
HAL Id: hal-03615593
https://hal.science/hal-03615593

Submitted on 2 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enabling multi-programming mechanism for quantum
computing in the NISQ era

Siyuan Niu, Aida Todri-Sanial

To cite this version:
Siyuan Niu, Aida Todri-Sanial. Enabling multi-programming mechanism for quantum computing in
the NISQ era. Quantum, 2023, 7, pp.925-959. �10.22331/q-2023-02-16-925�. �hal-03615593�

https://hal.science/hal-03615593
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Enabling Multi-programming Mechanism for Quan-
tum Computing in the NISQ Era
Siyuan Niu1 and Aida Todri-Sanial2,3

1LIRMM, University of Montpellier, 34095 Montpellier, France
2LIRMM, University of Montpellier, 34095 Montpellier, CNRS, France
3Eindhoven University of Technology, 5612 AE, Eindhoven, Netherlands

NISQ devices have several physical limitations and unavoidable noisy quan-
tum operations, and only small circuits can be executed on a quantum machine
to get reliable results. This leads to the quantum hardware under-utilization
issue. Here, we address this problem and improve the quantum hardware
throughput by proposing a Quantum Multi-programming Compiler (QuMC)
to execute multiple quantum circuits on quantum hardware simultaneously.
This approach can also reduce the total runtime of circuits. We first introduce
a parallelism manager to select an appropriate number of circuits to be exe-
cuted at the same time. Second, we present two different qubit partitioning
algorithms to allocate reliable partitions to multiple circuits – a greedy and a
heuristic. Third, we use the Simultaneous Randomized Benchmarking protocol
to characterize the crosstalk properties and consider them in the qubit partition
process to avoid the crosstalk effect during simultaneous executions. Finally,
we enhance the mapping transition algorithm to make circuits executable on
hardware using a decreased number of inserted gates. We demonstrate the
performance of our QuMC approach by executing circuits of different sizes on
IBM quantum hardware simultaneously. We also investigate this method on
VQE algorithm to reduce its overhead.

1 Introduction
Quantum computing promises to achieve an exponential speedup to tackle certain compu-
tational tasks compared with the classical computers [20, 21, 36]. Quantum technologies
are continuously improving, and IBM recently released the largest quantum chip with
127 qubits. But, current quantum devices are still qualified as Noisy Intermediate-Scale
Quantum (NISQ) hardware [32], with several physical constraints. For example, for super-
conducting devices, which we target in this paper, connections are only allowed between
two neighbouring qubits. Besides, the gate operations of NISQ devices are noisy and have
unavoidable error rates. As we do not have enough number of qubits to realize Quantum
Error Correction [5], only small circuits with limited depth can obtain reliable results when
executed on quantum hardware, which leads to a waste of hardware resources.

With the growing demand to access quantum hardware, several companies such as IBM,
Rigetti, and IonQ provide cloud quantum computing systems enabling users to execute

Siyuan Niu: siyuan.niu@lirmm.fr
Aida Todri-Sanial: a.todri.sanial@tue.nl

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

10
2.

05
32

1v
3

 [
cs

.A
R

]
 1

0
Fe

b
20

23

https://quantum-journal.org/?s=Enabling%20Multi-programming%20Mechanism%20for%20Quantum%20Computing%20in%20the%20NISQ%20Era&reason=title-click
https://quantum-journal.org/?s=Enabling%20Multi-programming%20Mechanism%20for%20Quantum%20Computing%20in%20the%20NISQ%20Era&reason=title-click
https://orcid.org/0000-0003-4683-381X
https://orcid.org/0000-0001-8573-2910
mailto:siyuan.niu@lirmm.fr
mailto:a.todri.sanial@tue.nl

their jobs on a quantum machine remotely. However, cloud quantum computing systems
have some limitations. First, there exists a latency when submitting jobs. Second, there
are a large number of jobs pending on the quantum device in general, so that users need
to spend a long time waiting in the queue.

The low hardware usage and long waiting time lead to a timely issue: how do we use
quantum hardware more efficiently while maintaining the circuit fidelity? As the increase of
hardware qubit number and the improvement of qubit error rates, the multi-programming
problem was introduced by [10, 23] to address this issue. It has been demonstrated that the
utilization (usage/throughput) of NISQ hardware can be enhanced by executing several cir-
cuits at the same time. However, their results showed that when executing multiple quan-
tum circuits simultaneously, the activity of one circuit can negatively impact the fidelity
of others, due to the difficulty of allocating reliable regions to each circuit, higher chance
of crosstalk error, etc. Previous works [10, 23] have left these issues largely unexplored
and have not addressed the problem holistically such that the circuit fidelity reduction
cannot be ignored when executing simultaneously. Moreover, detrimental crosstalk impact
for multiple parallel instructions has been reported in [1, 2, 26] by using Simultaneous
Randomized Benchmarking (SRB) [14]. In the presence of crosstalk, gate error can be
increased by an order of magnitude. Ash-Saki et al. [1] even proposed a fault-attack model
using crosstalk in a multi-programming environment. Therefore, crosstalk is considered in
the multi-programming framework [29].

Multi-programming, if done in an ad-hoc way would be detrimental to fidelity, but
if done carefully, it can be a very powerful technique to enable parallel execution for
important quantum algorithms such as Variational Quantum Algorithms (VQAs) [6]. For
example, the multi-programming mechanism can enable to execute several ansatz states in
parallel in one quantum processor, such as in Variational Quantum Eigensolver (VQE) [19,
31], Variational Quantum Linear Solver (VQLS) [4], or Variational Quantum Classifier
(VQC) [17] with reliability. It is also general enough to be applied to other quantum
circuits regardless of applications or algorithms. More importantly, it can build the bridge
between NISQ devices to large-scale fault-tolerant devices.

In this work, we address the problem of multi-programming by proposing a novel Quan-
tum Multi-programming Compiler (QuMC), taking the impact of hardware topology, cal-
ibration data, and crosstalk into consideration. Our major contributions can be listed as
follows:

• We introduce a parallelism manager that can select the optimal number of circuits
to execute simultaneously on the hardware without losing fidelity.

• We design two different qubit partition algorithms to allocate reliable partitions to
multiple circuits. One is greedy, which provides the optimal choices. The other one
is based on a heuristic that can give nearly optimal results and significantly reduce
the time complexity.

• We consider crosstalk effect during the partition process to achieve crosstalk mit-
igation during simultaneous executions. This is the first crosstalk-aware partition
algorithm.

• We improve the mapping transition step to execute multiple quantum circuits on
quantum hardware with a reduced number of additional gates and better fidelity.

• We present a use case of applying our multi-programming framework to the VQE al-
gorithm to reduce its overhead, which demonstrates the application of multi-programming
on NISQ algorithms.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 2

QC1 QC2

(a)
(b)

Figure 1: An example of the multi-programming mechanism. (a) A four-qubit circuit is executed on
a 10-qubit device. The hardware throughput is 40%. (b) Two four-qubit circuits are executed on the
same device in parallel. The hardware throughput becomes 80%.

We evaluate our algorithm on real quantum hardware by first executing circuits of
different sizes at the same time, and then investigating it on VQE to estimate the ground
state energy of deuteron. To the best of our knowledge, this is the first attempt to propose
a complete multi-programming process flow for executing an optimal number of workloads
in parallel ensuring the output fidelity by analyzing the hardware limitations, and the first
demonstration of multi-programming application on NISQ algorithms.

2 Background
2.1 NISQ computing
Quantum computing has made huge progress in recent years. IBM launched the first
cloud-based quantum computing service with a 5-qubit quantum machine in 2016, and the
hardware qubit number reached 127 in only five years. In the meanwhile, the capabili-
ties and error rates of the quantum hardware are continuously improving such that the
Quantum Volume [9] arrived 128 for IBM quantum machines. However, today’s quantum
computers are considered as NISQ devices yet. The hardware topology is limited and the
qubits are prone to different errors, such as (1) coherent errors due to the fragile nature
of qubits, (2) operational errors including gate errors and measurement errors (readout er-
rors), (3) crosstalk errors that violate the isolated qubit state due to the parallel operations
on other qubits. NISQ computing still promises to realize quantum advantages using vari-
ational quantum algorithms despite the errors. Cloud-based quantum computing services
facilitate researchers and developers to work in this area. However, it causes some online
traffic. For example, there are usually more than 100 jobs pending on IBM Q 27 Toronto,
which requires several hours to retrieve the result. Therefore, efficient and reliable cloud
quantum computing services are demanded while taking good care of hardware utilization
and qubit errors.

2.2 Multi-programming mechanism
The idea of the multi-programming mechanism is quite simple: executing several quantum
circuits in parallel on the same quantum hardware. An example is shown in Fig. 1. Note
that, the simultaneous circuits can always be scheduled using As Late As Possible (ALAP)
method, allowing qubits to remain in the ground state as long as possible to avoid addi-
tional decoherence error caused by circuits with different depths. Since the waiting time
is usually much longer than the circuit execution time, the difference between execution
time for circuits with different depths can be ignored (see experimental demonstration in
Section 8.2). By executing two circuits at the same time, the hardware throughput doubles
and the total runtime (waiting time + execution time) is reduced twice. It is not trivial to
achieve the multi-programming mechanism. The main concern is how to trade-off between

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 3

the circuit output fidelity and the hardware throughput (also indicates the reduction of
total runtime). Even though it is possible to simply combine several programs to one large
circuit and compile it directly, it has been shown in [23] that the circuit fidelity is decreased
significantly due to the unfair allocation of partitions, unawareness of increased crosstalk,
inflexibility of reverting back to independent executions for the case of serious fidelity
drop, etc. Therefore, a new compilation technique for the multi-programming mechanism
is required. Several problems need to be addressed to enable the multi-programming mech-
anism: (1) Find an appropriate number of circuits to be executed simultaneously such that
the hardware throughput is improved without losing fidelity. (2) Allocate reliable parti-
tions of the hardware to all the simultaneous circuits to make them execute with high
fidelity. (3) Transform multiple circuits to make them executable on the hardware. (4)
Reduce the interference between simultaneous circuit executions to lower the impact of
crosstalk.

2.3 State of the art
The multi-programming mechanism was first proposed in [10] by developing a Fair and
Reliable Partitioning (FRP) method. Liu et al. improved this mechanism and introduced
QuCloud [23]. There are some limitations for the two works: (1) Hardware topology and
calibration data are not fully analyzed, such that allocation is sometimes done on unreliable
or sparse-connected partitions ignoring the robust qubits and links. (2) These works use
only SWAP gate for the mapping transition process and the modified circuits always have a
large number of additional gates. (3) Crosstalk is not considered when allocating partitions
for circuits. For example, the X-SWAP scheme [23] can only be performed when circuits
are allocated to neighbouring partitions, which is the case of more crosstalk. Ohkura et
al. designed palloq [29], a crosstalk detection protocol that reveals the crosstalk impact
on multi-programming. A similar idea of Concurrent Quantum Circuit Sampling (CQCS)
[34] was proposed to increase the hardware usage by executing multiple instances of the
same program simultaneously. The concept of multi-programming was also explored in
quantum annealers of DWAVE systems to solve several QUBO instances in parallel [30].

In our work, we focus on the multi-programming mechanism and propose QuMC frame-
work with different crosstalk-aware partition methods and mapping transition algorithm
to increase the hardware usage while maintaining the circuit fidelity.

