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Abstract

A k-edge-weighting of G is a mapping w : E(G) — {1,...,k}. The
edge-weighting naturally induces a vertex colouring o, : V(G) — N given
by 0w(v) = X eng @ w(vu) for every v € V(G). The edge-weighting w is
neighbour sum distinguishing if it yields a proper vertex colouring o, i.e.,
ou(u) # o,(v) for every edge uv of G.

We investigate a neighbour sum distinguishing edge-weighting with local
constraints, namely, we assume that the set of edges incident to a vertex of
large degree is not monochromatic. The graph is nice if it has no components
isomorphic to K. We prove that every nice graph with maximum degree at
most 5 admits a neighbour sum distinguishing (A(G) +2)-edge-weighting such
that all the vertices of degree at least 2 are incident with at least two edges
of different weights. Furthermore, we prove that every nice graph admits a
neighbour sum distinguishing 7-edge-weighting such that all the vertices of de-
gree at least 6 are incident with at least two edges of different weights. Finally,
we show that nice bipartite graphs admit a neighbour sum distinguishing 6-
edge-weighting such that all the vertices of degree at least 2 are incident with
at least two edges of different weights.



1 Introduction

Let G be a graph and k£ € N. A neighbour sum distinguishing k-edge-weighting is
a mapping w : E(G) — {1,...,k} such that the induced vertex colouring o, :
V(G) — N where 0,,(v) = >_ ey, w(vu) is proper, i.e. o,(u) # o,(v) for every
edge uv of G. Observe that GG always admits such a neighbour sum distinguishing
edge-weighting, unless it includes K5 as a component. Thus, we call G nice whenever
it has no such component. We say that the edge-weighting w distinguishes vertices
v,w € V(QG) if 0,(v) # o, (w).

In 2004 Karonski et al. [8] posed the conjecture, called the 1-2-3 Conjecture,
that asks whether every nice graph admits a 3-edge-weighting that is neighbour sum
distinguishing. The 1-2-3 Conjecture inspired a lot of studies on the original conjec-
ture and variants of it. For more information on that topic, we refer the reader to
the survey by Seamone [16]. The best result towards the 1-2-3 Conjecture is due to
Kalkowski et al. [7], who proved that every nice graph admits a neighbour sum dis-
tinguishing 5-edge-weighting. The conjecture cannot be pushed further down, since
there are graphs that require 3 weights, as an example, see cycles or complete graphs.
It was proved by Dudek and Wajc [4] that deciding whether there is a neighbour
sum distinguishing 2-edge-weighting for a given graph G is NP-complete in general,
while Thomassen, Wu and Zhang [14] showed that the same problem is polynomial
in the family of bipartite graphs. Recently Przybylo [12] proved that every d-regular
graph (d > 2) admits a neighbour sum distinguishing 4-edge-weighting and that the
1-2-3 Conjecture is true for d-regular graphs with d > 108,

In the version of the neighbour sum distinguishing edge-weighting, introduced
by Karonski et al. [8], the edges incident with a vertex may have the same weight.
On the other hand, Flandrin et al. [5] introduced the version of the edge-weighting,
called a neighbour sum distinguishing k-edge colouring, which distinguishes vertices
and in which incident edges must have different weights. A k-edge-colouring of G is
a mapping w : E(G) — {1,...,k} such that w(e;) # w(ez) for every two adjacent
edges e, e2 € E(G). If the k-edge colouring w satisfies o,,(v) # o, (u) for every edge
wv € E(G), then we call such a colouring a neighbour sum distinguishing k-edge
colouring. The smallest value k for which G admits a neighbour sum distinguishing
k-edge colouring is denoted by x5-(G). Wang and Yan [15] proved that x4 (G) <
[(10A(G) +2)/3] when A(G) > 18. It is known that x1-(G) < 2A(G) + col(G) — 1
[10] and X5-(G) < A(G)+3col(G) —4 [13], where col(G) denote the colouring number
of G, i.e. the smallest integer £ such that G has a vertex ordering in which each
vertex is preceded by fewer than k of its neighbours. Recently, Przybylo [11] proved

that x5-(G) < A + O(VA), where A = A(G).
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In this paper, we consider an edge-weighting which allows a vertex to be incident
with edges having the same weight, in a limited way. We require that a vertex of
large degree is incident with at least two edges of different weights. Such a version is,
on the one hand, stronger than the classical edge-weighting, while, on the other hand,
it is weaker than the edge-colouring. Our paper is organized as follows. In Sections 2
and 3, we consider nice graphs with degree at most 4 and at most 5, respectively.
We prove that every nice graph G with degree at most 5 admits a neighbour sum
distinguishing (A(G)+2)-edge-weighting such that all the vertices of degree at least 2
are incident with at least two edges of different weights. In Section 4, we prove that
every nice graph admits a neighbour sum distinguishing 7-edge-weighting such that
all the vertices of degree at least 6 are incident with at least two edges of different
weights. In Section 5, we show that the result from Section 4 can be improved
for bipartite graphs: we prove that every nice bipartite graph admits a neighbour
sum distinguishing 6-edge-weighting such that all the vertices of degree at least 2 are
incident with at least two edges of different weights. Furthermore, we show that every
connected bipartite graph on at least three vertices having a vertex partition (V;, V5)
such that [V;]| is even admits a neighbour sum distinguishing 4-edge-weighting such
that every vertex of degree at least 2 is incident with at least two edges of different
weights.

Another variant of the distinguishing edge colouring, called a neighbour sum
distinguishing relaxed edge colouring, was introduced in [3]. A d-relazed k-edge
colouring is a mapping w : E(G) — {1,...,k} such that each monochromatic set
of edges induces a subgraph with maximum degree at most d. If a d-relaxed k-edge
colouring w satisfies o,(v) # o,(u) for every edge uv € E(G), then it is called
a mneighbour sum distinguishing d-relaxed k-edge colouring. By X/§d)<G)’ we denote
the smallest value k£ for which G admits a neighbour sum distinguishing d-relaxed
k-edge colouring. Hence, X%(G) = X/Z<G)' Observe that if G admits a neighbour
sum distinguishing k-edge-weighting such that every vertex of degree at least 2 (or at
least 6 for graphs with maximum degree at least 6) is incident with at least two edges
of different weights, then XE_I(G) < k. In [3] it was proved that every nice subcubic
graph with no component isomorphic to C5 admits a neighbour sum distinguishing
2-relaxed 4-edge colouring such that every vertex of degree two is incident with edges
coloured differently. We will need this result to prove the theorem for graphs with
maximum degree 4. This result can be equivalently rewritten in the following way:

Theorem 1. [3] If G is a nice subcubic graph with no component isomorphic to Cs,
then it admits a neighbour sum distinguishing 4-edge-weighting such that every vertex
of degree at least 2 is incident with at least two edges of different weights.



The following theorem by Alon [1] will be frequently used in arguments to prove
results for graphs with maximum degree at most 5.

Theorem 2 (Combinatorial Nullstellensatz [1]). Let F be an arbitrary field, and let
P = P(xy,...,x,) be a polynomial in Flzy, ..., x,]. Suppose the degree deg(P) of P
equals Y | ki, where each k; is a nonnegative integer, and suppose the coefficient of
g xhnoin P ois nonzero. Then if Si,..., S, are subsets of F with |Si| > k;, there

n

are $1 € S1,...,8, € S, such that P(sq,...,8,) #0.

2 Graphs with maximum degree at most 4

Theorem 3. Every nice graph G with A(G) < 4 admits a neighbour sum distin-
guishing 6-edge-weighting such that all the vertices of degree at least 2 are incident
with at least two edges of different weights.

Proof. We proceed by induction on the number of edges. It is easy to see that the
theorem is true for graphs with two and three edges. Assume that the theorem is
true for graphs with at most m — 1 edges. Let G be a graph with m edges. We
may assume that G is connected, since otherwise, by induction, every component
has a 6-edge-weighting that satisfies the theorem. Furthermore, we may assume
that A(G) = 4, because, by Theorem 1, the theorem is true for all nice subcubic
graphs except Cs, and Cj5 admits a neighbour sum distinguishing 5-edge-weighting
such that all the vertices are incident with edges of different weights. Let u be a
vertex of degree 4 in G.

Case 1. There is an edge in the subgraph induced by N (u)

Let N(u) = {v,w,u1,us} and vw € E(G). Let G’ be obtained from G by
removing the two edges uv and uw. G’ has at most two components. Each component
of G’ with at least two edges admits an edge-weighting that satisfies the theorem. If
de(v) > 2 or de/(w) > 2, then every component has at least two edges, otherwise
one component is isomorphic to Ks. Let w be an edge-weighting of components of
G’ with at least two edges that satisfies the theorem, and additionally we extend the
edge-weighting w on the component isomorphic to K (if such exists), which we label
with an arbitrary weight.

To obtain our final edge-weighting, we just need to label the two edges uv and
uw while making sure that all the vertices of {u,v,w} are distinguished with their
neighbours and the vertices v and w are incident with two edges of different weights.
Note that the vertex u already has two incident edges of distinct weights, because
de(u) = 2. If der(v) > 2 and dg(w) > 2, then v and w also have two incident
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edges of distinct weights, otherwise we have to choose a weight on uv and uw that
is different from w(vw).

