0 ds (1 -s cos α ) 2 + s 2 (sin α ) 2 n/2 ≤ cos α 0 ds (1 -s cos α ) n/2 = 1 (sin α ) 2 du u n/2 cos α ≤ 1 -(sin α ) n+2 (n/2 + 1) cos α .
Therefore, by (4.43) we obtain the estimate

C n (1 -C) ≤ 2 (sin α ) n+1 cos α sin(α -α) + 2 1 -(sin α ) n+2 π (n + 2) cos α sin(α -α) ≤ 2 (n + 1) cos α sin(α -α) 1 π + (n + 1) (sin α ) n+1 . (4.44)
After optimisation of the last factor in the right-hand side of (4.44) with respect to n ∈ N, we infer (4.41) for

K α,α := 2 cos α sin(α -α) 1 π - 1 e ln(sin α ) , (4.45) 
where α < α < π/2 .

The property (4.41) implies that the quasi-sectorial contractions belong to the class of so-called Ritt's operators [START_REF] Ritt | A condition that lim n→∞ T n = 0[END_REF] . This allows to go beyond the 

(( 3 √ n) -1 -Theorem) Let C be a quasi-sectorial contraction on H with numerical range W (C) ⊆ D α , 0 ≤ α < π/2. Then C n -e n(C-1) ≤ L α n 1/3 , n ∈ N , (4.46) 
where L α = 2K α + 2 and K α := min α ∈(α,π/2) K α,α , is defined by (4.45).

Proof. With help of inequality (4.41) we can improve the estimate of the central part of the sum (2.9) in Lemma 2.1. Note that on account of (2.11) we obtain by (4.41) and C ≤ 1: 

C n -C m ≤ |m -n| C n-[ n] (1 -C) ≤ n K α n -[ n ] + 1 , ( 
n m m! (C n -C m ) x ≤ n K α n -[ n ] + 1 x , x ∈ X , n ∈ N .
(4.48) As a consequence, (2.12) and (4.48) yield instead of (2.7) (or (1.1)) the operator-norm estimate:

C n -e n(C-1) ≤ 2 n 2δ + n K α n -[ n ] + 1 , n ∈ N . (4.49)
Let n 0 ∈ N satisfy inequality: n 0 ≥ 2 ([ n ] -1). Then (4.49) yields

C n -e n(C-1) ≤ 2 n 2δ + 2 K α n 1/2-δ , n > n 0 . (4.50)
Then estimate M α /n 1/3 of the Theorem 4.1 results from the optimal choice in (4.50) of the value: δ = 1/6. 

C n -e n(C-1) = 1 2πi ∂D α dz z n -e n(z-1) z -C , n ∈ N ,
which provides for n ∈ N inequalities:

C n -e n(C-1) ≤ 1 2π 3π 2 +α π 2 -α
dt sin α |(e i t sin α ) n -exp{n (e i t sin α -1)}| cos α sin(α -α)

+ 1 π cos α 0 ds |(1 -e -iα s) n -exp(-n s e -iα )| s sin(α -α) ≤ ≤ sin α (sin α ) n + e n(sin α -1) cos α sin(α -α) + (4.51) + n cos α 0 dr |(1 -e -iα r/n) n -exp(-r e -iα )| r sin(α -α) .
(For parametrisation of integrands in representation (4.51) see notes in the proof of Proposition 4.2.) Then lim n→∞ C n -e n(C-1) = 0 issues by conditions α < α < π/2 and the Lebesgue dominated convergence theorem applied to the last integral in the right-hand side of inequalities (4.51).

Remark 4.2. Recall 4 that if the quasi-sectorial contraction C is selfadjoint (i.e., α = 0), then one obtains for the rate of convergence optimal estimates:

C n (1 -C) ≤ 1 n + 1 and C n -e n(C-1) ≤ e -1 n , n ∈ N , (4.52) 
directly from the spectral representation of C.

In a full similarity with ( 3 √ n)-Lemma for the strong operator approximation, the ( 3 √ n) -1 -Theorem is only the first step in developing the operator-norm approximation formula à la Chernoff. To this end one needs an operator-norm analogue of Theorem 2.1. The preceding includes the Trotter-Neveu-Kato strong convergence theorem. On that account, now we need the operator-norm extension of this assertion for quasi-sectorial contractions.