3 Our multi-programming framework
Our proposed QuMC workflow is schematically shown in Fig. 2, which includes the follow-
ing steps:

• Input layer. It contains a list of small quantum circuits written in OpenQASM lan-
guage [8], and the quantum hardware information, including the hardware topology,
calibration data, and crosstalk effect.

• Parallelism manager. It can determine whether executing circuits concurrently or
separately. If the simultaneous execution is allowed, it can further decide the num-
ber of circuits to be executed on the hardware at the same time without losing fidelity
based on the fidelity metric included in the hardware-aware multi-programming com-
piler.

• Hardware-aware multi-programming compiler. Qubits are partitioned to several re-
liable regions and are allocated to different quantum circuits using qubit partition

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 4

Parallelism
Manager

Scheduler

Quantum circuit
workloads

Quantum hardware
information

Selected shared
workloads

Reduce the number of
shared workloads

Independent
workloads

Quantum
hardware

Hardware-aware
Multi-programming

Compiler

Output
Circuits
Output
Circuits

Figure 2: Overview of our proposed QuMC framework. The input layer includes the quantum hard-
ware information and multiple quantum circuit workloads. The parallelism manager decides whether
to execute circuits simultaneously or independently. For simultaneous executions, it works with the
hardware-aware multi-programming compiler to select an optimal number of shared workloads to be
executed in parallel. These circuits are allocated to reliable partitions and then passed to the scheduler.
It makes all the circuits executable on the quantum hardware and we can obtain the results of the
output circuits.

K == 1?

Qubit Partition
Algorithms

Simultaneous
transition

Independent
transition

Quantum
hardware

Yes

No

Yes

No

K = K - 1

Quantum circuit
workloads

Quantum hardware
information

Hardware-aware
Multi-programming Compiler

Parallelism Manager

n workloads
N-qubit hardwareScheduler

(a)

(b)
(c)

ΔS Pass fidelity

thresholdδ?

Pick K circuits
K

1
i

i

n N
=

Pick K circuits

K

1
i

i

n N
=

Sort n circuits

iCNOTs n# iCNOTs n#

Sort n circuits

iCNOTs n#

Figure 3: Process flow of each block that constitutes our QuMC approach. (a) The parallelism manager
selectsK circuits according to their densities and passes them to the hardware-aware multi-programming
compiler. (b) The qubit partition algorithms allocate reliable regions to multiple circuits. ∆S is the
difference between partition scores when partitioning independently and simultaneously, which is the
fidelity metric. δ is the threshold set by the user. The fidelity metric helps to select the optimal number
of simultaneous circuits to be executed. (c) The scheduler performs mapping transition algorithm and
makes quantum circuits executable on real quantum hardware.

algorithms. Then, the partition fidelity is evaluated by the post qubit partition pro-
cess. We introduce a fidelity metric here, which helps to decide whether this number
of circuits can be executed simultaneously or the number needs to be reduced.

• Scheduler. The mapping transition algorithm is applied and circuits are transpiled
to be executable on real quantum hardware.

• Output layer. Output circuits are executed on the quantum hardware simultaneously
or independently according to the previous steps and the experimental results are
obtained.

In this paper, we only focus on IBM quantum architecture. Our QuMC method can be
generally adapted to quantum hardware with nearest-neighbor connectivity and also allows
parallel operations if applied to different qubits.

4 Parallelism manager
In order to determine the optimal number of circuits that can be executed on the hardware
in parallel without losing fidelity, here, we introduce the parallelism manager, shown in

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 5

P3P1

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

0.7

0.8

1.6

1.2
1.4

1.4

0.7

1.9
1.0

1.0

0.8

0.8

0.9

2.4

1.1

1.1
0.7

1.9

0.7

1.2
1.0

1.1

0.9

1.5

1.1

2.3

0.7
1.0

(a)

P3P2

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

0.7

0.8

1.6

1.2
1.4

1.4

0.7

1.9
1.0

1.0

0.8

0.8

0.9

2.4

1.1

1.1
0.7

1.9

0.7

1.2
1.0

1.1

0.9

1.5

1.1

2.3

0.7
1.0

(b)

Figure 4: A motivational example of qubit partition problem. (a) No crosstalk between partition P1
and partition P3. (b) Crosstalk exists between partition P2 and partition P3.

Fig. 3(a).
Suppose we have a list of n circuit workloads with ni qubits for each of them, that

are expected to be executed on N -qubit hardware. We define the circuit density metric as
the number of CNOTs divided by the qubit number of the circuit, #CNOTs/ni, and the
circuit with higher density is considered to be more subject to errors. Firstly, the circuits
are ordered by their "density" metric. Note that, the users can also customize the order of
circuits if certain circuits are preferred to have higher fidelities. Then, we pick K circuits as
the maximum number of circuits that can be executed on the hardware at the same time,∑K

n=1 ni ≤ N . If K is equal to one, then all the circuits should be executed independently.
Otherwise, these circuits are passed to the hardware-aware multi-programming compiler. It
works together with the parallelism manager to decide an optimal number of simultaneous
circuits to be executed.

5 Hardware-aware multi-programming compiler
The hardware-aware multi-programming compiler contains two steps. First, perform qubit
partitioning algorithm to allocate reliable partitions to multiple circuits. Second, compute
the fidelity metric during post qubit partition process and work with parallelism manager
to determine the number of simultaneous circuits.

5.1 Qubit partition
We develop two qubit partition algorithms by accounting for the crosstalk, hardware topol-
ogy, and calibration data. In this section, we first introduce a motivational example for
qubit partition. Second, we explain the approach for crosstalk characterization. Finally,
we present two qubit partition algorithms, one greedy and one heuristic.

5.1.1 Motivational example

We consider two constraints when executing multiple circuits concurrently. First, each
circuit should be allocated to a partition containing reliable physical qubits. Allocated
physical qubits (qubits used in hardware) can not be shared among quantum circuits.
Second, qubits can be moved only inside of their circuit partition during the routing process,
in other words, qubits can be swapped within the same partition only. Note that, in this
work, we performed routing inside of the reliable partition but other approaches can be

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 6

Figure 5: Results of the motivational example. (a) No crosstalk corresponds to Fig. 4(a) where no
crosstalk exists between P1 and P3. (b) Crosstalk corresponds to Fig. 4(b) where crosstalk exists
between P2 and P3. Note that "only P1" means the fidelity of the circuit when it is executed indepen-
dently on P1, whereas "P1|P3" means the fidelity of circuit on P1 when two circuits are executed on
P1 and P3 simultaneously.

applied as well such as to route to other neighboring qubits that are outside of the reliable
partition.

Finding reliable partitions for multiple circuits is an important step in the multi-
programming problem. In order to illustrate the impact of partitions with different error
sources on the output fidelity, first, we execute a small circuit alu-v0_27 (the information
of this circuit can be found in Table 3) on three different partitions independently to show
the impact of operational error (including CNOT error and readout error): (1) Partition P1
with reliable qubits and links. (2) Partition P2 with unreliable links. (3) Partition P3
with unreliable links and qubits with high readout error rate. Note that, the CNOT error
rate of each link is shown in Fig. 4 and the unreliable links with high CNOT error rates
and qubits with high readout error rates are highlighted in red. Second, we execute two
of the same circuits simultaneously to show the crosstalk effect: (1) P1 and P3 without
crosstalk (Fig. 4(a)). (2) P2 and P3 with crosstalk (Fig. 4(b)). For the sake of fairness,
each partition has the same topology. It is important to note that if we have different
topologies, the circuit output fidelity will also be different since the number of additional
gates is strongly related to the hardware topology.

The result of the motivational example is shown in Fig. 5. The fidelity is calculated
using PST metric explained in Section 7.1.1 and higher is better. For independent execu-
tion, we have P1 > P2 > P3 in terms of fidelity, which shows the influence of operational
error on output fidelity. For simultaneous execution, the circuit fidelities are approximately
the same for the two partitions P1 and P3 compared with the independent execution in
the case of no crosstalk. Whereas, the fidelities are decreased by 36.8% and 23.1% re-
spectively for P2 and P3 when the two circuits are executed simultaneously due to the
crosstalk. This example demonstrates the importance of considering crosstalk effect in the
multi-programming mechanism.

5.1.2 Crosstalk effect characterization.

Crosstalk is one of the major noise sources in NISQ devices, which can corrupt a quantum
state due to quantum operations on other qubits [35]. There are two types of crosstalk.
The first one is quantum crosstalk, which is caused by the always-on-ZZ interaction [24,
42]. The second one is classical crosstalk caused by the incorrect control of the qubits.
The calibration data provided by IBM do not include the crosstalk error. To consider

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 7

the crosstalk effect in partition algorithms, we must first characterize it in the hardware.
There are several protocols presented in [3, 12, 14, 33] to benchmark the crosstalk effect
in quantum devices. In this paper, we choose the mostly used protocol – Simultaneous
Randomized Benchmarking (SRB) [14] to detect and quantify the crosstalk between CNOT
pairs when executing them in parallel.

We characterize the crosstalk effect followed by the optimization methods presented
in [26]. On IBM quantum devices, the crosstalk effect is significant only at one hop distance
between CNOT pairs [26], such as (CX0,1|CX2,3) shown in Fig. 6(a), when the control pulse
of one qubit propagates an unwanted drive to the nearby qubits that have similar resonate
frequencies. Therefore, we perform SRB only on CNOT pairs that are separated by one-hop
distance. For those pairs whose distance is greater than one hop, the crosstalk effects are
very weak and we ignore them. It allows us to parallelize SRB experiments of multiple CNOT
pairs when they are separated by two or more hops. For example, in IBM Q 27 Toronto, the
pairs (CX0,1|CX4,7), (CX12,15|CX17,18), (CX5,8|CX11,14) can be characterized in parallel.

Previous works [1, 26, 27] show that, although the absolute gate errors vary every
day, the pairs that have strong crosstalk effect remain the same across days. We confirm
that validation by performing the crosstalk characterization on IBM Q 27 Toronto twice
and we observe the similar behavior. The SRB experiment on CNOT pairs (gi|gj) gives
error rate E(gi|gj) and E(gj |gi). Here, E(gi|gj) represents the correlated CNOT error rate
of gi when gi and gj are executed in parallel. If there is a crosstalk effect between the
two pairs, it will lead to E(gi|gj) > E(gi) or E(gj |gi) > E(gj). The crosstalk effect
characterization is expensive and time costly. Some of the pairs do not have crosstalk
effect whereas the correlated CNOT error affected the most by crosstalk effect is increased
by more than five times. Therefore, we extract the pairs with significant crosstalk effect,
i.e., E(gi|gj) > 3 × E(gi) and only characterize these pairs when crosstalk properties are
needed. We choose the same factor 3 to quantify the pairs with strong crosstalk error
like [26]. The result of crosstalk effect characterization on IBM Q 27 Toronto is shown in
Fig. 6(b).

