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Abstract

Composite micro plates with periodic microstructure at very small length scale have been a focus of

intensive research. When length scale of the microstructure descends below millimetre level, size effects

may emerge. To account for microstructure effect on the elastic wave band gap of microscopic composite

plates, we propose a numerical framework based on the modified couple stress theory of elasto-dynamics

associated with a non-classical 3-node triangular (T3) Mindlin plate finite element. Since couple stress

elasto-dynamics incorporates dependence on the material scale length, the proposed approach is sensi-

tive to size effects with microscopic problems while remaining compatible with macroscopic problems.

In terms of the finite element implementation, we implemented a T3 plate finite element with 9 nodal

degrees of freedom under the Mindlin kinematics assumptions. The approach presents enhanced flexibil-

ity to discretize complex microstructures owing to the triangular element topology, and offers sensitivity

to account for size effects of microscopic problems. Therefore, it represents a good option for the de-

sign of band gap periodic composite micro plates. Validation of the framework is performed through

comparison with both analytical and numerical models.

Keywords: Band gap; Composite micro plate; Couple stress theory; Mindlin plate

1 Introduction

Band gap composites ([1][2][3][4][5]) are a family of architectured materials that offer tunable properties

to influence wave propagation according to the wave frequency. An important property of these materials

is the band gap ([6][7][8][9][10]) characteristics, which specifically designates the capacity to hinder

propagation of waves in particular frequency ranges.

The formation mechanism of band gap is mainly determined by two phenomena ([11]) : the first

involves elastic wave scattering ([12]) which takes place on the material or structure interface; the

other, based on resonance effect ([13]), results from local vibration of the resonator which absorbs
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energy of the elastic wave, leading to vibration attenuation. Both mechanisms require that the material

microstructure be designed at scales under the order of the wavelengths of the phenomena they influence.

This leads frequently to micro-scale localized microstructures, for which size dependent effects ([14])

may emerge. Due to the presence of size effects, band gaps of microstructures cannot be accurately

determined using classical theories of elasto-dynamics since they lack adapted constitutive description

that incorporates dependence on the material scale length.

To address the issue of size effects, a variety of high-order theories of elasticity have been proposed

recently to describe size-dependent band gap behaviours. For example, Zhang et al. ([15]) developed a

modified couple stress theory to determine elastic wave band gaps for 3D phononic crystals. Madeo et

al. ([16]) developed relaxed linear micromorphic continuum theory for elastic wave control of finite-size

metastructures. Chen ([17]) proposed a new set of non-classical wave equations to investigate layered

phononic crystals. Based on the high-order continuum theories, several size-dependent micro beam

([18, 19]), plate ([20, 21, 22, 23]) and shell ([24, 25]) models have been recently developed to study

microscopic thin structures. Among these achievements, only a few models provide numerical solution

with finite element formulation. In fact, finite element implementation of high-order continuum theories

is not a trivial task. It requires interpolation of nodal parameters that satisfy at least C1 continuity since

second-order derivatives of the displacement are involved. However, strict C1 continuous interpolation

is difficult to construct and leads to either important number of nodal parameters ([26, 27]), or complex

element structures ([28, 29]). Until recently, only a few examples of C1 continuous elements have

been successfully implemented based on high-order continuum theories ([30, 31, 32]). Alternatively,

instead of seeking strict C1 continuity, one may only require a relaxed but tolerable compatibility

for the displacement field by using non-conforming element formulations. Non-conforming elements

may be discontinuous for the displacement derivatives on the inter-element boundary, but preserve C1

continuity at the nodes. Furthermore, they are relatively simple to implement ([33]).

In this paper, we implemented a T3 plate finite element with 9 nodal degrees of freedom, whose

interpolation functions were proposed by Bazeley ([34]). We then extended the Bazeley element to

Mindlin kinematics in the context of couple stress continuum theory. The aim is to solve band gap

problems involving microstructures of small length scales for which size effects are no longer negligible.

To capture the size effect, we introduce symmetric curvature tensor into the kinematic relations, which

leads to high-order strain, then the associated work conjugate yields couple stress. The high-order

stress and strains are related by a constitutive model which incorporates dependence on the material

length scale. The finite element framework takes advantage of triangular element topology, which offers

improved flexibility to discretize complex geometries. We implemented vibration modal analysis based

on Bloch-Floquet periodic boundary conditions, which allows band gap calculations that we validated

through comparison with both theoretical and comparative numerical models.

To describe the proposed numerical framework, we organize the article as follows: we start by

presenting in Section 2, the theoretical formulation of the band gap unit cell problem based on modified

couple stress theory. Then in Section 3, we provide details on the implementation of the non-classical

Mindlin micro plate finite element. In Section 4, periodic boundary conditions based on Bloch-Floquet

theory is applied, which leads to the formulation of the band gap problem to be solved. We note

that the term “wave finite element method” is frequently used in the literature to designate numerical

implementation given in Section 3 and 4. In Section 5, 3 numerical examples are provided to validate

and discuss the implemented numerical framework. In the end, conclusion remarks are drawn in Section

6.
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2 Band gap unit cell problem with modified couple

stress theory

Size effects may emerge in band gap composite micro plates when the microstructure length scale

approaches millimetre level. To capture the effect of size dependence, a modified couple stress model is

implemented through a unit cell problem that represents the material’s microstructure.

2.1 Modified couple stress theory

Elasto-statics of the modified couple stress theory was first proposed by Yang et al. [35] based on

the principle of minimum potential energy. According to this theory, strain energy U for an isotropic

deformable body Ω, within linear elasticity integrates contributions due to both classical Cauchy strain

and symmetric curvature tensors:

U =
1

2

∫
Ω

(σ : ε+m : χ) dV , (1)

where dV is the unit volume. σ and m are, respectively, the components of the Cauchy stress and

deviatoric part of the couple stress tensors. Then accordingly, ε and χ are, respectively the components

of Cauchy strain and symmetric curvature tensors given by

ε =
1

2

(
∇u+ (∇u)T

)
, (2)

χ =
1

2

(
∇θ + (∇θ)T

)
, (3)

in which u are the displacement vector and θ refer to the rotation vector, defined as

θ =
1

2
∇× u, (4)

with ∇ being the Hamiltonian operator, “×” denoting the cross product symbol, which will be kept

in the following. Constitutive relations in the modified couple stress theory, involving expressions of

Cauchy stress and couple stress tensors, are written as σ = λtr (ε) I + 2µε

m = 2µl2χ
, (5)

where I is second order unit tensor. λ and µ are the Lamé constants according to classical elasticity.

l is a material length scale parameter, it measures the couple stress effect ([36][37]) and is commonly

determined experimentally.

2.2 Couple stress band gap unit cell problem

Consider the region Π, occupied by a periodic bi-phase composite micro plate comprising inclusions

(Phase I) embedded periodically in a host matrix (Phase II) represented in Fig.(1). The composite

plate Π is significantly larger in dimension compared to its unit cell Ω whose mid-surface representation

is also shown in Fig.(1). The depicted unit cell Ω is considered to be composed of material points p ⊂ R3.

Location of point p can be indicated by the position vector r, defined within the basis formed by three

perpendicular basis vectors a1, a2 and a3, with a1, a2 forming a plane that coincides with the unit
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cell’s lower surface, and a3 in the plate through-thickness direction, so that r = A1a1 +A2a2 +A3a3 for

A1, A2, A3 ∈ [0, 1]. Since periodic composite micro plates are concerned, only in-plane heterogeneities

exist, thus a1 and a2 also correspond to the material periodicity. This means in-plane disposition of

material heterogeneities across the medium varies periodically according to a1 and a2, such that

λ(r + niai) = λ(r), µ(r + niai) = µ(r), ρ(r + niai) = ρ(r), with i = 1, 2 (6)

with ρ the material density, λ and µ the elastic constants, and ni ∈ Z.

