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We study Lagrangian particles, with Stokes numbers, St = 0.5, 3, and 6, transported by homoge-
neous and isotropic turbulent flows. Based on direct numerical simulations with point-like inertial
particles, we identify stochastic equations describing the multi-scale cascade process. We show that
the Markov property is valid for a finite step size larger than a St-dependent Einstein-Markov mem-
ory length. The formalism allows estimation of the entropy of the particles’ Lagrangian trajectories.
Integral, as well as detailed fluctuation theorems are fulfilled. Entropy consuming trajectories are
related to specific local accelerations of the particles and may be seen as reverse cascade processes.

The physics of particles submerged in fluids has played
a central role in the development of statistical mechanics,
and in our current understanding of out-of-equilibrium
systems. Brownian motion set the path for the study
of diffusion and random processes. More recently, col-
loidal particles were used in the first experiments to ver-
ify fluctuation relations such as the Jarzynski equality
[1], which links the statistics of fluctuating quantities
in a non-equilibrium process with equilibrium quantities.
Colloidal particles were also used to verify the thermo-
dynamic cost of information processing [2] proposed by
Landauer. But what fundamental statistical relations are
satisfied by particles that interact with a complex and
out-of-equilibrium turbulent flow? Fluctuation theorems
for such a problem, in which a physical system is coupled
with (and driven by) another out-of-equilibrium system,
would open applications in other areas such as soft and
active matter. But even a simple point-wise passive par-
ticle in a turbulent flow already provides a challenge in
which puzzling phenomena can arise [3, 4].

Inertial particles are inclusions in the flow which are
denser or lighter than the fluid and have a size smaller
or larger than the smallest relevant flow scale (the scale
of the smallest eddies, also called the flow dissipative
scale). Such particles are carried by the fluid, but they
also have their own inertia, and therefore can combine
both dynamics. In the limit of point-wise particles with
negligible inertia, the particles become Lagrangian trac-
ers, which perfectly follow the fluid elements. In all these
multi-phase systems there are striking phenomena, and
the mechanisms that explain how turbulence affects the
motion of the particles are not completely clear. As an
example, turbulence can both enhance or hinder the set-
tling velocity of inertial particles [5]. For heavy parti-
cles, an initially homogeneous distribution of particles
may, after interacting with a turbulent flow, regroup
into clusters forming dense areas and voids, in a phe-

nomenon called preferential concentration where turbu-
lence somehow unmixes the particles [6]. It is only in the
last decades when sufficient time and spatial resolution
have been achieved in experiments and numerical stud-
ies to allow analysis of these phenomena. Frequently new
data has been in contradiction with theoretical models,
and previous knowledge on fluid-particle interactions had
to be reconsidered even in simplified cases [7]. Further-
more, there are many open questions concerning inho-
mogeneous flows [8], finite-size [9, 10] and non-spherical
particles [11], among others.

Recent techniques have also allowed a better under-
standing of the (single-phase) turbulence cascade as a
stochastic process. Thermodynamically speaking we can
understand turbulence, and especially its energy cas-
cade, as a process leading a fluid under specific con-
ditions and parameters (the Reynolds number) from a
non-equilibrium state into another non-equilibrium state,
by the combination of energy injection and dissipa-
tion. Within this context, the stochastic approach to
the description of turbulence has recently been linked to
stochastic thermodynamics [12, 13] (also called stochas-
tic energetics [14]), developed for many different physi-
cal systems [15–18]. Experimental studies of stochastic
thermodynamics mainly focus on nanoscale or quantum
systems, or when dealing with classical systems, on bio-
logical systems [19, 20], which are assumed to be well off
the thermodynamic limit so that the probabilistic nature
of balance relations becomes clearer. In an Eulerian de-
scription of turbulent flows, the use of the Fokker-Planck
equation has allowed to define the Shannon entropy of
individual “cascade trajectories” (here meant in the Eu-
lerian sense), and corresponding to a sequence of veloc-
ity correlations at decreasing scales, with either entropy
consumption or production. These entropy values follow
a rigorous law of non-equilibrium stochastic thermody-
namics, namely, the integral fluctuation theorem (IFT)
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which can be expressed as
〈

e−∆Stot
〉

= 1, where ∆Stot is
the total entropy variation in each cascade trajectory, cf.
[21].
Based on the general interest in the relation between

