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The U.S. prewar output series exhibit smaller shock-persistence than postwar-series. Some studies suggest this may be due to linear interpolation used to generate missing prewar data. Monte Carlo simulations that support this view generate large standard-errors, making such inference imprecise. We assess analytically the effect of linear interpolation on a nonstationary process. We find that interpolation indeed reduces shock-persistence, but the interpolated series can still exhibit greater shock-persistence than a pure random walk. Moreover, linear interpolation makes the series periodically nonstationary, with parameters of the data generating process and the length of the interpolation time-segments affecting shock-persistence in conflicting ways.

1

Introduction

Most prewar U.S. data including output, CPI, etc. were observed only in benchmark years, several years apart. The missing observations were usually reconstructed by linear interpolation of the benchmark observations, sometimes padded with a serially correlated term (See, e.g., [START_REF] Friedman | Monetary Trends in the US and the UK[END_REF], Romer 1989[START_REF] Balke | The estimation of prewar gross national product: methodology and new evidence[END_REF][START_REF] Johnston | The annual real and nominal GDP for the United States, 1790-1928[END_REF]. Interpolation was also used to construct many historical series for the UK (Measuring Worth 2022). 1Studies find that US prewar output data is less shock-persistent than the U.S. postwar output data. 2US prewar-data also has different shock-persistence properties than other countries' prewar data [START_REF] Cogley | International evidence on the size of the random walk in output[END_REF]. Stock and Watson (1986) suggest that this difference could be due to linear interpolation of missing values for the prewar data. Although, as Romer (1989) notes, much of our knowledge of the macroeconomy during the prewar periods is based on these interpolated data, the effect of interpolation on shock-persistence has been rarely examined. 3 An exception is [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] who assesses the effect of linear interpolation using Monte Carlo simulations for a random-walk with MA(1) errors. He generates a 50-observation time series, "original series," and a corresponding "interpolated series," where the 10 th , 20 th , 30 th , 40 th and 50 th observations are generated by the above data generating process (DGP), and the rest are linearly interpolated. He then calculates the variance-ratio measure of shockpersistence for the "original" and "interpolated series" over 500-replications, where variance-ratio is defined as the ratio of the variance of the series' s-period growth (long variance) to the variance of the series' 1-period growth (short variance), and finds that linear interpolation indeed reduces shockpersistence. While Jaeger's experiments are well-designed, his estimates are very imprecise. For example, 2-SE confidence-bounds around his variance-ratio estimates fall within (0, 2+) or even (0, 3+), making it impossible to infer whether or not the ratio is less than 1 (stationary) or larger than 1 (non-stationary).

Thus, one cannot infer from these results that interpolation necessarily reduces shock-persistence.

We examine analytically the effect of interpolation on the shock-persistence of a non-stationary series. The advantage of analytical approach is that it can identify interpolation effects that are distinct and not diluted by sampling-variation, which is the hallmark of simulations. We assume the same DGP as [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF]-a random-walk with MA(1) errors, for parsimony and comparability. We first derive the variance-ratio of the original, non-interpolated series, and then develop a linear interpolation model for the series with a general benchmark cycle, replacing all non-benchmark data points with their linearly interpolated values and a moving average padding. We then derive the variance-ratio for the interpolated series and compare it to the variance ratio of the original series to ascertain the effect of interpolation on shock-persistence.

Our results provide analytical support for [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] Monte Carlo findings. Additionally, we uncover a few other interpolation-caused effects. Although interpolation reduces shock-persistence, interpolated series may still exhibit high shock-persistence with variance-ratios greater than 1. Also, linear interpolation makes the series periodically non-stationary, with parameters of the DGP and the length of the interpolated time segments affecting shock-persistence in conflicting ways.

We proceed as follows. In section 2, we present the DGP and derive its shock-persistence measure analytically. In section 3, we develop the interpolation model for this DGP and analytically derive the corresponding shock-persistence measures. In section 4, we compare the results for non-interpolated and interpolated series. Section 5 concludes.