Π
Ω

Phase  II

Phase  I

1a

2a

3a

Figure 1: Example of a periodic composite micro plate and its unit cell

Propagation of elastic waves in solids is governed by the equation of elasto-dynamics. Here, to

address the microstructure effects, the governing equation of classical elasto-dynamics is written in the

context of modified couple stress theory ([38]), which gives

∇ · σ − 1

2
∇× (∇ ·m)− 1

2
∇× c + f = ρü . (7)

This gives the equation of motion for all points in Ω at any t ∈ (0, T ), with “·” denoting the dot product

symbol, which will be kept in the following; σ and m related by the constitutive equation (Eq.5); c and

f , referring respectively to the components of body couple (moment per unit volume) and body force

(force per unit volume) acting on Ω; then u the components of displacement vector. The displacement

field in Ω, as a result of elastic wave propagation, is a harmonic function based on time and the position

vector, described by

u(r, t) = u(r)eiωt , (8)

in which ω refers to angular frequency. Applying the Bloch-Floquet theorem ([39]), we transform the

harmonic description (Eq.8) of the displacement field of Ω as

u(r,k) = uk(r)ei(k·r) , (9)

where k = (kx, ky) refers to Bloch vector, uk(r) is a periodic function of the same material periodicity

as the region Π, namely ai (i = 1, 2) . Finally, the displacement field satisfies

uk (r + ai) = uk

u(r + ai,k) = uk(r + ai)e
i(k·r)ei(k·ai)

u(r + ai,k) = uk (r) ei(k·ai) .

(10)

The above relationships (Eq.10) allow developing the Bloch boundary conditions based on the unit cell
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Ω and its governing equation Eq.7, formulated according to the couple stress theory.

Bloch Boundary value problem: strong form

Considering Eq.(7,10), we summarize the unit cell Bloch boundary value problem with the strong

form as follows:  ∇ · σ −
1
2∇× (∇ ·m)− 1

2∇× c + f = ρü

u(r + ai,k) = uk (r) ei(k·ai)
. (11)

Bloch Boundary value problem: weak form

To facilitate finite element implementation for the resolution of the unit cell Bloch boundary value

problem, we transform the strong formulation of the governing equation (Eq.11.1) into its weak form

equivalent. Using the standard procedure based on the principle of virtual work, we obtain
∫
T

∫
Ω

(δε : σ + δχ : m)dV dt =

∫
T

∫
Ω

ρü : δüdV dt

u(r + ai,k) = uk (r) ei(k·ai)
. (12)

by considering integration on time domain T with the absence of body forces or external loads. The

left side of the equation gives the internal virtual work, and the right side of the equation refers to the

mass kinetic energy from the virtual work.

3 Implementation of a Mindlin micro plate T3 finite

element

In this section, a T3 plate finite element with 9 degrees of freedom is implemented and extended

to the Mindlin kinematic assumptions. We start by presenting basic equations of the Mindlin micro

plate in Section 3.1, where Mindlin kinematic relations are adapted in the context of couple stress

theory. In Section 3.2, the shape functions were first published by Bazeley ([34]), which we adopt to

interpolate nodal kinematic parameters involving displacements and their derivatives. Then in Section

3.3, we provide transformation between the global and the natural coordinates which allows better

understanding the finite element implementation.

3.1 Basic equations

Let us consider a plate structure of uniform thickness t shown in Fig.(2). The plate is subject to uniform

force load q, and in-plane couple (pure moment) load mx and my, respectively around x and y axis.

We use u (x, y, z), v (x, y, z) and w (x, y, z) to denote displacement components along x, y and z axis.

Then, we use u (x, y), v (x, y) and w (x, y) to refer to displacement components of the middle plane, and

accordingly, φx (x, y), φy (x, y) the rotation components of the middle plane.

The proposed plate element is developed under the assumptions of vibroacoustic analysis, in re-

spect of the basic kinematic rules of Mindlin plate theory ([40]), that we recall as follows: (1) The

plate thickness remains constant during deformation. (2) Normal stress through the thickness remains

negligeable, which is known as the plane-stress assumption. (3) Linear variation of displacement across

the plate thickness is allowed. As a result, the cross section remains flat during deformation, but not

necessarily perpendicular to the mid-surface.
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Figure 2: Plate structure configuration

From assumptions (1)-(3), displacement components of the proposed plate formulation can be

derived:
u(x, y, z) = u0(x, y)− zφx(x, y)

v(x, y, z) = v0(x, y)− zφy(x, y)

w(x, y, z) = w(x, y).

(13)

Then from assumption (4), we can define the section angle as a combination of bending angle and

shear angle which is shown in Fig.(2), so

φx =
∂w

∂x
+ βx

φy =
∂w

∂y
+ βy ,

(14)

where βx, βy refer to shear angles with respect ot x−axis and y−axis, respectively.

Cauchy strain ε expression

Based on the Mindlin kinematic relations Eq.(13,14) and the definition of Cauchy strain (Eq.(2)),

we obtain expressions of the Cauchy strain vector:

ε =



εx

εy

γxy

γxz

γyz


=



∂u0

∂x − z
∂φx
∂x

∂v0
∂y − z

∂φy
∂y[

∂u0

∂y + ∂v0
∂x

]
− z

[
∂φx
∂y +

∂φy
∂x

]
∂w0

∂x − φx
∂w0

∂y − φy


= Sε

{
ε̂b

ε̂s

}
, (15)

for which in-plane and out-of-plane strain components are collected separately, and noted distinctly by

ε̂b and ε̂s. The obtained strain vector ε can be further decoupled into the product of transformation

matrix Sε and generalized strain ε̂ :

ε = Sεε̂ , (16)

where the transformation matrix Sε writes

Sε =


1 −z 0 0 0 0 0 0

0 0 1 −z 0 0 0 0

0 0 0 0 1 −z 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 , (17)
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and the generalized strain ε̂ consists of bending term ε̂b and shear deformation term ε̂s

ε̂ =

{
ε̂b

ε̂s

}
=



∂u0

∂x
∂φx
∂x
∂v0
∂y
∂φy
∂y

∂u0

∂y + ∂v0
∂x

∂φx
∂y +

∂φy
∂x

∂w
∂x − φx
∂w
∂y − φy


. (18)

Symmetric curvature tensor χ expression

Symmetric curvature tensor Eq.(3) derives from the rotation vector θ, which is defined based on

the plate kinematic parameters including displacement (Eq.(13)) and section angle variation (Eq.(14)).

Hence, the rotation vector with the account for Mindlin plate kinematics can be written as

θ =

 θx

θy

θz

 =
1

2


∂w
∂y + φy

−∂w∂x − φx
∂v0
∂x −

∂u0

∂y − z
∂φy
∂x + z ∂φx∂y

 . (19)

We now derive θ components and by using Eq.(3), we obtain the expression of symmetric curvature

tensor χ

χ =



χx

χy

χz

χxy

χxz

χyz


=



∂θx
∂x
∂θy
∂y
∂θz
∂z

1
2

(
∂θx
∂y +

∂θy
∂x

)
1
2

(
∂θx
∂z + ∂θz

∂x

)
1
2

(
∂θy
∂z + ∂θz

∂y

)


=

1

4



2
(
∂2w
∂y∂x +

∂φy
∂x

)
−2
(
∂2w
∂x∂y + ∂φx

∂y

)
−2
(
∂φy
∂x −

∂φx
∂y

)(
∂2w
∂y2 +

∂φy
∂y

)
−
(
∂2w
∂x2 + ∂φx

∂x

)(
∂2v0
∂x2 − ∂2u0

∂x∂y

)
− z

(
∂2φy
∂x∂y −

∂2φx
∂y2

)(
∂2v0
∂x∂y −

∂2u0

∂y2

)
− z

(
∂2φy
∂x2 − ∂2φx

∂y∂x

)


. (20)

We proceed the same way as for Cauchy strain, and formulate χ as the product of transformation

matrix Sχ, and generalized curvature χ̂, hence

χ = Sχχ̂ , (21)

with the transformation matrix

Sχ =



1
2 0 0 0 0 0 0 0

0 − 1
2 0 0 0 0 0 0

0 0 − 1
2 0 0 0 0 0

0 0 0 1
4 0 0 0 0

0 0 0 0 1
4 − z4 0 0

0 0 0 0 0 0 1
4 − z4


, (22)
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and the generalized curvature