0 1 2 3 4

(a)

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 26

(b)

Figure 6: Characterization of crosstalk effect. (a) Crosstalk pairs separated by one-hop distance. The
crosstalk pairs should be able to be executed at the same time. Therefore, they cannot share the same
qubit. One-hop is the minimum distance between crosstalk pairs. (b) Crosstalk effect results of IBM Q
27 Toronto using SRB. The arrow of the red dash line points to the CNOT pair that is affected significantly
by crosstalk effect, e.g., CX7,10 and CX12,15 affect each other when they are executed simultaneously.
In our experiments, E(CX10,12|CX4,7) > 3 × E(CX10,12), whereas E(CX4,7|CX10,12) ≈ 1.5 ×
E(CX4,7). As we choose 3 as the factor to pick up pairs with strong crosstalk effect, there is no arrow
at pair CX4,7.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 8

5.1.3 Greedy sub-graph partition algorithm.

We develop a Greedy Sub-graph Partition algorithm (GSP) for qubit partition process
which is able to provide the optimal partitions for different quantum circuits. The first
step of the GSP algorithm is to traverse the overall hardware to find all the possible
partitions for a given circuit. For example, suppose we have a five-qubit circuit, we find all
the subgraphs of the hardware topology (also called coupling graph) containing five qubits
as the partition candidates. Each candidate has a score to represent its fidelity depending
on the topology and calibration data. The partition with the best fidelity is selected and
all the qubits inside of the partition are marked as used qubits so they cannot be assigned
to other circuits. For the next circuit, a subgraph with the required number of qubits
is assigned and we check if there is an overlap on this partition to partitions of previous
circuits. If not, the subgraph is a partition candidate for the given circuit and the same
process is applied to each subsequent circuit. To account for crosstalk, we check if any
pairs in a subgraph have strong crosstalk effect caused by the allocated partitions of other
circuits. If so, the score of the subgraph is adjusted to take crosstalk error into account.

In order to evaluate the reliability of a partition, three factors need to be consid-
ered: partition topology, error rates of two-qubit links, and readout error of each qubit.
One-qubit gates are ignored for simplicity and because of their relatively low error rates
compared to the other quantum operations. If there is a qubit pair in a partition that has
strong crosstalk affected by other partitions, the CNOT error of this pair is replaced by the
correlated CNOT error which takes crosstalk into account. Note that the most recent cali-
bration data should be retrieved through the IBM Quantum Experience before each usage
to ensure that the algorithm has access to the most accurate and up-to-date information.
To evaluate the partition topology, we determine the longest shortest path (also called
graph diameter) of the partition, denoted L. The smaller the longest shortest path is, the
better the partition is connected. Eventually, fewer additional gates would be needed to
connect two qubits in a well-connected partition.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 9

Algorithm 1 GSP algorithm
Input: Quantum circuitQC , Coupling graphG, Calibration data C, Crosstalk properties

crosstalk_props, Used_qubits qused
Output: A list of candidate partitions sub_graph_list
1: qubit_num ← QC.qubit_num
2: Set sub_graph_list to empty list
3: for sub_graph ∈ combinations(G, qubit_num) do
4: if sub_graph is connected then
5: if qused is empty then
6: sub_graph.Set_Partition_Score(G, C, QC)
7: sub_graph_list.append(sub_graph)
8: end if
9: if no qubit in sub_graph is in qused then

10: crosstalk_pairs ← Find_Crosstalk_pairs(sub_graph,
11: crosstalk_props, qused)
12: sub_graph.Set_Partition_Score(G, C, QC, crosstalk_pairs)
13: sub_graph_list.append(sub_graph)
14: end if
15: end if
16: end for
17: return sub_graph_list

We devise a fidelity score metric for a partition that is the sum of the graph diameter
L, average CNOT error rate of the links times the number of CNOTs of the circuit, and the
sum of the readout error rate of each qubit in a partition (shown in (1)). Note that the
CNOT error rate includes the crosstalk effect if it exists.

Scoreg = L+AvgCNOT ×#CNOTs+
∑

Qi∈P

RQi (1)

The graph diameter L is always prioritized in this equation, since it is more than one
order of magnitude larger than the other two factors. The partition with the smallest
fidelity score is selected. It is supposed to have the best connectivity and the lowest error
rate. Moreover, the partition algorithm prioritizes the quantum circuit with a large density
because the input circuits are ordered by their densities during the parallelism manager
process. The partition algorithm is then called for each circuit in order. However, GSP
algorithm is expensive and time costly. For small circuits, the GSP algorithm gives the
best choice of partition. It is also useful to use it as a baseline to compare with other
partition algorithms. For beyond NISQ, a better approach should be explored to overcome
the complexity overhead.

5.1.4 Qubit fidelity degree-based heuristic sub-graph partition algorithm.

In order to reduce the overhead of GSP, we propose a Qubit fidelity degree-based Heuristic
Sub-graph Partition algorithm (QHSP). It performs as well as GSP but without the large
runtime overhead.

In QHSP, when allocating partitions, we favor qubits with high fidelity. We define the
fidelity degree of a qubit based on the CNOT and readout fidelities of this qubit as in (2).

F_DegreeQi =
∑

Qj∈N(Qi)
λ× (1− E(Qi, Qj) + (1−RQi) (2)

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 10

Qj are the neighbour qubits connected to Qi, E is the CNOT error matrix which is con-
structed by applying the Floyd-Warshall algorithm to the hardware coupling graph with
CNOT error rate as edge weights, and R is the readout error rate. λ is a user defined pa-
rameter to weight between the CNOT error rate and readout error rate. Such parameter is
useful for two reasons: (1) Typically, in a quantum circuit, the number of CNOT operations
is different from the number of measurement operations. Hence, the user can decide λ
based on the relative number of operations. (2) For some qubits, the readout error rate is
one or more orders of magnitude larger than the CNOT error rate. Thus, it is reasonable to
add a weight parameter.

The fidelity degree metric reveals two aspects of a qubit. The first one is the connec-
tivity of the qubit. The more neighbours a qubit has, the larger its fidelity degree is. The
second one is the reliability of the qubit accounting CNOT and readout error rates. Thus,
the metric allows us to select a reliable qubit with good connectivity. Instead of trying all
the possible subgraph combinations (as in the GSP algorithm), we propose a QHSP algo-
rithm to build partitions that contain qubits with high fidelity degree while significantly
reducing runtime.

To further improve the algorithm, we construct a list of qubits with good connectivity
as starting points. We sort all physical qubits by their physical node degree, which is
defined as the number of links in a physical qubit. Note that, the physical node degree is
different from the fidelity degree. Similarly, we also obtain the largest logical node degree of
the logical qubit (qubits used in the quantum circuit) by checking the number of different
qubits that are connected to a qubit through CNOT operations. Next, we compare these
two metrics.

Suppose the largest physical node degree is less than the largest logical node degree.
In that case, it means that we cannot find a suitable physical qubit to map the logical
qubit with the largest logical node degree that satisfies all the connections. In this case,
we only collect the physical qubits with the largest physical node degree. Otherwise, the
physical qubits whose physical node degree is greater than or equal to the largest logical
node degree are collected as starting points. By limiting the starting points, this heuristic
partition algorithm becomes even faster.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 11

Algorithm 2 QHSP algorithm
Input: Quantum circuitQC , Coupling graphG, Calibration data C, Crosstalk properties

crosstalk_props, Used_qubits qused, Starting points starting_points
Output: A list of candidate partitions sub_graph_list
1: circ_qubit_num ← QC.qubit_num
2: Set sub_graph_list to empty list
3: for i ∈ starting_points do
4: Set sub_graph to empty list
5: qubit_num ← 0
6: while qubit_num < circ_qubit_num do
7: if sub_graph is empty then
8: sub_graph.append(i)
9: qubit_num ← qubit_num + 1

10: continue
11: end if
12: best_qubit ← find_best_qubit(sub_graph, G, C)
13: if best_qubit 6= None then
14: sub_graph.append(best_qubit)
15: qubit_num ← qubit_num + 1
16: continue
17: end if
18: end while
19: if len(sub_graph) = circ_qubit_num then
20: if qused is empty then
21: sub_graph.Set_Partition_Score(G, C, QC)
22: sub_graph_list.append(sub_graph)
23: end if
24: if no qubit in sub_graph is in qused then
25: crosstalk_pairs ← Find_Crosstalk_pairs(sub_graph,
26: crosstalk_props, qused)
27: sub_graph.Set_Partition_Score(G, C, QC, crosstalk_pairs)
28: sub_graph_list.append(sub_graph)
29: end if
30: end if
31: end for
32: return sub_graph_list

For each qubit in the starting points list, the algorithm explores its neighbours and
finds the neighbour qubit with the highest fidelity degree calculated in (2), and merges it
into the sub-partition. Then, the qubit inside of the sub-partition with the highest fidelity
degree explores its neighbour qubits and merges the best one. The process is repeated until
the number of qubits inside of the sub-partition is equal to the number of qubits needed.
This sub-partition is considered as a subgraph and is added to the partition candidates.

After obtaining all the partition candidates, we compute the fidelity score for each of
them. As we start from a qubit with a high physical node degree and merge to neigh-
bour qubits with a high fidelity degree, the constructed partition is supposed to be well-
connected, hence, we do not need to check the connectivity of the partition using the
longest shortest path L as in (1), GSP algorithm. We can only compare the error rates.
The fidelity score metric is simplified by only calculating the CNOT and readout error rates

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 12

as in (3) (crosstalk is included if it exists). It is calculated for each partition candidate and
the best one is selected.

Scoreh = AvgCNOT ×#CNOTs+
∑

Qi∈P

RQi (3)

3.5

Q0

3.4

Q1

3.3

Q2

3.3Q3

1.5Q4

0.85 1.25

1.59

1.54

(a)

{Q1}

{Q1, Q3}

{Q1, Q3, Q0}

{Q1, Q3, Q0, Q2}

(b)

Figure 7: Example of qubit partition on IBM Q 5 Valencia for a four-qubit circuit using QHSP. Suppose
the largest logical node degree of the target circuit is three. (a) The topology and calibration data of
IBM Q 5 Valencia. The value inside of the node represents the readout error rate (in%), and the value
above the link represents the CNOT error rate (in%). (b) Process of constructing a partition candidate
using QHSP.

Table 1: The physical node degree and the fidelity degree of each qubit on IBM Q 5 Valencia.

Qubit Q0 Q1 Q2 Q3 Q4

Fidelity degree 1.96 3.93 1.95 2.94 1.97
Physical node degree 1 3 1 2 1

Fig. 7 shows an example of applying QHSP on IBM Q 5 Valencia (ibmq_valencia) for
a four-qubit circuit. The calibration data of IBM Q 5 Valencia, including readout error
rate and CNOT error rate are shown in Fig. 7(a). We set λ to two and the physical node
degree and the fidelity degree of qubit calculated by (2) are shown in Table 1. Suppose
the largest logical node degree is three. Therefore, Q1 is selected as the starting point
since it is the only physical qubit that has the same physical node degree as the largest
logical node degree. It has three neighbour qubits: Q0, Q2, and Q3. Q3 is merged into the
sub-partition because it has the highest fidelity degree among neighbour qubits. The sub-
partition becomes {Q1, Q3}. As the fidelity degree of Q1 is larger than Q3, the algorithm
will again select the left neighbour qubit with the largest fidelity degree of Q1, which
is Q0. The sub-partition becomes {Q1, Q3, Q0}. Q1 is still the qubit with the largest
fidelity degree in the current sub-partition, its neighbour qubit – Q2 is merged. The final
sub-partition is {Q1, Q3, Q0, Q2} and it can be considered as a partition candidate. The
merging process is shown in Fig. 7(b).

5.1.5 Runtime analysis

Let n be the number of hardware qubits (physical qubits) and k the number of circuit qubits
(logical qubits) to be allocated a partition. The GSP algorithm selects all the combinations
of k subgraphs from n-qubit hardware and takes O(C(n, k)) time, which is O(n choose k).
For each subgraph, it computes its fidelity score including calculating the longest shortest
path, which scales at O(k3). It ends up being equivalent to O(k3min(nk, nn−k)). In most

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 13

cases, the number of circuit qubits is less than the number of hardware qubits, thus the
time complexity becomes O(k3nk). It increases exponentially as the number of circuit
qubits augments.