Eulerian and Lagrangian properties of turbulence the
question of the validity of such theorems for Lagrangian
and inertial particles arises, which would have multiple
consequences. First, particle trajectories have a clear
physical meaning: each particle follows a path according
to the fluid dynamics and its own inertia. The distinc-
tion between these particles is quantified by the Stokes
number St (the ratio of the particle relaxation time to
the fluid dissipation time), with the limit of small St cor-
responding to tracers. Second, for particles with iner-
tia the description corresponds to a non-trivially coupled
system, as these particles do not randomly sample the
flow topology [6].
To this end, in this letter we verify if the stochastic

formalism can be applied to the dynamics of dense sub-
Kolmogorov particles coupled to a turbulent flow, us-
ing pseudo-spectral direct numerical simulations (DNSs)
with a simple point particle model [22]. We also consider
whether the IFT holds for particles with different Stokes
numbers, and study the properties of the Lagrangian tra-
jectories with positive and negative entropy variations.
The turbulent velocity field of three-dimensional homo-
geneous and isotropic turbulence (HIT) is obtained from
the DNSs by solving the incompressible Navier-Stokes
equation. A large-scale external mechanical forcing is
given by a superposition of modes with slowly evolving
random phases, following standard practices for its tem-
poral integration and de-aliasing procedures. An ade-
quate spatial resolution of the smallest scales, i.e., κη & 1
is chosen [23]. Here, η is the Kolmogorov or dissipation
length scale, η = (ν3/ε)1/4 (where ε is the kinetic en-
ergy dissipation rate, and ν the kinematic viscosity of the
fluid), and κ = N/3 the maximum resolved wavenumber
in Fourier space (with N = 512 the linear spatial res-
olution in each direction). The DNSs have a Reynolds
number based on the Taylor microscale of Reλ ≈ 240
(see [6] for details). Inertial particles were modeled using
the Maxey-Riley-Gatignol equation in the limit of point
heavy particles, which for a particle with velocity v in the
position xp submerged in a flow with velocity u, reads

v̇(t) = [u(xp, t)− v(t)]/τp, (1)

where τp is the particle Stokes time. There is no particle-
particle or particle-fluid interaction (i.e., we use a one-
way coupling approximation). As mentioned above, the
particles have one dimensionless number of interest: the
Stokes number St = τp/τη (where τη = (ν/ǫ)1/2 is the
Kolmogorov time). We integrate three sets of 1.3 × 105

particles, respectively with St = 0.5, 3, and 6.
To characterize HIT it is customary to study

the statistics of Eulerian velocity increments
ur = [u(x+ r)− u(x)] · r/|r| for scales r = |r|. However,

two-point statistics of velocity increments do not fully
characterize small-scale turbulence [24], and many
attempts at dealing with multi-point statistics have been
considered. One way to do this is to use the Friedrich-
Peinke approach [25], in which the stochastic dynamics
of velocity increments ur are considered as they go
through the cascade from large to small scales r. A
central assumption is that the evolution of the stochastic
variable ur possesses a Markov process “evolving” in r.
Previous studies showed that ur can be considered as
Markovian to a reasonable approximation [25–27], at
least down to a scale close to the Taylor scale [27, 28].
Furthermore, ur satisfies a diffusion process [29]

−∂rur = D(1)(ur, r) + [D(2)(ur, r)]
1/2Γ(r), (2)

where the noise Γ(r) is zero-mean, white-noise Gaus-
sian with a variance of 2 and rapidly decaying correla-
tions, such that δ-correlation in scale can be assumed as
〈Γ(r)Γ(r′)〉 = 2δ(r − r′). The drift and diffusion coeffi-
cients D(1,2)(ur, r) can be estimated from experimental
data by an optimization procedure, based on approxi-
mating the solution of the corresponding Fokker-Planck
equation using the short time propagator [30] as proposed
in [13, 21, 31–33]. A linear dependence on the value of
the increment for the drift, and a quadratic dependence
for the diffusion, was found cf. [13, 24, 27, 32, 34]. From
the drift and diffusion coefficients, the entropy can then
be defined as will be detailed below. This entropy allows
to verify the validity of the IFT.
Here we focus instead on the statistics of the inertial

particles in the turbulent flow, integrated for sufficiently
long times to reach their steady state. To apply the pre-
viously described approach to particles trajectories, we
study v(t) (the velocity of the particle at time t). Sim-
ilar conclusions as the ones shown below are obtained
by studying the fluid velocity at the particle position
u(xp, t), or even the slip velocity u(xp, t)− v(t). Build-
ing now velocity increments in time component wise (ei
corresponds to the unitary vector in the direction x, y,
or z specified in the figures)

uτ = [v(t + τ)− v(t)] · ei, (3)

we define for every trajectory a “cascade trajectory” (or
“sequence”) [u(·)] = {uT , . . . , uτf