First, we consider how many weights we have to forbid for the edges uv and
uw such that we obtain an edge-weighting that distinguishes all adjacent vertices
except the pairs (v, w), (u,u1), (v, uz) and such that all vertices of degree at least 2
are incident with two edges of different weights. The vertex v must be distinguished
from its neighbours in G’ — w. If v has two neighbours in G’ — w, then there are
potentially two forbidden weights for vu. Thus, four possible weights remain for
wv. If v has exactly one neighbour in G’ — w, then there is at most one forbidden
weight for uv. If w is the only neighbour of v in G, then the weight of uv must be
different from the weight of vw and hence there is at most one forbidden weight for
wv. Thus, summarizing, there are at most two forbidden weights for uv. Similarly,
we can observe that for uw there are at most two forbidden weights. Let S; be the
set of weights that are not forbidden for uv and S, be the set of weights that are not
forbidden for uw, so |S;| > 4 and |Ss| > 4. Observe that if we choose for uv a weight
from S; and for uw a weight from Sy, then we obtain an edge-weighting of G in
which all pairs of adjacent vertices, except (v, w), (u,u1), (u,us), are distinguished,
and all vertices of degree at least 2 are incident with two edges of different weights.
Let 1 € S and x5 € Sy be the weights attributed to uv and uw, respectively. To
obtain an edge-weighting that satisfies the theorem for the weights xy and x5, we
must have the following:

o 11+mwot0,(u) # o,(u;), because u must be distinguished from w; for i € {1,2};

o 15+ o,(u) # o,(v), because we have to distinguish v and v;

e 11+ o,(u) # o,(w), because we have to distinguish u and w;

o 11+ 0,(v) # x3 + 0,(w), because we have to distinguish v and w.

To prove that there are weights x; and z9 that satisfy all the above conditions, we
construct the polynomial:

= (x1+ 22+ 0u(u) — oy (uq))

(w1 + 22 + 0w (u) — 0uw(uz))

(22 + 0u(u) = 0, (v))

(21 + 00 (u) — 0u(w))

(x1 — 29+ 0, (V) — 0, (w)).

If there exist 27 and x5 such that P(zq,22) # 0 and z; € S; (i € {1,2}), then the x;

satisfy all the conditions. By labeling uv, uw with x1, x5, we can extend the edge-
weighting w to an edge-weighting that satisfies the theorem. We apply Theorem 2



to prove that x; and x5 exist. First, we claim that the coefficient of the monomial
r3x3 is non-zero. Observe that this coefficient in P is the same as in the following

polynomial:

P1(=T1,$2) = (21 + $2)2($1 — T3)T1%2.

The coefficient of the monomial #3232 is 1. Since |S;| > 3 and |Sy| > 2, Theorem 2

implies that there are z; € S; and x9 € Sy such that P(z1,x2) # 0 and equivalently
there is the desired edge-weighting of G.

Case 2. N(u) is an independent set.

Let N(u) = {uy, ug, us,us} and G’ = G — u. Each component of G’ with at least
two edges admits an edge-weighting that satisfies the theorem. Let w be an edge-
weighting of components of G’ with at least two edges that satisfies the theorem,
and additionally we extend the edge-weighting w to the components isomorphic to
K, (if such exist), which we label with arbitrary weights.

To obtain a final edge-weighting, we just need to label the edges uu; for i €
{1,2,3,4}. We choose a weight for uu; in such a way that ensures that u; is distin-
guished with its neighbours in G’ and if u; has exactly one neighbour in G’, then
the weight of wu; is different from the weight of the edge incident with u; in G’.
Furthermore, after labeling the four edges wuy, uus, uus, uuy, the vertex u must be
distinguished from its neighbours and these edges cannot be monochromatic.

First, we consider how many weights we have to forbid for edges wu; such that
we obtain an edge-weighting in which the pairs of adjacent vertices of G’ are still
distinguished and all vertices of G’ are incident with two edges of distinct weights.
Since u; must be distinguished from its neighbours in G’, we have at most three
forbidden weights for wu;. If u; has exactly one neighbour in G’, then in order to
distinguish u; from its neighbour there is at most one forbidden weight and the
weight of wu; must be different from the weight of the edge incident with u; in G’,
so together we have at most two forbidden weights. Thus, uu; has at most three
forbidden weights. Let S; be a set of weights that are not forbidden for wu;, thus
|S;] > 3 for i € {1,2,3,4}. After labeling the edge uu; with weight x; € S; for
i €{1,2,3,4} we obtain an edge-weighting that distinguishes all vertices of G’ and
every vertex of G’ is incident with at least two edges of different weights. Let x; € S;
be weights attributed to wu; for i € {1,2,3,4}. To obtain an edge-weighting that
satisfies the theorem for z;, it must additionally hold:

o 1y + xy + 23+ x4 — x; # 0,(u;), because we have to distinguish u and w; for
i€ {1,2,3,4);



o 1, # x; for some 4, j € {1,2,3,4}, because v must be incident with at least two
edges of different weights.

We consider the polynomial

P(xy, 29,23, 24) =(T2 + 23 + 24 — 0y (W

T1 + X3+ x4 — 0y,(U

=( (
( (
(x1 4+ 22+ 24 — 0 (ug
(1 + 2o + 23 — 0, (uy
(

r3 — I4)

If there exist 1, x9, w3, T4 such that P(xy, x9,23,24) # 0and z; € S; (i € {1,2,3,4}),
then the x; satisfy all the conditions. By labeling uu; with x;, we can extend the
edge-weighting w to an edge-weighting that satisfies the theorem. To prove that there
are such z; we again apply Theorem 2. We consider the coefficient of the monomial
z3ryx3. Observe that this coefficient in P is the same as in the following polynomial:

Pl(xl, 9,3, ZE4) = (LUQ + T3 + 5174)(371 —+ T3 -+ LU4)(131 + i) -+ .T4)(LE1 -+ To + $3)(l’3 — 1’4).

The coefficient of the monomial z2x,z2% is non-zero. Since |S;| > 2,|S5| > 1 and
|S3] > 2, Theorem 2 implies that there are z; € S; such that P(z1,x9,x3,24) # 0
and so an edge-weighting of G that satisfies the theorem exists.

0

3 Graphs with maximum degree at most 5

Theorem 4. Every nice graph G with A(G) < 5 admits a neighbour sum distin-
guishing T-edge-weighting such that all the vertices of degree at least 2 are incident
with at least two edges of different weights.

Proof. We proceed by induction on the number of edges. It is easy to see that the
theorem is true for graphs with two, three and four edges. Assume that the theorem
is true for graphs with at most m — 1 edges. Let G be a graph with m edges. We
may assume that G is connected, since otherwise, by induction, every component
admits a 7T-edge-weighting that satisfies the theorem. Furthermore, by Theorem 3,
we may assume that A(G) = 5 since, otherwise, the result holds. Let u be a vertex
of degree 5 in G.



Case 1. There is an edge in the subgraph induced by N(u)

Let N(u) = {v, w,u1,us, uz} and vw € E(G).

First, we consider the case where dg(v) < 3 or dg(w) < 3, say without loss of
generality dg(v) < 3. Let G’ be the graph obtained by removing from G the two
edges uv and vw. Each component of G’ with at least two edges admits an edge-
weighting that satisfies the theorem. Let w be an edge-weighting of components of
G’ with at least two edges that satisfies the theorem, and additionally we extend the
edge-weighting w on the components isomorphic to Ks, which we label with arbitrary
weights.

To obtain our desired edge-weighting, we need to label the two edges uv and uw,
making sure that the vertices u, v and w are distinguished from their neighbours and
the vertices v and w are incident with two edges of distinct weights. Note that the
vertex u already verifies this property, since dg/(u) = 3.

First, we consider how many weights we have to forbid for edges uv and uw for us
to obtain an edge-weighting that distinguishes all adjacent vertices except the pairs
(v,w), (u,uy), (u, us), (u, uz) and in which all vertices of degree at least 2 are incident
with two edges of different weights. The vertex v must be distinguished from its
neighbour in G’ — w. If v has one neighbour in G’ — w, then there is potentially
one forbidden weight for vu, such that v is just incident with two edges labeled
differently. If v has no neighbour in G’ — w, then the weight of uv must be different
from the weight of vw, so again there is one forbidden weight for wv. Thus, there
are 6 possible weights for uv. To distinguish w from its neighbours in G’ — w there
are at most three forbidden weights. If w is the only neighbour of v in G/, then the
weight of uw must be different from the weight of vw and hence there is at most
one forbidden weight for uv. In conclusion, there are at least 4 possible weights for
uw. Let Sy be the set of weights that are not forbidden for uv and Sy be the set
of weights that are not forbidden for uw, so |S1| > 6 and |Sz| > 4. To prove that
we can choose weights from S; and S, such that we result in an edge-weighting that
satisfies the conditions of the theorem, we use Theorem 2. Let z; € S; and x5 € S
be weights attributed to uv and uw, respectively. To obtain the final edge-weighting,
the weights x; and x5 must additionally verify:

o 11+xo+0,(u) # o,(u;), because u must be distinguished from wu;, fori = 1,2, 3;
e 15+ o,(u) # o,(v), because we have to distinguish v and v;

e 11+ o,(u) # o,(w), because we have to distinguish u and w;

o 11+ 0,(v) # x3 + 0,(w), because we have to distinguish v and w.

We construct a polynomial



Playa2) = I @1+ 22+ 0u(w) — 0u(u:))
(2 + 0w (u) = 0u(v))

(21 + 0u(u) — ou(w))

(21 — 22+ 00 (v) — 0,(w)).

We consider the coefficient of the monomial x3z5. Observe that this coefficient in P
is the same as in the following polynomial:

Pl(l'l,iCQ) = (%1 + 513'2)3(331 — %2)371.1’2.

The coefficient of the monomial 23z, is 1. Since |S;| > 5 and |S3| > 1, Theorem 2
implies that there are z; € S; and x9 € Sy such that P(z1,x2) # 0 and equivalently
we can construct the desired edge-weighting of G.

Consider now the case when dg(v) > 4 and dg(w) > 4. Let G’ be obtained from
G by removing the three edges uv, uw and vw. Each component of G’ has at least
two edges, so it admits an edge-weighting that satisfies the theorem. Let w be an
edge-weighting of components of G’ that satisfies the theorem. Observe that in G’
the vertices u, v, w are just incident with at least two edges of different weights, since
dG/(u) = 3, d(;/(?]) Z 2 and dG/(w) Z 2.