Shock-persistence of a random-walk with MA(1) errors

Following [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF], we assume a random-walk with MA(1) errors and no-drift: As [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] notes, this setup captures the main features of the interpolation procedure, as described by Romer (1986Romer ( , 1989)). The model is also parsimonious: it is simple, yet it can capture the dynamics of many macroeconomic time series, and thus it and similar models are frequently employed in macroeconomic time series analysis (e.g., [START_REF] Nelson | Trends and random walks in macroeconomic time series[END_REF][START_REF] Campbell | Are output fluctuations transitory?[END_REF][START_REF] Cochrane | How big is the random walk in GNP?[END_REF], Cogley 1990, etc.).

To measure shock-persistence, we follow [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] and others [START_REF] Cochrane | How big is the random walk in GNP?[END_REF][START_REF] Cogley | International evidence on the size of the random walk in output[END_REF][START_REF] Leung | Changes in the behavior of output in the United Kingdom, 1856-1990[END_REF], Levy and Dezhbakhsh 2003, etc.) by using variance-ratio measure which is defined as

2 2 , 1, Y s Y Y V s σ σ = , where 
( ) 2 , var s Y T T s Y Y σ - = -
is the variance of the series' s-period growth-"longvariance," and

( ) 2 1, 1 var Y T T Y Y σ - = -
is the variance of the series' 1-period growth-"short-variance."

The short variance for the above process is
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The long variance for this process is given by
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The variance-ratio for the original, non-interpolated random walk with MA(1) series, is therefore 

( ) ( ) 2 , 2 1, 2 2 2 2 2 1 2( 1) 1 s Y Y Y V s s s s ε ε ε σ σ θ σ θσ θ σ = + - - = + ( ) 2 2(1 ) 1 1 s s θ θ - = + + (1)
Y y = , 2 0,2 Y y = , …, 0, s s Y y = , 1 1,1 s Y y + = , …, , st i t i Y y + = .
In this notation, each period t contains s sub-periods. For example, t and i could denote years and quarters with 4 s = (e.g., if quarterly observations are obtained by interpolating annual observations), or decades and years within decades, with 10 s = (e.g. if annual observations are obtained by interpolating decennial benchmark observations). We thus rewrite the series as x is the interpolated series, and ( ) g ψ is an indicator function which equals 1 if g is true and 0 otherwise, to ensure that MA padding is applied only to the interpolated observations. 4

Lagging (4) one-period, we obtain

( ) ( ) , 1 , 1, , 1 , 2 1 1 1 t i t s t s t i t i i s i x y y i s s ε θε ψ - - - - - -+ = + + - ≠ . (5) 
One-period difference of the interpolated series equals 
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Therefore, the short-variance of the interpolated series 2 1,x σ , as shown in the Appendix, equals:
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To compute the long-variance of the interpolated series 2 , s x σ , we start with s-period lag 4 In benchmark periods, the original and the interpolated series coincide by construction. i.e., in (4),
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Then, the interpolated series equals 
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Lagging ( 8), we obtain
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Using ( 8) and ( 9), the long difference of the interpolated series equals 
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Thus, the variance-ratio for the interpolated series, using ( 6) and (10) and k s = , is given by
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Shock-persistence comparisons for original and interpolated series

A variance-ratio 2 2 , 1, Y s Y Y V s σ σ =
smaller than 1, suggests that the long-run component of the series as measured by 2 , s Y σ , is stable relative to year-to-year changes as measured by 2 1,Y σ .

Shock-persistence for the original series is given by equation ( 1), where ( )

2 1 0 s θ + > because 2 s ≥ and 1 1 θ -< < . The size of Y V therefore depends on the sign of θ : if 0 θ < , then 1 Y V > , and if 0 θ > , then 1 Y V < .
For a random-walk with white noise errors ( 0 θ = ) and no-drift, the variance ratio equals 1 as equation ( 1) shows. See Table 1 andFigure 1. Shock-persistence measure for the interpolated series, given by equation ( 11), depends on the MA parameter θ and on the interpolation segment length s which in this case also represents the timelength of the long-difference. To identify the impact of interpolation, we examine how shockpersistence varies with the two parameters θ and s, by numerically evaluating the variance-ratio of both the original and the interpolated series for various values of the parameters.