} for different time-
separations or time scales τ , from the initial time scale
T to the final time scale τf with T > τf . The notation
[u(·)] indicates the entire path through the hierarchy of
time scales instead of a distinct value uτ ; T ≈ 120τη and
τf ≈ 0.2τη were chosen as references.
To test the IFT for the particles, we consider whether

the uτ increments satisfy a Langevin equation as in
Eq. (2), but in terms of the time increment τ instead
of spatial scales r, with equivalent D(1) and D(2) coeffi-
cients. But before using the DNS data to estimate the
probability density function (PDF) of uτ and τ , p(uτ , τ),
and of estimating these coefficients, we must check the
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validity of the Markovian approximation. Indeed, as
mentioned above, a central assumption of the Friedrich-
Peinke approach is that the evolution of the stochas-
tic variables possess a Markov process. While this was
shown to be valid for the Eulerian turbulent velocity, it
is an open question for Lagrangian particles’ velocities.
In Fig. 1 a qualitative validation of the Markov prop-

erty based on the alignment of the single conditioned
p (uτ2 |uτ1) and double conditioned p (uτ2 |uτ1 , uτ0) PDFs
of datasets of increments for a chosen set of three different
time scales τ0 > τ1 > τ2 is shown as contour plots. Each
scale is separated by ∆τ ≈ 13τη (the Einstein-Markov
length for St = 3 as described below, and in the discus-
sion accompanying Fig. 2). For Markovian processes the
relation p (uτ2 |uτ1) = p (uτ2 |..., uτ1 , uτ0) holds. For finite
datasets,

p (uτ2 |uτ1) = p (uτ2 |uτ1 , uτ0) , (4)

is commonly assumed to be a sufficient condition. The
close alignment between the PDFs (black and red solid
lines in Fig. 1) confirms the validity of the Markov prop-
erty. Note that while Fig. 1 shows results for St = 3, all
our datasets give similar results.

FIG. 1. Visualization of Markov properties at St = 3. Con-
tour plots showing single conditioned (black solid lines) and
double conditioned PDFs (red solid lines) of velocity incre-
ments for three different time scales τ0 > τ1 > τ2, each
separated by ∆τ . The conditioned value for the large in-
crement was chosen here as uτ0 = 0 (left) and uτ0 = −2
(right). We use the normalization of the increments in [27]
with σ∞ =

√
2σ, where σ is the data standard deviation.

In Fig. 2 the Markovian approximation is checked sys-
tematically for different values of ∆τ , using the Wilcoxon
test, which is a quantitative and parameter-free test that
determines the Einstein-Markov coherence length ∆EM

(i.e., the smallest time-scale for which the Markovian as-
sumption can be considered valid). This test is a reliable
procedure to validate equation Eq. (4) [27, 28]. Based on
this analysis, we set ∆EM ≈ 10, 13, and 16τη for St = 0.5,
3, and 6 respectively (see Fig. 2 (a)). Accordingly, the
Markovian approximation is valid for time-scales larger
than or equal to this St-dependent critical time sepa-
ration, and the complexity of the dynamics of inertial
particles in turbulent flows can be treated as a Markov

process. Furthermore, we see that ∆EM is the same (at
fixed St) for all velocity components (see Fig. 2 (b)).
The D(1,2) coefficients can be empirically estimated from
the data (see Supplemental Material [35] for a detailed
presentation of the coefficients associated with all Stokes
numbers considered).

FIG. 2. Wilcoxon test for the particles’ trajectories: expec-
tation value t(τ,∆τ ) (see [27, 28] for details; note that the
normalized expectation parameter is supposed to be close to
1 if the Markovian assumption is valid) for the x component of
the particles velocity, for all Stokes numbers studied here and
as function of ∆τ (left). Same test but for all three velocity
components at St = 3 (right).

In the spirit of non-equilibrium stochastic thermo-
dynamics [36] it is possible to associate with ev-
ery trajectory [u(·)] a total entropy variation [12–
14, 18, 36] given by the sum of two terms
∆Stot [u(·)] = ∆Ssys [u(·)] + ∆Smed [u(·)]. A thermody-
namic interpretation of this quantity based on the re-
lation between heat, work, and inner energy, can be
given [14, 18, 36]. ∆Ssys is the change in the system
entropy caused by changes in the particle trajectory. It
is simply the logarithmic ratio of the probabilities of the
stochastic process, so that its variation is

∆Ssys [u(·)] = − ln

(

p
(

uτf
, τf
)

p (uT , T )

)

. (5)

The other term, the entropy exchanged with the sur-
rounding medium ∆Smed throughout the process from
the initial to the final time scale, measures the irre-
versibility of the trajectories:

∆Smed [u(·)] =

∫

τf

T

[

∂τuτ
D(1) − ∂uτ

D(2)/2

D(2)

]

dτ. (6)

Figure 3 (a) shows the empirical average
〈

e−∆Stot
〉

N
as a function of the number N of trajectory sequences
[u(·)]. See Supplemental Material [35] for the illustration
of p (∆Stot) for St = 0.5, 3 and 6. The dashed line in
the figure 3 (a) corresponds to the integral fluctuation
theorem (IFT)

