
HAL Id: hal-03615777
https://hal.science/hal-03615777

Submitted on 21 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Build of Linux Kernel Configurations
Georges Aaron Randrianaina

To cite this version:
Georges Aaron Randrianaina. Incremental Build of Linux Kernel Configurations. EuroDW 2022 -
16th EuroSys Doctoral Workshop, Apr 2022, Rennes, France. pp.1-3. �hal-03615777�

https://hal.science/hal-03615777
https://hal.archives-ouvertes.fr


Incremental Build of Linux Kernel Configurations
RANDRIANAINA Georges Aaron

Univ Rennes, CNRS, Inria, IRISA - UMR 6074

F-35000 Rennes, France

georges-aaron.randrianaina@irisa.fr

Abstract
Building software is a crucial task to compile, test, and deploy

software systems while continuously ensuring quality. The

Linux Kernel is the most configurable and complex system

with more than 15, 000 features. To speed up the building of

such a large configuration set, and in contrast to the common

workflow relying on only building clean configurations, we

propose to incrementally build them.

Initial results do not provide any optimal order to incre-

mentally build configurations due to a high distance between

them. However, we show it is possible to control the config-

urations generation process: reusing commonality can save

up to 66% of build time compared to only clean builds.

Keywords: Linux Kernel, Highly Configurable System, Build

Systems, Incremental Build

1 Introduction
The Linux kernel offers over 15, 000 features making it the

most configurable and complex system. Indeed, the Linux

Kernel is highly configurable: users can either enable – as an

integrated feature or an external loadable module – or disable

features and combine them to create a configuration [3]. The

set of all possible configurations is called configuration space.

Problem. If each of these 15, 000 features could be enabled
or disabled to obtain a valid configuration, the size of the con-

figuration space would be 2
15000

. Logical constraints among

features reduce this number but the configuration space re-

mains huge. Thus building Linux configurations is crucial to

test, deploy and learn from its non-functional properties for

optimization or tuning. As stated by Greg Kroah-Hartman,

Linux maintainer, at FOSDEM’10, "The Linux Kernel does not
have a test suite[. . . ] for hardware interaction [. . . ] The best
thing you can ever do for us is: you just build the Kernel and
tell us if you have a problem. That is our QA cycle." Building a
Linux configuration running Make [9] takes on average nine

minutes [1]. Therefore, building a large amount of configu-

rations is time and CPU consuming (about a week to build

only 1000 configurations). Even though the goal is not to

cover the entire configuration space, we aim to explore the

combination of most common options.

Approach. We propose an approach to investigate the

incremental build of configurations: rather than indepen-

dently building each configuration and cleaning the build

artefacts between each build, a configuration can instead be

incrementally built from an existing and already completed

configuration build. The idea is to reuse artefacts of previ-

ous configurations builds, hence saving some computations,

resources, and time. Behind this idea, the real question is

to quantify how much and where we can gain or lose com-

pared to a more conventional build (in addition to already

existing techniques such as distributed build). This approach

has risks: an incremental build might not work or might be

incorrect compared to a conventional build, for example the

build system might “forget” to recompile some files. Another

unknown remains about the strategy to schedule the incre-

mental build of configurations. Given a set of configurations,

numerous possible orderings exist, possibly with different

effects on correctness and overall build cost (e.g., CPU time).

Does incremental build pay off whatever the ordering and

the distance among configurations? Is it worth finding an

optimal ordering?

2 Incremental build
We present in this section our approaches that contribute to

the incremental build of Linux configurations.

Ordering of random configurations. We address a first

scenario of incremental build of configurations. Given a set

of configurations (such as multiple Linux default configura-

tions) we need to find an order to incrementally build them

such that this outperforms the overall build time of only

clean builds. To this end, we propose to incrementally build

every pair of the set and if the incremental build outperforms

clean build we then investigate the build artefact to under-

stand the reasons why incremental build is effective and how

to use it to order the set.