Table 1 exhibits the results. Several observations are noteworthy. First, variance-ratio of the original random-walk exhibits significant variation with respect to θ and s, varying from 0.03 (no shockpersistence), to 1.97 (significant shock-persistence). For all values of s, variance-ratio declines as θ increases. The decline is steeper for larger values of s. This directional consistency, however, is not reciprocal. For negative values of θ, variance-ratio increases with s, but for positive values of θ, variance-ratio decreases with s. For θ = 0, it is 1 for all values of s.

Second, the interpolated series has a smaller variance-ratio than the original series for each parameter value, confirming that interpolation reduces shock-persistence. This finding provides analytical support for [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] simulation estimates which, as noted, had little inferential value due to large standard errors of these estimates. Jaeger's simulations results reported in Table 1 (last column), and their comparable counterparts from our theoretical work reported in column 4, highlights this point. Third, while interpolation reduces the shock-persistence of a nonstationary series, the interpolated series may still exhibit significant shock-persistence. Thus, a low shock-persistence cannot be automatically attributed to interpolation. Indeed, [START_REF] Leung | Changes in the behavior of output in the United Kingdom, 1856-1990[END_REF] finds that the persistence differences between US and UK, which Jaeger uses to corroborate his findings, hold only for the particular UK output series that Jaeger used (NNP series). Alternative UK series (GDP at market price or factor cost) are similar in terms of shock-persistence to the interpolated prewar US output series. Thus, a low shockpersistence is not a sole artifact of interpolation.

Figure 1 displays the pattern of variance-ratio of the original series as data generating parameter θ and interpolation segment s change. As the figure shows, the variance-ratio may increase or decrease beyond the reference point of 1 as θ varies, if the series is a pure random-walk. The changes are more pronounced at higher values of s but more variable with respect to s at lower values of s. We also observe a prominent symmetry in the behavior of the variance-ratio for positive and negative values of θ, as s increases.

Figure 2 displays the pattern of variance-ratio of the interpolated series as we vary the DGP parameter θ and the interpolation segment s. Here we find that when 0 θ < , there are smaller changes in variance-ratio away from the reference point of 1 than when 0 θ > . Moreover, for positive values of θ, variance-ratio drops sharply with s at low values of s, then it remains steady as s increases. There is no symmetry in the behavior the variance ratio of the interpolated series. This is a further indication of the nonuniformity in the effect of linear interpolation on nonstationary series. These patterns reinforce our conclusion that interpolation affects data in complicated ways that go beyond simple rules.

Figure 3 shows the difference between the variance ratios of the original and interpolated series

y x V V
-as we vary the parameters θ and s. The difference is higher for negative values of θ than for positive values of θ . Further, the effect of increase in s is relatively sharp for lower values of s.

Fourth, as we show in the Appendix, the variance-ratio for the interpolated series exhibits periodic nonstationarity as the underlying moments are conditional on observation index i. 5 Using iterated expectation, we removed this conditionality, and thus eliminated the dependency on individual i's.

However, the presence of s in the shock-persistence measures we derive highlights this point.

In closing, we note a subtle statistical point. The variations and changes in the variance ratio parameter due to change in model parameters or interpolation length that we alluded to in the above discussions refer to the actual parameters derived from the DGP or its interpolated form. The sampling variation and uncertainty that comes with any inference about variance ratio parameter would depend on sample size and method of estimation and must not be confounded with the above theoretical results that are derived by changing the underlying model parameters.

Concluding Remarks

Stock and Watson (1986) suggest that linear interpolation of prewar U.S. macroeconomic series is the likely cause of the shock-persistence difference between these series and most European prewar or similar U.S. postwar series. [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] simulation results is a rare confirmation of this assertion, but the large variations in his simulation-based persistence measures detracts from its inference value.

We derive analytically the impact of interpolation on shock-persistence in Jaeger's model, and also go further to uncover a few additional interpolation-caused effects.