Let 1, x5 and x3 be weights attributed to uv, uw and vw, respectively. To obtain
an edge-weighting of GG that satisfies the theorem, x; and x5 must verify:

o 1y + x5 + 0,(u) # o,(u;), because v must be distinguished from w; for ¢ €
{1,2,3};

o 1 + 23+ 0,(v) # 0,(v;), where i € {1,2} if v has two neighbours vy, v, in G’
and i € {1,2,3} if v has three neighbours vy, v9,v3 in G, because v must be
distinguished from its neighbours in G’;

o Ty + x5 + 0,(w) # o, (w;), where i € {1,2} if w has two neighbours wy, wy in
G’ and 7 € {1, 2,3} if w has three neighbours w1, wy, w3 in G’, because w must
be distinguished from its neighbours in G;

e 71+ 0,(v) # x2 + 0,(w), because v must be distinguished from w;
o 1+ 0,(u) # x3+ 0,(w), because u must be distinguished from w;
o 15+ 0,(u) # x3 + 0,(v), because u must be distinguished from v.

We construct a polynomial



P(xy, 29, 23) = H (21 + 22 + 0 (u) — 0uw(uy))

i=1,2,3
I @1+ 25+ 0u(v) = 0u(v2)
i=1,2,3
I @2+ 25+ 0u(w) — ou(ws))
i=1,2,3

(21 + 0u(v) — 22 — 0w (W)
(21 + 0u(u) — 3 — 0 (w))
(

To + 0,(u) — x3 — 0, (V).

If there are x; € {1,...,7} (i € {1,2,3}) such that P(zy,x9,23) # 0, then by
labeling uv, uw, vw with x1, x9, x3 we can extend the edge-weighting w of G’ to an
edge-weighting of G that satisfies the theorem whenever dg(v) = dg(w) = 5. If
dg(v) = 4 or dg(w) = 4, then the polynomial R, which we should construct for
proving that the weights xq, x5, x3 exist, is a factor of P(xy,zy,x3). However, if
P(z1,x9,23) # 0, then also for the factor R we have R(z1,x9,23) # 0. So it is
enough to consider the polynomial P.

To prove that there are z; € {1,...,7} (¢ € {1,2,3}) such that P(z1,xa,23) # 0
we apply Theorem 2. Consider the coefficient of the monomial z{xjz3. Observe that
this coefficient in P is the same as in the following polynomial:

P(xq, 29, 23) = (21 + !E2)3($1 + $3)3($2 + 5133)3($1 — x9) (1 — x3) (22 — 23).

The coefficient of the monomial z}z3z3 is 2. Theorem 2 implies that there are

x; € {1,...,7} such that P(xy,x5,23) # 0 and equivalently there is the desired
edge-weighting of G.

Case 2. N(u) is an independent set.

This part of the proof is very similar to Case 2 of the proof of Theorem 3. Let
N(u) = {uy, us, ug, ug, us}. Let G' = G —u. Fach component of G’ with at least two
edges has an edge-weighting that satisfies the theorem. Let w be an edge-weighting of
components of G/ with at least two edges that satisfies the theorem, and additionally
we extend the edge-weighting w to the components isomorphic to K5, which we label
with an arbitrary weight.

First, we consider how many weights we have to forbid for edges wu; such that
we result in an edge-weighting in which the pairs of adjacent vertices of G’ are still
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distinguished and all vertices of G’ are incident with two edges of distinct weights.
Since the vertex u; must be distinguished from its neighbours in G' and dg (u;) < 4,
we have at most four forbidden weights for uu;. If u; has exactly one neighbour in
G’, then in order to distinguish u; from its neighbour there is at most one forbidden
weight and the weight of uu; must be different from the weight of the edge incident
with u; in G’, so together we have at most two forbidden weights. Let S; be the
set of weights that are not forbidden for wu;, thus |S;| > 3 for i € {1,2,3,4,5}.
After labeling the edge uu; with weight z; € S; for i € {1,2,3,4,5}, we obtain an
edge-weighting that distinguishes all vertices of G’ and every vertex of G’ is incident
with at least two edges of different weights. Let x; € S; be weights attributed to
uu; for 1 € {1,2,3,4,5}. To obtain an edge-weighting that satisfies the theorem, the
weights x; must additionally verify:
® 1y + X9+ X3+ x4 + x5 — x; # 0,(u;), because we have to distinguish v and w;
for i € {1,2,3,4,5};
o 1; # x; for some i,j € {1,2,3,4,5}, because u must be adjacent to at least
two edges of different weights.

We construct a polynomial
P(x 29,13, T4, T5) =(T2 + T3 + T4 + 5 — 0 (u1))

(21 + 3+ x4 + x5 — 0 (u2))

(1 + 22+ 24 + x5 — 0, (us))

(21 4+ 22 + 23 + 25 — 00 (us))

(21 + 22 + 23 + 24 — 00 (us))

(x3 — x4).
If there are x; € S; (i € {1,2,3,4,5}) such that P(zy,x9,23,24,25) # 0, then,
by labeling uu; with x;, we extend the edge-weighting w to an edge-weighting that
satisfies the theorem. We again apply Theorem 2 to prove that there are such x;’s.

We consider the coefficient of the monomial z2z,23. Observe that this coefficient in
P is the same as in the following polynomial:

Py (21, 09, %3, T4, 5) =(22 + 3 + 24 + 25) (01 + 23 + 24 + T5) (21 + T2 + T4 + T5)

(14 22 + 23+ x5) (21 + T2 + 3 + x4) (23 — 24).

The coefficient of the monomial z?x3z3 is non-zero. Since |S;| > 2,|S3| > 2 and

|S3] > 2, Theorem 2 implies that there are x; € S; such that P(zy,xs, r3, x4, x5) # 0
and so we can construct the desired edge-weighting of G. [
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4 Graphs with maximum degree at least 6

In this section, we prove that every nice graph admits a neighbour sum distinguishing
7-edge-weighting such that every vertex of degree at least 6 is incident with at least
two edges of different weights. Our approach is based on the algorithm given in [8] for
proving that every nice graph admits a neighbour sum distinguishing 5-edge weight-
ing. It is worth mentioning that modifications of that algorithm allowed getting new
results for the neighbour sum distinguishing edge-weighting and its variants. For
example, Bensmail [2] proved that every 5-regular graph admits a neighbour sum
distinguishing 4-edge-weighting and Gao et al. [6] proved that the 1-2-3 Conjecture
is true if we allow the vertices with the same incident sum to induce a forest.
We prove the following theorem:

Theorem 5. Fvery nice graph G admits a neighbour sum distinguishing 7-edge-
weighting of G such that all the vertices of degree at least 6 are incident with at least
two edges of different weights.

Rough ideas of the proof of Theorem 5

We give an algorithm which constructs a vertex assignment w and a 7-edge-
weighting w. The vertex-assignment w will be almost the vertex colouring o,,, namely
ou(u) = w(u) or o,(u) = w(u)+3 for u € V(G). The 7-edge-weighting w will satisfy
the conditions of Theorem 5. The algorithm processes the vertices one after another,
following a special ordering. First, we define that ordering and prove that every nice
graph, except stars, admits such an ordering of vertices. Then, we give the algorithm
and prove that every step of the algorithm is always executable. Finally, we prove
that the 7-edge-weighting w given by the algorithm is neighbour sum distinguishing
and that all vertices of degree at least 6 are incident with at least two edges of
different weights.

Before we define the ordering of vertices (in Lemma 8) we need the following
notations.

Let (v1,v2,...,v,) be an ordering of vertices of G. We say that v; follows v; in
the ordering if i < j. A predecessor (resp. successor) of v; is every neighbour of v;
in {vy,...,v;_1} (resp. in {vi41,...,v,}) for ¢ € {1,...,n}. Let us define a partial
ordering induced by a given vertex ordering (v, vs,...,v,) in the following way

v; < v; & there is a path v;vg, vk, ... vk, v; in G such that § <k < ky < ... < kg <.

Remark 6. Two different vertex orderings of the graph G may induce the same
partial ordering.

12



Remark 7. If y < x, then x has a predecessor and y has a successor.
An inversion of the ordering (vy,vs, ..., v,) is the ordering (v, vp_1,...,v1).

Lemma 8. Let G be a connected graph on n vertices and G # Ky ,-1. There is a
vertezx ordering (vy,va, ..., v,) of G such that

(i) d(vy) > 2 and d(vy) > 2;
(11) v; has a predecessor fori € {2,...,n};

(111) if v; has no successor, then, in Ng(v;), there is at most one verter having a
successor in {vji1,...,vn} fori € {l,...,n}.

Remark 9. The condition (ii) can be equivalently replaced by the following one:
vy < fori € {2,...,n}.

Proof of Lemma 8. It is easy to see that if G is a connected graph and G is not
a star, then there is an ordering that satisfies the conditions (i) and (ii). On the
contrary, suppose that there is no ordering that satisfies (i), (ii), and (iii). For an

ordering v = (v, v,...,v,) by B(v) we denote the set of vertices which have no
SUCCESSOr.

Let v = (vy,v9,...,v,) be an ordering that satisfies (i) and (ii) with minimum
[B(v)]-

Let < be the partial ordering induced by v and v be the first vertex in v for
which (iii) fails, so v € B(v). Let v/ be an ordering of V(G) which induces the same
partial ordering < as v, but in which the index of v is minimum and let v = v;
in v/. Observe that every vertex has the same predecessors and successors in both
orderings, so |B(v')| = |B(v)| and the vertex v still makes (iii) fails in the ordering
v'. Furthermore, the choice of v/ implies that for any = € {vy,...,v;_1} we have
x < v;. Let j be the largest integer smaller than ¢ such that v; is a predecessor of v;
and v; has a successor in {vi1,...,v,}.