Proposition 4.3. (Refs. 4,24) Let {X(s)} s>0 be a family of m-sectorial operators in a Hilbert space H such that for some 0 < α < π/2 and any s > 0 the numerical range W (X(s)) ⊆ S α . Let X 0 be an m-sectorial operator defined in H, with W (X 0 ) ⊆ S α . Then the two following assertions are equivalent : 

(a) lim s→+0 (ζ1 + X(s)) -1 -(ζ1 + X 0 ) -1 = 0 , for ζ ∈ S π-α , (b) lim 
Φ(0) = 1 and W (Φ(s)) ⊂ D α for all s > 0, where 0 ≤ α < π/2. Let X(s) := (1 -Φ(s))/s , s > 0 , (4.53) 
and let X 0 be a closed operator with non-empty resolvent set, defined in H. Then the family {X(s)} s>0 converges, when s → +0, in the uniform resolvent sense to the operator X 0 (cf. Proposition 4.3), if and only if 

lim n→∞ Φ(t/n) n -e -tX0 = 0 , for t > 0 . ( 4 
lim n→∞ (1 + tA/n) -n -e -tA = 0 , t ∈ S π/2-α , (4.55) 
for n ∈ N.

Proof. Since by condition the numerical range W (A) ⊂ S α , on account of Proposition 4.1 and Remark 4.1, {Φ(t

) := (1 + tA) -1 } t>0 is a family of quasi-sectorial contractions with W (Φ(t)) ⊂ D α , α ∈ [0, π/2).
Let X(s) := (1 -Φ(s))/s, s > 0, and X 0 := A. Then for ζ ∈ S π-α on account of estimate:

A ζ1 + A + ζsA • A ζ1 + A ≤ 1 + |ζ| dist (ζ(1 + sζ) -1 , -S α ) 1 + |ζ| dist(ζ, -S α ) ,
the family {X(s)} s>0 converges, when s → +0, to X 0 in the resolvent uniform (i.e., operator-norm) sense with asymptotic:

(ζ1 + X(s)) -1 -(ζ1 + X 0 ) -1 = s A ζ1 + A + ζsA • A ζ1 + A = O(s) .
As a consequence of Proposition 4.3, the family {Φ(t)} t≥0 satisfies the conditions of Proposition 4.4. Then seeing that for t > 0 and n ∈ N one has estimate

Φ(t/n) n -e -tX0 ≤ (4.56) Φ(t/n) n -e -t X(t/n) + e -t X(t/n) -e -t X0 .
This provides by (4.46) for C = Φ(t/n) and Proposition 4.3 (b) the operator-norm approximation (4.54), which is the Euler formula (4.55).

According to (4.56) the rate of operator-norm convergence of the Chernoff product formula (4.54) is determined by convergence rate of the Chernoff estimate (4.46) of Φ(t/n) n -e -t X(t/n) along with the rate of convergence in the Trotter-Neveu-Kato theorem for e -t X(t/n) -e -t X0 , Proposition 4.3 (b). Then for the Euler formula (4.55) the accuracy of this twostep estimate is limited by the order O(1/n 1/3 ) because of the Chernoff estimate (4.46) on the the first step in the right-hand side of (4.56). 

Chernoff Estimate and Dunford-Segal Approximation

Here we continue with more comments about optimal results for the rate of convergence for operator-norm approximants of C 0 -semigroups mentioned in Remark 4.3. This approximation theory was advanced in Ref. 9 (and improved later in Ref. 10) for the Yosida, the Dunford-Segal and the Euler approximations of C 0 -semigroups. In addition to standard analysis of approximations in the strong operator topology (cf. Ref. 3) the paper Ref. 9 proposed to study a vector-dependent estimates of the convergence rate for approximants, see Remark 3.1. For holomorphic C 0 -semigroups this estimates of convergence can be uplifted to the operator-norm topology.

This last aspect will be considered in the present section versus the Chernoff operator-norm estimate. We start by citation of the optimal O(1/n) result for the rate of the operator-norm convergence for a simple case of the Euler approximants (Euler formula (4.55)), which also shows a sectorial dependence of the upper bound. Proposition 5.1. (Ref. 1) Let A be an m-sectorial operator in Hilbert space H, with semi-angle α ∈ [0, π/2) and vertex at z = 0. Then {e -t A } t≥0 is a holomorphic quasi-sectorial contraction semigroup and one infers that

(1 + tA/n) -n -e -tA ≤ M α (cos α) 2 n , t ≥ 0 , n ∈ N , (5.57) 
where

π sin α 2α ≤ M α ≤ min π -α α , M and π 2 ≤ M ≤ 2 + 2 √ 3 . (5.58)
Note that estimate (5.58) of the coefficient M α in (5.57) is not optimal. To this aim we elucidate (5.58) for the case of a non-negative self-adjoint operator A , that is, for α = 0, cf. Remark 4.2. As a result one obtains by the spectral calculus:

(1 + tA/n) -n -e -tA ≤ e -1 n , t ≥ 0 , n ∈ N , (5.59) 
cf. one of the error bound in (4.52). In Ref. 9 (Corollary 1.6 c) the Proposition 5.1 was extended to a Banach space and any bounded holomorphic C 0 -semigroup. We conclude this section by demonstration that the Chernoff estimate (4.46) itself , i.e., without the two-step construction (4.56), yields for holomorphic C 0 -semigroups the Dunford-Segal approximation introduced in Ref. 9, Theorem 1.1 b).