The QHSP algorithm starts by collecting a list of m starting points where m ≤ n.
To get the starting points, we sort the n physical qubits by their physical node degree,
which takes O(nlog(n)). Then, we iterate over all the gates of the circuit (e.g., circuit has
g gates) and sort the k logical qubits according to the logical node degree, which takes
O(g+klog(k)). Next, for each starting point, it iteratively merges the best neighbour qubit
until each sub-partition contains k qubits. To find the best neighbour qubit, the algorithm
finds the best qubit in a sub-partition and traverses all its neighbours to select the one
with the highest fidelity degree. Finding the best qubit in the sub-partition is O(p) where
p is the number of qubits in a sub-partition. The average number of qubits p is k/2, so
this process takes O(k) time on average. Finding the best neighbour qubit is O(1) because
of the nearest-neighbor connectivity of superconducting devices. Overall, the QHSP takes
O(mk2 + nlog(n) + g + klog(k)) time, and it can be truncated to O(mk2 + nlog(n) + g),
which is polynomial.

5.2 Post qubit partition
By default the multi-programming mechanism reduces circuit fidelity compared to stan-
dalone circuit execution mode. If the fidelity reduction is significant, circuits should be
executed independently or the number of simultaneous circuits should be reduced even
though the hardware throughput can be decreased as well. Therefore, we consistently
check the circuit fidelity difference between independent versus concurrent execution.

We start with the qubit partition process for each circuit independently and obtain the
fidelity score of the partition. Next, this qubit partition process is applied to these circuits
to compute the fidelity score when executing them simultaneously. The difference between
the fidelity scores is denoted ∆S, which is the fidelity metric. If ∆S is less than a specific
threshold δ, it means simultaneous circuit execution does not significantly detriment the
fidelity score, thus circuits can be executed concurrently, otherwise, independently or re-
duce the number of simultaneous circuits. The fidelity metric and the parallelism manager
help determine the optimal number of simultaneous circuits to be executed.

6 Scheduler
The scheduler includes the mapping algorithm to make circuits executable on real quantum
hardware.

6.1 Mapping transition algorithm
Two steps are needed to make circuits hardware-compliant: initial mapping and mapping
transition. The initial mapping of each circuit is created while taking into account swap
error rate and swap distance, and the initial mapping of the simultaneous mapping tran-
sition process is obtained by merging the initial mapping of each circuit according to its
partition. We improve the mapping transition algorithm proposed in [28] by modifying
the heuristic cost function to better select the inserted gate. We also introduce the Bridge
gate to the simultaneous mapping transition process for multi-programming.

First, each quantum circuit is transformed into a more convenient format – Directed
Acyclic Graph (DAG) circuit, which represents the operation dependencies of the circuit
without considering the connectivity constraints. Then, the compiler traverses the DAG

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 14

circuit and goes through each quantum gate sequentially. The gate that does not depend
on other gates (i.e., all the gates before execution) is allocated to the first layer, denoted F .
The compiler checks if the gates on the first layer are hardware-compliant. The hardware-
compliant gates can be executed on the hardware directly without modification. They are
added to the scheduler, removed from the first layer and marked as executed. If the first
layer is not empty, which means some gates are non-executable on hardware, a SWAP or
Bridge gate is needed. We collect all the possible SWAPs and Bridges, and use the cost
function H (see (5)) to find the best candidate. The process is repeated until all the gates
are marked as executed.

A SWAP gate requires three CNOTs and inserting a SWAP gate can change the current
mapping. Whereas a Bridge gate requires four CNOTs and inserting a Bridge gate does
not change the current mapping. It can only be used to execute a CNOT when the distance
between the control and the target qubits is exactly two. Both gates need three supple-
mentary CNOTs. A SWAP gate is preferred when it has a positive impact on the following
gates, allocated in the extended layer E, i.e., it makes these gates executable or reduces
the distance between control and target qubits. Otherwise, a Bridge gate is preferred.

A cost function H is introduced to evaluate the cost of inserting a SWAP or Bridge. We
use the following distance matrix (see (4)) as in [28] to quantify the impact of the SWAP or
Bridge gate,

D = α1 × S + α2 × E (4)

where S is the swap distance matrix and E is the swap error matrix. We set α1 and
α2 to 0.5 to equally consider the swap distance and swap error rate. In [28], only the
impact of a SWAP and Bridge on other gates (first and extended layer) was considered
without considering their impact on the gate itself. As each of them is composed of either
three or four CNOTs, their impact cannot be ignored. Hence, in our simultaneous mapping
transition algorithm, we take self impact into account and create a list of both SWAP and
Bridge candidates, labeled as "tentative gates". The heuristic cost function is as:

H = 1
|F +NT ent|

(
∑
g∈F

D[π(g.q1)][π(g.q2)]+
∑

g∈T ent

D[π(g.q1)][π(g.q2)])+W× 1
|E|

∑
g∈E

D[π(g.q1)][π(g.q2)]

(5)
where W is the parameter that weights the impact of the extended layer, NT ent is

the number of gates of the tentative gate, Tent represents a SWAP or Bridge gate, and π
represents the mapping. SWAP gate has three CNOTs, thus NT ent is three and we consider the
impact of three CNOTs on the first layer. The mapping is the new mapping after inserting
a SWAP. For Bridge gate, NT ent is four and we consider four CNOTs on the first layer, and
the mapping is the current mapping as Bridge gate does not change the current mapping.
We weight the impact on the extended layer to prioritize the first layer. This cost function
can help the compiler select the best gate to insert between a SWAP and Bridge gate.

Our simultaneous mapping transition algorithm outperforms HA [28] thanks to the
modifications of the cost function while not changing its asymptotic complexity. Let n
be the number of hardware qubits, g the CNOT gates in the circuit. The simultaneous
mapping transition algorithm takes O(gn2.5) assuming nearest-neighbor chip connectivity
and an extended layer E with at most O(n) CNOT gates. The detailed explanation about
the complexity can be found in [28].

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 15

Algorithm 3 Simultaneous mapping transition algorithm
Input: Circuits DAGs , Coupling graph G, Distance matrices Ds, Initial mapping πi,

First layers Fs
Output: Final schedule
1: πc ← πi

2: while not all gates are executed do
3: Set swap_bridge_lists to empty list
4: for Fi in Fs do
5: for gate in Fi do
6: if gate is hardware-compliant then
7: schedule.append(gate)
8: Remove gate from Fi

9: end if
10: end for
11: if Fi is not empty then
12: swap_bridge_candidate_list ← FindSwapBridgePairs(Fi, G)
13: swap_bridge_lists.append(swap_bridge_candidate_list)
14: end if
15: end for
16: for swap_bridge_candidate_list ∈ swap_bridge_lists do
17: for gtmp ∈ swap_bridge_candidate_list do
18: πtmp ← Map_Update(gtmp, πc)
19: Hbasic ← 0
20: for gate ∈ Fi do
21: Hbasic ← Hbasic + Di(gate, πtmp)
22: end for
23: Htentative ← gtmp.cost(G, Di, πtmp)
24: Update the extended layer E
25: Hextend ← 0
26: for gate ∈ E do
27: Hextend ← Hextend + Di(gate, πtmp)
28: end for
29: H ← 1

|F +Htentative|(Hbasic +Htentative) + W
|E|Hextend

30: end for
31: Choose the best gate gn according to H
32: πc ← Map_Update(gn, πc)
33: end for
34: Update Fs
35: end while
36: return schedule

7 Evaluation
In this section, we compare our QuMC method with the state of the art and showcase its
different applications.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 16

7.1 Methodology
7.1.1 Metrics

Here are the explanations of the metrics we use to evaluate the algorithms.

1. Probability of a Successful Trial (PST) [38]. This metric is used to represent the
circuit output fidelity and is defined by the number of trials that give the expected
result divided by the total number of trials. The expected result is obtained by
executing the quantum circuit on the simulator. To precisely estimate the PST, we
execute each quantum circuit on the quantum hardware for a large number of trials
(8192).

2. Number of additional CNOT gates. This metric is related to the number of SWAP or
Bridge gates inserted. This metric can show the ability of the algorithm to reduce
the number of additional gates.

3. Trial Reduction Factor (TRF). This metric is introduced in [10] to evaluate the
improvement of the throughput thanks to the multi-programming mechanism. It is
defined as the ratio of the number of trials/shots needed when quantum circuits are
executed independently to the number of trials/shots needed when they are executed
simultaneously.

7.1.2 Comparison

Several published qubit mapping algorithms [16, 18, 22, 25, 28, 40] and multi-programming
mapping algorithms [10, 23] are available. We choose HA [28] as the baseline for indepen-
dent execution, a qubit mapping algorithm taking hardware topology and calibration data
into consideration to achieve high circuit fidelity with a reduced number of additional
gates. Due to the different hardware access and code unavailability of the state-of-the-art
multi-programming algorithms, we only compare our QuMC with independent executions
to show the impact of the multi-programming mechanism. Moreover, our qubit partition
algorithms can also be applied to the qubit mapping algorithm for independent executions
if running a program on a relatively large quantum device.

To summarize, the following comparisons are performed:

• For independent executions, we compare the partition + improved mapping tran-
sition algorithm based on HA (labeled as PHA) versus HA to show the impact of
partition on large quantum hardware for a small circuit.

• For simultaneous executions, we compare our QuMC framework, 1) GSP + improved
mapping transition (labeled as GSP) and 2) QHSP + improved mapping transition
(labeled as QHSP), with independent executions, HA and PHA, to report the fidelity
loss due to simultaneous executions of multiple circuits.

A detailed summary of the comparisons for independent and simultaneous executions is
shown in Table 2. Note that, PHA allows each quantum circuit to be executed on the best
partition selected according to the partition fidelity score metric.

7.1.3 Benchmarks

We evaluate our QuMC framework by executing a list of different-size benchmarks at the
same time on two quantum devices, IBM Q 27 Toronto (ibmq_toronto) and IBM Q 65

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 17

Table 2: A summary of comparisons for independent and simultaneous executions.

Comparison Independent Simultaneous
Methods HA PHA GSP QHSP
Partition N/A Algorithm. 2 Algorithm. 1 Algorithm. 2
Mapping [28] Algorithm. 3
HA method does not include partition process.

Table 3: Information of benchmarks.

Type ID Name Qubits Num g Num CNOT Depth
Small 1 3 17 13 3 36 17 22
Small 2 4mod5-v1 22 5 21 11 12
Small 3 mod5mils 65 5 35 16 21
Small 4 alu-v0 27 5 36 17 21
Small 5 decod24-v2 43 4 52 22 30
Medium 6 qaoa 6 6 49 24 26
Medium 7 qaoa 8 8 80 42 38
Medium 8 qaoa 10 10 102 54 38
Medium 9 qft 6 6 81 39 40
Medium 10 qft 8 8 147 68 56
Medium 11 qft 10 10 233 105 72
Medium 12 ising 5 5 91 40 48
Medium 13 ising 10 10 481 90 70
Large 14 adr4 197 13 3439 1498 1839
Large 15 radd 250 13 3213 1405 1781
Large 16 z4 268 11 3073 1343 1644
Large 17 rd73 252 10 5321 2319 2867
Large 18 cycle10 2 110 12 6050 2648 3386
Large 19 sqn 258 10 10223 4459 5458
Large 20 16QBT 10CYC TFL 4 16 73 29 10
Large 21 16QBT 15CYC TFL 3 16 109 44 15
Large 22 16QBT 100CYC QSE 4 16 1136 320 100
Large 23 16QBT 200CYC QSE 1 16 2272 640 200

Qubits: number of qubits. Num_g: number of gates. Num_CNOT: number
of CNOTs. Depth: circuit depth.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 18

Manhattan (ibmq_manhattan). The benchmarks are collected from QUEKO circuits [37],
application-specific benchmarks, and RevLib [39]. These benchmarks are widely used in
the quantum community and their details are shown in Table 3. We execute small quantum
circuits with shallow-depth on the selected two quantum devices since only they can obtain
reliable results. For medium and large quantum circuits, we compile them on the chips
without hardware execution.