χ̂ =



∂2w
∂y∂x +

∂φy
∂x

∂2w
∂x∂y + ∂φx

∂y
∂φy
∂x −

∂φx
∂y(

∂2w
∂y2 +

∂φy
∂y

)
−
(
∂2w
∂x2 + ∂φx

∂x

)
∂2v0
∂x2 − ∂2u0

∂x∂y
∂2φy
∂x∂y −

∂2φx
∂y2

∂2v0
∂x∂y −

∂2u0

∂y2

∂2φy
∂x2 − ∂2φx

∂y∂x


. (23)

Constitutive relations

With previously obtained expressions of Cauchy strain ε (Eq.(16)), and symmetric curvature χ

(Eq.(21)), we can readily calculate stress tensors, which in the couple stress theory, consist of classical

Cauchy stress and couple stress tensors as provided by Eq.(5). Therefore, we can write Cauchy stress

tensor as

σ = Dεε , (24)

with the classical elasticity matrix Dε given by Eq.(5).1, hence

Dε =



E
1−ν2

vE
1−ν2 0 0 0

vE
1−ν2

E
1−ν2 0 0 0

0 0 E
2(1+ν) 0 0

0 0 0 k11G 0

0 0 0 0 k22G

 , (25)

and Cauchy strain ε calculated in Eq.(16). Similarly, we can express the couple stress tensor m based

on Eq.(5).2. Therefore

m = Dχχ , (26)

where the elasticity matrix based on couple stress theory writes

Dχ =



2Gl2 0 0 0 0 0

0 2Gl2 0 0 0 0

0 0 2Gl2 0 0 0

0 0 0 2Gl2 0 0

0 0 0 0 2Gl2 0

0 0 0 0 0 2Gl2


. (27)

Note that in the above expressions Eq.(25,27), G refers to shear modulus, E is Young’s modulus, ν is

Possion’s ratio, and k11, k22 are in-plane shear correction parameters, which in this article, take the

following value k11 = k22 = 5
6 .

Generalized stress and couple stress

In the proposed Mindlin plate finite element, we prescribe pre-integration of constitutive relations

through the plate thickness. This allows using integration scheme based on the plate mid-surface.

Therefore, we integrate previously calculated Cauchy stress σ (Eq.(24)) and couple stress m (Eq.(26))

8



in the plate thickness direction which leads to generalized stress and couple stress
σ̂ =

∫ t
2

− t2
STε σdz = D̂εε̂

m̂ =

∫ t
2

− t2
STχmdz = D̂χχ̂

, (28)

in which

D̂ε =

∫ t
2

− t2
STεDεSεdz

D̂χ =

∫ t
2

− t2
STχDχSχdz

. (29)

3.2 Implementation of the interpolation functions

The formulation of couple stress elasticity involves first and second derivatives of displacements due to

the symmetric curvature tensor(Eq.(20)). We implement in this work a non-conforming interpolation

scheme ([34]) permitting nodal continuity of displacements and their first order derivatives.

Ω

x

y

n1
n2

n3

A1A2

A3

=σn tu u

Figure 3: Illustration of 3 node triangular (T3) finite element for non-classical Mindlin
micro plate with C 1 continuity. The element consists of 3 partitions, with Ai (i = 1, 2, 3)
referring to the area of each partition.

The following 9 order polynomials are used to obtain approximation of kinematic field variables via

interpolation. This involves in particular the in-of-plane displacement u0, v0, the out-of-plane displace-

ment w , and rotations around x and y axis, φx and φy respectively. In the following, approximation

of the out-of-plane displacement w is given as an example. The other 4 parameters follow the same

polynomial approximation.

w = a1L1 + a2L2 + a3L3

+ a4

(
L2

1L2 +
L1L2L3

2

)
+ a5

(
L2

2L1 +
L1L2L3

2

)
+ a6

(
L2

2L3 +
L1L2L3

2

)
+ a7

(
L2

3L2 +
L1L2L3

2

)
+ a8

(
L2

3L1 +
L1L2L3

2

)
+ a9

(
L2

1L3 +
L1L2L3

2

)
(30)

where Li (i = 1, 2, 3) refers to area coordinates. As shown in Figure 3, the parameter Li indicates area

proportion of the ith partition with respect to the element area, which means, L1 = A1

A , L2 = A2

A ,

L3 = A3

A and L1 +L2 +L3 = 1, with Ai the area of the ith partition and A the element area. Except Li

which can be calculated knowing the element configuration, the remaining parameters ai (i = 1, · · · 9)
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are undetermined coefficients. According to the relations of area coordinates, only two coordinates are

independent. We therefore define triangular natural coordinates s and t. The relationship between the

area coordinates and the natural coordinates is defined as L2 = s, L3 = t and L1 = 1−s−t. Solving the

undetermined coefficients requires determination of the displacement field of vertical deflection, using

the following formulation

wi = a1L1i + a2L2i + a3L3i

+ a4

(
L2

1iL2i +
L1iL2iL3i

2

)
+ a5

(
L2

2iL1i +
L1iL2iL3i

2

)
+ a6

(
L2

2iL3i +
L1iL2iL3i

2

)
+ a7

(
L2

3iL2i +
L1iL2iL3i

2

)
+ a8

(
L2

3iL1i +
L1iL2iL3i

2

)
+ a9

(
L2

1iL3i +
L1iL2iL3i

2

)
(31)

dwi
ds

= a2 + a5

(
2L1i L2i +

L1i L3i

2

)
+ a6

(
L1i L3i

2
+ 2L2i L3i

)
+ a4

(
L2

1i +
L3i L1i

2

)
+ a7

(
L2

3i +
L1i L3i

2

)
+
L1i L3i a8

2
+
L1i L3i a9

2

(32)

dwi
dt

= a3 + a7

(
L1i L2i

2
+ 2L2i L3i

)
+ a8

(
L1i L2i

2
+ 2L1i L3i

)
+ a6

(
L2

2i +
L1i L2i

2

)
+ a9

(
L2

1i +
L2i L1i

2

)
+
L1i L2i a4

2
+
L1i L2i a5

2

(i = 1, 2, 3) .

(33)

Solving Eq.(31-33) determines 3 unknowns specific to out-of-plane deflection wi. By considering 5

fields of kinematic parameters involving 3 displacements and 2 rotations, we solve in total 15 unknown

coefficients on 1 node. The approximate displacement field can be written in the form of shape functions

and node displacements as follows:

u0=
3∑
i=1

Niu0i +Nis
∂u0i

∂s
+Nit

∂u0i

∂t

v0=
3∑
i=1

Niv0i +Nis
∂v0i

∂s
+Nit

∂v0i

∂t

w =
3∑
i=1

Niwi +Nis
∂wi
∂s

+Nit
∂wi
∂t

φx =
3∑
i=1

Niφxi +Nis
∂φxi
∂s

+Nit
∂φxi
∂t

φy =
3∑
i=1

Niφyi +Nis
∂φyi
∂s

+Nit
∂φyi
∂t

, (34)
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where 

N1 = L1 + L2
1L2 + L2

1L3 − L1L
2
2 − L1L

2
3

N1s = b2
(
L2

1L3 + L
)
− b3

(
L2L

2
1 + L

)
N1t = c2

(
L2

1L3 + L
)
− c3

(
L2L

2
1 + L

)
N2 = L2 + L2

2L3 + L2
2L1 − L2L

2
3 − L2L

2
1

N2s = b3
(
L2

2L1 + L
)
− b1

(
L3L

2
2 + L

)
N2t = c3

(
L2

2L1 + L
)
− c1

(
L3L

2
2 + L

)
N3 = L3 + L2

3L1 + L2
3L2 − L3L

2
1 − L3L

2
2

N3s = b1
(
L2

3L2 + L
)
− b2

(
L1L

2
3 + L

)
N3t = c1

(
L2

3L2 + L
)
− c2

(
L1L

2
3 + L

)

, (35)

with

L =
L1L2L3

2
bi = yj − ym ci = xm − xj .