Configuration generation. In this scenario, starting from
an initial configuration, we generate a set of configurations

in which incremental build is guaranteed to outperform clean

builds. To determine before compilation which files will be

compiled if an option is enabled/disabled, we build a de-

pendency graph (DG) between options according to their

implementation at file level. If two options are implemented

in the same file, an edge in the DG links them. This represen-

tation can over approximate the number of files to recompile

when an option is modified in the configuration. Then the op-

tions that trigger fewer files to (re)compile are selected to be

added/removed in the new configurations. We add them pro-

gressively to increase diversity by small increments, instead

of building from scratch every configuration.



Incremental build correctness. An incremental build is

correct if it is “identical” to a clean build. Here we suggest

two criteria: the symbols and the size of the produced Linux

binary vmlinux. If they are identical for both incremental

and clean builds, the incremental build process is considered

safe.

3 Preliminary results
Ordering of random configurations. We ran the ex-

periment with two batches of 20 random configurations
1
of

Linux. We could not find any pair of configurations in which

incremental build was faster than clean build. After inves-

tigation, we found out that there was too much difference

between two randomly generated configurations, with up

to a thousand options added or removed. In addition, the

strategies of the build system (Make) can also fail to reuse

files and do redundant builds (see, e.g., [35]).

Configuration generation. We picked a random con-

figuration and built it from scratch. Then we generated 9

configurations from it with the technique described in Sec-

tion 2 using the DG. The number of different options between

each generated configuration and the original varies from

7 to 183. Total CPU time using only clean builds was 4864

seconds, whereas total CPU time relying on one clean build

of the initial configuration then incremental builds of the

others was 1649 seconds, a gain of approximately 66% of

build time.

Incremental build’s correctness. For all our experiments,

correctness holds according to our criteria.

4 Future work
A priori knowledge for ordering configurations. As

shown in Section 3, the brute force strategy of picking ran-

dom configurations does not bring benefits for Linux because

of high differences among these random configurations. We

plan to develop techniques to infer knowledge directly from

the build system [7, 31], so as to deduce similarities among

possible configurations and determine an a priori order to
incrementally build them.

Automatic generation of configurations. We plan to

improve our configurations mutations to add/remove more

options (beyond 183). We aim to automatize the whole pro-

cess to explore the configuration space while effectively us-

ing incremental build. We plan to investigate how to bring

the technique to continuous integration platforms, improv-

ing our builds with distribution and even more caching.

1
Generated using randconfig

5 Related work
Large scale build infrastructures for Linux [13, 17, 22] exist

that build hundreds of Linux configurations per day. Never-

theless, they only perform clean builds.

Many works exist about build systems [4, 5, 8, 9, 12, 20, 24,

25, 28, 33] but focus on code changes through the evolution

of software (e.g., commits) rather than configurations. Mau-

doux et al. [23] show that incremental build could speed up

builds of continuous integration (CI), and Gallaba et al. [11]
that caching can accelerate CI. An open issue is to adapt

these techniques over distant software configurations that

may have very different impacts on the files to build.

The Variability and Software Product Lines (SPL) commu-

nity develops numerous methods and techniques to man-

age a family of variants (or products). Formal methods and

program analysis can identify some classes of configura-

tion defects [6, 32], leading to variability-aware testing ap-

proaches (e.g., [10, 15, 16, 18, 19, 21, 26, 27, 29, 34]). Static
analysis and notably type-checking have been used to find

bugs in configurable software and can scale to very large

code bases such as the Linux Kernel [15, 16, 34]. Though

variability-aware analysis is relevant in many engineering

contexts, our interest differs and consists in studying the

practice of concretely building a sample of (possibly distant

and diverse) configurations with an unexplored approach

– incremental build. Sampling configurations is subject to

intensive research [2, 14, 30, 32]; incremental build brings

new challenges. We are unaware of studies that consider or

apply incremental build of configurations.

6 Conclusion
We presented our approach that consists in bridging incre-

mental build with software configurations. Results of pre-

liminary experiments over the Linux Kernel show that in-

cremental build can reduce the cost of building (e.g., a gain
of 66% when controlling the generation of configurations).