Our findings are as follows. First, linear interpolation reduces the shock-persistence of a randomwalk with MA(1) errors, confirming Stock and Watson's (1986) conjecture and [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] simulation results. Second, however, the interpolated random-walk series, may still exhibit significant shock persistence, with variance-ratio attaining values greater than 1, suggesting that interpolation is not synonymous with low shock persistence. Third, linear interpolation introduces periodic nonstationarity in a series. Fourth, the effect of linear interpolation on shock-persistence depends on the parameters of the underlying DGP as well as on the interpolation segment length.

Overall, our results suggest that using a simple rule to describe the effect of interpolation on shockpersistence would be an overreach even in a simple model such as [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF]. That is because the determinants of this effect, which include the DGP parameters, the length of the interpolation segment, and the periodic nonstationarity that interpolation introduces, interact in complex ways. An important implication of this finding is that alternative causes of the difference in the persistence estimates for the U.S. prewar and postwar data merits further investigation.

We suspect that the results we report here are specific to the particular model we study and thus any statements about their generalizability should be made with caution. It is, therefore, important that future work examines the implications of linear interpolation for more general classes of models, and for both stationary and non-stationary series.

Table 1

Values of the variance-ratio for the original (non-interpolated) and interpolated series, for different values of θ and s. for the values of θ between -0.99 and 0.99, and for the values of s between 5 and 30.

2. The DGP is random walk with MA(1) errors with parameter θ and the length of the long-difference for the variance-ratio s. 3. The figures in the table were computed using equations ( 1) and ( 11), for the original and for the interpolated series, respectively. 4. The source of the figures presented in the last column is [START_REF] Jaeger | Shock persistence and the measurement of prewar output series[END_REF] V given in equation ( 1), for values of θ between -0.99 and 0.99, and for values of s between 3 and 30.

2. The DGP is random walk with MA(1) errors with parameter θ and the length of the long-difference for the variance-ratio s. 1

To obtain the variance ratio for the interpolated series (section 3 in the paper), we need to find ( )

2 1, , , 1 var x t i t i x x σ - = -
, the variance of the series' 1-period growth or the "short variance," and

( ) 2 , , 1, var s x t i t i x x σ - = -
, the variance of the series' s-period growth or the "long variance."

Short Variance

The short variance, i.e., the variance of the "short difference" can be obtained by taking the variance of the short difference in the interpolated series, as shown below.

( ) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { } ( ) ( ) ( ) ( ) 2 1, , , 1 , 1, , , 1 , 1 , 2 ,1 1, ,2 ,1 ,3 ,2 , 1 , 2 , , 1 , , 1 , 1 , 2 var 
σ ε θε ψ ε θε ψ ε θε ε θε ε θε ε θε ε θε ε θε ψ ε θε ψ - - - - - - - - - - - - = -   = - + - ≠ - - ≠     = - + - + - + + - + -     + - ≠     + - ≠  L ( ) ( ) ( ) ( ) ( ) ( ) { ( ) ( ) } ( ) ( ) ( ) ( ) ( ) ( ) { ( ) ( ) ,1 1, , 2 ,1 ,3 ,2 , 1 , 2 , , 1 , , 1 
i ε θε ε θε ε θε ε θε ε θε ε θε ψ ε θε ε θε ε θε ε θε ε θε ε θε ψ - - - - - - - - - - -      + - + - + - + + - + -       - ≠       - - + - + - + + - + -      - ≠ L L } ( ) ( ) ( ) ( ) { } , , 1 , 1 , 2 2cov , 1 
t i t i t i t i i s i ε θε ψ ε θε ψ - - -        + - ≠ - ≠    
Applying the definitions of variances and covariances, we obtain 

( ) ( ) ( ) ( )( ) { ( )( ) } ( ) ( ) 2 2 1, , 1 1, , , 1 ,1 1, ,2 ,1 , 1 , 2 , , 1 , , 1 1 var 
E i s σ ε θε ε θε ε θε ε θε ε θε ε θε ε θε ψ - - - - - - -   = - + + - + - - +     + - -     + - ≠     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) { ( ) ( ) } ( ) ( ) ( ) ( ) ( ) ( ) , 1 , 2 ,1 1, ,2 ,1 ,3 ,2 , 1 , 2 , , 1 , , 1 ,1 1, ,2 ,1 ,3 ,2 , 1 , 2 , , 1 var 1 
ε θε ψ ε θε ε θε ε θε ε θε ε θε ε θε ψ ε θε ε θε ε θε ε θε ε θε - - - - - - - - - - -   + - ≠       + - + - + - + + - + -       - ≠     - - + - + - + + - + -    { ( ) ( ) } ( ) ( ) ( ) ( ) { } , 1 , 2 , , 1 , 1 , 2 
, 1 2 cov , 1

t i t i t i t i t i t i i i s i ε θε ψ ε θε ψ ε θε ψ - - - - -        - ≠       + - ≠ - ≠    
which can be simplified