Within the proposed interpolation scheme, every element is associated with 45 degrees of freedom, which

involve not only displacement and rotation variables, but also their derivatives. Therefore, element nodal

displacement vector is of 45× 1 size and can be written as

u(q) =
[
u01 v01 w1 φx1 φy1

∂u01
∂x

∂v01
∂x

∂w1
∂x

∂φx1
∂x

∂φy1
∂x

∂u01
∂y

∂v01
∂y

∂w1
∂y

∂φx1
∂y

∂φy1
∂y ···

]T
1×45

. (36)

Using approximation by Eq.(34) and shape functions Eq.(35), we obtain the interpolated element

displacment vector u(e) in matrix form

u(e) = N · u(q) , (37)

where u(q) is given by Eq.(36), N is shape function matrix that writes

N =

N1 0 0 0 0 N1s 0 0 0 0 N1t 0 0 0 0 ···
0 N1 0 0 0 0 N1s 0 0 0 0 N1t 0 0 0 ···
0 0 N1 0 0 0 0 N1s 0 0 0 0 N1t 0 0 ···
0 0 0 N1 0 0 0 0 N1s 0 0 0 0 N1t 0 ···
0 0 0 0 N1 0 0 0 0 N1s 0 0 0 0 N1t ···

 , (38)

and the interpolated element displacement vector u(e) writes

u(e) =


u0

v0

w

φx

φy

 . (39)

Generalized strain and generalized curvature expressions

At this stage with the shape function matrix fully developed for the T3 Mindlin micro plate element,

we are ready to relate generalized strain ε̂ and curvature tensors χ̂ to the vector of nodal kinematic

variables u(q). First for ε̂, we have

ε̂ = Bεu
(q) (40)
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where Bε is the Cauchy strain-displacement matrix of dimension 8× 45, which can be calculated by

Bε =



∂
∂x 0 0 0 0

0 0 0 ∂
∂x 0

0 ∂
∂y 0 0 0

0 0 0 0 ∂
∂y

∂
∂y

∂
∂x 0 0 0

0 0 0 ∂
∂y

∂
∂x

0 0 ∂
∂x −1 0

0 0 ∂
∂y 0 −1


·N , (41)

with N the shape function matrix given by Eq.(38).

Similarly, we express generalized curvature tensors χ̂ as function of the element nodal displacement

u(q)

χ̂ = Bχu
(q) (42)

where Bχ is the curvature strain-displacement matrix of size 8× 45, which can be calculated by

Bχ =



0 0 ∂2

∂y∂x 0 ∂
∂x

0 0 ∂2

∂x∂y
∂
∂y 0

0 0 0 − ∂
∂y

∂
∂x

0 0 ∂2

∂y2 −
∂2

∂x2 − ∂
∂x

∂
∂y

− ∂2

∂x∂y
∂2

∂x2 0 0 0

0 0 0 − ∂2

∂y2
∂2

∂x∂y

− ∂2

∂y2
∂2

∂x∂y 0 0 0

0 0 0 − ∂2

∂y∂x
∂2

∂x2


·N , (43)

with N given by Eq.(38). The Cauchy strain-displacement matrix Bε and curvature strain-displacement

matrix Bχ are composed of shape function derivatives calculated with respect to global coordinates.

The implementation using isoparametric element requires expressing their transformation between the

global and natural coordinates, that we present in the next section.

3.3 Coordinates transformation

In this section, we provide the transformation of shape function derivatives between the natural coor-

dinates and the global coordinates. This allows implementation of the finite element formulation using

isoparametric method. Here, first order derivatives of the shape function are given as follows:[
∂Ni
∂s
∂Ni
∂t

]
=

[
∂x
∂s

∂y
∂s

∂x
∂t

∂y
∂t

][
∂Ni
∂x
∂Ni
∂y

]
. (44)

The global coordinates can be written using the following interpolation:

x = L1x1 + L2x2 + L3x3

y = L1y1 + L2y2 + L3y3

. (45)
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Since only two area coordinates are independent, we can define L2 = s, L3 = t, L1 = 1 − s − t, then

derivates of the global coordinates are obtained:

∂x

∂s
= x2 − x1

∂x

∂t
= x3 − x1

∂y

∂s
= y2 − y1

∂y

∂t
= y3 − y1

. (46)

Similarly, the second order derivatives of the shape function can be written as:


∂2Ni
∂s2

∂2Ni
∂s∂t
∂2Ni
∂t∂s
∂2Ni
∂t2

 =


(
∂x
∂s

)2 ∂y
∂s

∂x
∂s

∂x
∂s

∂y
∂s

(
∂y
∂s

)2

∂x
∂t

∂x
∂s

∂y
∂t

∂x
∂s

∂x
∂t

∂y
∂s

∂y
∂t

∂y
∂s

∂x
∂s

∂x
∂t

∂y
∂s

∂x
∂t

∂x
∂s

∂y
∂t

∂y
∂s

∂y
∂t(

∂x
∂t

)2 ∂y
∂t

∂x
∂t

∂x
∂t

∂y
∂t

(
∂y
∂t

)2




∂2Ni
∂x2

∂2Ni
∂x∂y
∂2Ni
∂y∂x
∂2Ni
∂y2

 . (47)

We therefore obtain the transformation between the global and natural coordinates which allows

implementation of the Cauchy strain-displacement matrix Bε and curvature strain-displacement matrix

Bχ given in Eq.(41,43).

4 Implementation of unit cell boundary value prob-

lem

Considering the unit cell problem under conditions of free vibration, and using the matrices development

provided in Section 3.1 and 3.2, we obtain finally the band gap unit cell boundary value problem whose

implementation involves, on the one hand, the governing equation for unit cell modal analysis, and on

the other, the boundary conditions.

Governing equation implementation

Let us first consider the governing equation of the couple stress unit cell problem in weak formulation

(Eq.(12)), which can be implemented by using matrices developed in Section 3.1 and 3.2, under the

form∫
T

∫
A

[(
δu(e)

)T
BT
ε D̂εBεu

(e) +
(
δu(e)

)T
BT
χD̂χBχu

(e)

]
dAdt =

∫
T

∫
Ω

ρδü(e)T ü(e)dV dt . (48)

Here, integration is performed on both the time and space domains. For the left part of the equation

which corresponds to the internal virtual work, space domain integration is carried out on the mid-

surface A of the unit cell Ω. This is because the formulation is based on generalized stress and generalized

couple stress, both of which already incorporate through-thickness integration, as shown in Eq.(28-29).

Since elastic wave propagation is under consideration, we introduce harmonic equation (Eq.(8)) of the

displacement field u to Eq.(48), and we obtain the governing equation of free vibration:[
K− ω2M

]
u0 = 0 , (49)

where u0 is the mode shape vector of the unit cell, K is the stiffness matrix, which derives from Eq.(48)

13



and writes

K =

∫
A

BT
ε D̂εBεdA+

∫
A

BT
χD̂χBχdA , (50)

and M is the mass matrix which also derives from Eq.(48) and writes

M =

∫
A

NTρNdA , (51)

with ρ the density matrix given by

ρ =

ρt 0 0

0 ρt3

12 0

0 0 ρt3

12

 . (52)

Boundary conditions implementation

We now deal with implementation of the boundary conditions on the unit cell. Again we consider

the unit cell illustration Ω presented in Section 2.2. Since only in-plane heterogeneities are under

investigation, we depict the heterogeneous micro plate unit cell with its mid-surface as shown in Figure

4. The unit cell’s lengths along the x and y axis are respectively a1 and a2, which also correspond to

the microstructure periodicity along the respective axis. Node displacements on the unit cell boundary

can be distinguished by nodes belonging to the 4 edges (outside the corner nodes), and the 4 corner

nodes of the unit cell. Therefore, we use uL, uR, uT and uB to denote respectively nodal displacements

on the left (L), right (R), top (T) and bottom (B) edges of the unit cell outside the corners. Then to

make reference distinctly to the 4 corner nodes, we use uTL, uTR, uBL and uBR to denote respectively

displacements of the top-left (TL), top-right (TR), bottom-left (BL) and bottom-right (BR) corner

nodes. Accordingly, nodal displacements on the inner area of the domain, away from the boundary, are

denoted by uI .