Theorem 5.1. If A is an m-sectorial operator in Hilbert space H, with semi-angle α ∈ [0, π/2) and vertex at z = 0, then

e -n (1-e -t A/n ) -e -t A ≤ N (cos α) 2 n , t ≥ 0 , n ∈ N , (5.60) 
for some bounded N > 0.

Proof. By virtue of Proposition 5.1 one gets that {e -t A/n } n≥1 for t ≥ 0 and each n ∈ N is a holomorphic quasi-sectorial contraction C 0 -semigroup {e -t A/n } t≥0 . Let C := e -t A/n . Then by the operator-norm Chernoff estimate (Theorem 4.1) we obtain

e -t A -e -n (1-e -t A/n ) ≤ L α n 1/3 , t ≥ 0 , n ∈ N . ( 5 

.61)

This yields the operator-norm approximation of quasi-sectorial contraction semigroup {e -t A } t≥0 by the Dunford-Segal approximants {e -n (1-e -t A/n ) } n≥1 with the rate O(1/n 1/3 ) on a Hilbert space H. The uplifting the estimate (5.61) to sectorial dependent optimal rate (5.60) follows verbatim the arguments in the proof of Proposition 5.1.

Note that our definition of the Dunford-Segal approximants is (slightly) different from that in Refs. 9 (Corollary 1.6 b), where assertion was extended to a Banach space for any bounded holomorphic C 0 -semigroup.

Concluding remarks

1. Summarising, we infer that for quasi-sectorial contractions (Definition 4.1) one obtains, instead of divergent (for n → ∞) Chernoff's estimate (1.1), the estimate (4.50), which converges for n → ∞ to zero in the operatornorm topology. Note that the rate O(1/n 1/3 ), (4.46), of this convergence is obtained with help of the Poisson representation and the Tchebychëv inequality in the spirit of the proof of Lemma 2.1, and that it is not optimal. 2. The estimate M α /n 1/3 in the ( 3√ n) -1 -Theorem 4.1 can be improved by a more refined lines of reasoning. For example, scrutinising our probabilistic arguments in Section 2 one can find a more precise Tchebychëv-type bound for estimate of tails. This improves the estimate (4.50) and provides the rate O( ln(n)/n), see Ref. A careful analysis of the numerical range localisation for quasi-sectorial contractions [START_REF] Arlinski | Numerical range and quasi-sectorial contractions[END_REF][START_REF] Zagrebnov | Quasi-sectorial contractions[END_REF] , which are generated in a Hilbert space H by m-sectorial operators with a semi-angle α ∈ [0, π/2), allows to uplift the operatornorm estimate for the rate of convergence of the Euler formula (5.57) to the ultimate optimal α-dependent rate O(1/n), see Ref. 1 (Theorem 4.1). 4. We note that in case of self-adjoint contractions C (that is, for α = 0) with help of the spectral representation one can easily obtain the optimal rate O(1/n) for the Ritt property (4.41), for the Chernoff estimate (4.52), as well as for the Euler formula (5.59). 5. Theorem 5.1 is an illustration of a direct application of the Chernoff estimate in the approximation theory of holomorphic C 0 -semigroups for msectorial generators in Hilbert space for a particular case of the Dunford-Segal approximants.

Note that in Ref. 9 and Ref. 10 a generalisation on Banach space was developed for approximants involving the Bernstein functions, see (1.4) 

  .26) for all t ∈ R + 0 and C := (A + B) is closure of the operator-sum in (2.25). Proof. Let us define the contraction R + 0 t → Φ(t), Φ(0) = 1, by Φ(t) := e -tA e -tB .

4 .

 4 Operator-Norm Chernoff Estimate Definition 4.1. 4,21 Contraction C on the Hilbert space H is called quasisectorial for semi-angle α ∈ [0, π/2) with respect to the vertex at z = 1, if its numerical range W (C) ⊆ D α . Here the subset of complex plane D α := (4.38) {z ∈ C : |z| ≤ sin α} ∪ {z ∈ C : | arg(1 -z)| ≤ α and |z -1| ≤ cos α}.