7.1.4 Algorithm configurations

Here, we consider the algorithm configurations of different multi-programming and stan-
dalone mapping approaches. We select the best initial mapping out of ten attempts for
HA, PHA, GSP, and QHSP. Weight parameter W in the cost function (see (5)) is set to
0.5 and the size of the extended layer is set to 20. Parameters α1 and α2 are set to 0.5
respectively to consider equally the swap distance and swap error rate.

For the experiments of simultaneous executions of multiple different-size circuits (Sec-
tion 7.2), the weight parameter λ of QHSP (see (2)) is set to 2 because of the relatively large
number of CNOT gates in benchmarks, whereas for the deuteron experiment (Section 7.3), λ
is set to 1 because of the small number of CNOTs of the parameterized circuit. The thresh-
old δ for post qubit partition is set to 0.1 to ensure the multi-programming reliability. Due
to the expensive cost of SRB, we perform SRB only on IBM Q 27 Toronto and collect
the pairs with significant crosstalk effect. Only the collected pairs are characterized and
their crosstalk properties are provided to the partition process. The experimental results
on IBM Q 65 Manhattan do not consider the crosstalk effect. For each algorithm, we only
evaluate the mapping transition process, which means no optimisation methods like gate
commutation or cancellation are applied.

The algorithm is implemented in Python and evaluated on a PC with 1 Intel i5-5300U
CPU and 8 GB memory. Operating System is Ubuntu 18.04. All the experiments were
performed on the IBM quantum information science kit (Qiskit) [13] and the version used
is 0.21.0.

7.2 Application: simultaneous executions of multiple circuits of different sizes
7.2.1 Experimental results

1,1 1,2 1,3 1,4 1,5 2,2 2,3 2,4 2,5

0.4

0.5

0.6

0.7

0.8

Benchmarks

F
id
el
it
y

HA PHA QHSP

(a)

1,1 1,2 1,3 1,4 1,5 2,2 2,3 2,4 2,5

10

15

20

25

30

35

Benchmarks

N
u
m
b
er

of
ad

d
it
io
n
al

ga
te

HA PHA QHSP

(b)

Figure 8: Comparison of average fidelity and total number of additional gates on IBM Q 27 Toronto
when executing two small circuits independently and simultaneously. TRF=2. (a) Fidelity. (b) Number
of additional gates.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 19

1,2,3 1,2,4 1,2,5 2,3,4 2,3,5

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Benchmarks

F
id
el
it
y

HA PHA QHSP

(a)

1,2,3 1,2,4 1,2,5 2,3,4 2,3,5

30

32

34

36

38

40

42

Benchmarks

N
u
m
b
er

o
f
ad

d
it
io
n
al

ga
te
s

HA PHA QHSP

(b)

Figure 9: Comparison of average fidelity and total number of additional gates on IBM Q 65 Manhattan
when executing three small circuits independently and simultaneously. TRF=3. (a) Fidelity. (b)
Number of additional gates.

1,2,3,4 1,2,3,5 1,3,4,5 2,3,4,5

0.4

0.45

0.5

0.55

0.6

Benchmarks

F
id
el
it
y

HA PHA QHSP

(a)

1,2,3,4 1,2,3,5 1,3,4,5 2,3,4,5

50

55

60

65

Benchmarks

N
u
m
b
er

of
ad

d
it
io
n
a
l
ga
te
s

HA PHA QHSP

(b)

Figure 10: Comparison of average fidelity and total number of additional gates on IBM Q 65 Manhattan
when executing four small circuits independently and simultaneously. TRF=4. (a) Fidelity. (b) Number
of additional gates.

We first run two small quantum circuits on IBM Q 27 Toronto independently and
simultaneously. Results on average output state fidelity and the total number of additional
gates are shown in Fig. 8. Note that, all the circuit output fidelities are calculated by PST
metric explained in Section 7.1.1.

For independent executions, the fidelity is improved by 46.8% and the number of addi-
tional gates is reduced by 8.7% comparing PHA to HA. For simultaneous executions, QHSP
and GSP allocate the same partitions except for the first experiment – (ID1, ID1). In this
experiment, GSP improves the fidelity by 6% compared to QHSP. Note that partition re-
sults might be different due to the various calibration data and the choice of λ, but the
difference of the partition fidelity score between the two algorithms is small. The results
show that QHSP is able to allocate nearly optimal partitions while reducing runtime signif-
icantly (from exponential to polynomial complexity). Therefore, for the rest experiments,
we only evaluate QHSP algorithm. Comparing QHSP (simultaneous executions) versus

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 20

6,7 6,8 6,9 6,10 6,11 6,12 6,13

50

100

150

200

250

Benchmarks

N
u
m
b
er

of
ad

d
it
io
n
al

ga
te

HA PHA QHSP

(a)

6,7,8 6,7,9 6,7,12 7,8,9 7,8,12 8,9,10 9,10,12

100

150

200

250

Benchmarks

N
u
m
b
er

o
f
ad

d
it
io
n
al

ga
te
s

HA PHA QHSP

(b)

Figure 11: Comparison of total number of additional gates for medium benchmarks when (a) compiling
two benchmarks on IBM Q 27 Toronto (TRF=2). (b) compiling three benchmarks on IBM Q 65
Manhattan (TRF=3).

14,14 14,15 14,16 14,17 14,18 14,19 15,15 15,16 15,17 15,18 15,19 20,20 20,21 20,22 20,23 21,22 21,23
0

0.2

0.4

0.6

0.8

1

·104

Benchmarks

N
u
m
b
er

of
ad

d
it
io
n
al

ga
te

HA PHA QHSP

Figure 12: Comparison of total number of additional gates for large benchmarks when compiling two
benchmarks on IBM Q 65 Manhattan (TRF=2).

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 21

HA (independent executions), the fidelity is even improved by 31.8% and the number of
additional gates is reduced by 9.2%. Whereas comparing QHSP with PHA, the fidelity
is decreased by 5.4% and the gate number is almost the same, with only 0.3% increase.
During the post-partition process, ∆S does not pass the threshold for all the combinations
of benchmarks so that TRF is two, which means that the hardware throughput is improved
by two times.

Next, we execute on IBM Q 65 Manhattan three and four simultaneous quantum cir-
cuits and compare the results with the independent executions. Fig. 9 and Fig. 10 show
the comparison of fidelity and the number of additional gates. PHA outperforms HA for
independent executions in most of the cases. Comparing QHSP with HA, the fidelity is
improved by 5.3% and 13.3% for three and four simultaneous executions, and the inserted
gate number is always reduced. Whereas the fidelities decrease by 1.5% and 6.4% re-
spectively for the two cases when comparing QHSP versus PHA, and the additional gate
number is always almost the same. The threshold is still not passed for each experiment
and TRF becomes three and four.

Then, to evaluate the hardware limitations of executing multiple circuits in parallel,
we set the threshold δ to 0.2. All the five small benchmarks are able to be executed
simultaneously on IBM Q 65 Manhattan. Partition fidelity difference is 0.18. The average
fidelity of simultaneous executions (QHSP) and independent executions (PHA) is 0.493
and 0.54, respectively, corresponding to a fidelity loss of 9.5%.

Finally, to illustrate our QHSP algorithm’s performance on medium and large bench-
marks, we compile two medium-size circuits on IBM Q 27 Toronto, two medium-size circuits
and three large-size circuits on IBM Q 65 Manhattan, simultaneously. We compare the
results with HA and PHA for independent compilation. Since these benchmarks are not
able to obtain meaningful results due to the noise, we do not execute them on the real
hardware and only use the number of additional gates as the comparison metric. The
results are shown in Fig. 11 and Fig. 12. The additional gate number is reduced by 23.2%,
15.6%, and 13.2% respectively comparing QHSP with HA. When compared with PHA, the
additional gate number is increased by 0.9% and 6.4%, and is reduced by 4.5% respectively.
All the program-wise experimental results are listed in Appendix A.

7.2.2 Result analysis

PHA is always better than HA for independent executions for two reasons: (1) The initial
mapping of the two algorithms is based on a random process. During the experiment, we
perform the initial mapping generation process ten times and select the best one. However,
for PHA, we first limit the random process into a reliable and well-connected small partition
space rather than the overall hardware space used by HA. Therefore, with only ten trials,
PHA finds a better initial mapping. (2) We improve the mapping transition process of
PHA, which can make a better selection between SWAP and Bridge gate. HA is shown to
be sufficient for hardware with a small number of qubits, for example a 5-qubit quantum
chip. If we want to map a circuit on large hardware, it is better to first limit the search
space into a reliable small partition and then find the initial mapping. This qubit partition
approach can be applied to general qubit mapping problems for search space limitation
when large hardware is selected to map.

Comparing simultaneous process QHSP to independent process HA, QHSP is able to
outperform HA with higher fidelity and a reduced number of additional gates. The im-
provement is also due to the partition allocation and the enhancement of the mapping
transition process as explained before. When comparing QHSP with PHA (where inde-
pendent circuit is executed on the best partition), QHSP uses almost the same number of

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 22

additional gates whereas fidelity is decreased less than 10% if the threshold is set to 0.1.
However, the hardware throughput increases by two and four times respectively for the
two devices. Note that, it also corresponds to a huge reduction of total runtime of these
circuits (waiting time + circuit execution time).

7.3 Application: estimate the ground state energy of deuteron
In order to demonstrate the potential interest to apply the multi-programming mechanism
to existing quantum algorithms, we investigate it on VQE algorithm. To do this, we
perform the same experiment as [11, 15] on IBM Q 65 Manhattan, estimating the ground
state energy of deuteron, which is the nucleus of a deuterium atom, an isotope of hydrogen.

Deuteron can be modeled using a 2-qubit Hamiltonian spanning four Pauli strings:
ZI, IZ,XX, and Y Y [11, 15]. If we use the naive measurement to calculate the state
energy, one ansatz corresponds to four different measurements. Pauli operator grouping
(labeled as PG) has been proposed to reduce this overhead by utilizing simultaneous mea-
surement [7, 15, 19]. For example, the Pauli strings can be partitioned into two commuting
families: {ZI, IZ} and {XX,Y Y } using the approach proposed in [15]. It allows one pa-
rameterized ansatz to be measured twice instead of four measurements in naive method.

We use a simplified Unitary Coupled Cluster ansatz with a single parameter and three
gates, as described in [11, 15]. We apply our QuMC method on the top of the Pauli
operator grouping approach (labeled as QuMCPG) to estimate the ground state energy of
deuteron and compare the results with PG.