( )
( ) ( ) ii

i k
e

×
+ =

k a
u r a u r

y

x

L
u

R
u

T
u

B
u

TL
u

TR
u

BL
u BR

u

1a

2aI
u

Figure 4: Mid-surface illustration of the bi-phase unit cell microstructure: we denote
corner node displacements with uTL, uTR, uBL and uBR, then edge node displacements
with uL, uR, uT and uB . Displacement of remaining nodes are collectively denoted by
uI .

With the notation convention described above regarding the unit cell boundary nodes, we are ready
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to implement the Bloch boundary conditions Eq.10. Let us consider λ1 = eik·a1 and λ2 = eik·a2 , plus

the condition of periodicity which allows relating uR to uL, uT to uB ; then uBR, uTR and uTL to uBL,

the displacement vector of the entire unit cell can be expressed as follows

u0 =



uI

uL

uR

uB

uT

uBL

uBR

uTR

uTL


=



I 0 0 0

0 I 0 0

0 λ1I 0 0

0 0 I 0

0 0 λ2I 0

0 0 0 I

0 0 0 λ1I

0 0 0 λ1λ2I

0 0 0 λ2I




uI

uL

uB

uBL

 = Pũ , (53)

where ũ collects the displacement on independent nodes I, L, B, and BL, depending on which dis-

placement of other nodes can be deduced thanks to the structure periodicity. I is the identity matrix.

Therefore, matrix P allows reducing the number of effective degrees of freedom of the unit cell problem,

and is called transformation matrix.

By introducing Eq.(53) into the free vibration governing equation (Eq.(49)), we obtain the following

expression

[
K− ω2M

]
Pũ = 0 . (54)

We consider P† that designates the conjugate transpose of P and transform Eq.(54) into

P†
[
K− ω2M

]
Pũ = 0 . (55)

Hence, we obtain the final form of the unit cell governing equation of free vibration with the account

for Bloch boundary conditions, which writes

[Kr − ω2Mr]ũ = 0 , (56)

with
Kr = P†KP

Mr = P†MP
. (57)

We can readily perform modal analysis based on Eq.(56-57) to solve the band gap unit cell problem as

posed at the beginning of this work in the context of modified couple stress theory.

Numerical algorithm implementation

Resolution of the Bloch boundary value problem presented here is implemented using Matlab code

that we developed for this work. The code involves finite element procedures for vibration modal

analysis, implemented with Bloch boundary conditions on a periodic unit cell microstructure.

As shown in the flow chart, the algorithm requires looping on the points along the boundary of the

irreducible first Brillouin zone (IBZ). On each of the points, a transform matrix P is calculated using

Eq.(53), which leads to an independent vibration modal analysis. Bandgap result is obtained after

repeating the calculation on all the nodes along the IBZ boundary.
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start
De ne FE model

(node, element 
 and material)

Create wave vector by 
sweeping the irreducible
Brillouin zone (IBZ)

Calculate transform 
matrix P by using 
Eq.(53) for one point

Assemble sti ness
and mass matrix

Reduce sti ness and mass 
matrix by Eq.(59) and solve 
Eigen problem by Eq.(58)

post-
processing

next point along the IBZ boundary until the last one 

List of points along 
the wave vector on 
the IBZ boundary

On the points along the IBZ boundary

Figure 5: Algorithm flow chart: implementation of the Bloch boundary value problem
on the T3 micro plate finite element unit cell.

5 Numerical results

In this section, the proposed band gap analysis framework will be investigated through 3 numerical

cases. The first example, in Section 4.1, is aimed to validate the T3 couple stress Mindlin plate finite

element through comparison with both analytical and numerical results based on the rectangular Adini-

Clough-Melosh (ACM) plate element [41, 42]. For implementation details of the ACM element, readers

are referred to [43]. Upon validation of the T3 element implementation, problems involving complex

geometries will be studied, first in Section 4.2, to examine the influence of volume fraction on band gaps;

then in Section 4.3, to investigate how width-thickness ratio affects the band gap in structures with

chiral symmetry. We observe through numerical tests, that the implemented T3 couple stress Mindlin

micro plate element fulfils the requirement for convergence performance, although its non-conforming

formulation may lead to convergence difficulties, theoretically. We therefore conducted complementary

tests with respect to the element’s convergence properties. Results and analysis of these tests are

provided as supplementary information. In all the test cases, numerical integration based on 3-point

Gauss exact integration procedure is used. Details on the applied integration procedure are also given

in the supplementary information.

5.1 Validation of the T3 couple stress Mindlin plate element

implementation

In this example, we consider a classical bi-phase unit cell problem to validate the T3 couple stress

Mindlin plate element implementation. The unit cell under consideration represents the microstructure

of the periodically arranged bi-phase 2D metamaterial given in Fig.(1) from the theory Section 2.2. It

is composed of a square matrix which incorporates a square inclusion at its centre. The unit cell is

discretized first with the rectangular (ACM) element, then with the proposed T3 micro plate element.

We perform band gap analysis for antiplane elastic waves using both mesh configurations and we consider

the ACM model as the reference for comparison. To further validate the proposed numerical framework,

comparison with analytical results based on plane wave expansion (PWE, we keep this abbreviation in

the following) method ([44]) is provided.

The unit cell microstructure, depicted in Fig.(6a), is based on a square shape matrix of edge length

a = 1 mm which contains at the centre a square inclusion of edge length c = 0.4 mm. This leads to an

inclusion area ratio of 16% with respect to the whole cell area. Materials composing the unit cell can be

distinguished between the inclusion material (phase I, iron) and the matrix material (phase II, epoxy),
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Figure 6: (a)Unit cell with rectangular inclusion (b)representation of the irreducible
first Brillouin zone on the unit cell

Table 1: Material Group

Material E (GPa) v l (µm) ρ
(
g/cm3

)
Iron(Phase I) 177.33 0.27 6.76 7

Epoxy(Phase II) 3.3 0.33 16.93 1.18

whose properties are given in Table.1. The material size parameter l is calculated by l = bh√
3(1−v)

([45][46]), where bh is the high-order bending parameter, v is Poisson’s ratio, and the plate thickness

t = 120µm is considered.

Regarding the techniques for band gap analysis, as has been proven in ([47]), calculation of band

diagrams only requires consideration of wave vectors on the boundary of the irreducible first Brillouin

zone. Here, due to the presence of structure symmetry, our analysis can be reduced to the edges of

the triangle Γ−X−M− Γ as indicated in Fig.(6b). Numerically, this requires sweeping the boundary

path Γ− X−M− Γ by calculating on 58 equidistant, discrete points along the way. Then to perform

finite element analysis on the unit cell model, we implement Floquet-periodic boundary conditions by

considering the wave vector ki = (kx, ky) (i = 1, 2, . . . , 58), which takes distinct forms on each section

along the path Γ− X−M− Γ, in particular: from Γ to X, kx = 2π
a k, ky = 0, k ∈ [0, 1], from X to M,

kx = 2π
a , ky = 2π

a (k − 1), k ∈ [1, 2], from M to Γ, kx = 2π
a (3− k), ky = 2π

a (3− k), k ∈ [2, 3]. The unit

cell is discretized with both the rectangular ACM element (as in Fig.(7)a,c) elements, and triangular

(T3, as in Fig.(7)b,d) elements. Two sets of mesh refinement are applied, based on two edge seedings

with 20 and 40 segments, respectively, shown in Fig.(7).

To further confirm the effectiveness of the implemented numerical framework, extra comparison

with analytical results, here the PWE method, is provided. Application of analytical method explains

the choice of the current unit cell microstructure, which only involves basic square geometries so as to

accommodate the limitation of analytical analysis.

Band diagram results are reported in Fig.(8), where the diagrams (a) and (b) are obtained based

on 20 × 20 and 40 × 40 mesh refinements, respectively. For each mesh refinement, results from the

proposed T3 micro plate element is compared to the ACM model results. Let us first focus on diagrams

(a). Here, excellent agreement is observed between the T3 and ACM results, especially in the lower

frequency range where the T3 and ACM curves perfectly coincide. In the range of higher frequencies,

T3 curves appear slightly above ACM results, though with insignificant differences. Also on diagram

(a), we present the band curves obtained on the same problem setup, using analytical PWE method.