We intend to test this approach on broader software projects,

beyond Linux. Yet several challenges remain, related to the

diversity of configurations and the ordering of incremental

builds. Many software projects face the problem of build-

ing multiple configurations and we encourage the software

engineering community to more widely explore the poten-

tial of incremental build (e.g., combination with parallel or

distributed build).

7 Acknowledgments
I would like to thank my PhD advisors: Mathieu Acher,

Djamel Eddine Khelladi and Olivier Zendra.

2



References
[1] M. Acher, H. Martin, J. Alves Pereira, A. Blouin, D. Eddine Khel-

ladi, and J.-M. Jézéqel, Learning From Thousands of Build Failures of
Linux Kernel Configurations, technical report, Inria ; IRISA, June 2019.

[2] J. Alves Pereira, M. Acher, H. Martin, and J.-M. Jézéqel, Sam-
pling effect on performance prediction of configurable systems: A case
study, in Proceedings of the ACM/SPEC International Conference on

Performance Engineering, 2020, pp. 277–288.

[3] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-Oriented Soft-
ware Product Lines: Concepts and Implementation, Springer Publishing
Company, Incorporated, 2013.

[4] Bazel, A fast, scalable, multi-language and extensible build system.

[5] Q. Cao, R. Wen, and S. McIntosh, Forecasting the duration of incre-
mental build jobs, in 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), IEEE, 2017, pp. 524–528.

[6] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and

J.-F. Raskin, Featured Transition Systems: Foundations for Verifying
Variability-Intensive Systems and Their Application to LTL Model Check-
ing, IEEE Transactions on Software Engineering, 39 (2013), pp. 1069–

1089.

[7] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and

D. Lohmann, A robust approach for variability extraction from
the linux build system, in Proceedings of the 16th International

Software Product Line Conference - Volume 1, SPLC ’12, New York,

NY, USA, 2012, Association for Computing Machinery, p. 21–30.

[8] S. Erdweg, M. Lichter, and M. Weiel, A sound and optimal incre-
mental build system with dynamic dependencies, ACM Sigplan Notices,

50 (2015), pp. 89–106.

[9] S. I. Feldman, Make — a program for maintaining computer programs,
Software: Practice and Experience, 9 (1979), pp. 255–265.

[10] S. Fischer, R. Ramler, C. Klammer, and R. Rabiser, Testing of highly
configurable cyber-physical systems – a multiple case study, in 15th In-

ternational Working Conference on Variability Modelling of Software-

Intensive Systems, VaMoS’21, New York, NY, USA, 2021, Association

for Computing Machinery.

[11] K. Gallaba, Y. Junqeira, J. Ewart, and S. Mcintosh, Accelerating
continuous integration by caching environments and inferring depen-
dencies, IEEE Transactions on Software Engineering, (2020), pp. 1–1.

[12] M. A. Hammer, J. Dunfield, K. Headley, N. Labich, J. S. Foster,

M. Hicks, and D. Van Horn, Incremental computation with names,
Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications,

(2015).

[13] Intel, 0-day, an automated linux kernel test service, Online; accessed
2022.

[14] P. Jamshidi, M. Velez, C. Kästner, and N. Siegmund, Learning to
sample: exploiting similarities across environments to learn performance
models for configurable systems, in Proceedings of the 2018 26th ACM

Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2018, pp. 71–

82.

[15] C. Kastner and S. Apel, Type-checking software product lines-a for-
mal approach, in 2008 23rd IEEE/ACM International Conference on

Automated Software Engineering - ASE ’08, IEEE, 2008, pp. 258–267.

[16] A. Kenner, C. Kästner, S. Haase, and T. Leich, Typechef: Toward type
checking #ifdef variability in c, in Proceedings of the 2Nd International

Workshop on Feature-Oriented Software Development, FOSD ’10, New

York, NY, USA, 2010, ACM, pp. 25–32.

[17] KernelCI, a community-led test system focused on the upstream linux
kernel, 2021.

[18] C. H. P. Kim, D. S. Batory, and S. Khurshid, Reducing combinatorics
in testing product lines, in Proceedings of the tenth international con-

ference on Aspect-oriented software development, AOSD ’11, ACM,

2011, pp. 57–68.

