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Abstract—Mapping a structure, such as a metal plate in a ship
hull, using acoustic echoes typically requires making assumptions
on its shape (e.g. rectangular). This work introduces a more
general beamforming approach to recover the geometry of arbi-
trary polygonal-shaped bounded areas from acoustic reflections.
Our method only requires a single omnidirectional emitter-
receiver acoustic device mounted on a mobile platform. We apply
beamforming to the acoustic measurements in the geometrical
boundary space. We subsequently retrieve the edges from the
beamforming results via the minimization of a regularized cost
criterion, using a simulated annealing optimizer. We also design
a boundary rejection criterion so that their exact number can be
recovered based only on a specified upper bound. We assess our
method on different geometries in a simulation environment and
a real-world setting using ultrasonic guided waves measurements.
The results demonstrate that it is efficient for achieving the
targeted objectives.

Index Terms—mapping, acoustic echoes, beamforming

I. INTRODUCTION

Acoustic mapping from echoes is a significant challenge
that can enable a wide variety of applications, in particular in
robotics. When an acoustic wave is emitted by an embedded
transmitter, it can propagate in all directions around the
emitter. It can be reflected by environmental features (such as
the walls of an enclosed space, for instance). Simultaneously,
co-located with the emitter, a receiver can receive the acoustic
echoes. With such a setup, one objective is the localization of
the acoustic reflectors using the measurements acquired along
the robot trajectory. For instance, room shape reconstruction
in an indoor environment can be made possible using a
single mobile unit [2]. More generally, acoustic Simultaneous
Localization and Mapping (SLAM) [3], [4] can be achieved to
additionally recover the acquisition positions. Another use case
is localization and mapping based on Ultrasonic Guided Waves
(UWGs) on a large structure such as a ship hull, where the
ultrasonic echoes originate from reflections, on the individual
plate boundaries, of the wave propagating in the material [1],
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[5]. These examples are all instances of the ”structure from
sound (and motion)” problem.

While acoustic localization and mapping using sensor arrays
receive sustained attention in the literature [6], [7], the use of
a single omnidirectional sensor remains a challenging task for
practical implementation. Indeed, as the measurements contain
several first-order as well as high-order echoes, acoustic local-
ization and mapping necessitate echo-detection, identification
and association methodologies that are challenging to establish
for reverberant and noisy environments [8].

Acoustic echoes in the air have been used to recover a
room shape from wall reflections [9], or to achieve acoustic
SLAM [3], [4]. However, these works are only tested in
simulation. They rely on essential assumptions, such as only
first-order echoes are being detected, the echo-wall association
is being flawlessly known, or the number of walls to recover
is being known a priori. Due to noisy measurements, these
assumptions may not always hold for a real-world scenario.

Recent works in the literature focus on acoustic SLAM
using Ultrasonic Guided Waves (UGWs) that can propagate
over large distances inside materials. In [5], an online ap-
proach is designed to simultaneously recover the geometry
of individual metal plates while localizing a mobile sensor,
but it lacks robustness w.r.t. to detection errors. A second
work [1] achieves acoustic SLAM by relying on beamform-
ing [10]. This approach shows promising results, as it does
not necessitate explicit echo retrieval and association prone
to errors. It has been subsequently improved in [11] through
the combination of beamforming and a probabilistic grid
representation that builds on the estimation of the first acoustic
echo to limit beamforming errors due to interference. However,
the beamforming approach for mapping the plate boundaries
is limited to rectangular geometries.

The objective of this work is to generalize the approach
presented in [1] and [11] to recover arbitrary 2-dimensional
polygonal geometries from acoustic echoes. It relies on beam-
forming in the geometrical boundary space and the single
detection of the closest boundary to map the inner surface



of the geometric shape. The geometry estimate is then con-
structed via the minimization of a regularized cost function
using a simulated annealing optimizer to select boundaries,
on the beamforming results, consistent with the mapped inner
space. We also design a boundary rejection criterion to recover
their exact number based only on a specified upper bound. We
test our approach in simulation for various geometries and
actual conditions using experimental ultrasonic measurements
acquired on a metal plate sample. The results show that it can
successfully recover the geometric shape of the reverberant
environment, the exact number of boundaries, and has the
same performance as the baseline method in [1] for recovering
rectangular shapes.