Comparison between the PWE and finite element results reveals noticeable, yet tolerable differences,
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(a) (b)

(c) (d)

Figure 7: (a)Using 20 × 20 mesh with rectangular element to divide the cell (b)Using
20 × 20 mesh with triangular element to divide the cell (c)Using 40 × 40 mesh with
rectangular element to divide the cell (d)Using 40 × 40 mesh with triangular element to
divide the cell

mostly in the range of higher frequencies. Based on the above observations, we can conclude on the

satisfactory accuracy that presents the proposed numerical framework based on T3 micro plate finite

elements. We now move to diagram (b), which presents band diagrams obtained with further refined

40× 40 meshes. Here, mesh refinement allowed even improved convergence of the T3 and ACM results,

since difference between the compared mesh setups became barely noticeable. Meanwhile, we observed

existance of a band gap situated between the fourth and fifth frequency curves, within the interval

of [479.50, 525.76] kHz. This means that antiplane incident waves within this frequency range will

be suppressed during its propagation in the investigated medium, whereas those outside the band gap

frequency interval, will penetrate the medium and continue the propagation.
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Figure 8: (a)Bang gap graph with grid density of 20 × 20 (b)Bang gap graph with
grid density of 40 × 40

5.2 Effect of volume fraction

Upon validation of the T3 micro plate element for band gap analysis, we now extend its application to

microstructures with complex geometry. Such microstructures cannot be efficiently studied by analytical

methods, or by the ACM element due to the geometrical complexity. In this numerical case, we illustrate

how the T3 micro plate element is applied on a microstructure involving an octagonal inclusion with

varying shapes. Through this example, versatility of the proposed numerical method is demonstrated.

y
z

x

t

Phase  I

Phase  II

a

c
1
e

2
e

b

Figure 9: Illustration of the unit cell structure with octagonal star inclusion

The microstructure under consideration is modelled by a bi-phase unit cell with octagonal inclusion,

as depicted in Fig.(9). The unit cell is composed of an inclusion material (phase I, iron) and a matrix

material (phase II, epoxy), whose properties are provided in Table.1, which is identical to the example

given in Section 5.1. Geometry features of the unit cell can be described by 4 parameters (see Fig.(9))

which involve: a, referring to the matrix edge length; b and c, giving the outer and inner diameter of the

octagonal star inclusion, respectively; and finally, t, thickness of the unit cell. In this example, we fix 3

of the 4 geometry parameters : a = 1 mm, b = 0.9 mm and t = 120 µm, and we modify the inclusion

geometry by affecting a range of values to c, inner diameter of the inclusion star, from c = 0.1 mm to

c = 0.9 mm at an interval of 0.1 mm. This allows us to conduct parametric analysis on the unit cell

which leads to the most favourable inclusion configuration with extended band gap.
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Concerning the band gap analysis, we calculate band diagrams for antiplane elastic wave propaga-

tion by considering wave vectors on the boundary of the irreducible first Brillouin zone, which refers

to the triangle zone Γ − X −M − Γ as indicated in Fig.(6b) with the account for structure symmetry.

Similar to the case in Section 5.1, we sweep the boundary Γ − X − M − Γ through 58 equidistant,

discrete points along the path. Then, on each section of the path which means Γ−X, X−M and M−Γ,

we implement Floquet-periodic boundary conditions whose expressions are identical to those given in

Section 5.1.

0.3c mm= 0.5c mm= 0.7c mm=

Middle plane

(a) (b) (c)

Figure 10: Unit cell configuration with (a) c = 0.3 mm (b) c = 0.5 mm (c) c = 0.7 mm

We report result band diagrams in Fig.(11(a)-(c)) for inclusion configurations with c = 0.3 mm,

0.5 mm and 0.7 mm, respectively. Position of the first full band gap is highlighted on each band diagram.

We note therefore the first band gap in the frequency range [596.25, 641.69] kHz, [629.51, 741.69] kHz

and [694.76, 772.47] kHz for cases with c = 0.3 mm, 0.5 mm and 0.7 mm, respectively. Evolution of the

first bang gap range as function of c is depicted in Fig.(12). With increasing values of c, the octagonal

inclusion star gradually expands in size. Meanwhile, the resulting band gap range first increases, then

decreases after reaching the maximum at c = 0.5 mm.
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Figure 11: Band diagrams for (a) c = 0.3 mm, (b) c = 0.5 mm, (c) c = 0.7 mm.
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Figure 12: The trend of the first order gap with the increase of c

To understand the formation mechanism of the band gap and its evolution following the inclusion

geometry, we conduct vibration modal analysis and investigate the mode shape configurations at point

A (highlighted in Fig.(11)) of the associated unit cell structure for the 3 tested cases with c = 0.3 mm,

0.5 mm and 0.7 mm. The obtained mode shapes in terms of the vibration amplitude are depicted

in Fig.(13). It can be observed that the c = 0.5 mm case presents the most significant out-of-plane

vibration. By superimposing the mode shape Fig.(13(b)) on its corresponding unit cell configuration

(Fig.(10)(b)), we deduce that the larger band gap (Fig.(11(b))) originates from the energy absorbing

vibration of the matrix, induced by the local translational resonance in z direction under wave scattering

effect due to the octagonal star inclusion.
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Figure 13: Mode shape based on displacement in z, which gives indication of the
out-of-plane vibration amplitude, with (a) c = 0.3 mm, (b) c = 0.5 mm, (c) c = 0.7 mm.

5.3 Influence of microstructure effect and higher order theory

on mesh quality

This example is aimed to further confirm the adaptability and robustness of the proposed T3 micro

plate FEM framework for bandgap analysis. The test scenario is inspired by the recent work ([48]),

which investigates wave attenuation effects of hybrid auxetic metamaterials. Here, we adopt the unit

cell architecture prescribed ([48]) in which combines reentrant and anti-chiral geometries. Then, by

varying the micro plate thickness, we demonstrate that the bandgap solution based on the couple stress

formulation gradually converges towards solution from classical theory.
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The hybrid auxetic metastructure under consideration is depicted in Fig.(14a), it involves a ba-

sic auxetic reentrant lattice combined with anti-chiral components. The ring node of the anti-chiral

structure is filled with an elastomer coated mass inclusion. The unit cell dimension is given by its side

lengths along x and y axis, denoted by a1 and a2, respectively. Distance between the centres of two

horizentally and verticallay neighbouring rings is given by R1 and R2, respectively. Chiral angle of the

lattice is defined by β. Width of the outermost black ring is n. The inclusion is composed of a core

material embedded in an elastomer matrix. Radius of the core and of the entire inclusion are denoted

by rc and r, respectively. Side lengths of the unit cell can also be written as:

a1 = 2R1 sinβ ,

a1 = 2 (R2 −R1 cosβ) .
(58)

Concerning the material composition of the solid inclusion, material parameters of the core are given

as follows: elastic modulus E = 177.33 Gpa; Poisson ratio µ = 0.27; density ρ = 7 g/cm3; material

length scale parameter l = 6.76 µm. Then, material properties of the inclusion matrix are as follows:

E = 3.3 Gpa, µ = 0.33, ρ = 1.18 g/cm3, l = 16.93 µm. Regarding material parameters of the lattice

structure, we have: E = 193 Gpa, µ = 0.28, ρ = 7.8 g/cm3, l = 6.8 µm ([49]).

Wave propagation in periodic medium can be analysed through investigation on the basic unit cell,

whose dimension is 2π
a1
× 2π

a2
in the local coordinates according the local x and y directions. To conduct

band gap analysis, we calculate band diagrams based on wave vectors on the boundary of the irreducible

Brillouin zone, which, by considering the anti-chiral symmetry of the unit cell structure, reduces to the

quadrilateral area depicted in grey colour in Fig.(14b). Wave vectors are analysed on discrete points

through the path Γ−X −M − Γ−N −M , also indicated in Fig.(14b).

We first discuss the difference in band gap solutions between the proposed modified couple stress

framework and the classical theory. It is worth noting that methods based on classical theory do not

incorporate tensors of couple stress and symmetric curvature, and therefore, cannot account for size

effects which may emerge on microscopic problems. As a result, it is expected to observe divergence
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Figure 15: (a)Finest grid (b)Coarse grid (c)Medium fine mesh

between the two theories when it comes to structures of very small sizes, which have been included in

the test scenario.