Case 1. 7 >3

Let w = (v, Vg, Vky, - - - , Uk, ) be a subordering of v/ containing v; and all vertices
x such that v; < x < v;. Let w’ be the inverse of w. We reorder the vertices of v/ in
the following way: v = (v1,...,vj-1,...,0;, W, V;i11,...,0,). Let <" be the partial
ordering induced by v”. Since v; was the last predecessor of v; having a successor in
{Vit1,- .., U}, v; still has predecessor in v’ and now v; has a successor. Furthermore,
for any = € w'\ {v;} we have v; <" x <" v; and hence every vertex of w'\ {v;} has a
predecessor and a successor. Also v; has a predecessor and a successor in v”. Thus
v" satisfies the conditions (i) and (ii) and |B(v")| < |B(v)|, a contradiction.
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Case 2. 7 <2

Since v; has at least two predecessors having a successor in {viy1,...,v,}, j =2
and vy, ve have successors in {v;;1,...,v,}. Furthermore, v;,vy are the only pre-
decessor of v; having successors in {v;y1,...,v,}. If i = 3, then we reorder the
vertices of v/ in the following way: v” = (vy,v3,v9,v4,...,v,). In v” the vertex
vs has a successor, so |B(v")] < |B(v)| and v” satisfies the conditions (i) and
(ii), a contradiction. Suppose that ¢ > 3. The condition (ii) implies that vs is
adjacent to vy or vy. If vzvy € E(G), then we reorder v’ in the following way:

v" = (vg, 03,04, ..., 0;, V1, Vis1 - .., V), otherwise, we reorder v’ in the following way:
v" = (v1,03,04, ..., 0;, V2, Vis1,- .., U,). In both cases, v’ satisfies the conditions (i)
and (ii) and |B(v")| < |B(v)|, a contradiction. O
ALGORITHM

Let G be an n-vertex connected graph and G # K ,,—1. Let v = (vy,va,...,0,)
be a vertex ordering that satisfies the conditions (i)—(iii) of Lemma 8. Let
V' ={v; € {v1,v9,...,v,} : v; has a successor},

V" = {v; € {v1,vq,...,v,} : v; has no successor}.

We start by assigning the provisional weight 4 to every edge, then we process the
vis one after another, following the ordering v. Whenever we treat a new vertex v;,
we modify the weights of the edges incident with v; under some restrictions and, at
the end of the step, we define w(v;) as the sum of the weights of the edges incident
with v; at the end of the step ¢. The weights of edges must be in {1,...,7}.

In the i-th step of ALGORITHM we treat vertex v;, however, we merge the first
and the second steps of ALGORITHM, the vertices v; and vy are treated together.
Then, we consider the remaining vertices according to the ordering v. We assume
wi(e) = 4 for any e € E(G). Let wy be the edge-weighting after the second step of
ALGORITHM, w; be the edge-weighting after treating the vertex v; (i.e. after i-th
step of ALGORITHM), and finally w,, = w.

Step 1,2

We have o, (v1) = 4dg(v1) and oy, (v2) = 4dg(ve). Observe that 4d € {0,2,4}
(mod 6) for every integer d. Let e; be be the edge between v, and its first successor
distinct from vs, let e; be the edge between vy and its first successor. In Table 1 we
give the new weights of edges vvy, €1, €s.
We then put w(vy) := 0y, (v1), w(ve) := 0y, (V).

Observe that after the first and the second steps of ALGORITHM, the vertex
assignment w and the edge-weighting wy have the following properties.
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(4d(z’3é§dé;’2)) (0,0) | (0,2) | (2,0) | (0,4) | (4,0) | (2.2) | (244) | (4,2) | (4,4)
wo(v1, v9) 7 7 7 5 5 5 6 6 2
ws(e) 1 [ 1 | 1 | 3 13 2| 4|4
w(es) 2 | 1 | 1 | 1] 3 | 1| 4] 23

Table 1: Step 1,2 of ALGORITHM.

Observation 10. o 0,,(v1),0,,(v1) € {0,1,2} (mod 6),
o w(vy) # w(vz), namely w(vi) # w(vs) (mod 6),

e the weight of the first successor of v; is at most 4 for i € {1,2}.
Step i, i € {3,...,n}

Let vy, be the first successor of v;. For an edge e the weight w(e) can only be
modified if either e = vjv; with j < i or e = v;v,. The weight of every edge must

be in {1,...,7}. Furthermore, the modification of weights has to result in an edge-
weighting w; that satisfies the following properties:

(1) wi(vivk) S 4.
2) If v; € V', then oy, (v;) € {0,1,2} (mod 6).
(2) Ifv; € V7, wi(vi) €{0,1,2} ( )
(3) For j <1, v; € N(v;)

(i) if v; € V', then oy, (v;) # w(v;).

(ii) if v; € V", then

e 0,,(v;) # 04,(v;), when v; has no successor that follows v;,

o 0,,(v;) & {w(v;),w(v;) + 3}, when v; has a successor that follows v;.
(4) For j <i, v; € N(v;), 04,(vj) € {w(v)),w(v;) + 3}.

(5) If d(v;) > 6, then edges {v;v; : j <1, v; € N(v;)} are not monochromatic or the
weight of edges {vjv; : j <, v; € N(v;)} is not in {w;(vivg), w;(vivg) + 3}
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When we obtain an edge-weighting that satisfies properties (1)—(5), we assign w(v;) :=
Ow;, (UZ) .

We will often use the following property of the vertex-assignment w given by
ALGORITHM:

Observation 11. Ifu € V', then w(u) € {0,1,2} (mod 6).
Lemma 12. Every step i (i € {3,...,n}) of ALGORITHM 'is executable.

Proof. Let us consider the i-th step of ALGORITHM. We prove that we can modify
the weights of edges between v; and its predecessors, and between v; and its first
successor (if it exists), in such a way that we obtain an edge-weighting that satisfies
the properties (1)—(5). We consider two cases, whether v; has a successor or not,
each leading to several subcases.

Case 1 v; € V', i.e., v; has a successor

Let vj,,vj,,...,v;, be the predecessors of v; and v;,v; = ¢, for £ € {1,...,d}.
Let €’ be the edge that joins v; with its first successor. Recall that w;_1(¢') = 4,
wi—1(eg) = 4 if v; is not the first successor of vj,, and w;_1(e;) < 4 if v; is the first
successor of vj,. We put the lower possible weights on every e, for ¢ € {1,...,d},
i.e. we provisionally modify weights in the following way: w,_(es) := w;—1(es) — 3
if o, ,(v;,) = w(v;,) + 3 and w,_,(e) := w;_1(e), otherwise. Observe that such a
modification results in weights that belong to {1,...,4}, since w;_1(es) < 4 only if
v; is the first successor of v;, and then o, ,(v;,) = w(v;,), otherwise w;_1(e;) = 4.
To simplify the notations, we state w;_; := w,_,. After such a modification we have
Ouw; 4 (v5,) = w(vy,) for £ € {1,...,d}.

We will modify edges by adding 3 to e, for some ¢ € {1,...,d} or subtracting
1, 2 or 3 from the weight of ¢/. As we observe above, by adding 3 to e,, the weight
of ey is still in {1,...,7}. If we subtract 1, 2, or 3 from the weight of ¢/, then the the
wight of €' is in {1, 2,3}, since w;_;(¢’) = 4. Furthermore, observe that adding 3 to
some e, or subtracting 1, 2 or 3 from the weight of ¢/ maintains the properties (1)
and (4). We show now that, by such a modification of weights, we are able to result
in the edge-weighting that also satisfies the properties (2),(3), and (5).

By the modification weights of edges ey, ..., eq4, €, we see that o,,(v;) can take
any value in the interval [a — 3, ac — 2, ..., a + 3d|, where o = a,,,_, (v;).

Subcase 1.1 v; has at least three predecessors.
To satisfy the property (2), we have to choose weights for edges such that o, (v;) €
{0,1,2} (mod 6), in the interval there are at least d 4+ 3 integers that are congruent
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to 0, 1 or 2 (mod 6). The property (3) can block at most d values and hence 3 values
remain open for o, (v;). Let §; € [a—3,a—2,...,a+3d] (i € {1,2,3}) be the values
open for o, (v;), i.e. §; € {0,1,2} (mod 6) and 5; # o,,(v;,) for all £ € {1,...,d}.
Let us denote ; = a + 3p; — r;, where p; € {0,...,d} and r; € {0,1,2,3} (i.e. p;
denotes the number of edges to which we have to add 3, r; denotes the value which
we have to subtract from the weight of ¢’). Now we have to guarantee the property
(5).

Suppose that there is ¢ such that p; € {1,...,d — 1}. We choose exactly p; edges
from the set {e1,...,eq} and add 3 to their weights, next we subtract r; from the
weight of €’. Since we chose p; edges from the set of d edges and 0 < p; < d, we can
do this in such a way that the property (5) holds.

Suppose that p; = 0 or p; = d for all ¢ € {1,2,3}. If edges {e,: ¢ € {1,...,d}}
are not monochromatic, then every f; is good for o, (v;). Thus, we relabel only the
edge € with w;(e’) := w;_1(¢’) — r1, whenever p; = 0 or w;(es) := w;_1(ep) + 3 for
te{l,...,d} and w;(€¢’) := w;_1(e’) — 71, otherwise.