II. METHOD

We consider a setup where a single (collocated) emit-
ter/receiver acoustic device is driven to acquire acoustic mea-
surements z1..T (t) at positions x1..T in a delimited space,
where xi = [xi, yi]

T contains the two-dimensional position.
At the i-th scanning position, a pulse s(t) is used to emit an
omnidirectional acoustic wave. The received signal zi(t) con-
tains the reflections of the incident wave on the environment
boundaries. We assume that noise-free odometry information
(i.e linear and rotational displacement between the positions
of the successive measurements) is available. For a robotic
application, it is typically provided by the wheels encoders, but
other systems such as an Inertial Measurement Unit (IMU) can
also be integrated for better accuracy. We also assume that, at
each position xi, a measurement of the range ρi to the closest
boundary is available by processing the acoustic data. This
measurement may only be subject to little noise in practice,
as it may be one of the most energetic echoes. Based on all
range measurements ρ1:T , the surface AT is defined as the
unions of all disks centered at sensor positions xi, and with
the radius equal to the detected range ρi. This surface accounts
for areas where a boundary cannot be present. The objective is
to estimate the shape of the environment M that we assume to
be a 2D convex polygon using measurements and odometry. It
should be noted that only the mapping problem is addressed
here. Still, the proposed approach is expected to integrate
seamlessly within the SLAM framework in [1] to account for
odometry noise, and the method in [11] to consider detection
errors on the range measurements ρi.

A. Measurement model

The acoustic measurements contain successive reflections
of the excitation on the boundaries. Under the assumption that
the propagation is linear, and the medium is homogeneous and
isotropic, we can use the image source model [12]:

zi(t) =
∑

pi,j∈I(xi,M)

g(||pi,j − xi||, t) ∗ s(t) + ni(t), (1)

where g is the acoustic transfer function of the isotropic
medium, I(xi,M) is the set of image source positions for
a real source in xi, and ni is additive Gaussian noise that we
assume to be spatially and temporally white.

Fig. 1: Schematic of the problem setup and notations. An
example of shape to estimate is represented by the red polygon.
A candidate geometry estimate is represented by the set of
green lines, which (r, θ) coordinates are only provided for one
of them. The area A formed with a single range measurement
ρ is represented by the lighter area. The inner surfaces of A
and M̂ are delimited with the discontinuous dashed lines.

B. Delay and sum beamforming

The geometry M to estimate is assumed to be a 2D convex
polygon that can be represented by its linear boundaries:
M = {rl, θl}l=1..L where the parameters (rl, θl) define the
line equation in the 2D plane with:

x · cos θl + y · sin θl − rl = 0, (2)

expressed in a fixed frame which origin will be chosen as the
initial robot position, and the x axis will be aligned with the
initial robot heading. The number L of boundaries is assumed
a priori unknown. The adopted notations are precised in Fig.1.
To estimate the map M, we rely on beamforming as previous
works [1]. The approach is recalled here for completeness. We
first evaluate the correlation measurements:

z̃i(r) =
⟨zi(t), ẑ(r, t)⟩√

⟨zi(t), zi(t)⟩⟨ẑ(r, t), ẑ(r, t)⟩
, (3)

where ẑ(r, t) = ĝ(2r, t) ∗ s(t) is the expected received signal
for a boundary situated at a distance r from the receiver, and
ĝ is a model of the transfer function. We then retrieve the
envelope: ei(r) = |z̃i(r) + jH(z̃i)(r)|, where H denotes the
Hilbert transform operator. Hence, the positions of the local
maxima of ei yield the distances to the boundaries, and ρi can
be selected as the earliest one.

