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In this paper, we propose a hybrid parallel model checking algorithm for both shared and distributed memory architectures. The model checking is performed simultaneously with a parallel construction of system state space by distributed multi-core machines. The representation of the system's state space is a hybrid graph called Symbolic Observation Graph (SOG), which combines the symbolic representation of its nodes (sets of single states) and the explicit representation of its arcs. The SOG is adapted to allow the preservation of both state and eventbased LTL formulae (hybrid LTL), i.e. the atomic propositions involved in the formula to be checked are either state or event-based propositions. We have implemented the proposed model checker within a C++ prototype and compared our preliminary results to the LTSmin model checker.

Introduction

Model checking [START_REF] Clarke | Model checking[END_REF] has proven to be a major formal verification technique. It is based on an automatic procedure that takes a model M of a system and a formula ϕ expressing a temporal property, and decides whether the system satisfies the property (denoted by M |= ϕ). The automata-based LTL verification decision procedure is reduced to the emptiness check of a synchronized product between two automata A M and A ¬ϕ (denoted by A M × A ¬ϕ ). A M represents the state space of the system and A ¬ϕ represents the automaton of the negation of the formula ϕ to be verified (i.e. accepting all the words that do not satisfy ϕ). Thus, model checking is based on an exhaustive exploration of the system state space and, consequently, suffers from the state space explosion problem [START_REF] Valmari | The state explosion problem[END_REF].

The system state space can be represented explicitly (i.e. each state/arc of the graph is represented individually) or symbolically (i.e. the set of the reachable states is represented compactly using decision diagram-based techniques). Hybrid representation of the state space (i.e. an explicit graph where nodes are sets of reachable states encoded symbolically) is also possible, allowing to combine the advantages of both representations. Several approaches (e.g. [START_REF] Courcoubetis | Memory efficient algorithms for the verification of temporal properties[END_REF][START_REF] Henzinger | A space-efficient on-the-fly algorithm for real-time model checking[END_REF][START_REF] Godefroid | A partial approach to model checking[END_REF][START_REF] Bhat | Adding partial orders to linear temporal logic[END_REF][START_REF] Valmari | A stubborn attack on state explosion[END_REF][START_REF] Kaivola | The weakest compositional semantic equivalence preserving nexttime-less linear temporal logic[END_REF][START_REF] Fisler | Is there a best symbolic cycle-detection algorithm?[END_REF][START_REF] Biere | Multiple state and single state tableaux for combining local and global model checking[END_REF][START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF][START_REF] Sebastiani | Symbolic systems, explicit properties: On hybrid approaches for LTL symbolic model checking[END_REF][START_REF] Klai | MC-SOG: an LTL model checker based on symbolic observation graphs[END_REF]) have been proposed to cope with the state space explosion problem in order to get a manageable state space and to improve the scalability of the model checking. In addition to techniques for reduction and compression, parallel and distributed-memory processing can be used [START_REF] Barnat | Parallel model checking algorithms for linear-time temporal logic[END_REF]. The use of distributed processing increases the speed and scalability of model checking by exploiting the cumulative computational power and memory of a cluster of computers. Such approaches have been studied in various contexts leading to different solutions for both symbolic and explicit model checking (e.g. [START_REF] Barnat | Parallel model checking algorithms for linear-time temporal logic[END_REF][START_REF] Holzmann | Parallelizing the spin model checker[END_REF][START_REF] Filippidis | An improvement of the piggyback algorithm for parallel model checking[END_REF][START_REF] Barnat | DiVinE 2.0: High-performance model checking[END_REF][START_REF] Barnat | DiVinE 3.0 -an explicit-state model checker for multithreaded C & C++ programs[END_REF]).

A Symbolic Observation Graph (SOG) [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF][START_REF] Klai | MC-SOG: an LTL model checker based on symbolic observation graphs[END_REF] is a graph whose construction is guided by a set of observable atomic propositions involved in a formula. These atomic propositions can represent events or actions (event-based SOG [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF]), or state-based properties (state-based SOG [START_REF] Klai | MC-SOG: an LTL model checker based on symbolic observation graphs[END_REF]). The nodes of a SOG are aggregates hiding a set of local states which are equivalent with respect to the observable atomic propositions, and are compactly encoded using Binary Decision Diagram techniques (BDDs) [START_REF] Bryant | Symbolic boolean manipulation with ordered binary-decision diagrams[END_REF]. The arcs of an event-based SOG are exclusively labeled with observable actions. It has been proven that both event and statebased SOGs preserve stutter-invariant LTL formulae [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF][START_REF] Klai | MC-SOG: an LTL model checker based on symbolic observation graphs[END_REF]. Moreover, once built for a given LTL formula φ 1 , the SOG can be reused to check any other LTL formula φ 2 involving a subset of the atomic propositions of φ 1 .

In previous works, we have investigated different approaches to parallelize the SOG construction. In [START_REF] Ouni | A parallel construction of the symbolic observation graph: the basis for efficient model checking of concurrent systems[END_REF][START_REF] Ouni | Parallel symbolic observation graph[END_REF], we propose different algorithms to benefit from additional speedups and performance improvement in execution time and memory saving. However, in some cases where huge state spaces are involved [START_REF] Abid | SOG-based multi-core LTL model checking[END_REF], the model checking does not finish due to lack of memory, or it takes too long.