  Moreover, by Definition 4.1 the condition α ≤ π/4 yields that (S α ∩ (1 -S α )) ⊂ D α . Hence, for α ∈ [0, π/4] the operators {F (t)} t≥0 are quasisectorial contractions with numerical range in D α . Note that the upper bound α ≤ π/4 is stemming from Definition 4.1 and observation that (S α ∩ (1 -S α )) D α for α > π/4, cf. (4.38).

  σ(C) is a subset of closure W (C) of the numerical range W (C) ⊂ D α . So, taking α < α < π/2 one gets by definition (4.38): D α ⊃ D α . Hence, contour ∂D α is outside of D α , but inside the unit disc D, and all of them have only one common point z = 1. Then the Riesz-Dunford functional calculus provides the following representation of operator in (4.41):

3 √

 3 n -Lemma 2.1 to the ( 3 √ n) -1 -Theorem and also from estimates in the strong operator topology to the operator-norm topology. The first step is the operator-norm Chernoff estimate (cf. (2.5)): Theorem 4.1.

Corollary 4 . 2 .

 42 If in (4.50) no estimate of the convergence rate is required, then the operator-norm convergence to zero in (4.46) follows directly from the Riesz-Dunford representation of C n -e n(C-1) as the operator-valued integral along the contour ∂D α for α < α < π/2 :

s→+0e

  -tX(s) -e -tX0 = 0 , for t > 0 .Here S α = {z ∈ C : | arg(z)| < α} is a sector in complex plane C with semi-angle α and vertex at z = 0.Now ( 3 √ n) -1 -Theorem 4.1 (or Corollary 4.2) and the Trotter-Neveu-Kato theorem (Proposition 4.3) yield a desired generalisation of the Chernoff product formula (cf. (2.17)) for the operator-norm convergence. Proposition 4.4. (Refs. 4,21) Let {Φ(s)} s≥0 be a strongly measurable family of uniformly quasi-sectorial contractions on a Hilbert space H, such that

.54) Corollary 4 . 3 .

 43 (operator-norm Euler formula) If A is an m-sectorial operator in Hilbert space H, with semi-angle α ∈ [0, π/2) and vertex at z = 0, then

Remark 4 . 3 .

 43 Note that the rate O(1/n 1/3 ) is far from to be optimal, which a fortiori is known as O(1/n). Indeed, in Ref. 4 (Theorem 5.1) by a direct one-step telescopic estimate it was shown that the rate of convergence in (4.55) is at least of the order O(ln(n)/n). Corollary 4.4. (operator-norm Trotter product formula) If contractions {Φ(t) := e -tA e -tB } t≥0 (2.27) satisfy conditions Proposition 4.4, then by necessity part of this assertion and (4.56) the limit n → ∞ yields the Trotter product formula (2.26) in the operator-norm topology, cf. Proposition 2.1. The rate of convergence (if any) is determined by the first and the second steps in the right-hand side of (4.56), cf. Theorem 5.3 in Ref. 4.Remark 4.4. Note that in contrast to the problem of semigroup approximation (Corollary 4.3), that needs assumptions only on generator A, the approximation by the Trotter product formula requests a condition on a couple of generators {A, B} (Proposition 2.1 and Corollary 4.4). Since the Trotter product approximants {Φ(t/n) n } n≥1,t≥0 involve a couple of generators {A, B}, the proof must take into account a subordination of generators A and B. A variety of the one-and two-step methods (including the Chernoff estimate), as well as of the corresponding conditions, that ensure the convergence of the Trotter product formula, is quite large, see, for example, Chapters 5.1-5.3 in Ref.23. They determine the sense of the algebraic sum (A + B) and the accuracy of the operator-norm convergence estimates, compare, e.g., Ref.4 and Refs. 11,16. 
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  (Theorem 1). Although again it is possible only for quasi-sectorial contractions ensuring due to Proposition 4.2 the operator-norm contrôl (4.48) of the central part. 3. The very same improvement permits also to amend the estimate for the rate of convergence in the Euler product formula (4.55) from O(ln(n)/n) (Ref. 4 (Theorem 5.1)) to the optimal O(1/n), Ref. 17 (Theorem 4), cf. the proof of the estimate O(1/n) in Ref. 2 (Theorem 1.3).

  .35) Given that generator A of contractive C 0 -semigroup is accretive, the range of resolvent: ran((A + ζ1) -1 ) = X, for Re(ζ) > 0. As a consequence Ref. 14 (Chapter III, Problem 2.9 and Chapter IX, §1.2), domain dom(A 2 ) ⊂ dom(A) is dense in X and limit (3.35) provides lim n→∞

  in Ref.10. We remark that a similar generalisation of approximants is known since Ref.13 as the Kato functions for the Trotter-Kato product formulae, see Ref. 23 (Appendix C) for details.
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