Then assume that p; = 0 or p; = d and edges {e,: £ € {1,...,d}} are monochro-
matic. Thus f; € {o« =3, — 2,0 — 1, + 3d — 2,a + 3d — 1, + 3d} for all
i € {1,2,3}. There are at least two indexes i, say ¢ = 1 and ¢ = 2, such that
P1,02 € {a —3,a —2,a— 1} or B1,5; € {a+3d — 2,0+ 3d — 1, + 3d} and so
we have two choices for the weight of /. We can see that one of them results in
an edge-weighting w; such that the weight of edges {e, : ¢ € {1,...,d}} is not in
{wi(€e’),w;(e") + 3} and hence the property (5) holds.

Subcase 1.2 v; has two predecessors.

H Hoz—S\oz—Q\oc—l\a\a—l—l\a+2\o¢+3\a+4\o¢+5\a+6“
1 0 1 2 3 4 5 0 1 2 3
2 1 2 3 4 5 0 1 2 3 2
3 2 3 4 5 0 1 2 3 4 5
4 3 4 5 0 1 2 3 4 5 0
5 4 5 0 1 2 3 4 5 0 1
6 5 0 1 2 3 4 5 0 1 2

Table 2: Subcase 1.2, all possible values (mod 6) in the interval.

Thus, in the interval [« — 3,0 — 2,..., a0+ 3d] = [ — 3, — 2,..., + 6], there
are at least 4 integers that are congruent to 0, 1 or 2 (mod 6). The property (3)
can block at most two values and hence two values remain open for o, (v;). Let
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fi€la—3,a—2,...,a+6] (i € {1,2}) be the values open for o, (v;). Similarly as
above, let §; = a + 3p; — r;, where p; € {0, 1,2} and r; € {0,1,2,3} for i € {1,2}.

Suppose that either p; = 1 or p, = 1, say p; = 1. Then we add 3 to either e; or e,
to obtain the edge-weighting such that w;(e1) # w;(e2) and put w;(e’) := w;_1(e’) —ry.

Thus, we may assume that p; € {0,2} and so ; € {a — 3,0 — 2, — 1, +
4, + 5,0 + 6} for all i € {1,2}. If the edges e; and ey have different weights,
then every ; is good for o, (v;). Thus, we recolour only the edge €’ with w;(€’) :=
wi—1(€’) — r1, whenever p; = 0 or w;(e;) 1= w;_1(e1) + 3, w;(e2) == w;_1(e2) + 3 and
wi(€') := w;_1(€e’) — 11, otherwise.

Assume then that p; € {0,2} and that e; and ey have the same weight. If we have
either 31, 2 € {a—3,a—2,a—1} or 1,32 € {a+4,a+ 5,0+ 6}, then we have two
choices for the weight of ¢/. We can see that one of them gives an edge-weighting w;
such that the weight of the edges {e1,es} is not in {w;(e’),w;(e’) + 3} and hence the
property (5) holds.

We claim that we always have either 51,8, € {a — 3, — 2,0 — 1} or (1,5 €
{a+4,a+5,a+6}. Let us consider the integers {o,  + 1, + 2, a + 3}, we can see
that there is at least one value congruent to 0, 1 or 2 (mod 6) (see Table 2). We may
assume that all values congruent to 0, 1 or 2 (mod 6) are blocked by the property
(3), otherwise we are in the case considered above. Thus, we are not in the case
described in lines 3 or 4 of Table 2. If there is exactly one value congruent to 0, 1 or
2 (mod 6) in {a, a+1,a+2, a+3} (it is blocked by the property (3)), then there are
five values congruent to 0, 1 or 2 (mod 6) in {a —3,a—2,a—1,a+4,a+5,a+6}
(see Table 2, lines 1 and 6), at least four are not blocked by the property (2), and
hence two of them are in either {a—3, «—2, «—1} or {a+4, a+5, a+6}. If there are
two values congruent to 0, 1 or 2 (mod 6) in {a, a4+ 1, + 2, + 3}, then, there are
three values congruent to 0, 1 or 2 (mod 6) in {a —3,a—2,a—1,a+4,a+5 a+6}
(see Table 2, lines 2 and 5) and none of them are blocked by the property (3) and
hence two of them are in either {a — 3,0 — 2, — 1} or {a + 4, + 5, + 6}.

Subcase 1.3 v; has one predecessor.

Suppose first that o ¢ {0,1,2} (mod 6). Then, there are at least four values
congruent to 0, 1 or 2 (mod 6) in the interval [« — 3,0 —2,...,a+3d] = [a —3,a —
2,...,a+3] (see Table 3). One of them can be blocked by the property (3), so three
values remain open for o, (v;). Let 8; (i € {1,2,3}) be the values open for o, (v;).
Thus at least two of them are in either {ov — 3,0 — 2, — 1} or {a + 1, + 2, a + 3},
and so we have two choices for the weight of €. We can see that one of them gives
an edge-weighting w; such that w;(e1) ¢ {w;(e’),w;(e")+3}, which guarantee that the
property (5) holds.
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[ [ 5]a2[a i[olari[ar2]at3]
1 0 1 2 3 4 5 0
2 1 2 3 4 5 0 1
3 2 3 4 5 0 1 2
4 3 4 5 0 1 2 3
5 4 5 0 1 2 3 4
6 5 0 1 2 3 4 5

Table 3: Subcase 1.3, all possible values (mod 6) in the interval.

Finally, suppose that « € {0,1,2} (mod 6). Assume that there is /3; such that
Bi = a (i.e. «vis not blocked by the property (3) for o, (v;)). Recall that w;_1(e;) < 4
and w;_1(e') = 4. fw;_1(e1) # 4, then we assign w;(e) := w;_1(e) for every e € E(G).
If w;_1(e1) = 4, then we recolour edges w;(e1) := 7 and w;(e’) := 1. Suppose that «
is blocked by the property (3). If &« = 0 (mod 6), then there is a value congruent
to 1 and there is a value congruent to 2 (mod 6) in {a + 1, + 2, + 3} (see
Table 2, line 4) and hence one of them gives an edge-weighting w; such that w;(e;) ¢
{wi(€),w;i(e’)+3}. If @« =2 (mod 6), then there is a value congruent to 0 and there
is a value congruent to 1 (mod 6) in {o — 3, — 2, — 1} (see Table 2, line 6), so
similarly as above we are done. If « =1 (mod 6), then §; = a—1 and 8y = a+1 (see
Table 2, line 5). If w;_1(e1) # 3, then we assign w;(€¢’) := 3 and so o, (v;) = a — 1.
Otherwise, we modify the weights of two edges w;(e;) := 6,w;(¢’) := 2 and then
0w, () = a+ 1.

Case 2 v; € V", t.e., v; has no successor

Let vj,,vj,, ..., v;, be the neighbours of v; and v;,v; = e, for £ € {1,...,d}. Let v,
be a vertex that has a successor in {v;;1, ..., v,} if such one exists. Recall that by our
choice of the ordering of vertices v, there is at most one such a vertex (Lemma 8 (iii)).
To guarantee the property (3), we choose the weight of the edges incident with v; in
such a way that o, (v;) # 0., (v;,) for £ € {2,...,d} and o, (v;) ¢ {w(vj,), w(v,,)+3}
even if v;, has no successor in {v;41,...,v,}.

Similarly as in Case 1, we put the lower possible weights on every e, for ¢ €
{1,...,d}, we provisionally modify the weights of edges in the following way: w!_,(ey) :
wi—1(eg) — 3 if oy, , (vj,) = w(v;,) + 3, and w]_,(e) := w;_1(e) otherwise. Similarly as
in Case 1, we can see that after such a modification, the weight of e, is in {1, 2, 3,4}.
To simplify notations, we state w;_y = w;_;. Observe that o,, ,(v;,) = w(v;,) for
te{l,...,d} and 0., ,(v;,) € {0,1,2} (mod 6) for £ € {1,...,d} (every v;, belongs

19



to V).

We will modify weights by adding 3 to w;_1(e,) for some ¢ € {1,...,d}. We can see
that after adding 3 to the weight of e,, the weight is still in {1,...,7}. Furthermore,
adding 3 to some e, maintains the property (4). Since v; has no successor, the
properties (1) and (2) hold. We prove that we can add 3 to some edges in such a
way that the properties (3) and (5) will be satisfied. Let o, ,(v;) = a.

Subcase 2.1 d(v;) > 3
Observe that if o € {0,1,2} (mod 6), then o + 3 ¢ {0,1,2} (mod 6). Thus, we
consider two cases.

Subcase 2.1.1 a € {0,1,2} (mod 6)

If o # oy, ,(vj,) and a # o, ,(v;,) for £ € {2,...,d}, then we assign w;(e) :=
wi—1(e) for all e € E(G). Recall that w(vj,) = oy, ,(vj,), so o, (v;) # w(vy,).
We also have oy, (v;) # w(vj;,) + 3, since o, (v;) € {0,1,2} (mod 6) and w(v;,) +
3 ¢ {0,1,2} (mod 6). Thus, w; satisfies (3). If the edges incident with v; are not
monochromatic or d(v;) < 5, then we are done. Otherwise, we relabel the edge
wi(er) = wi—1(e1) + 3. Thus, o,,(v;) = a + 3. Our assumption a € {0,1,2}
(mod 6) implies that o + 3 ¢ {0,1,2} (mod 6) and consequently o, (v;) # ou,(vj,)
for ¢ € {2,...,d}. Furthermore, o + 3 = o,,(v;) # w(vj,), since a + 3 ¢ {0,1,2}
(mod 6) and w(v;,) € {0,1,2} (mod 6). We also have o, (v;) # w(v;,) + 3, since
w(vj,) +3 = 04, ,(v;,) +3 # o+ 3 = 0,,(v;) Thus, we have a weighting w; that
satisfies the properties (1)—(5).

Assume now that o = oy, ,(vj,) or thereis £ € {2,...,d} such that o = oy, ,(v;,).