[19] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Bar-

ros, and M. d’Amorim, Splat: lightweight dynamic analysis for re-
ducing combinatorics in testing configurable systems - esec/fse ’13, in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, ACM, 2013, pp. 257–267.

[20] G. Konat, S. Erdweg, and E. Visser, Scalable incremental building
with dynamic task dependencies, in 2018 33rd IEEE/ACM International

Conference on Automated Software Engineering (ASE), IEEE, 2018,

pp. 76–86.

[21] J. A. P. Lima, W. D. F. Mendonça, S. R. Vergilio, and W. K. G.

Assunção, Learning-based prioritization of test cases in continuous
integration of highly-configurable software, in SPLC ’20: 24th ACM

International Systems and Software Product Line Conference, R. E.

Lopez-Herrejon, ed., ACM, 2020, pp. 31:1–31:11.

[22] H. Martin, M. Acher, J. A. Pereira, L. Lesoil, J.-M. Jézéqel, and

D. E. Khelladi, Transfer learning across variants and versions: The case
of linux kernel size, IEEE Transactions on Software Engineering, (2021),

pp. 1–17.

[23] G. Maudoux and K. Mens, Bringing incremental builds to continuous
integration, in Proc. 10th Seminar Series Advanced Techniques & Tools

for Software Evolution, 2017, pp. 1–6.

[24] , Correct, efficient, and tailored: The future of build systems, IEEE
Software, 35 (2018), pp. 32–37.

[25] N. Mitchell, Shake before building, ACM SIGPLAN Notices, 47 (2012),

p. 55.

[26] H. V. Nguyen, C. Kästner, and T. N. Nguyen, Exploring variability-
aware execution for testing plugin-based web applications, in Proceed-

ings of the 36th International Conference on Software Engineering -

ICSE ’14, ACM, 2014, pp. 907–918.

[27] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter, Using
symbolic evaluation to understand behavior in configurable software sys-
tems, in Proceedings of the 32nd ACM/IEEE International Conference

on Software Engineering, vol. 1 of ICSE ’10, ACM Press, 2010, p. 445.

[28] R. W. Schwanke and G. E. Kaiser, Smarter recompilation, ACM Trans.

Program. Lang. Syst., 10 (1988), p. 627–632.

[29] J. Shi, M. B. Cohen, and M. B. Dwyer, Integration Testing of Software
Product Lines Using Compositional Symbolic Execution, in Proceedings

of the 15th International Conference on Fundamental Approaches to

Software Engineering, vol. 7212 of LNCS, Springer, 2012, pp. 270–284.

[30] S. Souto, M. d’Amorim, and R. Gheyi, Balancing soundness and effi-
ciency for practical testing of configurable systems, in 2017 IEEE/ACM

39th International Conference on Software Engineering (ICSE), IEEE,

2017, pp. 632–642.

[31] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat,

Feature consistency in compile-time-configurable system software: Facing
the linux 10,000 feature problem, in Proceedings of the Sixth Confer-

ence on Computer Systems, EuroSys ’11, New York, NY, USA, 2011,

Association for Computing Machinery, p. 47–60.

[32] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, A classifi-
cation and survey of analysis strategies for software product lines, ACM
Computing Surveys, 47 (2014), pp. 6:1–6:45.

[33] W. F. Tichy, Smart recompilation, ACM Trans. Program. Lang. Syst., 8

(1986), p. 273–291.

[34] A. von Rhein, J. Liebig, A. Janker, C. Kästner, and S. Apel,

Variability-aware static analysis at scale: An empirical study, ACM
Trans. Softw. Eng. Methodol., 27 (2018), pp. 18:1–18:33.

[35] Y. Zhang, Y. Jiang, C. Xu, X. Ma, and P. Yu, Abc: Accelerated building
of c/c++ projects, 2015 Asia-Pacific Software Engineering Conference
(APSEC), (2015), pp. 182–189.

3


	Abstract
	1 Introduction
	2 Incremental build
	3 Preliminary results
	4 Future work
	5 Related work
	6 Conclusion
	7 Acknowledgments
	References