In our QuMC method, the parallelism manager works with the hardware-aware multi-
programming compiler to determine the number of circuits for simultaneous execution.
Eight circuits are selected in order not to pass the fidelity threshold, which correspond
to four parameterized circuits with four different parameters since one parameterized cir-
cuit requires two measurement circuits using PG. It is also equivalent to perform four
times of optimizations. These circuits can be executed simultaneously using QuMCPG,
which reduces the total circuit runtime by eight times compared with PG for independent
execution. We perform this experiment five times across days with different calibration
data. Note that, if we use the naive measurement, the number of measurement circuits
needed will be reduced by a factor of 16. The results of the five experiments using PG
(independent process) and QuMCPG (simultaneous process) are shown in Fig. 13. We use
simulator to perform the same experiment and set the result as baseline. The sum of the
difference between the obtained result (independent or simultaneous process) and baseline
(using simulator) is represented by the error rate. All the partition fidelity differences ∆S
of the five experiments (on average ∆S=0.06) are less than the threshold δ (set to 0.1).
Compared to the baseline, the average error rates are 9% and 13.3% for PG and QuM-
CPG, respectively. Despite the augmented errors, the hardware throughput is improved
by eight times. Note that, the users can tune the threshold δ according to the tolerance
of the increase of error rate while using multi-programming. More information about the
experimental results can be found in Table 4.

Table 4: The information of the five experiments.

Experiments nc
1 Error rate(%) Hardware throughput

PG 1 9 0.03
QuMCPG 8 13.3 0.25

1 the number of simultaneous circuit number.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 23

(a) (b)

Figure 13: The estimation of the ground state energy of deuteron under PG and QuMCPG with four
optimisations. (a) PG result (independent process) with eight measurements. (b) QuMCPG result
(simultaneous process) with one measurement. TRF=8.

8 Discussion
8.1 Multi-programming mechanism and fidelity loss
The aforementioned experimental results have shown that, the multi-programming mech-
anism can improve the hardware utilization and reduce the total circuit runtime, but with
a cost of slightly losing circuit fidelity. However, the multi-programming mechanism is not
always detrimental to circuit fidelity. Especially for large quantum hardware, the partition
that has high fidelity is not limited to one region. We choose the largest superconducting
quantum hardware, IBM 127 Q Washington (ibmq_washington) to demonstrate it. We
pick the two partitions with the highest fidelities according to our partition score metric
(3) and execute two of the same circuits on the two partitions simultaneously. The score
difference between the two partitions is around 0.01 and they are not adjacent to each
other, so that no additional crosstalk. The benchmarks are taken from Table 3 and rep-
resented by their IDs. We repeat this experiment five times and the results are shown in
Fig. 14. P1 is the partition with the highest score and P2 with the second highest score.
From the experimental results, the fidelity of the circuit on P1 cannot always outperform
P2 (see benchmarks 2 and 5). It might be due to the following reasons: (1) The calibration
data are not 100% precise. Since the partitions have almost the same fidelity scores, the
circuits executed on the two partitions should also have similar results. (2) The calibra-
tion data are not constant. If the circuits are waiting for a long time in the queue, the
calibration data might get updated, so that the partition with the highest fidelity score
when submitted the circuit might not be the best one when the circuit is executed.

8.2 Multi-programming on circuits with varying depths
The depths of benchmarks that we have executed on quantum hardware in Section 7.2
are not dramatically different, i.e., the longest circuit depth (decod24-v2_43) is 2.5 times
longer than the shortest one (4mod5-v1_22). The program-wise results from Table 5,
Table 7, and Table 9 have shown that the fidelity of the circuit with slightly shorter depth
is not influenced by the parallel execution.

In this section, we further discuss the impact of multi-programming on circuits with

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 24

Figure 14: Comparison of fidelity on IBM Q 127 Washington when executing two of the same circuits
on partitions P1 and P2 simultaneously.

P1 P2

Q0 Q1 Q2

Q3

Q5Q4 Q6

Figure 15: IBM Q 7 Nairobi hardware topology. P1 and P2 are selected to execute circuits with varying
depths.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 25

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

22 vs 22 22 vs 44 22 vs 66 22 vs 88

F
id

el
ity

Circuit depth

Independent-P1 Simultaneous-P1
Independent-P2 Simultaneous-P2

Figure 16: Comparison of fidelity on IBM Q 7 Nairobi when executing two circuits with varying depths
on P1 and P2 independently and simultaneously. The blue and red columns represent the fidelities of
the original circuit (fixed depth 22). The gray and yellow columns represent the fidelities of the modified
circuit (depth from 22 to 88).

comparable or dramatically different depths. We use the largest IBM public chip IBM Q
7 Nairobi (ibm_nairobi) to perform the experiment1, and its hardware topology is shown
in Fig. 15. We choose two partitions P1 and P2, which are more than one hop distance
so that no additional crosstalk impact exists. First, we execute a three-qubit small circuit
3_17_13 with circuit depth of 22 (the information of this circuit can be found in Table 3)
in P1 individually. Second, we repeat the circuit to increase its depth from one to four
times and execute the circuit with varying depths in P2 individually. Finally, we execute
the original circuit (depth 22) and the modified circuit (depth from 22 to 88) on P1 and
P2 simultaneously. Based on the results shown in Fig. 16, the fidelities of circuits with
varying depths are not influenced by parallel executions, since all the circuit operations
are scheduled “as late as possible”.

9 Conclusion
In this article, we presented QuMC, a multi-programming approach that allows to execute
multiple circuits on a quantum chip simultaneously without losing fidelity. We introduced
the parallelism manager and fidelity metric to select optimally the number of circuits to be
executed at the same time. Moreover, we proposed a hardware-aware multi-programming
compiler which contains two qubit partition algorithms taking hardware topology, cali-
bration data, and crosstalk effect into account to allocate reliable partitions to different
quantum circuits. We also demonstrated an improved simultaneous mapping transition al-
gorithm which helps to transpile the circuits on quantum hardware with a reduced number
of inserted gates.

We first executed a list of circuits of different sizes simultaneously and compared our
algorithm with the state of the art. Experimental results showed that our QuMC can even
outperform the independent executions using state of the art qubit mapping approach.
Then, we investigated our QuMC approach on VQE algorithm to estimate the ground
state energy of deuteron, showing the added value of applying our approach to existing

1During the preparation of the manuscript, we do not have access to IBM private chips any more due
to the end of the contract.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 26

quantum algorithms. The QuMC approach is evaluated on IBM hardware, but it is general
enough to be adapted to other quantum hardware.

Based on the experimental result, we found that the main concern with multi-programming
mechanism is a trade-off between output fidelity and the hardware throughput. For ex-
ample, how one can decide which programs to execute simultaneously and how many of
them to execute without losing fidelity. Here, we list several guidelines to help the user to
utilize our QuMC approach.

• Check the target hardware topology and calibration data. The multi-programming
mechanism is more suitable for a relatively large quantum chip compared to the
quantum circuit and with low error rate.

• Choose appropriate fidelity threshold for the post qubit partition process. A high
threshold can improve the hardware throughput but lead to the reduction of output
fidelity. It should be set carefully depending on the size of the benchmark. For
benchmarks of small size that we used in experiments, it is reasonable to set the
threshold to 0.1.

• The number of circuits that can be executed simultaneously will mainly depend on
the fidelity threshold and the calibration data of the hardware.

• The QHSP algorithm is suggested for the partition process due to efficiency and
GSP is recommended to evaluate the quality of the partition algorithms. Using both
algorithms, one can explore which circuits can be executed simultaneously and how
many of them within the given fidelity threshold.

Quantum hardware development with more and more qubits will enable execution of
multiple quantum programs simultaneously and possibly a linchpin for quantum algorithms
requiring parallel sub-problem executions. The Variational Quantum Algorithm is becom-
ing a leading strategy to demonstrate quantum advantages for practical applications. In
such algorithms, the preparation of parameterized quantum state and the measurement of
expectation value are realized on shallow circuits [41]. Taking VQE as an example, the
Hamiltonian can be decomposed into several Pauli operators and simultaneous measure-
ment by grouping Pauli operators have been proposed in [7, 15, 19] to reduce the overhead
of the algorithm. Based on our experiment, we have shown that the overhead of VQE can
be further improved by executing several sets of Pauli operators simultaneously using a
multi-programming mechanism. For future work, we would like to apply our QuMC to
other variational quantum algorithms such as VQLS or VQC to prepare states in parallel
and reduce the overhead of these algorithms. Moreover, in our qubit partition algorithms,
we take the crosstalk effects into consideration by characterizing them and adding them to
the fidelity score of the partition, which is able to avoid the crosstalk error in a high level.
There are some other approaches of eliminating the crosstalk error, for example inserting
barriers between simultaneous CNOTs to avoid crosstalk in a gate-level [26]. However, it has
some challenges of trading-off between crosstalk and decoherence. More interesting tricks
for crosstalk mitigation need to be targeted for simultaneous executions.

Supplementary material
The source code of the algorithms used in this paper is available on the Github reposi-
tory https://github.com/peachnuts/Multiprogramming.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 27

https://github.com/peachnuts/Multiprogramming

Acknowledgment
This work is funded by the QuantUM Initiative of the Region Occitanie, University of
Montpellier and IBM Montpellier. The authors are very grateful to Adrien Suau for the
helpful suggestions and feedback on an early version of this manuscript. We acknowledge
use of the IBM Q for this work. The views expressed are those of the authors and do not
reflect the official policy or position of IBM or the IBM Q team.

References
[1] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. Analysis of crosstalk in

nisq devices and security implications in multi-programming regime. In Proceedings
of the ACM/IEEE International Symposium on Low Power Electronics and Design,
pages 25–30, 2020. DOI: https://doi.org/10.1145/3370748.3406570.

[2] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. Experimental characteri-
zation, modeling, and analysis of crosstalk in a quantum computer. IEEE Transactions
on Quantum Engineering, 2020. DOI: https://doi.org/10.1109/TQE.2020.3023338.

[3] Radoslaw C Bialczak, Markus Ansmann, Max Hofheinz, Erik Lucero, Matthew Nee-
ley, AD O’Connell, Daniel Sank, Haohua Wang, James Wenner, Matthias Stef-
fen, et al. Quantum process tomography of a universal entangling gate imple-
mented with josephson phase qubits. Nature Physics, 6(6):409–413, 2010. DOI:
https://doi.org/10.1038/nphys1639.

[4] Carlos Bravo-Prieto, Ryan LaRose, Marco Cerezo, Yigit Subasi, Lukasz Cincio, and
Patrick Coles. Variational quantum linear solver: A hybrid algorithm for linear sys-
tems. Bulletin of the American Physical Society, 65, 2020.

[5] A Robert Calderbank and Peter W Shor. Good quantum error-
correcting codes exist. Physical Review A, 54(2):1098, 1996. DOI:
https://doi.org/10.1103/PhysRevA.54.1098.

[6] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al.
Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021. DOI:
https://doi.org/10.1038/s42254-021-00348-9.

[7] Ophelia Crawford, Barnaby van Straaten, Daochen Wang, Thomas Parks, Earl
Campbell, and Stephen Brierley. Efficient quantum measurement of pauli op-
erators in the presence of finite sampling error. Quantum, 5:385, 2021. DOI:
https://doi.org/10.22331/q-2021-01-20-385.

[8] AndrewW Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open quantum
assembly language. arXiv preprint arXiv:1707.03429, 2017.

[9] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gambetta.
Validating quantum computers using randomized model circuits. Physical Review A,
100(3):032328, 2019. DOI: https://doi.org/10.1103/PhysRevA.100.032328.

[10] Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. A case
for multi-programming quantum computers. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 291–303, 2019.
DOI: https://doi.org/10.1145/3352460.3358287.