Suppose first that o = o, ,(vj,). Assume that there are at least two vertices
V)., V5, € {v),,...v;,} such that o, ,(v;,) # o+ 6,04, ,(v;,) # o+ 6. We assign
wi(er) == wi—1(e1) + 3, wi(eq) == wi—1(eq) + 3, wilep) == wi—1(ep) + 3. Thus, o, (v;) =
a + 9. We show that the property (3) holds. Since a +9 ¢ {0,1,2} (mod 6),
we have o, ,(v;,) # a+ 9 for £ € {2,...,d} and so o,,(v;) # 04, (u) for u €
{vjp, .-, } \ {vj.,vj, }. Our assumptions oy, ,(v;,) # a + 6,04, ,(v;,) # o +6
imply that o,,(vj,) # a +9 = 0,,(v;),0u,(v;,) # a +9 = 0,,(v;). Now consider
vj,. Since w(vj,) = a, we have o, (v;) # w(v;,) and oy, (v;) # w(v;,) + 3. Thus,
the edge-weighting w; verifies property (3). If d(v;) < 5 or edges incident with v;
are not monochromatic, then we are done. Otherwise, if there is another vertex
v, € {vj,,...v;,} such that o, ,(v;) # a + 6, then we can relabel edges in the
following way: w;(e1) 1= wi—1(e1) + 3,wi(ea) = wi—1(ea) + 3,wilec) = wi—1(ee) + 3.
Thus, suppose that this is not the case: in {vj,,...v;,}, there are at most two vertices
with colour other than a4 6. Then, we add 3 to the weight of e; and edges incident
with vertices with colours other that o + 6. Next, from the remaining edges, we
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choose one edge if we have two vertices with colours other that a + 6, two edges
if we have one vertex with colour other that o + 6 and three edges if we have no
vertices with colour other that o + 6, and add 3 to their weights. Thus, we obtain
0w, (v;) = a+ 12. Since d(v;) > 6, we can choose edges for the relabeling in such a
way that the edges incident with v; are not monochromatic. Observe that the only
neighbours of v; that have in w; the same colour as in w;_; are those with colour
a~+6. Those vertices are distinguished with v; in w;. Now, the remaining neighbours
of v; have colours that are not in {0, 1,2} (mod 6). Thus, they are also distinguished
from v; in w;, since a+12 € {0,1,2} (mod 6). So the edge-weighting w; satisfies the
properties (1)—(5).

Finally, assume that a # o,, ,(v;,) and there is £ € {2,...,d} such that o =
0w, (vj,). If the edges {ea, . .., eq} are not monochromatic, or the weight of {eo, ..., eq}
is different from w;_1(e1) + 3, or d(v;) < 5, then we assign w;(e1) := w;(e1) + 3.
Since oy, (v;) = a+ 3 ¢ {0,1,2} (mod 6), v; is distinguished from every vertex in
{vj,,...v;,}. Our assumption a # o, ,(v;) implies oy, (v;) # w(v;,) + 3. Fur-
thermore, o, (v;) # w(vj,) since o,,(v;) ¢ {0,1,2} (mod 6) and w(v,,) € {0,1,2}
(mod 6). Thus, the edge-weighting w; verifies properties (1)—(5). Thus, we may
assume that d(v;) > 6 and w;_q1(e2) = ... = w;_1(eq) = wi_1(e1) + 3.

If there is a v;, € {vj,,...v;,} with colour other than «, then we assign w;(e,) :=
wi—1(€e,) + 3. The edge-weighting w; verifies properties (1)—(5) (recall that oo + 3 #
0w, (vj,), since o, (v;,) € {0,1,2} (mod 6) for ¢ € {es,...,eq} \ {e,} and similarly as
above we can observe that o, (v;) ¢ {w(vj,), w(vy,) + 3}).

Suppose that all vertices {v,,,...v;,} are coloured with a. If a46 # w(v;, ), then
we add 3 to the weights of two edges from {es,...,e4}. Since we can choose which
edges to relabel, we can maintain the property (5). Since o, (v;) = a+6, 0,,(u) = «
or a+ 3 for u € {vj,,...v;,} and o, (v;) ¢ {w(v;,), w(vj, )+ 3}, w; verifies properties
(1)~(5). If a +6 = w(vj,), then we add 3 to the weights of four edges. Again, we
can choose which edges to relabel, since d(v;) > 6. Hence, we are able to maintain
property (5). Similarly as above, we can check that w; also verifies property (3), so
we are done.

Subcase 2.1.2 a+ 3 € {0, 1,2} (mod 6)

Since a+3 € {0,1,2} (mod 6), we have a ¢ {0,1,2} (mod 6) and, in {v;,,...v;,},
there is no vertex with colour o or o + 6.

First, we consider the case when o, ,(v;,) = a — 3.

If, in {vj,, ... v;,}, there is a vertex v;, with a colour other than a+3, then we add

3 to the weights of e, and e;. If the edges incident with v; are not monochromatic
or d(v;) < 5, then we are done. Thus, suppose that d(v;) > 6 and all these edges
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have the same weight. If there is another vertex v;,, b # a, with a colour other
than a + 3, then we add 3 to the weights of e, and e;. In the resulting edge-
weighting, the edges incident with v; are not monochromatic. If v;, is the only
vertex with a colour other than o + 3, w.e. all vertices in {v,,,...v;,} \ {v;,} have
the colour o + 3, then we choose one edge in {es,...,eq} \ {e.}, say ey, and assign
wi(er) == wi—1(e1) + 3,wileq) == wi—1(eq) + 3, wi(ep) == wi_1(ep) + 3. Since we have a
choice, we can maintain property (5). Now, we have o, (v;) = a+9, o,, () = a+6,
0w (u) = a4 3 for v € {vj,,...v;,} \ {v;,,v;,}, so w; distinguishes v; and vertices
from {v;,,...v;,}\{v;,}. Furthermore, we have o, (v,) = 0y, ,(vj,)+3. As observed
before, oy, ,(v;,) # a + 6, which implies that o, (v,) # o,,(v;). For v;, we have
w(t) = T (03) = @ — 3, 50 0 (0) & {w(vy,),w(vy) +3}. Thus, property (3)
holds.

If all vertices in {v,,,...v;,} have colour a4 3, then we choose three edges from

{ea,...,eq} for the relabeling, and since we can choose freely, we can construct an
edge-weighting w; satisfying property (5). Since o, (v;) = a4+ 9 and o, (u) = a + 3
or a + 6 for u € {vj,,...v;,}, w; distinguishes v; and vertices from {v;,,...v;,}.

Similarly as above, we can see that o, (v;) ¢ {w(v;,), w(v;,) + 3}, so we are done.

Suppose that o, ,(v;,) = a+3. If the edges incident to v; are not monochromatic
or d(v;) < 5, then the edge-weighting w; := w;_; satisfies (1)—(5). Thus, we may
assume that all edges have the same weight and d(v;) > 6.

If, in {v;,, ... v;, }, there are three vertices v;,, v;,, v;, with colour other than a+9,
then we add 3 to the weights of e,, €5, €. and e;. Thus, the edges incident with v; are
not monochromatic (the property (5) holds) and o, (v;) = o + 12. Since the colour
of vj,,v;,,v;, is not equal to a + 9 in w;_4, the colour of v;_ ,v;,,v;. is not equal to
a + 12 in w;. Thus, w; distinguishes v; from v, ,vj,,v;.. Since a + 12 ¢ {0,1,2}
(mod 6), no vertex in {vj,,...v;,} \ {v;,,v;,,vj.} has colour a + 12. Furthermore,
w(vj,) = 0w, ,(vj,) = a+ 3, so a,,(v;) ¢ {w(v),), w(vj,) + 3}, so the the resulting
edge weighting satisfies properties (1)—(5).

Assume that, in {v),,...v;,}, there are at most two vertices with colour other
than a + 9. Then, we add 3 to the weights of e; and edges incident with vertices
having colour different from o+ 9. Next, from the remaining edges, we choose two
edges if we have two vertices with colours other that a+9, three edges if we have one
vertex with colour other that o + 9 and four edges if we have no vertex with colour
other that a4 9, and add 3 to their weights. Since d(v;) > 6, we can choose the edges
for relabeling in such a way that the edges incident with v; are not monochromatic.
We obtain o, (v;) = a+ 15. The vertices that had colour « + 9 in w;_; have colour
either o + 9 or a + 12 in wj;, so w; distinguishes v; and these vertices. Consider the
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vertices that had a colour different from o + 9 in w;_;. We added 3 to the edges
incident with these vertices. In w;_;, the colours of these vertices were in {0, 1,2}
(mod 6), so now these vertices have colours that are not in {0,1,2} (mod 6), but
0w, (v;) = a4+ 15 € {0,1,2} (mod 6). Thus, w; distinguishes also these vertices.
Furthermore, w(v;,) = 0w, ,(v;,) = a+ 3, so a,,(v;) ¢ {w(vj,), w(v;,) + 3}, and so
we are done.

Finally, suppose that o,, ,(v;,) ¢ {a —3,a + 3}. Since a ¢ {0,1,2} (mod 6),
there is no vertex with colour « in {vj,,...v;,}. If the edges incident with v; are
not monochromatic or d(v;) < 5, then the edge-weighting satisfies properties (1)—(5).
Thus, we may assume that all edges have the same weight and d(v;) > 6.

If, in {v,,...v;,}, there is a vertex v;, with colour other than « + 3, then
we add 3 to weights of e, and e;. Thus, o,,(v;) = o+ 6 and so o,,(v;,) =
G (03) + 3 7 (), 0 (v3) 7 W) for w € {oy,,... v} \ {us,}, because
0w (vi) ¢ {0,1,2} (mod 6) and o,,(u) € {0,1,2} (mod 6). Consider v;: we have
Owi<vi) 7é w<vj1)7 since w(%&) = Uwi—1(vj1) < {07 172} (IIlOd 6)7 and Uwi(vi> 7é
w(vj,) + 3, since o, ,(v;,) # a + 3 by our assumption. Thus, the resulting edge-
weighting satisfies properties (1)—(5).