Here, the following unit cell size parameters are used: r = 5 mm, rc = 1.25 mm, n = 1 mm,

R1 = 20 mm, R2 = 40 mm, β = 60◦. We conduct a series of band gap calculations by considering

increasing unit cell thicknesses t = 20 µm, 60 µm, 120 µm and 200µm, using both the couple stress

and classical methods. This allows us to compare the results from the two approaches. In addition, to

ensure Mindlin plate assumptions, we set a2 for each case of t such that a2 : t = 12 : 1. Discretized

unit cell is plotted in Fig.(15a). The result band gap diagrams based on the described methodology are

given in Fig.(17), from which, we extract and report in Table 2 the frequency range of the first band

gap, which compares the two numerical methods for different unit cell sizes:

Table 2: First band gap frequency range

Thickness Proposed couple stress model Classical theory

20µm [1572.1, 2286.9] kHz [1104.0, 1725.6] kHz

60µm [433.05, 676.14] kHz [367.99, 575.20] kHz

120µm [193.85, 303.18] kHz [183.99, 287.60] kHz

200µm [111.63, 175.02] kHz [110.40, 172.56] kHz

Comparison of the two models shows that on smaller problems, microstructure effects become

increasingly obvious. Both position and band width of the first band gap diverge with decreased

problem sizes (t 6 120 µm in the present example). This divergence is depicted in Fig.(16) which

compares the couple stress model and the classical theory model in terms of the band width of the first

band gap on varying problem sizes. On the other hand, we note also that the microstructure effects

tend to disappear with increased problem size. Here, with t > 120 µm results from the two methods

tend to coincide. This observation confirms improved adaptability of the proposed couple stress model

for size effects, since it accounts for microstructure effects which become important in micro mechanics,

while offering natural coherence with classical theory on larger problem sizes.
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Figure 17: (a-d)Band gap diagram which calculate by modified couple stress theory
when the thickness t is 20 µm, 60 µm, 120 µm, 200 µm (e-h)Band gap diagram which
calculate by classical theory when the thickness t is 20 µm, 60 µm, 120 µm, 200 µm
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To further compare the couple stress and classical theory models, we next investigate the impact

of mesh refinement on the accuracy of respective methods. We set the plate thickness to t = 120 µm,

and prescribe 3 levels of mesh refinement as shown in Fig.(15). We then perform band gap analysis

using the couple stress and classical theory models to examine their dependence on mesh refinement.

Resulting band gap diagrams are reported in Fig.(18)-(19), which refer to cases with refined and coarse

meshes, respectively. Meanwhile on each mesh refinement, we further check if any difference is present

between the couple stress and classical theory methods.
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Figure 18: Band gap diagrams calculated using refined mesh: (a) by modified couple
stress method, (b) by classical theory model. Concordant results are observed in diagrams
(a) and (b).

 
0

4

8

12

16

Fr
eq

ue
nc

y

10
5

 
0

4

8

12

10 5

(a) (b)

Fr
eq

ue
nc

y

X M N M X M N M

Figure 19: Band gap diagrams calculated using coarse mesh: (a) by modified couple
stress method, (b) by classical theory model. Diagrams (a) and (b) are different.

We note that on the refined mesh (see diagrams in Fig.(18)), both methods produce consistent

result, however in the case of coarse mesh (see diagrams in Fig.(19)), band diagram calculated with the

classical theory (Fig.(19b)) presents slight difference versus the couple stress counterpart (Fig.(19a)).

Furthermore, comparison between Fig.(18a) and Fig.(19a) does not reveal notable difference, which

means the proposed couple stress model does not exhibit dependence on mesh refinement, while the

classical model does. This advantage can be explained by the use of higher-order form functions as-

sociated with the C1 continuous interpolation scheme, that we implemented in the couple stress micro

plate finite element. In contrary, the classical theory model is based on low-order interpolation scheme,

whose accuracy is highly sensible to the mesh quality.

In conclusion, the following advantages of the proposed framework have been confirmed with the

present example. First, the proposed method is highly versatile to deal with microstructures of complex

geometry. Secondly, it accounts for microstructure effects for problems of small sizes while remaining
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compatible with classical theories of continuum mechanics. In the end, it offers improved robustness

since its high-order interpolation scheme makes it highly independent on mesh quality.

6 Conclusion

We proposed in this work a numerical framework for the calculation of elastic wave band gaps for periodic

composite micro plates based on T3 Mindlin micro plate finite elements. The proposed framework

combines the couple stress elasticity theory which incorporates material length scale in the constitutive

description, and non-conforming T3 Mindlin micro plate finite element that we implemented. The

framework allows solving band problems of composite micro plates across length scales. This involves

both problems at very small scale lengths with the presence of size effects, and those beyond the

millimetre level for which size effects are negligible. Concerning the finite element used in the work,

the triangular element topology offers improved flexibility to discretize complex microstructures, and

the non-conforming element formulation provides nodal continuity of displacements, and their first and

second derivatives which are required by the couple stress continuum theory. The present work is the

first numerical contribution on the band gap calculation using couple-stress Mindlin plate finite element.

The framework can be complemented by implementing additional finite element types, such as shells,

so as to expand the field of application to 2D periodic metastructures involving curvature.
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A non-classical couple stress based Mindlin plate

finite element framework for tuning band gaps of

periodic composite micro plates

Supplementary information

To investigate the convergence properties of the implemented 3-node couple-stress

Mindlin plate element, we carried out a series of tests that we report here in this section.

We are particularly interested in assessing the presence of dependence on the mesh

refinement and quality, in the context of couple-stress continuum theory.
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S

S

S S
x

y
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x
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Figure 1: The test scenario: a rectangular plate of dimension a× b×h, with h the thickness, constrained on the 4 edges

and subject to out-of-plane concentrated load at its centre. Deflections and rotations will be calculated on nodes along

the cyan line y = 0 for the purpose of comparison

Test methodology

The test scenario is based on a plate structure constrained on the 4 edges and submitted

to an out-of-plane concentrated load at the centre point as shown in Fig.(1). The load

condition evokes both tensile and bending deformation to the plate. To investigate the

dependence on the length scale parameter and its influence on the element’s convergence

behaviour, we assign a range of problem sizes that vary from micro to macro scale. This

allows us to observe the appearance of size effects. Among the prescribed configurations,

we select the one which presents the most significant size effect. We then assign to
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this configuration a range of mesh refinements and qualities which allows assessing the

presence of mesh dependence in the couple-stress plate model.

The test plate geometry is shown in Fig.(1). Its side lengths along x and y directions

are denoted by a and b, then the plate thickness by h. The plate length versus thickness

ratio is given by a = b = 20h. In this example, the boundary conditions are defined

as follows: we let w = 0 and φx = 0 at x = −a/2 and x = a/2 (left and right edges),

respectively; then w = 0 and φy = 0 at y = −b/2 and y = b/2 (lower and upper

edges), respectively. A concentrated force P = 0.1N is applied at the centre of the

plate. Material properties are given as: E = 1.44GPa, ν = 0.38, l = 17.6µm, and

ρ = 1220kg/m3. We insist that the scale length parameter l is a material dependent

parameter. The material considered the tests is resin, which gives l = 17.6µm.

Examination of size effect

To ensure that the value of l = 17.6µm has significant effect in the couple-stress contin-

uum model, we prescribe 2 groups of tests with different plate sizes. The first group with

h > l, for instance, we have h = l, h = 2l, h = 3l, h = 4l, h = 5l, h = 10l. Then, the

second group with h < l, we prescribe h = 0.2l, h = 0.4l, h = 0.6l, h = 0.8l. In total, 10

different plate sizes are considered separately and we conduct static analysis based on

the boundary conditions described at the beginning of the methodology section.