[11] Eugene F Dumitrescu, Alex J McCaskey, Gaute Hagen, Gustav R Jansen, Titus D
Morris, T Papenbrock, Raphael C Pooser, David Jarvis Dean, and Pavel Lougovski.
Cloud quantum computing of an atomic nucleus. Physical review letters, 120(21):
210501, 2018. DOI: https://doi.org/10.1103/PhysRevLett.120.210501.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 28

https://doi.org/https://doi.org/10.1145/3370748.3406570
https://doi.org/https://doi.org/10.1109/TQE.2020.3023338
https://doi.org/https://doi.org/10.1038/nphys1639
https://doi.org/https://doi.org/10.1038/nphys1639
https://doi.org/https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/https://doi.org/10.22331/q-2021-01-20-385
https://doi.org/https://doi.org/10.22331/q-2021-01-20-385
https://doi.org/https://doi.org/10.1103/PhysRevA.100.032328
https://doi.org/https://doi.org/10.1145/3352460.3358287
https://doi.org/https://doi.org/10.1103/PhysRevLett.120.210501

[12] Alexander Erhard, Joel J Wallman, Lukas Postler, Michael Meth, Roman Stricker,
Esteban A Martinez, Philipp Schindler, Thomas Monz, Joseph Emerson, and Rainer
Blatt. Characterizing large-scale quantum computers via cycle benchmarking. Nature
communications, 10(1):1–7, 2019. DOI: https://doi.org/10.1038/s41467-019-13068-7.

[13] Héctor Abraham et al. Qiskit: An open-source framework for quantum computing.
https://qiskit.org/, 2019.

[14] Jay M Gambetta, AD Córcoles, Seth T Merkel, Blake R Johnson, John A
Smolin, Jerry M Chow, Colm A Ryan, Chad Rigetti, S Poletto, Thomas A
Ohki, et al. Characterization of addressability by simultaneous random-
ized benchmarking. Physical review letters, 109(24):240504, 2012. DOI:
https://doi.org/10.1103/PhysRevLett.109.240504.

[15] Pranav Gokhale, Olivia Angiuli, Yongshan Ding, Kaiwen Gui, Teague Tomesh, Martin
Suchara, Margaret Martonosi, and Frederic T Chong. Optimization of simultaneous
measurement for variational quantum eigensolver applications. In 2020 IEEE Inter-
national Conference on Quantum Computing and Engineering (QCE), pages 379–390.
IEEE, 2020. DOI: https://doi.org/10.1109/QCE49297.2020.00054.

[16] Gian Giacomo Guerreschi and Jongsoo Park. Two-step approach to scheduling
quantum circuits. Quantum Science and Technology, 3(4):045003, 2018. DOI:
https://doi.org/10.1088/2058-9565/aacf0b.

[17] Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow, Ab-
hinav Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learning
with quantum-enhanced feature spaces. Nature, 567(7747):209–212, 2019. DOI:
https://doi.org/10.1038/s41586-019-0980-2.

[18] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Optimiza-
tion of quantum circuit mapping using gate transformation and commutation. Inte-
gration, 70:43–50, 2020. DOI: 10.1016/j.vlsi.2019.10.004.

[19] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink,
Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets. Nature, 549(7671):242–246, 2017.
DOI: https://doi.org/10.1038/nature23879.

[20] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear sys-
tems and least squares. Physical Review A, 101(2):022316, 2020. DOI: 10.1103/Phys-
RevA.101.022316.

[21] Benjamin P Lanyon, James DWhitfield, Geoff G Gillett, Michael E Goggin, Marcelo P
Almeida, Ivan Kassal, Jacob D Biamonte, Masoud Mohseni, Ben J Powell, Marco Bar-
bieri, et al. Towards quantum chemistry on a quantum computer. Nature chemistry,
2(2):106–111, 2010. DOI: https://doi.org/10.1038/nchem.483.

[22] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for nisq-
era quantum devices. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
1001–1014, 2019. DOI: 10.1145/3297858.3304023.

[23] Lei Liu and Xinglei Dou. Qucloud: A new qubit mapping mechanism for multi-
programming quantum computing in cloud environment. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages 167–178.
IEEE, 2021. DOI: https://doi.org/10.1109/HPCA51647.2021.00024.

[24] Pranav Mundada, Gengyan Zhang, Thomas Hazard, and Andrew Houck. Suppression
of qubit crosstalk in a tunable coupling superconducting circuit. Physical Review Ap-
plied, 12(5):054023, 2019. DOI: https://doi.org/10.1103/PhysRevApplied.12.054023.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 29

https://doi.org/https://doi.org/10.1038/s41467-019-13068-7
https://qiskit.org/
https://doi.org/https://doi.org/10.1103/PhysRevLett.109.240504
https://doi.org/https://doi.org/10.1103/PhysRevLett.109.240504
https://doi.org/https://doi.org/10.1109/QCE49297.2020.00054
https://doi.org/https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1016/j.vlsi.2019.10.004
https://doi.org/https://doi.org/10.1038/nature23879
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/https://doi.org/10.1038/nchem.483
https://doi.org/10.1145/3297858.3304023
https://doi.org/https://doi.org/10.1109/HPCA51647.2021.00024
https://doi.org/https://doi.org/10.1103/PhysRevApplied.12.054023

[25] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Mar-
garet Martonosi. Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 1015–
1029, 2019. DOI: 10.1145/3297858.3304075.

[26] Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. Soft-
ware mitigation of crosstalk on noisy intermediate-scale quantum computers. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 1001–1016, 2020. DOI:
https://doi.org/10.1145/3373376.3378477.

[27] Siyuan Niu and Aida Todri-Sanial. Analyzing crosstalk error in the nisq era. In 2021
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pages 428–430, 2021.
DOI: https://doi.org/10.1109/ISVLSI51109.2021.00084.

[28] Siyuan Niu, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial. A hardware-
aware heuristic for the qubit mapping problem in the nisq era. IEEE Transactions on
Quantum Engineering, 1:1–14, 2020. DOI: 10.1109/TQE.2020.3026544.

[29] Yasuhiro Ohkura, Takahiko Satoh, and Rodney Van Meter. Simultaneous quan-
tum circuits execution on current and near-future nisq systems. arXiv preprint
arXiv:2112.07091, 2021.

[30] Elijah Pelofske, Georg Hahn, and Hristo N Djidjev. Parallel quantum annealing.
Scientific Reports, 12(1):1–11, 2022. DOI: https://doi.org/10.1038/s41598-022-08394-
8.

[31] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue
solver on a photonic quantum processor. Nature communications, 5:4213, 2014. DOI:
https://doi.org/10.1038/ncomms5213 (2014).

[32] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,
August 2018. ISSN 2521-327X. DOI: 10.22331/q-2018-08-06-79.

[33] Timothy J Proctor, Arnaud Carignan-Dugas, Kenneth Rudinger, Erik Nielsen,
Robin Blume-Kohout, and Kevin Young. Direct randomized benchmarking
for multiqubit devices. Physical review letters, 123(3):030503, 2019. DOI:
https://doi.org/10.1103/PhysRevLett.123.030503.

[34] Salonik Resch, Anthony Gutierrez, Joon Suk Huh, Srikant Bharadwaj, Yasuko Eckert,
Gabriel Loh, Mark Oskin, and Swamit Tannu. Accelerating variational quantum
algorithms using circuit concurrency. arXiv preprint arXiv:2109.01714, 2021.

[35] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and
Robin Blume-Kohout. Detecting crosstalk errors in quantum information processors.
Quantum, 4:321, 2020. DOI: https://doi.org/10.22331/q-2020-09-11-321.

[36] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.
DOI: 10.1137/S0097539795293172.

[37] Bochen Tan and Jason Cong. Optimality study of existing quantum computing lay-
out synthesis tools. IEEE Transactions on Computers, 70(9):1363–1373, 2021. DOI:
https://doi.org/10.1109/TC.2020.3009140.

[38] Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are created equal:
a case for variability-aware policies for nisq-era quantum computers. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 987–999, 2019. DOI:
https://doi.org/10.1145/3297858.3304007.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 30

https://doi.org/10.1145/3297858.3304075
https://doi.org/https://doi.org/10.1145/3373376.3378477
https://doi.org/https://doi.org/10.1145/3373376.3378477
https://doi.org/https://doi.org/10.1109/ISVLSI51109.2021.00084
https://doi.org/10.1109/TQE.2020.3026544
https://doi.org/https://doi.org/10.1038/s41598-022-08394-8
https://doi.org/https://doi.org/10.1038/s41598-022-08394-8
https://doi.org/https://doi.org/10.1038/ncomms5213 (2014)
https://doi.org/https://doi.org/10.1038/ncomms5213 (2014)
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/https://doi.org/10.1103/PhysRevLett.123.030503
https://doi.org/https://doi.org/10.1103/PhysRevLett.123.030503
https://doi.org/https://doi.org/10.22331/q-2020-09-11-321
https://doi.org/10.1137/S0097539795293172
https://doi.org/https://doi.org/10.1109/TC.2020.3009140
https://doi.org/https://doi.org/10.1109/TC.2020.3009140
https://doi.org/https://doi.org/10.1145/3297858.3304007
https://doi.org/https://doi.org/10.1145/3297858.3304007

[39] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: An online
resource for reversible functions and reversible circuits. In Int’l Symp. on Multi-Valued
Logic, pages 220–225, 2008. URL http://www.revlib.org.

[40] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quantum circuits to
ibm qx architectures using the minimal number of swap and h operations. In 2019
56th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2019. DOI:
https://doi.org/10.1145/3316781.3317859.

[41] Feng Zhang, Niladri Gomes, Noah F Berthusen, Peter P Orth, Cai-Zhuang
Wang, Kai-Ming Ho, and Yong-Xin Yao. Shallow-circuit variational quan-
tum eigensolver based on symmetry-inspired hilbert space partitioning for quan-
tum chemical calculations. Physical Review Research, 3(1):013039, 2021. DOI:
https://doi.org/10.1103/PhysRevResearch.3.013039.

[42] Peng Zhao, Peng Xu, Dong Lan, Ji Chu, Xinsheng Tan, Haifeng Yu, and
Yang Yu. High-contrast z z interaction using superconducting qubits with
opposite-sign anharmonicity. Physical Review Letters, 125(20):200503, 2020. DOI:
https://doi.org/10.1103/PhysRevLett.125.200503.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 31

http://www.revlib.org
https://doi.org/https://doi.org/10.1145/3316781.3317859
https://doi.org/https://doi.org/10.1145/3316781.3317859
https://doi.org/https://doi.org/10.1103/PhysRevResearch.3.013039
https://doi.org/https://doi.org/10.1103/PhysRevResearch.3.013039
https://doi.org/https://doi.org/10.1103/PhysRevLett.125.200503
https://doi.org/https://doi.org/10.1103/PhysRevLett.125.200503

Table 5: Comparison of fidelity when executing two small circuits simultaneously on IBM Q 27 Toronto.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP GSP ∆PST %

ID1 ID2 PST1 PST2 Avg PST1 PST2 Avg PST1 PST2 Avg t PST1 PST2 Avg t HA PHA
1 1 0.571 0.558 0.565 0.686 0.676 0.681 0.675 0.641 0.658 0.009 0.641 0.682 0.662 0.4 16.5 -3.4
1 2 0.334 0.75 0.542 0.661 0.789 0.725 0.69 0.789 0.74 0.012 0.69 0.789 0.74 7.4 36.5 2.1
1 3 0.547 0.412 0.48 0.687 0.591 0.639 0.619 0.552 0.586 0.007 0.619 0.552 0.586 7.4 22.1 -8.3
1 4 0.476 0.45 0.463 0.574 0.642 0.608 0.626 0.647 0.637 0.016 0.626 0.647 0.637 7.4 37.6 4.8
1 5 0.495 0.445 0.47 0.673 0.582 0.628 0.647 0.511 0.579 0.012 0.647 0.511 0.579 1.6 23.2 -7.8
2 2 0.647 0.53 0.589 0.78 0.775 0.778 0.808 0.591 0.7 0.006 0.808 0.591 0.7 14.4 18.8 -10
2 3 0.428 0.304 0.366 0.787 0.626 0.707 0.764 0.529 0.647 0.013 0.764 0.529 0.647 15 76.8 -8.5
2 4 0.561 0.607 0.584 0.791 0.645 0.718 0.788 0.467 0.628 0.008 0.788 0.467 0.628 14.7 7.5 -12.5
2 5 0.573 0.311 0.442 0.796 0.568 0.682 0.774 0.531 0.653 0.006 0.774 0.531 0.653 8.7 47.7 -4.3

Avg: average of PSTs. t: runtime in seconds of the partition process. ∆PST: comparison of average
fidelity.