Next, we assess the likelihood of existence for any line
boundary (r, θ) by constructing the beamforming map based
on the correlation measurements and sensor positions:

LT (r, θ) =

T∑
i=1

ei (di(r, θ)) , (4)

where di(r, θ) = |xi · cos θ + yi · sin θ − r| is the distance
between the receiver and the considered line. It is to be noted
that only first-order reflections are considered in the above
equation, as we reason on individual lines.

C. Spatially-regularized cost function

The previous mapping approach in [1] can only be used
to recover rectangular shapes by retrieving exactly four local
maxima of L(r, θ) through the maximization of the cumulative



likelihood. We propose to extend this approach to recover,
in principle, arbitrary 2D polygonal shapes. The estimated
geometry has the form: M̂ = {r̂k, θ̂k}k=1..K , where the
maximum number of boundaries K is such that K ≥ L. This
is a very minimal hypothesis, as K can be set much higher
than the unknown L.

Next, for a given robot trajectory x1:T , we determine
the inner surface AT based on measuremments ρ1:T , and
the beamforming map LT calculated with Eq. (4) that we
normalize by its maximum value. We then consider the cost:

c(M̂) = −

 ∑
(rk,θk)∈M̂

L(rk, θk) + λ
M̂

⋂
AT

M̂
⋃
AT

 , (5)

where the first term aggregates the likelihood of presence
of the estimated boundaries, and the second term is the
well known Intersection over Union (IoU), widely used for
computer vision purposes [13]. In Eq. (5) the surfaces M̂ and
AT are as described in Fig.1. The IoU term (that we will
simply write as IoU(M̂, AT )) is always between 0 and 1. It is
zero when M̂ and AT have an empty intersection, and it is 1
when the two surfaces are equal. λ is a positive parameter that
balances the importance between the boundaries likelihood
and IoU terms. Our geometry estimate is then defined as:

M̂T = argmin
M̂

c(M̂). (6)

Hence, the minimization of the cost criterion leads to maxi-
mizing the cumulative likelihood of the estimated boundaries
and maintains consistency between the estimated inner surface
of M̂ with that of AT . In other words, the IoU in Eq. (5) acts
as a regularization term for selecting likely boundaries on the
beamforming results.

D. Shape estimation with simulated annealing

An optimization strategy is required to recover a geom-
etry estimate by minimising the cost. Simulated annealing
(SA) [14] is a relatively simple and efficient approach for
estimating a global minimum of a non-linear cost function.
This metaheuristic is inspired by metallurgy, where, to form
a perfect crystal (which corresponds to the state of minimal
energy), a pure liquid substance is slowly cooled. A random
perturbation is applied to the current state at each iteration of
the optimization process. The perturbation is systematically
accepted if the energy is decreased. It is accepted according
to a Boltzmann probability distribution when the energy is
increased to escape local minima. The temperature, which
is a hyperparameter that controls the acceptance rate, is
decreased slightly after each iteration, so that the probability
of increasing the energy goes to zero. Even though simulated
annealing offers no guarantees that the optimum will be found,
this strategy can lead to satisfying solutions in a relatively
restricted number of iterations. In the following, we detail
the different steps of our custom implementation for mapping
arbitrary polygonal geometries from acoustic echoes.

1) Initialization: First, the geometry estimate is randomly
initialized with M̂T = {r̂k, θ̂k}k=1..K , where the r̂k and θ̂k
are sampled from independent uniform distributions.

