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Abstract
Building software is a crucial task to compile, test, and deploy

software systems while continuously ensuring quality. The

Linux Kernel is the most configurable and complex system

with more than 15, 000 features. To speed up the building of

such a large configuration set, and in contrast to the common

workflow relying on only building clean configurations, we

propose to incrementally build them.

Initial results do not provide any optimal order to incre-

mentally build configurations due to a high distance between

them. However, we show it is possible to control the config-

urations generation process: reusing commonality can save

up to 66% of build time compared to only clean builds.

Keywords: Linux Kernel, Highly Configurable System, Build

Systems, Incremental Build

1 Introduction
The Linux kernel offers over 15, 000 features making it the

most configurable and complex system. Indeed, the Linux

Kernel is highly configurable: users can either enable – as an

integrated feature or an external loadable module – or disable

features and combine them to create a configuration [3]. The

set of all possible configurations is called configuration space.

Problem. If each of these 15, 000 features could be enabled
or disabled to obtain a valid configuration, the size of the con-

figuration space would be 2
15000

. Logical constraints among

features reduce this number but the configuration space re-

mains huge. Thus building Linux configurations is crucial to

test, deploy and learn from its non-functional properties for

optimization or tuning. As stated by Greg Kroah-Hartman,

Linux maintainer, at FOSDEM’10, "The Linux Kernel does not
have a test suite[. . . ] for hardware interaction [. . . ] The best
thing you can ever do for us is: you just build the Kernel and
tell us if you have a problem. That is our QA cycle." Building a
Linux configuration running Make [9] takes on average nine

minutes [1]. Therefore, building a large amount of configu-

rations is time and CPU consuming (about a week to build

only 1000 configurations). Even though the goal is not to

cover the entire configuration space, we aim to explore the

combination of most common options.

Approach. We propose an approach to investigate the

incremental build of configurations: rather than indepen-

dently building each configuration and cleaning the build

artefacts between each build, a configuration can instead be

incrementally built from an existing and already completed

configuration build. The idea is to reuse artefacts of previ-

ous configurations builds, hence saving some computations,

resources, and time. Behind this idea, the real question is

to quantify how much and where we can gain or lose com-

pared to a more conventional build (in addition to already

existing techniques such as distributed build). This approach

has risks: an incremental build might not work or might be

incorrect compared to a conventional build, for example the

build system might “forget” to recompile some files. Another

unknown remains about the strategy to schedule the incre-

mental build of configurations. Given a set of configurations,

numerous possible orderings exist, possibly with different

effects on correctness and overall build cost (e.g., CPU time).

Does incremental build pay off whatever the ordering and

the distance among configurations? Is it worth finding an

optimal ordering?

2 Incremental build
We present in this section our approaches that contribute to

the incremental build of Linux configurations.

Ordering of random configurations. We address a first

scenario of incremental build of configurations. Given a set

of configurations (such as multiple Linux default configura-

tions) we need to find an order to incrementally build them

such that this outperforms the overall build time of only

clean builds. To this end, we propose to incrementally build

every pair of the set and if the incremental build outperforms

clean build we then investigate the build artefact to under-

stand the reasons why incremental build is effective and how

to use it to order the set.

Configuration generation. In this scenario, starting from
an initial configuration, we generate a set of configurations

in which incremental build is guaranteed to outperform clean

builds. To determine before compilation which files will be

compiled if an option is enabled/disabled, we build a de-

pendency graph (DG) between options according to their

implementation at file level. If two options are implemented

in the same file, an edge in the DG links them. This represen-

tation can over approximate the number of files to recompile

when an option is modified in the configuration. Then the op-

tions that trigger fewer files to (re)compile are selected to be

added/removed in the new configurations. We add them pro-

gressively to increase diversity by small increments, instead

of building from scratch every configuration.



Incremental build correctness. An incremental build is

correct if it is “identical” to a clean build. Here we suggest

two criteria: the symbols and the size of the produced Linux

binary vmlinux. If they are identical for both incremental

and clean builds, the incremental build process is considered

safe.

3 Preliminary results
Ordering of random configurations. We ran the ex-

periment with two batches of 20 random configurations
1
of

Linux. We could not find any pair of configurations in which

incremental build was faster than clean build. After inves-

tigation, we found out that there was too much difference

between two randomly generated configurations, with up

to a thousand options added or removed. In addition, the

strategies of the build system (Make) can also fail to reuse

files and do redundant builds (see, e.g., [35]).

Configuration generation. We picked a random con-

figuration and built it from scratch. Then we generated 9

configurations from it with the technique described in Sec-

tion 2 using the DG. The number of different options between

each generated configuration and the original varies from

7 to 183. Total CPU time using only clean builds was 4864

seconds, whereas total CPU time relying on one clean build

of the initial configuration then incremental builds of the

others was 1649 seconds, a gain of approximately 66% of

build time.

Incremental build’s correctness. For all our experiments,

correctness holds according to our criteria.

4 Future work
A priori knowledge for ordering configurations. As

shown in Section 3, the brute force strategy of picking ran-

dom configurations does not bring benefits for Linux because

of high differences among these random configurations. We

plan to develop techniques to infer knowledge directly from

the build system [7, 31], so as to deduce similarities among

possible configurations and determine an a priori order to
incrementally build them.

Automatic generation of configurations. We plan to

improve our configurations mutations to add/remove more

options (beyond 183). We aim to automatize the whole pro-

cess to explore the configuration space while effectively us-

ing incremental build. We plan to investigate how to bring

the technique to continuous integration platforms, improv-

ing our builds with distribution and even more caching.
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5 Related work
Large scale build infrastructures for Linux [13, 17, 22] exist

that build hundreds of Linux configurations per day. Never-

theless, they only perform clean builds.

Many works exist about build systems [4, 5, 8, 9, 12, 20, 24,

25, 28, 33] but focus on code changes through the evolution

of software (e.g., commits) rather than configurations. Mau-

doux et al. [23] show that incremental build could speed up

builds of continuous integration (CI), and Gallaba et al. [11]
that caching can accelerate CI. An open issue is to adapt

these techniques over distant software configurations that

may have very different impacts on the files to build.

The Variability and Software Product Lines (SPL) commu-

nity develops numerous methods and techniques to man-

age a family of variants (or products). Formal methods and

program analysis can identify some classes of configura-

tion defects [6, 32], leading to variability-aware testing ap-

proaches (e.g., [10, 15, 16, 18, 19, 21, 26, 27, 29, 34]). Static
analysis and notably type-checking have been used to find

bugs in configurable software and can scale to very large

code bases such as the Linux Kernel [15, 16, 34]. Though

variability-aware analysis is relevant in many engineering

contexts, our interest differs and consists in studying the

practice of concretely building a sample of (possibly distant

and diverse) configurations with an unexplored approach

– incremental build. Sampling configurations is subject to

intensive research [2, 14, 30, 32]; incremental build brings

new challenges. We are unaware of studies that consider or

apply incremental build of configurations.

6 Conclusion
We presented our approach that consists in bridging incre-

mental build with software configurations. Results of pre-

liminary experiments over the Linux Kernel show that in-

cremental build can reduce the cost of building (e.g., a gain
of 66% when controlling the generation of configurations).

We intend to test this approach on broader software projects,

beyond Linux. Yet several challenges remain, related to the

diversity of configurations and the ordering of incremental

builds. Many software projects face the problem of build-

ing multiple configurations and we encourage the software

engineering community to more widely explore the poten-

tial of incremental build (e.g., combination with parallel or

distributed build).
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