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ABSTRACT

Many researchers have seen in the articulation an
intermediate level of representation. In the gestural
phonetic theory, units are articulatory gestures. In order
to assess this theory with observed parameters, we have
defined a robust labelling system (AMULET) of the
multi sensor ACCOR speech database. Main articulatory
gestures searched are Voice Onset and Voice
Termination on both acoustic and laryngographic signals.
We present here two efficient Voiced/Unvoiced/Silence
detectors for the acoustic signals and a third one for the
laryngographic signal.

1. INTRODUCTION

Speech production is a complex process relying  on
coordinated gestures, but the acoustic signal does not
exactly depict its underlaying organisation. The question
that leads up is : what is the right level of
representation ?
Traditionally, the linguistic description of speech is
strictly linear. Various approaches have been proposed
attempted to formalise more enriched conceptions of
phonological structure : incorporation of the syllable
structure, explicit incorporation of consonant-vowel
skeleton,... Even if these approaches have increased the
range of  facts that can be formalised in phonological
theory, they do not explicit the relation between
phonological and physical structure of speech. Many
researchers have seen in the articulation an intermediate
level of representation. Some perception studies have
shown that the perception of linguistic structure is based
on the articulatory structure of speech. What is perceived
are articulatory gestures.
Based on these perception studies, the gestural phonetic
theory is an alternative to previous ones like the Motor
Theory, disproved as too simple. Browman and
Goldstein [1] have abandoned the traditional vision of
linguistic units as mental and abstract processes. They
postulate that the linguistic organisation can be described
with observable parameters. Lexical units are described
in terms of articulatory gestures. A gesture is a basic
action of the vocal tract (constriction or release) through

space and over time. These spatio-temporal gestures are
defined by specifying second-order dynamic equations.
In order to assess the gestural phonetic theory with
observed articulatory parameters, we have defined the
AMULET (Automatic MUltisensor speech Labelling and
Event Tracking) system. It provides a robust annotation
of the ACCOR multisensor speech database [2], in terms
of articulatory events [3].
One of the main articulatory gestures is the vibration of
the vocal cords, which is associated to the articulatory
events : VO (Voicing Onset) and VT (Voicing
Termination). These events may be detected on both
laryngographic and acoustic wave. Nevertheless, on the
acoustic signal, this information may be overlapped by a
noise when a vocal tract constriction happens.
To explore this voicing gesture and the correlation
between acoustic and articulatory events, we have
developped and validated three Voiced/Unvoiced/Silence
(VUS) detection systems. Two detectors are proposed for
the acoustic signal and a third one is proposed for the
laryngographic wave. Each detector is assessed by
comparing results to a hand made labelling.

2. THE ACCOR DATABASE

The multisensor speech database was developped in the
ESPRIT II Basic Research Action « ACCOR »
(Articulatory acoustic Correlation of Coarticulation
patterns). It includes articulatory and aerodynamic as
well as acoustic data. Five signals were recorded
simultaneously for each sentence : the acoustic signal,
the vibrations of the vocal cords obtained by
laryngography, the nasal and oral signals, binary images
of 64 points representing the tongue contact with the
palate : E.P.G.

3. AUTOMATIC ANNOTATION OF
VOICING GESTURES

During the two last decades, many
Voiced/Unvoiced/Silence detectors have been studied to
be used in speech analysis/synthesis, coding or
recognition systems. The most currently used parameters
are energy, zero-crossing rate, autocorrelation, reflexion
coefficients,... and the classification methods are based
on weighted distance measurements [4], change
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detections [5], neural networks [6] or Hidden Markov
Models.

3.1. The acoustic Voiced/Unvoiced/Silence
detection

Our two acoustic detectors are based on an a priori
segmentation of the signal, the Forward-Backward
divergence algorithm [7] : the signal is assumed to be a
sequence of stationary units, each one is characterised by
an autoregressive model Θ (LPC). The divergence test is
based on the monitoring of a suitable statistic distance
between two models Θ1 and Θ2. The procedure is
performed in parallel on the signal as well as on the high
pass filtered signal. To avoid omissions, if the delay
between two boundaries is too long, the signal is
performed in backward direction. The parameters (AR
order and threshold) are speaker independent, and
trained on another database.

3.1.1. A rule based voicing test

The four classical parameters are extracted from each
segment on a centered window :

• the energy (E),
• the autocorrelation (R1),
• the first reflection coefficient (RC1),
• and the zero-crossing rate (Z) .

A set of rules monitores E and R1 in order to give a first
decision. This decision is corrected by RC1 and Z.
The set of rules was trained on a little subset of data, two
repetitions of one sentence for two speakers.
This test is used in order to detect the VO and VT events.
Each segment is labelled as voiced, unvoiced or silence.
Consecutive voiced (resp. unvoiced or silence) segments
are merged, and global boundaries give VO and VT
events.