Thus, we may assume that o, ,(v;,) =a+3for £ € {2,...,d}. If oy, ,(v;,) #
a + 9, then we choose three edges from {es,...,eq} and add 3 to their weights.
Since d(v;) > 6, we can choose edges in such a way that we maintain property (5).
Now, we have o,,(v;) = o+ 9, so w; distinguishes v; from v;, for £ € {2,...,d}.
By our assumption, o, (v;) # w(vj,) = ou, ,(vj). Since w(v;,) + 3 ¢ {0,1,2}
(mod 6) and o, (v;) € {0,1,2} (mod 6), o,,(v;) # w(vj,) + 3, so we are done. If
0w (v;,) = a+ 9, then we choose five edges from {ey,...,eq} and add 3 to their
weights. Since d(v;) > 6, we can choose edges in such a way that we maintain
property (5). Now o, (v;) = a+15 and o, (u) = a+3 or a+6 for u € {v,,,...v;,}.
Thus, v; is distinguished from {v;,,...v;,} by w;. By our assumption, w(v;,) = a+9
and so the property (3ii) also holds.

Subcase 2.2 d(v;) = 2

Thus, v; has two neighbours v;,, vj,, and v; may have a successor that follows v;.
Since d(v;) = 2, the property (5) holds. If o # o, ,(v;,) and o & {w(v;,), w(v;,)+3},
then the edge-weighting w; := w;_; satisfies properties (1)—(5). Thus, we may assume
that either a = oy, ,(v;,) or a € {w(v;,),w(v;,) + 3}.

Suppose that o € {w(v;,),w(v;,) + 3}. First, assume that w(v;) = a (i.e.
Ow; 4 (vj,) = a). Thus, we must have o € {0,1,2} (mod 6) and hence a+3 ¢ {0, 1,2}
(mod 6) which implies oy, ,(v;,) # o+ 3. We assign w;(e1) = w;_1(e1) + 3 and
wi(e2) = wi_1(e2) + 3, so we are done, since now o, (v;) = a + 6 # 0,,(v),) and
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0w, (Vi) & {w(v;,),w(v;,) + 3}. Suppose that w(v;,) +3 = a. If 0, ,(v,) = a+ 3,
then we assign w;(ez) := w;_1(e2) + 3, otherwise, we assign w;(e;) := w;_1(e1) +3 and
wi(e2) := w;_1(ez) + 3. We can check that in both cases property (3) holds.

Thus, we may assume that o ¢ {w(vj;,),w(v;,) + 3} and oy, ,(vj,) = a. The
assumption o, ,(vj,) = « implies that @ € {0,1,2} (mod 6) and hence o + 3 ¢
{0,1,2} (mod 6). In this case, we assign w;(e;) = w;—1(e1) +3. Thus a + 3 =
0w; (Vi) # 04,(vj,) = a. Furthermore, o, (v;) # w(v;,), since oy, (v;) ¢€ {0,1,2}
(mod 6) and w(v;) € {0,1,2} (mod 6). Also oy, (v;) # w(v;,) + 3, since by our
assumption o # w(vy,).

Subcase 2.3 d(v;) =1
Thus N(v;) = {vj,}, v;, may have a successor that follows v;, and o, ,(v;) =
wi—1(vjv;). Since G # K,, we have o, ,(v;) < 0, ,(v;;) and so o, ,(v;) ¢
{w(v;,), w(vj,) + 3}. Thus, the edge-weighting w; := w;_y verifies properties (1)-
(5).
[

Lemma 13. Let w be the edge-weighting given by ALGORITHM. Then w is a neigh-
bour sum distinguishing 7-edge-weighting.

Proof. 1t is obvious that w is a 7-edge-weighting, since the weight of every edge is in
{1,...,7}. We show that w is neighbour sum distinguishing. Let v, V' V" and w; be
defined the same as in ALGORITHM. Let w be the vertex-assignment determined
by ALGORITHM. First, observe the following property of every vertex:

Claim 14. (i) Ifu e V', then o,(u) € {w(u), w(u) + 3}.
(i1) If u e V", then o,(u) = w(u).

Proof. Let u = v;.

Suppose that ¢ = 1 or 2. Since v; and vy have successors, vy, vy € V’'. The
values w(vy) and w(vy) were assigned at the end of steps 1 and 2, by w(vy) =
Ouy (V1), w(v2) = 0y, (v2). Observe that the weight of vyv will not change in steps
{3,...,n}. ALGORITHM has to respect property (4), so the weights of the re-
maining edges incident with either v; or v, can be modified only in such a way that
0w, (1) € {w(vy), w(vy) + 3} and oy, (v2) € {w(ve),w(vy) + 3} for k € {3,...,n}.
Thus, finally, o, (v1) € {w(v1), w(vy) + 3} and o,,(ve) € {w(v2), w(vsy) + 3}.

Suppose that ¢ > 3. Assume first that v; € V'. Let v;,vj,,...,v;, be the
predecessors of v;. Observe that the weight which we assigned to vj;,v; in the -th
step of ALGORITHM will not change in the next steps (i.e. w;(v;,v;) = w(v;,v;)) and
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w(v;) = o,,(v;). ALGORITHM has to verify property (4), so the weights of edges
incident with the successors of v; can be modified only in such a way that o, (v;) €
{w(v;),w(v;) + 3} for k € {i +1,...,n}. Thus, finally, o,(v;) € {w(v;), w(v;) + 3}.
Assume now that v; € V. Let vj,vj,,...,vj, be the neighbours of v;. The
weight which we assigned to v;,v; in the i-th step of ALGORITHM will not change
in the next steps (i.e. w;(v;,v;) = w(v;v;)). Thus oy, (v;) = 0,(v;), which implies
that w(v;) = g, (v;). O]

Let uw € E(G), we show that o,(u) # o,(w). Suppose that vw = wvivs.
Steps 1 and 2 imply that {w(vy),w(vy) + 3} N {w(v1),w(v1) + 3} = 0 and so
0u(v1) # 0,(ve) by Claim 14. Suppose that v = v;,w = v; and j < @ (i # 2).
We have (v; € V' or v; € V") and v; € V’, since v; has a successor. Suppose that
v; € V'. By property (3i), w(v;) # w(v;), since w(v;) = o,,(v;). As we noticed
in Observation 11, w(v;),w(v;) € {0,1,2} (mod 6), thus w(v;) # w(v;) + 3 and
w(v;) # w(v;) + 3, and so {w(v;), w(v;) + 3} N {w(v;), w(v;) + 3} = 0. Thus, Claim
14 implies that o,(v;) # 0,(v;). Suppose now that v; € V”. Since v; has no suc-
cessor, the weights of edges incident with v; will not change in steps {i + 1,...,n},
80 04, (v;) = 0,(v;). If v; has no successor that follows v;, then the weights of edges
incident with v; will also not change in steps {i +1,...,n} and so o, (v;) = 0,(v;).
By property (3ii), we have o, (v;) # o0.,(v;), thus o,(v;) # 0,(v;) if v; has no
successor that follows v;. If v; has a successor that follows v;, then property (3ii)
implies that o, (v;) ¢ {w(v;), w(v;) +3}. As we observed, o, (v;) = 0,(v;) and then
0w (v;) # 0,(v;) by Claim 14. O

Lemma 15. Let w be the edge-weighting given by ALGORITHM. Then, for every
vertex u of degree at least 6, there are edges € and €’ incident with u verifying

w(e') # w(e”).

Proof. Let v,V', V" and w; be defined the same as in ALGORITHM. Let w be the
vertex-assignment determined by ALGORITHM. First, we prove that the lemma is
true for v; and v,. Let v; be the first successor of v; different from vy. Let v; be
the first successor of vy. Let e; = vyv;, €2 = vov;. Steps 1 and 2 of ALGORITHM
imply that wq(v1v2) € {wa(er),waler) + 3}, wa(v1va) & {wa(es), wa(e2) + 3}. Observe
that the weight of vyv, will not change in steps {3,...,n}, i.e. w(vive) = wa(v1v2).
When v; (v;) is treated, then oy, (v1) = 0w, (v1) = w(v1) (0w, (V2) = 0w, (v2) = w(v2)),
because v; (v;) is the first successor. Thus, the weight of e; (e3) can be modified
only by adding 3, because the property (4) must hold. So w(e;) € {wa(er),wa(er) +
3} (w(e2) € {wa(e),wa(e2)+3}). Thus, the argument that we(vive) ¢ {wa(er), wa(er)+
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3}, wa(v1v9) & {wa(ea),wa(e2) 4+ 3} implies that w(vive) # w(er) and w(vivy) # w(ea),
so we are done.

Suppose that v € V' and u ¢ {vy,v9}. Assume that v = v; and vy is the first
successor of v;. By property (5) of ALGORITHM, the edges {v;v; : j < i, v; €
N(v;)} are not monochromatic or the weight of the edges {vv; : j <, v; € N(v;)}
is not in {w;(v;vg), w;(vivg) + 3}, If the edges {vjv; : j < i, v; € N(v;)} are not
monochromatic, then there are two edges v;v; and v;»v; such that w(v;) # w(v;)
and we are done. Otherwise, observe that the weight of v;v; can be modified only
if vy is being treated. When vy is being treated, then oy, ,(v;) = oy, (v;) = w(v;),
because vy is the first successor of v;. Since ALGORITHM restricts property (4),
the weight of v;v; can be modified only by adding 3. Thus, w(v;vy) is different from
the weight of the edges incident with the predecessors of v;.