Table 6: Comparison of number of additional gates when executing two small circuits simultaneously
on IBM Q 27 Toronto.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆g%

ID1 ID2 g1 g2 Sum g1 g2 Sum g1 g2 Sum HA PHA
1 1 12 12 24 12 12 24 12 12 24 0 0
1 2 12 9 21 12 6 18 12 6 18 14.3 0
1 3 12 15 27 12 15 27 12 15 27 0 0
1 4 12 24 36 12 24 36 12 21 33 8.3 8.3
1 5 12 18 30 12 18 30 12 18 30 0 0
2 2 6 12 18 6 6 12 6 9 15 16.7 -25
2 3 9 15 24 6 15 21 6 12 18 25 14.3
2 4 9 24 33 6 21 27 6 21 27 18.2 0
2 5 6 18 24 6 18 24 6 18 24 0 0

g: number of additional gates. Sum: sum of number of additional gates. ∆g: comparison of sum of
number of additional gates.

A Supplementary experimental results
The program-wise experimental results of executing two small circuits simultaneously on
IBM Q 27 Toronto (Table 5, Table 6), three small circuits (Table 7, Table 8) and four
small circuits (Table 9, Table 10) on IBM Q 65 Manhattan, medium and large circuits on
the two devices are listed (Table 11, Table 12, Table 13).

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 32

Table 7: Comparison of fidelity when executing three small circuits simultaneously on IBM Q 65
Manhattan.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆PST %

ID1 ID2 ID3 PST1 PST2 PST3 Avg PST1 PST2 PST3 Avg PST1 PST2 PST3 Avg t HA PHA
1 2 3 0.61 0.566 0.624 0.6 0.651 0.624 0.555 0.61 0.609 0.526 0.714 0.616 0.047 2.7 1
1 2 4 0.521 0.683 0.289 0.5 0.637 0.703 0.48 0.607 0.559 0.708 0.531 0.599 0.048 19.8 -1.3
1 2 5 0.627 0.725 0.368 0.573 0.623 0.653 0.487 0.588 0.609 0.592 0.528 0.576 0.047 0.5 -2
2 3 4 0.644 0.434 0.389 0.489 0.631 0.566 0.544 0.58 0.633 0.565 0.498 0.565 0.04 15.5 -2.6
2 3 5 0.689 0.617 0.488 0.598 0.585 0.542 0.486 0.538 0.7 0.528 0.34 0.523 0.04 -12.5 -2.8

Avg: average of PSTs. t: runtime in seconds of the partition process. ∆PST: comparison of average
fidelity.

Table 8: Comparison of number of additional gates when executing three small circuits simultaneously
on IBM Q 65 Manhattan.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆g%

ID1 ID2 ID3 g1 g2 g3 Sum g1 g2 g3 Sum g1 g2 g3 Sum HA PHA
1 2 3 12 12 12 36 12 6 12 30 12 6 12 30 16.7 0
1 2 4 12 9 21 42 12 6 18 36 12 6 18 36 14.3 0
1 2 5 12 9 18 39 12 6 18 36 12 6 18 36 7.7 0
2 3 4 9 15 18 42 6 12 18 36 6 15 18 39 7.1 -8.3
2 3 5 9 15 18 42 9 12 18 39 6 12 18 36 14.3 7.7

g: number of additional gates. Sum: sum of number of additional gates. ∆g: comparison of sum of
number of additional gates.

Table 9: Comparison of fidelity when executing four small circuits simultaneously on IBM Q 65 Man-
hattan.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆PST %

ID1 ID2 ID3 ID4 PST1 PST2 PST3 PST4 Avg PST1 PST2 PST3 PST4 Avg PST1 PST2 PST3 PST4 Avg t HA PHA
1 2 3 4 0.512 0.622 0.486 0.35 0.493 0.588 0.644 0.572 0.443 0.562 0.443 0.747 0.542 0.443 0.544 0.06 10.3 -3.2
1 2 3 5 0.44 0.644 0.608 0.203 0.474 0.648 0.638 0.561 0.491 0.585 0.612 0.645 0.581 0.373 0.553 0.058 16.7 -5.5
1 3 4 5 0.6 0.542 0.228 0.289 0.415 0.592 0.504 0.497 0.404 0.499 0.557 0.53 0.32 0.426 0.458 0.058 10.4 -8.2
2 3 4 5 0.643 0.544 0.287 0.278 0.438 0.699 0.53 0.525 0.465 0.555 0.691 0.477 0.492 0.369 0.507 0.048 15.8 -8.6

Avg: average of PSTs. t: runtime in seconds of the partition process. ∆PST: comparison of average
fidelity.

Table 10: Comparison of number of additional gates when executing four small circuits simultaneously
on IBM Q 65 Manhattan.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆g%

ID1 ID2 ID3 ID4 g1 g2 g3 g4 Sum g1 g2 g3 g4 Sum g1 g2 g3 g4 Sum HA PHA
1 2 3 4 12 9 15 24 60 12 9 15 18 54 12 6 15 18 51 15 5.6
1 2 3 5 12 9 15 12 48 12 6 12 18 48 12 6 15 18 51 -6.3 -6.3
1 3 4 5 12 15 18 18 63 12 12 18 18 60 12 12 18 18 60 4.8 0
2 3 4 5 6 15 21 18 60 6 15 18 18 57 6 12 18 18 54 10 5.3

g: number of additional gates. Sum: sum of number of additional gates. ∆g: comparison of sum of
number of additional gates.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 33

Table 11: Comparison of number of additional gates when executing two medium benchmarks on IBM
Q 27 Toronto.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆g%

ID1 ID2 g1 g2 Sum g1 g2 Sum g1 g2 Sum HA PHA
6 7 33 72 105 24 39 63 24 36 60 42.9 4.8
6 8 33 129 162 24 81 105 24 84 108 33.3 -2.9
6 9 33 51 84 24 48 72 24 54 78 7.1 -8.3
6 10 33 120 153 24 105 129 24 117 138 9.8 -7
6 11 33 210 243 24 183 207 24 198 222 8.6 -7.2
6 12 33 45 78 24 39 63 24 39 63 19.2 0
6 13 33 90 123 24 60 84 24 48 72 41.5 14.3

g: number of additional gates. Sum: sum of number of additional gates. ∆g: comparison of sum of
number of additional gates.

Table 12: Comparison of number of additional gates when executing three medium benchmarks on IBM
Q 65 Manhattan.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆g%

ID1 ID2 ID3 g1 g2 g3 Sum g1 g2 g3 Sum g1 g2 g3 Sum HA PHA
6 7 8 27 69 111 207 18 39 93 150 18 42 93 153 26.1 -2
6 7 9 27 69 42 138 18 39 42 99 18 42 51 111 19.6 -12.1
6 7 12 27 69 42 138 18 39 39 96 18 45 48 111 19.6 -15.6
7 8 9 69 111 42 222 39 93 42 174 42 78 51 171 23 1.7
7 8 12 69 111 42 222 39 93 39 171 42 78 48 168 24.3 1.8
8 9 10 111 42 96 249 93 42 90 225 90 45 93 228 8.4 -1.3
9 10 12 42 96 42 180 42 90 39 171 42 117 42 201 -11.7 -17.5

g: number of additional gates. Sum: sum of number of additional gates. ∆g: comparison of sum of
number of additional gates.

Table 13: Comparison of number of additional gates when executing two large benchmarks on IBM Q
65 Manhattan.

Benchmarks Independent Correlated Comparison
ID HA PHA QHSP ∆g%

ID1 ID2 g1 g2 Sum g1 g2 Sum g1 g2 Sum HA PHA
14 14 2676 2682 5358 2400 2496 4896 2463 2469 4932 7.9 -0.7
14 15 2766 2475 5241 2382 2325 4707 2529 2289 4818 8.1 -2.4
14 16 2556 2277 4833 2388 2055 4443 2472 2166 4638 4 -4.4
14 17 2670 4026 6696 2502 3915 6417 2481 3789 6270 6.4 2.3
14 18 2685 4344 7029 2430 3942 6372 2403 3249 5652 19.6 11.3
14 19 2733 7458 10191 2445 6759 9204 2457 6795 9252 9.2 -0.5
15 15 2409 2538 4947 2214 2193 4407 2226 2193 4419 10.7 -0.3
15 16 2328 1986 4314 2049 1983 4032 2295 2052 4347 -0.8 -7.8
15 17 2454 4215 6669 2121 3555 5676 2058 3756 5814 12.8 -2.4
15 18 2448 3693 6141 2157 3792 5949 2202 3417 5619 8.5 5.5
15 19 2643 7395 10038 2112 6741 8853 2325 6915 9240 7.9 -4.4
20 20 75 84 159 69 75 144 60 54 114 28.3 20.8
20 21 81 87 168 81 78 159 51 81 132 21.4 16.9
20 22 78 723 801 69 615 684 63 552 615 23.2 10.1
20 23 87 1416 1503 45 1275 1320 78 1050 1128 25 14.5
21 22 102 693 795 72 648 720 105 555 660 17 8.3
21 23 120 1326 1446 78 1266 1344 75 1152 1227 15.1 8.7

g: number of additional gates. Sum: sum of number of additional gates. ∆g: comparison of sum of
number of additional gates.

Accepted in Quantum 2023-02-06, click title to verify. Published under CC-BY 4.0. 34

	1 Introduction
	2 Background
	2.1 NISQ computing
	2.2 Multi-programming mechanism
	2.3 State of the art

	3 Our multi-programming framework
	4 Parallelism manager
	5 Hardware-aware multi-programming compiler
	5.1 Qubit partition
	5.1.1 Motivational example
	5.1.2 Crosstalk effect characterization.
	5.1.3 Greedy sub-graph partition algorithm.
	5.1.4 Qubit fidelity degree-based heuristic sub-graph partition algorithm.
	5.1.5 Runtime analysis

	5.2 Post qubit partition

	6 Scheduler
	6.1 Mapping transition algorithm

	7 Evaluation
	7.1 Methodology
	7.1.1 Metrics
	7.1.2 Comparison
	7.1.3 Benchmarks
	7.1.4 Algorithm configurations

	7.2 Application: simultaneous executions of multiple circuits of different sizes
	7.2.1 Experimental results
	7.2.2 Result analysis

	7.3 Application: estimate the ground state energy of deuteron

	8 Discussion
	8.1 Multi-programming mechanism and fidelity loss
	8.2 Multi-programming on circuits with varying depths

	9 Conclusion
	A Supplementary experimental results