Test group 1 with h > l

For the first test group composed of 6 cases with h = l, h = 2l, h = 3l, h = 4l, h = 5l,

h = 10l, we extract the values of the out-of-plane deflection calculated along the line

y = 0 (see Fig.(1) for the position of the line y = 0 and Fig.(2a) for the extracted

deflection values). The result is compared with a Mindlin plate model based on classical

continuum theory (see Fig.(2b)). In this test, both the couple-stress and classical theory

models are discretized with a 40 × 40 mesh, as shown in Fig.(9e).
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Figure 2: Out-of-plane deflections are extracted along the line y = 0, the result is reported in (a) for modified couple-

stress plate model, and (b) for classical theory model
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The shape of the obtained curves are obvious to interpret: both models let appear the

highest deflection at the plate centre, which corresponds to the loading point. We notice

that with larger problem sizes (as h increases towards h = 10l), the couple-stress model

and classical theory model tend to agree with each other. This is normal, and means

that as the problem size approaches h = 10l, the scale length parameter l = 17.6µm

tends to become irrelevant in the couple-stress model, which progressively converges to

the classical model. Similarly, we observe in Fig.(3) the same trend with the rotation

angle φx that we calculate along the line y = 0, for which as h increases towards h = 10l,

the couple-stress model tends to converge towards the classical model. For small size

problems, on the contrary, size effects become increasingly obvious with h approaching

h = l. Among the tested configurations, the case with h = l reveals the most significant

difference between the couple-stress and classical models.
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Figure 3: Rotations are calculated along the line y = 0, the result is reported in (a) for modified couple-stress plate

model, and (b) for classical theory model

Test group 2 with h < l

The second test group investigates the situation with h < l. Although one may question

about the physical relevance of such situations, they offer an insight into the limit of the

couple-stress model dealing with plate dimensions smaller than the scale length from

the numerical point of view. We therefore considered 4 cases with h = 0.2l, h = 0.4l,

h = 0.6l, h = 0.8l, respectively. The test scenario remains identical to the first test

group.

We report in Fig.(4) the out-of-plane deflections calculated along the line y = 0 from

the deformed plate. The result is presented in Fig.(4a) for the couple-stress Mindlin

micro plate model, then in Fig.(4b) for classical elasticity theory Mindlin plate model

and in Fig.(4c) for couple-stress analytical model based on Fourier series expansion.

Significant size effects can be confirmed by comparing Fig.(4a) and Fig.(4b). Then,

good agreement is observed between the couple-stress numerical and analytical models

by comparing Fig.(4a) and Fig.(4c). However, as the problem size approaches h = 0.2l,

3



the form of the curve can no longer represent the deformed shape of the micro plate, as

expected by the load scenario.
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Figure 4: Out-of-plane deflections extracted along the line y = 0 from the deformed plate for 4 plate dimensions:

h = 0.2l, 0.4l, 0.6l, and 0.8l. The result is reported in (a) for the couple-stress Mindlin micro plate FEM model (b)

classical elasticity Mindlin plate FEM model and (c) couple-stress analytical model based on Fourier series expansion.

Similar observations can be made on the rotation angles φx calculated along the

line y = 0 from the deformed plate. We confirm strong size effect by the disagreement

between the couple-stress and classical elasticity models (see Fig.(5a) and Fig.(5b)), and

we observe good agreement between the couple-stress numerical and analytical models

(see Fig.(5a) and Fig.(5c)). As the problem size decreases, brutal singularities appear on

the curve, particularly for the case h = 0.2l (see Fig.(5a)). This observation is confirmed

by the analytical model (see Fig.(5c)), which suggests that the phenomenon results from

the couple-stress theory rather than from numerical issues.

Therefore, we can predict significant couple-stress effects on problems whose dimen-

sion h is below the scale length parameter l. When h is significantly smaller than l,

results from the couple-stress theory become unreliable. In other words, we suggest

prescribing scale length parameters l with values below the problem’s geometrical di-

mension. For plate structures, this means using l no greater than the plate thickness h.
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Figure 5: Rotations extracted along the line y = 0 from the deformed plate for 4 plate dimensions: h = 0.2l, 0.4l, 0.6l,

and 0.8l. The result is reported in (a) for the couple-stress Mindlin micro plate FEM model (b) classical elasticity Mindlin

plate FEM model and (c) couple-stress analytical model based on Fourier series expansion.

Given the above conclusion, we adopt the configuration with h = l in the following for

the element convergence analysis. Using the tested scale length parameter l = 17.6µm,
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the configuration h = l presents the most significant size effect, with l no greater than

h.

Convergence analysis

Based on the h = l plate structure, the following tests are aimed to investigate the

element convergence properties with respect to the mesh refinement and quality. We

prescribe 6 mesh configurations, involving 5 structured meshes of different mesh densities

and 1 unstructured mesh (free mesh).

Static analysis

We first focus on static analysis based on the load scenario described in the methodology

section. 5 levels of mesh densities are prescribed using structured mesh topology: 4× 4,

8×8, 12×12, 20×20 and 40×40 (see Fig.(9a-e)). For each density level, we calculate using

both the 3-node triangular couple-stress plate element presented in the paper, and the 4-

node rectangular plate element given in Appendix A. We also prescribe an unstructured

mesh as shown in Fig.(9f) to assess if dependence on mesh quality is present.
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Figure 6: Out-of-plane deflections are calculated along the line y = 0, the result is reported in (a) for the 3-node

triangular couple-stress element, and (b) for the 4-node rectangular couple-stress element

Fig.(6) presents the out-of-plane deflection along the line y = 0 for the different

mesh configurations. We check if the results converge despite the different levels of

mesh refinement, and we compare both the triangular element model (Fig.(6a)) and the

rectangular element model (Fig.(6b)). We can see in both models, that the result does

not depend on the mesh refinement, and the two models present satisfactory agreement.

In this example, the 3-node triangular model shows comparable convergence with respect

to the rectangular model.

Similarly, we present in Fig.(7) the values of nodal rotation φx calculated along the

line y = 0. Comparison is carried out both with respect to the mesh refinement and the

element type. Again, the 3-node triangular model shows good convergence despite the

mesh configurations, and both element models present satisfactory agreement.
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Figure 7: Rotations are calculated along the line y = 0, the result is reported in (a) for the 3-node triangular couple-stress

element, and (b) for the 4-node rectangular couple-stress element

Natural frequency analysis

We also investigated the mesh dependence properties of the 3-node triangular couple-

stress Mindlin plate element using natural frequency analysis. The problem is based

on the same micro plate presented in the methodology section, with the aspect ratio

characterized by a = b = 20h, with h = l. We remind that on this configuration,

size effects inherent to the couple-stress continuum formulation are significant. In this

example, 9 levels of mesh density is tested, they are given by 4×4, 8×8, 12×12, 20×20,

30 × 30, 40 × 40, 50 × 50, 60 × 60, and 70 × 70.
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Figure 8: Natural frequencies with respect to different levels of mesh refinement. The result is reported in (a) for the

3-node triangular couple-stress element, and (b) for the 4-node rectangular couple-stress element

Fig.(8) presents the evolution of the calculated natural frequencies with respect to

the considered levels of mesh density, both for the triangular element model (Fig.(8a)),

and the rectangular element model (Fig.(8b)). Considering the two figures, we observe

comparable convergence rate for the both models. Especially, with the highest tested

mesh density (70 × 70), both results tend to the same value (2.032 × 106).
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Numerical integration procedure

In all the convergence tests and numerical examples provided in the main article, we

applied numerical integration based on a 3-point Gauss exact integration procedure.

Reduced integration is not considered in this work. Details of the integration points are

described in Fig.(10).

Summary

In this section, convergence properties of the implemented 3-node couple-stress Mindlin

Plate element is examined based on a test scenario involving significant size effect. The

convergence rate investigation requires discretizing the problem using several distinctive

levels of mesh refinement, and the result is compared not only with respect to the tested

mesh refinements, but also to a comparison model based on a different 4-node rectangular

plate formulation. In the tested cases, the implemented 3-node couple-stress Mindlin

Plate element showed satisfactory convergence properties, although the non-conforming

formulation may lead to convergence difficulties, theoretically. The obtained result also

presented good agreement with the 4-node rectangular plate modal.
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Figure 9: Mesh level include (a) 4 × 4 (b) 8 × 8 (c) 12 × 12 (d) 20 × 20 (e) 40 × 40 (f) free mesh
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Figure 10: Gauss exact integration and the integration points used in the T3 Mindlin micro plate finite element.
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