Suppose that u € V”. Since v; has no successor and property (5) of ALGORITHM
must hold, the edges {v;v; : j < i, v; € N(v;)} are not monochromatic. Thus, there
are two edges v;v; and vj»v; such that w(v;) # w(vj») and we are done. O

Proof of Theorem 5. We may assume that G is connected, since otherwise the the-
orem holds by induction on each component. The theorem is obviously true if
G = Ki,_1. Thus, we assume that G # K;,_;. By Lemma 8, there is an order-
ing v = (vy,09,...,v,) of vertices of G that satisfies the conditions (i)—(iii). Thus,
we can apply ALGORITHM on G. Let w be the the edge-weighting w given by
ALGORITHM. By Lemmas 13 and 15, w is a neighbour sum distinguishing 7-edge-
weighting and all the vertices of degree at least 6 are incident with at least two edges
of different weights, which proves the theorem. [

5 Bipartite graphs

In this section, we show that every nice bipartite graph has a 6-edge-weighting which
distinguishes adjacent vertices and in which every vertex of degree at least 2 is
incident with at least two edges of different weights. In order to prove this result, we
apply a result obtained by Karoniski et al. in [8]. They considered edge-weightings
with elements of a group and proved the following theorem:

Theorem 16. [8] Let T' be a finite abelian group of odd order and let G be a non-
trivial |T'|-colourable graph. Then, there is an edge-weighting of G with elements of
I' such that the resulting vertex colouring is proper.

Theorem 16 implies that if k£ is odd and G is non-trivially k-vertex colourable,
then G admits a neighbour sum distinguishing k-edge-weighting. Furthermore, the
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proof of Theorem 16 implies that if Uy, ..., Uy, |U;| > 0, 1 < ¢ < k are colour classes
of GG, then there is a neighbour sum distinguishing k-edge-weighting w such that
0,(v;) =i (mod k) for every v; € U; (1 < i < k). For convenience, we restate the
part of the proof of Theorem 16 for bipartite graphs.

Theorem 17. [8] Let G be a connected bipartite graph on at least three vertices with
the vertex partition (Vi,Vs). Then, G admits a neighbour sum distinguishing 3-edge-
weighting. Moreover, there is a neighbour sum distinguishing 3-edge-weighting w of
G such that o,(v1) # o,(ve) (mod 3) for every vy € Vi and vy € Vs.

Proof. Let x € V(G) and d(x) > 2. Without loss of generality, assume that x € V].
Let e = zvy, 2 = vy, We start with the weight 3 on all edges, so 3y w(e) =0
(mod 3). We now try to modify the weights of edges, maintaining the sum of edge
weights congruent to 0 (mod 3), until all vertices of V; \ {«} have colours congruent
to 1 (mod 3). To do that, for each vertex v of V; \ {z}, we consider a path from v
to z and add alternately 1 and 2 to the values of the edges along this path. After
such an operation, the colour of v is 1 (mod 3), the colour of z is changed, and all
the colours of the other vertices are unchanged. Now, the only vertex of V; which
may have a colour different from 1 (mod 3) is x, and all the vertices of V; still have
a colour congruent to 0 (mod 3). If the colour of x is not congruent to 0 (mod 3),
we are done; if not, we can finish by relabeling edge e; on ¢; and es on ¢y, where
c1,02 € {1,2,3} and ¢; = w(ey) + 2,2 = w(ez) + 2 (mod 3). Finally, we obtain the
desired edge-weighting w, because

e cither o,(v1) = 1 (mod 3) for v; € Vi and o,(v2) = 0 for vy € Vo \ {vh,v]},
0,(vh) € {0,2} (mod 3) and o,,(v§) € {0,2} (mod 3),

e or o,(v1) =1 (mod 3) for v; € V} \ {z}, ou(z) = 2 (mod 3) and o, (vs) = 0
for vy € V5.

]

We can apply Theorem 17 for our version of the neighbour sum distinguishing
edge-weighting. To prove the main result of this section, we need also the following
lemma:

Lemma 18. If G is bipartite, then there is a 2-edge-weighting of G such that every
vertex of degree at least 2 is incident with two edges with different weights.

Proof. We proceed by induction on the number of vertices. The lemma is true for
bipartite graphs with one or two vertices. Assume that the lemma is true for every
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bipartite graph with less than n vertices. Let G be a bipartite graph withn > 3. If G
is not connected, then by induction there is a 2-edge-weighting of every component
of G such that every vertex of degree at least 2 is incident with at least two edges of
different weights, so we are done. Assume that G is connected and v is a vertex of
minimum degree. Let G’ = G — v and w be a 2-edge weighting of G’ such that every
vertex of degree at least 2 is incident with at least two edges labeled differently. We
extend w to all the edges of G.

First, assume that dg(v) = 1, then there are two possibilities. Let u be the
neighbour of v. If dg/(u) > 2, then, by induction hypothesis, u is already incident
with two edges labeled differently, hence we can label the edge uv with any weight.
Otherwise, we label the edge uv with the weight not used by the edge incident with
uin G'.

Now, assume that dg(v) = 2 and let N(v) = {u,w}. Suppose first that v has
a neighbour of degree at least 2 in G’ say de/(u) > 2. In this case, the edge uv
can be labeled with either 1 or 2, because the vertex w is already incident with two
edges labeled differently in G’. So, we first label the edge vw in such a way that w
is incident with two edges of different weights, and next we label vu with the weight
different from w(vw).

Thus, we may assume that de/(u) = 1 and dg(w) = 1. Observe that if w(uu) #
w(wwy) (where uy,w; is the neighbour in G’ of w,w, respectively), then we can
extend the colouring on all the edges of G. In such a case we label vu with the
weight w(ww,) and vw with the weight w(uuy).

Thus, we may assume that w(uu;) = w(ww;), say without loss of generality
w(uu)) = w(wwy) = 1. We relabel some edges of G'. If w; is incident with at
least two edges labeled with 1, then we relabel the edge wu; with 2. In the new
weighting of G’, every vertex of degree at least 2 is incident with at least two edges
labeled differently and there are two neighbours of v having incident edges labeled
differently, so as observed above we can extend the weighting to the desired edge-
weighting of G. Suppose that wu is the only edge incident with u; labeled with
1, the remaining edges having weight 2. Let us € N(uq) \ {u}. If ug is incident
with at least two edges labeled with 2, then we relabel the edge uyus with 1 and
the edge uu; with 2. We obtain an edge-weighting of G’ in which every vertex of
degree at least 2 is incident with at least two edges labeled differently and there
are two neighbours of v having incident edges labeled differently, so we are done.
Otherwise, we repeat this relabeling process. Suppose that, after k steps, we obtain
a relabeled path P = wg, uy,ug, ..., ux (u = ug). Let ugry € N(ug) \ {ug_1}. Since
every vertex u; (i € {1,...,k — 1}) is incident with exactly one edge labeled with
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w(u;—1u;) and there is no odd cycle in G, we have ug1 ¢ V(P)\{uo} and w41 # w.
Furthermore, ug,1 # u because dg/(u) = 1. Thus, the relabeling process eventually
ends, and we obtain an alternating path P = wug, u1, ug, . .., u; (ug = u). Every vertex
u; (i € {1,...,t}) of P has degree at least 2 in G’ and is incident with exactly one
edge labeled with w(u;_1u;), while u; is incident with at least two edges labeled with
w(u—1uy). We can swap the label of the edges of P, keeping an alternating path
and obtaining a 2-edge-weighting of G’ in which every vertex of degree at least 2 is
incident with at least two edges labeled differently and where two neighbours of v
have incident edges labeled differently, so we can extend the weighting on the edges
incident with v in such a way that we obtain the desired edge-weighting.

Finally, assume that dg(v) > 2. Since v is a vertex of minimum degree, each
neighbour of v has degree at least 2 in G'. Thus, every neighbour of v is incident
with two edges labeled differently in G’. Hence, we can label every edge incident
with v with either colour 1 or 2, ensuring that the edges adjacent with v are not
monochromatic. O

Theorem 19. Let G be a nice bipartite graph. Then, there is a neighbour sum
distinguishing 6-edge-weighting such that every vertex of degree at least 2 is incident
with at least two edges with different weights.

Proof. Let (V, Vs) be the vertex partition of G. By Theorem 17, there is a neighbour
sum distinguishing 3-edge-weighting w of G such that o, (v1) # o,(v2) (mod 3) for
every v; € Vi and vy € Vo, Let E; = {e € E(G) : w(e) =i} for i € {1,2,3—}. By
Lemma 18, every subgraph induced by E; can be labeled with two weights in such a
way that every vertex of degree at least 2 is incident with at least two edges labeled
differently. Thus , we relabel F; with weights 1 and 4 in such a way that every vertex
of degree at least 2 is incident with at least two edges labeled differently, and similarly
we relabel the edges of Fy with 2 and 5, and the edges of F3 with 3 and 6. Let us
denote by ' the resultant edge-weighting. Observe that o,(v) = o./(v) (mod 3).
Thus, W’ is neighbour sum distinguishing, so w’ is the desired edge-weighting. ]

The following theorem was proved in [9]:

Theorem 20. [9] Let G be a connected bipartite graph on at least three vertices with
vertez partition (Vi,Va). If [V1] is even, then, there is a neighbour sum distinguishing
2-edge-weighting w of G such that o,(v1) # 0,(ve) (mod 2) for every v; € Vi and
Vg € ‘/2

Thus, we can apply Theorem 20 and, similarly as Theorem 19, we can prove the
following result:
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Theorem 21. Let G be a connected bipartite graph on at least three vertices with
vertex partition (Vi,Vs) and |Vi| be even. Then, G admits a neighbour sum distin-
guishing 4-edge-weighting such that every vertex of degree at least 2 is incident with
at least two edges of different weights.
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