〈e−∆Stot〉 =

∫

e−∆Stotp (∆Stot) d∆Stot = 1, (7)
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which is a fundamental entropy law for non-equilibrium
systems [18, 36]. We find that the three Stokes num-
bers are in agreement with the IFT. This is not a triv-
ial result, as inertial particles (i.e., for sufficiently large
St) sample preferentially some specific regions of the flow
[6]. The remarkable observation here is that they do it
always in agreement with this theorem. We performed a
similar analysis for the flow velocity at the particle po-
sition u(xp, t), and the slip velocity u(xp, t) − v(t) (not
shown here), and they also satisfy the IFT (with, in-
terestingly, an Einstein-Markov time-scale that decreases
with increasing St, unlike the behavior observed for v(t)).
Figure 3 (b) shows that together with the IFT also the
detailed fluctuation theorem (DFT) holds, which is ex-
pressed as

ln

(

p (∆Stot)

p (−∆Stot)

)

∝ ∆Stot. (8)

Thus, in addition to the IFT, the DFT expresses the bal-
ance (explicit exponential symmetry constraint) between
entropy-consuming (∆Stot < 0) and entropy-producing
(∆Stot > 0) trajectories.

FIG. 3. Left: Average
〈

e−Stot
〉

N
as a function of the sample

size N of [u(·)] trajectories. The arrow indicates the direc-
tion of the path through the hierarchy of time scales τ , from
the initial time scale T to the final time scale τf . Right:
According to the integral fluctuation theorem, the empiri-
cal average has to converge to a value of 1 (indicated by
the horizontal dashed line). Test of the detailed fluctua-
tion theorem. The dashed line represents a linear behavior
p (∆Stot) = p (−∆Stot) e

∆Stot .

Finally we ask if the entropy values of the trajecto-
ries are also related to some flow structure therefore we
study the velocity increment trajectories conditioned on
a specific total entropy variation. Figure 4 (a) and (c)
show that the behavior of the total entropy variation
corresponds to distinct trajectories. Entropy-consuming
trajectories are characterized by an increase in the aver-
aged absolute values of the increments 〈|uτ |〉∆Stot

with
decreasing time scale τ , while trajectories marked by
entropy-production smoothly decrease their absolute in-
crements with decreasing τ . This is further highlighted
by Fig.4 (b) and (d). In this three-dimensional represen-
tation the absolute velocity increment at initial and final

scale, T, τ , conditioned on the entropy are shown.

FIG. 4. Mean absolute velocity increment trajectories con-
ditioned on a specific total entropy variation 〈|uτ |〉∆Stot ,
∆Stot = −2 (top) and ∆Stot = 3 (bottom). Left: individ-
ual representation of the components x, y and z. The verti-
cal dashed line marks the Einstein-Markov coherence length
∆EM . The dissipation region is indicated by dotted lines.
Right: The circles mark the increment on the initial (black)
and final (red) scale in a three dimensional scatter plot.

In conclusion, we studied the dynamics of inertial par-
ticles in turbulent flows via their Lagrangian trajectories
by means of entropy and fluctuation theorems. Sequences
of velocity increments of such particles are Markovian,
with Einstein-Markov coherence length that increases
with St. This opens an interesting interpretation of the
St number in terms of the Markov memory of the parti-
cles’ trajectories, and is compatible with the picture that
particles with more inertia filter fast and small scale fluc-
tuations of the carrying flow: for particles with larger St
(and thus larger particle response times) the Markovian-
ization of trajectories by the turbulence takes place at
longer times. This can help to quantify this parameter
in cases where the particles’ inertia is not clearly defined,
like active, finite-size, or even non-spherical particles.
All cases studied here fulfill both the IFT and DFT in

a strict sense. Previous observations of irreversibility of
particles in turbulence considered a Jarzynski-like equal-
ity for the particles’ energetics [37], but the slope was
not one as expected for a DFT. The results presented
here provide fluctuations theorems which can shed light
on asymmetries in particle trajectories as those reported
before in [37], and as shown here for velocity increments
depending on their entropy evolution. A connection can
be made between entropy-increasing and -decreasing
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trajectories with losing- or gaining-velocity fluctuations
with decreasing time scale, pointing to possible relations
with inverse or direct energy transfer events. Interest-
ingly, our study also shows that particle trajectories
are out-of-equilibrium while keeping ergodicity. This
remains a first study on the topic, but it can be adapted
to situations where particles are in other conditions,
particularly in environmental situations, and with direct
consequences for the modeling of systems in which
particles are coupled to out-of-equilibrium extended
systems.

This work has been partially supported by the ECOS
project A18ST04, by the Volkswagen Foundation and by
the Laboratoire d’Excellence LANEF in Grenoble (ANR-
10- LABX-51-01).
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