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 1, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 1, 2 2 2 2 1, 2 2 2 1 2 2 2 x s s s i s i i i s i i s s s s s i s s s s s s ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε σ σ θ σ θσ σ θ σ ψ σ θ σ ψ θσ ψ σ θσ θσ θ σ ψ σ θσ θ σ ψ σ θσ θ σ     = + + -- + + ≠         + + ≠ + ≠ ≠         + - - + ≠ ≠             + - + =           + - + -     ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 i s i s s s s ε ε ε ε ψ σ θσ θσ θ σ ψ   =         + - + + - ≥ >        
Collecting terms, we obtain:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 1, 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 2 1, 2 4 2 1, 2 2 2 1 2 2 2 2 2 4 2 2 x i s s i s s i i i s i i s i s s i s i s s ε ε ε ε ε ε ε ε σ σ θ θ σ θ ψ σ θ ψ σ θ ψ σ σ θ θ ψ θ θ ψ σ σ θ θ ψ θ θ ψ       = + - - + + ≠             + + ≠ + ≠ ≠             + -+ ≠ ≠ + -+ =                     + -+ - = + -+ - ≥ >             ψ ψ ψ ψ ψ ψ = = = = = = - ≠ = ≠ = = = = = - ≠ ≠ = ≥ > = ∑ ∑ ∑ ∑ θ θ θ θ θ θ     = + - -        - - -       + + + + +                   -     + -+ + -+               -     + -+ - + -+ -        
which is the unconditional short variance of the interpolated series. Simplifying the equation, after collecting terms, we obtain

( )( ) ( ) 2 2 2 2 1, 2 1 2 1 2 3 1 x s s s s s ε σ σ θ θ     = + -+ -+      
This is the expression for the short variance that is given in equation ( 6) in the paper.

Long Variance

The long variance, i.e., the variance of the "long difference" can be obtained by taking the variance of the long difference in the interpolated series, as shown below.

( 

( ) ( ) ( ) ( ) ( ) ( ) 2 , , 1, 1, , , , 1 1, 1, 1 1 1 2 1,1 2, 1,2 1,1 1, 1, 1 2 ,1 ) 
i s σ ε θε ε θε ψ ε θε ε θε ε θε ε θε ε - - - - -- = = - - - - - -- - = -   -     = + + - - + ≠             -     = - + - + + -         + - +     ∑ ∑  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,1 , , 1 , , 1 1, 1, 1 1,1 2, 1,2 1,1 1, 1, 1 ,1 1, , 2 ,1 , 
ε θε ε θε ε θε - - - -- - - - - - -- - -   - + + -     + - - + ≠    -     + - + - + + -              - + - + + -            ( ) ( ) ( ) ( ) { ( ) ( ) } ( ) ( ) ( ) ( ) { ( ) ( ) } 1,1 2, 1,2 1,1 1, 1, 1 , , 1 1, 1, 1 ,1 1, , 2 ,1 , , 1 , 
ε θε ε θε ε θε ε θε ε θε ψ ε θε ε θε ε θε ε θε ε θε ψ - - - - - -- - - -- - - - - --   + - - + - + + -         - - + ≠     + - + - + + -     - - + ≠     which yields i i i s s ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε σ σ θ σ θσ σ θ σ θσ σ θ σ σ θ σ ψ θσ θσ σ θσ θ σ ψ σ θσ θ σ ψ                                                  - = + + -- + + + -- + + + + ≠ - + - - + - -+ - = + -+ - ≠ ≠ ( ) ( ) ( ) (           +                                                   - = + - - - + + ≠ - - + -- = + -+ - ≠ ≠ + -+ = + -+ ≠ ≠
where we use the notation ( ) 2 , s x i σ to emphasize that the long variance of the interpolated series also depends on i. Following the same steps as above to remove the conditionality of the long variance on i, and using the summation for the indicator functions as we did above in this Appendix, we obtain