2) State disturbance: At iteration p of the optimization
process, each boundary of the estimate is iteratively disturbed
with a random process. For the k-th boundary, we sample:{

r̃k = max(r̂k +∆r · χ3
r, 0)

θ̃k = θ̂k +∆θ · χ3
θ mod 2π

, (7)

where ∆r and ∆θ are positive parameters, and χr and χθ are
independently sampled from uniform distributions: U([−1, 1]).
They are raised to the power 3 so that small variations are more
likely. Still, large variations (i.e in the order of ∆r and ∆θ)
can be possible to explore regions of the search space that are
far occasionally from the current state. Furthermore, to speed
up the optimizer convergence, we determine:

(r̃k, θ̃k)← arg max
(r,θ)∈V (r̃k,θ̃k)

LT (r, θ), (8)

where V (r̃k, θ̃k) denotes the set of boundaries that lie in the
neighborhood of (r̃k, θ̃k) that is to be appropriately defined.
The purpose of this step is to only select (r̃k, θ̃k) that are
local maxima, which is a property that is expected for the
true boundaries. The former edge (r̂k, θ̂k) in M̂T is then
substituted to the sampled one, yielding a new geometry

∼
MT .

3) Simulated annealing acceptance process: The new can-
didate map is kept as the current state following an SA
acceptance process. First, we determine the cost variation
∆c = c(

∼
MT ) − c(M̂T ). Let’s χ be a sample from U([0, 1]).

The candidate geometry is kept only if we have:

χ < exp

(
− ∆c

T (p)

)
, (9)

where T (p) is the temperature at iteration p of the optimizer.
Hence, if the cost is decreased, the new map is systematically
kept as the new current state M̂T . Otherwise, it is kept ac-
cording to the Boltzmann distribution to escape local minima.

4) Edge filtering: As it is expected that the edges number
parameter K is overestimated, some of them may not con-
tribute significantly to the definition of the recovered geometry
once the optimizer has converged. To derive a proper geometry
with a correct number of boundaries, we apply a rejection
criterion to remove non-informative edges. We iterate over
each boundary (r̂k, θ̂k) in M̂T , and we remove it to yield
a new candidate geometry

∼
MT . We then assess whether:∣∣∣∣∣ IoU(

∼
MT , AT )− IoU(M̂T , AT )

IoU(M̂T , AT )

∣∣∣∣∣ < ϵ, (10)

where we will take ϵ = 10−2. If the IoU variation is lower
than the threshold, then the k-th boundary can be removed,
as its contribution to the definition of the geometric surface is
considered negligible. Then, the geometry

∼
MT can be taken

as the new candidate M̂T , and the process is iterated on the
next boundary. Also, the rejection criterion is not applied if
the candidate map M̂T has 3 edges (which is a lower bound
for a polygonal shape).



(a) 3 edges geometry (b) 4 edges geometry. (c) 5 edges geometry.

Fig. 2: The different simulated setups along with an instance of mapping results. On the left of each sub-figure, the outline of
the ground-truth geometry is provided in discontinuous red, the green lines account for the estimated edges, and the robot path
and acquisition positions are represented in black. The corresponding beamforming maps are provided on the right, where the
red rectangles indicate the retrieved edges. The edge coordinates are expressed in the fixed frame, which origin is the initial
sensor position O, and the x-axis is aligned with the initial robot heading.

(a) Results for the 3 edges case. (b) Results for the 4 edges case. (c) Results for the 5 edges case.

Fig. 3: Evolution of the performance criteria for the 3 scenarios, and for 10 repetitions of the optimizer. The top plots show, in
blue, the evolution of the costs. The middle plots depict the estimated number of edges after application of the edge rejection
criterion. The bottom plots show the IoU between estimated and ground-truth surfaces. The median values are in red.

III. EXPERIMENTS

We perform different experiments to assess the efficiency of
our method for recovering arbitrary 2-dimensional polygonal
geometries from acoustic echoes acquired over a mobile unit
trajectory. We perform simulation tests on three shapes and
validation tests using experimental acoustic data acquired on
a rectangular metal plate. For this latter scenario, the baseline
method in [1] is also applied for comparison.

A. Simulation results
We consider three simulated scenarios, where the geometry

to be recovered has either 3, 4 or 5 boundaries. The robot paths
are randomly generated with successive linear and rotational
displacements. The ultrasonic measurements acquired over the
path are simulated using the Image source model and the
ultrasonic model g used in [1]. It should be noted that such
a data model leads to over-energetic high-order reflections,
as acoustic absorption from the boundaries is not taken into
account. The excitation s(t) is a two tone bursts sinusoidal
wave at 100 kHz. We add Gaussian noise on the measurements
to maintain a fixed signal-to-noise ratio SNR = 0. The
considered geometries and paths are provided in Fig. 2.