3.1.2. The Vector Quantization method

◊ The LBG-Rissanen algorithm

The baseline system we implement is a standard LBG
splitting method [8]. The algorithm provides for each
class (voiced V, unvoiced U and silence S) a specific
codebook. We assume that each class (V,U and S) can be
modeled by a multi gaussian distribution, where each
elementary gaussian density function corresponds to a
codeword.
It appears that optimizing the codebook size for each set
of data may result in a more adequate. So, we use an
information criterion calculated from the data set : the
Rissanen criterion I(n).
In the LBG-Rissanen algorithm [9], we compute the
criterion before splitting. Minimizing I(n) results in the
optimal number of references.

I(n) = -Ldg+2 n . p . log N

where : - Ldg is the log likelihood of the training set, 
when classifying a codebook as a multi gaussian
distribution
- p is the parameter space dimension,

- n is the number of codewords,
- N is the cardinal of the training set.

◊ Decision rule

We first gather the three codebooks. The multi
dimensional reference map may be considered as a
simple codebook, and the decision rule is the classical K-
mean classification based on the Euclidean distance in
the cepstral space.

◊ Implementation

All sentences and nonsense words of the training data set
are hand labelled in terms of voiced/unvoiced/silence
segments, and this labelling is projected on automatic
segments.
On these segments we extract a eight MFCC vector, as
well as log(E), RC, RC1 and Z.
Multiple codebooks are constructed in order to determine
the best set of parameters. Experiences are described in
the fourth section.

3.2. The laryngographic voiced/unvoiced
detection

The VO and VT events detection is based on  a
simplified version of the Forward-Backward Divergence
algorithm.
We interpret each segment as voiced (resp. unvoiced)
using a voicing test based on an adaptative level crossing
ratio.

3.2.1. The adaptation of the Forward-Backward
algorithm

The Forward-Backward method is performed on null
mean signals. As the laryngographic signal has a variable
mean, we calculate sequentially the signal mean and we
process the corrected mean. In this simplified version,
detection on the high pass filtered signal is not included.

3.2.2. The adaptative voicing detection

Once changes are detected, we interpret each segment as
voiced/unvoiced using a voicing test based on an
adaptative level crossing ratio which is applied for each
segment on a centered window.
We define two levels on both sides of the signal mean.
We calculate the two level crossing rate. We observe an
important rate for the voiced segments and a very low
one for the unvoiced segments. So, this test is very
robust.
The frontiers of the segments are interpreted as VO and
VT events.

4. EVALUATION AND RESULTS

4.1. The rule based voicing test

To evaluate our test, two experiments are done. In the
first we evaluate labelling of each segment in terms of V,
U and S, and in the second one we evaluate the VO and
VT articulatory events.



4.1.1. First experiment

The training corpus is composed of two repetitions of
one sentence of two different speakers (male and
female).
The evaluation corpus is composed of five repetitions of
three sentences for two different female speakers, one
speaker  is part of the training set.
The evaluation is made comparing the projection of the
hand labelling voiced (resp. unvoiced, silence) segments
on the automatic segments to the automatic voicing
detection. Table 1 is the confusion matrix between
automatic and labelling detection. We perform both the
recognition rate and the reliability rate.

Hand labelling
S U V Reliability

S 2499 268 36 89.15%
Aut U 235 530 236 52.94%

V 76 84 1693 91.34%
Recognition 88.9% 60% 86.15%

Table 1 : rule based detector. V/U/S recognition and reliability
rates.

4.1.2. Second experiment

In this evaluation, we have measured the delay between
the automatic and the hand labelling under 10 ms,
between 10 ms and 20 ms as well as over 20 ms. We
have also taken omissions (O) and insertions (I) into
account.
Delays greater than 20 ms are often due to a persistent
sinusoidal wave (table 2). Insertions of VO and VT
events will be interpreted in the future, with
supplementary treatments as consonantic areas
detections.

<10 10<20 >20 O I
VO 69/73 1/73 3/73 2
VT 61/73 4/73 8/73 2

Table 2 :. rule based detector. VO and VT evaluation.

4.2. The Vector Quantization method

4.2.1. Corpus

A first experiment is speaker independent. The training
data set is composed of five repetitions of two sentences
for one speaker, and some nonsense words VCV (V :
/a,i,u/ and C :/p,t,k,tS,st,kl/). The recognition data set is
composed of five repetitions of  a sentence (not included
in the training set) for a different speaker (corpus1).
The second experiment is multi-speaker. The training
data set is composed of five repetitions of two sentences
for two speakers, and some nonsense words VCV (V :
/a,i,u/ and C :/p,t,k,tS,st,kl/). The recognition data set is
composed of five repetitions of five repetitions of one
sentence for the two same speakers (corpus2).
To assess the LBG-Rissanen algorithm, we have
performed five experiments with different parameters.
We retain two families in this presentation :

• Set4 : 4 MFCC, log(E), RC1, Z,
• Set5 : log(E), RC1, Z.