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) σ θ σ θ σ = = =   -                 ≠                        -- = + -+ - ≠ ≠                            -       + = + - - - + + - - + + ∑ ∑ ∑ ( ) ( ) ( ) ( ) 2 2 1 1 1 1 2 1 2 4 2 1, s s i i i i i s s s θ θ ψ θ θ ψ = =           + = + -+ ≠ ≠                     ∑ ∑ where 1 1 1 2 s i s i s i = +   =     = ∑ and ( )( ) 2 2 1 1 2 1 1 6 s i s s i i s = + +   = =     ∑ After the substitution, we have [ ] [ ] ( ) ( ) ( ) [ ] [ ] [ ] ( ) ( )   - + + + +     + - -           + -+ +   + + -           -+  -     + -- + -+ -                 +   -     = - + ( ) ( ) σ θ θ σ       +   + + -- - + -                 =
This is the expression for the long variance that is given in equation ( 10) in the paper.
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Fig. 1 .

 1 Fig. 1. Effects of changing the values of θ and s on the variance-ratio of the original series

Fig. 2 .

 2 Fig. 2. Effects of changing the values of θ and s on the variance-ratio of the interpolated series Notes: The figure shows the values of the variance-ratio of the interpolated series x V given in equation (11). See the

Fig. 3 .

 3 Fig. 3. The difference between the values of the variance ratio of the original and interpolated series, for different values of θ and s

  Figure3

3. Shock-persistence of interpolated random-walk with MA(1) errors

  

	To model interpolated series, we divide the original time series T Y into segments of equal length s,
	drop all but one observation within each segment, and reconstruct the "missing" observations by
	linearly interpolating the remaining observations. To facilitate the conversion, rewrite T Y as , t i y ,
	where	t =	0,1, 2,...	and	i	=	1, 2,...,	s	, where	2 s ≥ . Then, 1	0,1

The use of interpolation is not limited to the prewar data. For example,[START_REF] Levy | Estimates of the aggregate quarterly capital stock series for the post-war U.S. economy[END_REF] employ the method of linear interpolation to construct quarterly values of the US postwar capital stock and capital stock depreciation series using the series' annual observations.[START_REF] Levy | Not all price endings are created equal: Price points and asymmetric price rigidity[END_REF] apply linear interpolation to weekly retail scanner price data during the 1989-1997 period, to determine the values of missing observations.

Examples include DeLong and Summers (1988),[START_REF] Campbell | Are output fluctuations transitory?[END_REF],Stock and Watson (1986),[START_REF] Cecchetti | Variance-ratio tests: Small-sample properties with an application to international output data[END_REF],[START_REF] Murray | The uncertain trend in U.S. GDP[END_REF], and[START_REF] Charles | A note on the uncertain trend in US real GNP[END_REF], among others.

Interpolation, however, has consequences for other issues as well, including dating of business cycles[START_REF] Charles | A revision of the US business-cycles chronology, 1790-1928[END_REF], classification of the 19 th century inflation[START_REF] Kaufmann | Is deflation costly after all? The perils of erroneous historical classifications[END_REF], transmission of monetary policy in the EU[START_REF] Ehrmann | Comparing monetary policy transmission across European countries[END_REF], data periodicity[START_REF] Franses | Data revisions and periodic properties of macroeconomic data[END_REF], and chaotic dynamics (Orlando and Zimatore 2018).

[START_REF] Dezhbakhsh | Periodic properties of interpolated time series[END_REF] derive the variance, the covariance, and the autocorrelation functions of linearly interpolated trend-stationary series, and find that they all vary with i, which they term "periodic variation."

[START_REF] Dezhbakhsh | Periodic properties of interpolated time series[END_REF] derive the variance, the covariance, and the autocorrelation functions of linearly interpolated trend-stationary series, and find that they all vary with i, which they term "periodic variation."
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