We run 10 repetitions of the optimizer for each scenario
to assess the repeatability of our approach. The optimizer is

set with parameters λ = 3, T (p) = 5/p0.8, and V (r, θ) is
chosen as the set of edges with line coordinates within the
rectangular area centered in (r, θ), and with size 5.4cm × 48 ◦.
Also, we use K = 10 as the maximum number of edges.
Fig. 3 shows the evolution of the cost, as well as the number
of estimated edges after use of the edge rejection criterion
during 300 optimizer iterations and for the 10 repetitions. We
also display the evolution of IoU(M̂,M), which is the IoU
between the estimated inner surface (based on the estimated
edges) and the ground truth surface M. Hence, an IoU of
1 translates into a perfect geometry estimation. The results
demonstrate that, for all the considered scenarios, our approach
can seamlessly recover, after convergence, both the actual
number of boundaries and the geometric shape.

B. Experimental results

To validate our approach, we run it using experimental
ultrasonic data acquired on a rectangular aluminium metal
plate by moving, by hand, two nearly collocated contact
piezoelectric transducers for emission and reception. More
details on the experimental setup and acquisition procedure
are provided in [1]. The optimizer is set with the exact same
parameters than those used for the simulation tests to highlight
the robustness of our approach. Also, we do not use ground-



(a) Mapping setup and results for the experimental scenario.

(b) Evolution of performance criteria during the optimization.

Fig. 4: Results for the experimental setup. (a, left) shows the
simulated sensor path (in black), the plate outline (red) and
estimated edges (green). The corresponding beamforming map
is provided on the right, where the red rectangles indicate the
retrieved edges. (b) shows the evolution of the loss, the number
of estimated edges and IoU for 10 repetitions of the optimizer.
The black horizontal line on the IoU plot is the value achieved
with the baseline method [1]. The median values are in red.

truth ranges ρ1:T , but apply a standard peak detection method
on the correlation signals to estimate them. This only leads
to a slight estimation error due to high SNR. The considered
simulated robot trajectory is depicted in Fig. 4a.

Fig. 4 shows the results and the evolution of the performance
criteria for 10 repetitions of the optimization process. For
comparison, we also display the IoU achieved with the base-
line method presented in [1], which does not require iterative
optimization, but is restricted to rectangular shapes. We can
see that the estimated number of edges converges seamlessly
to 4, while the IoU goes to 1 for all the repetitions. Thus, our
method achieves the performance of the baseline approach,
despite not being provided with the ground-truth number
of edges nor the rectangular constraint. Overall, the results
demonstrate the potential of our approach for recovering
polygonal shapes from acoustic echoes using a single mobile
omnidirectional emitter/receiver device and beamforming.

IV. CONCLUSION

We have developed a new mapping approach to recover the
geometry of unknown 2D polygonal structures from acoustic

echos using a single omnidirectional mobile sensor. It com-
bines delay-and-sum beamforming in the geometric boundary
space and a simulated annealing optimizer to retrieve boundary
estimates from the beamforming results. Contrary to previous
works, our approach does not rely on solid hypotheses on
echo detection and identification and can recover, in principle,
arbitrary polygonal shapes.

The approach is tested in a simulation environment. The
results are promising, with a correct and efficient recon-
struction of various geometries, without prior knowledge of
the number of boundaries to recover. The approach is also
validated on experimental acoustic data acquired in a real-
life setup to demonstrate its robustness. The results show that
the approach achieves the same performance as the baseline
method restricted to rectangular geometries. The optimization
efficiency shall be improved, in future works, so that the
method can be run online. Furthermore, the method shall be
integrated within a SLAM framework, as the sensor positions
are to be estimated in practice. Its extension to recover 3D
volumes shall also be investigated.
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