4.2.2. Experiments

For corpus1 as well as for corpus2, we perform the LBG
algorithm and the LBG-Rissanen algorithm for each set
of parameters.

◊ First experiment : corpus1, set 4 & set 5.

To present our results, we give the confusion matrix and
we indicate the number of codewords n for each
elementary codebook V,U and S.

Hand labelling
S U V Reliability

S   n=10 168 19 3 88%
Aut U   n=10 14 17 22 32%

V   n=8 17 11 193 87%
Recognition 84% 40% 89%

Table 3 : recognition and reliability rates.Set4, Corpus1.

Hand labelling
S U V Reliability

S   n=17 184 32 19 78%
Aut U   n=4 6 6 5 35%

V   n=4 9 9 194 92%
Recognition 92% 14% 89%

Table 4 : recognition and reliability rates. Set4, Corpus1.

Hand labelling
S U V Reliability

S    n=4 74 1 0 99%
Aut U   n=40 119 43 58 20%

V   n=4 6 3 160 95%
Recognition 37% 91% 73%

Table 5 : recognition and reliability rates. Set4, Corpus1.

We can observe that raising n does not increase globally
neither the recognition rate nor the reliability rate.
But an imbalance between the cardinal n of the different
classes has to be controlled. For example, if the cardinal
is increased for the class U (table 5), S attracts U, the
reliability rate decreases for U and the recognition rate
increases ; the contrary is observed when raising the
cardinal of the class S.
The introduction of the four MFCC globally increases
the recognition rates, and the different reliability rates are
balanced (table 6).

Hand labelling
S U V Reliability

S  n=10 167 22 8 85%
Aut U  n=10 15 19 5 49%

V  n=10 17 6 205 90%
Recognition 84% 40% 94%

Table 6 : recognition and reliability rates. Set5, Corpus1.

◊ Second experiment : corpus 1, set 4.

Hand labelling
S U V Reliability

S  n=10 275 36 9 85,9%
Aut U n=10 26 49 8 59%

V n=10 28 16 379 89.6%
Rec. rate 83.5% 48.5% 95.7%

Table 7 : recognition and reliability rates.Set4,Corpus2.



The best result is obtained for the multi speaker
experiment, with Set4 (table 7).

As a conclusion, the less reliable class is the unvoiced
class, we observe a confusion between the U and S
classes.
In our study of VO and VT detection, the two V/U/S
detectors can be considered as V/UV detectors. In this
case,  the recognition rate of the unvoiced class exceeds
93% and the reliability rate 95%.

4.3. The laryngographic detector

The evaluation procedure is the same as in 4.1.2. .
As shown in table 3, we observe good results. Delays
greater than 10ms are due to a persistent sinusoidal wave.

<10 10<20 >20 O I
VO 59/61 2/61 1
VT 56/61 3/61 2/61 1

Table 9 : laryngeal VO and VT evaluation .

5. CORRELATION BETWEEN ACOUSTIC
AND LARYNGOGRAPHIC VOICING

GESTURES

In order to study the correlations between laryngographic
and acoustic voicing gestures, we have projected the
laryngographic voicing gestures on the hand labelling
acoustic signal (table 9).

Silence Unvoiced Voiced
Unvoiced 93.3% 6.6%
Voiced 1.6% 0.4% 98%
Table 9 : Confusion matrix between laryngographic and
acoustic voicing activities.

The laryngographic voicing gestures are good indicators
of the voicing activity on the acoustic signal. Most of the
confusions reveals a persistent voicing wave. For
instance, it concerns the production of voiced plosives
sounds, here /g/ and /d/ (figure 1) : voice bar is the result
of both a persistent voicing wave and an overlapping
noise due to the vocal tract constriction. The voice bar is
not the result of a laryngeal voicing activity. Statistical
results on nonsense words (Vowel- Voiced Plosives-
Vowel) are in process.
These observations confirm that the end of the vibrations
on the acoustic signal does not always correspond to the
end of a voicing gesture. Any automatic labelling
procedure will give the true end of voicing gestures
without a delay.

6. CONCLUSION

We have proposed three efficient, speaker-independent
and robust methods of voiced/unvoiced/silence detection.
These three methods are used to label the ACCOR
multisensor speech database and to extract indicators of
the voiced gesture. The experiments prove clearly their
consistency.
Then we propose a preliminary study of the spatial
temporal correlation between the voicing events of the
laryngographic and these of the acoustic signal. The
observed delays shows interesting features. Our
automatic procedures will enable to label efficiently a
large amount of data to collect more statistical significant
results on the study of various correlations.
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Figure 1 : correlation between laryngeal and acoustic voicing activity.
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