In this work, we present a distributed model checking technique based on the SOG. It extends the multi-core SOG-based model checker introduced in [START_REF] Abid | SOG-based multi-core LTL model checking[END_REF] by allowing the handling of huge state spaces. To achieve this, we propose a hybrid technique that combines parallel (shared memory) and distributed (message passing) construction algorithms [START_REF] Ouni | Towards parallel verification of concurrent systems using the symbolic observation graph[END_REF][START_REF] Abid | SOG-based multi-core LTL model checking[END_REF]. Roughly, the construction of a SOG is partitioned over a set of processes which, in turn, distribute the building of their sub-graphs over a set of threads. We thus exploit the strengths of the parallel exploration/construction of the SOG, and distribute the processes in charge of the construction and the verification over multiple machines when a single one (although multi-core) is not sufficient.

In the proposed algorithm, both event-and state-based LTL properties can be expressed, combined, and verified. Here, the event-based and state-based semantics are interchangeable: an event can be encoded as a change in state variables, and likewise one can equip a state with different events to reflect different values of its internal variables. However, converting from one representation to the other often leads to a significant enlargement of the state space. Typically, eventbased semantics is adopted to compare systems according to some equivalence or pre-order relation (e.g. [START_REF] Tao | Verification and diagnosis of testing equivalence and reduction relation[END_REF][START_REF] Kaivola | The weakest compositional semantic equivalence preserving nexttime-less linear temporal logic[END_REF]), while state-based semantics is more suitable to model-checking approaches [START_REF] Geldenhuys | Techniques for smaller intermediary bdds[END_REF]. Combining both semantics then allows to express properties in a compact and intuitive manner.

The paper is structured as follows. First, we recall in Section 2 the notions of Kripke structures and hybrid LTL. Then, in Section 3, we introduce the event and state-based SOG. Section 4 describes the main contribution of the paper: a model checker based on the hybrid parallel construction of an event-and statebased SOG. The proposed approach is evaluated and compared to other related works in Section 5. Finally, Section 6 is dedicated to conclusion and perspectives.

Preliminaries

In this paper, we consider hybrid linear-time temporal logic (hybrid LTL) formulae where both state-and event-based atomic propositions can occur. Therefore, we chose to represent the semantics (behavior) of a system by a Labeled Kripke Structure (LKS ). Next, we present their formal definition and semantics.

Definition 1 (Labeled Kripke Structure (LKS)). Let AP be a finite set of atomic propositions and Act be a set of actions. An LKS over AP is a 5-tuple Γ, Act, L, →, s 0 where:

-Γ is a finite set of states, -L : Γ → 2 AP is a labeling (or interpretation) function, -→ ⊆ Γ × Act × Γ is a transition relation, and -s 0 ∈ Γ is the initial state.
Definition 2 (Hybrid LTL). Given a set of atomic propositions AP and a set of actions Act, a hybrid LTL formula is defined inductively as follows:

each member of AP ∪ Act is a formula, if φ and ψ are hybrid LTL formulae, so are ¬φ, φ ∨ ψ, Xφ and φ U ψ.

Other temporal operators, e.g. F (eventually) and G (always) can be derived as follows: F φ = true ∪ φ and Gφ = ¬F ¬φ.

An interpretation of a hybrid LTL formula is an infinite run w = s 0 s 1 s 2 . . . (of some LKS ), assigning to each state s i a set of atomic propositions and a set of actions that are satisfied within that state. A p ∈ AP is satisfied by a state s i if it belongs to its label (i.e. L(s i )), while an action a ∈ Act is said to be satisfied within a state s i if it occurs from this state in w (i.e. (s i , a, s i+1 ) ∈→). In our case, where a single action can occur at a time (i.e. interleaving model of concurrency), at most one action can be assigned to a state of a run.

We write w i for the suffix of w starting from s i . Moreover, we say that p ∈ s i , for p ∈ AP ∪ Act, when p is satisfied by s i . The hybrid LTL semantics is then defined inductively as follows:

-w |= p iff p ∈ s 0 , for p ∈ AP ∪ Act, -w |= φ ∨ ψ iff w |= φ or w |= ψ, -w |= ¬φ iff not w |= φ, -w |= Xφ iff w 1 |= φ, and -w |= φ U ψ iff ∃i ≥ 0 such that w i |= ψ and ∀ 0 ≤ j < i, w j |= φ.
Thus, an LKS K satisfies a hybrid LTL formula ϕ, denoted by K |= ϕ, iff all its runs satisfy ϕ.

It is well known that LTL formulae without the next operator (X), denoted by LT L \ X, are invariant under the so-called stuttering equivalence [START_REF] Clarke | Model checking[END_REF]. Stuttering occurs when the same atomic propositions hold on two or more consecutive states of a given run. In the next section, we will use this equivalence relation to prove that event-and state-based SOGs preserve hybrid LT L \ X properties.

3 Event-Based and State-Based SOG Symbolic Observation Graph (SOG) [START_REF] Klai | MC-SOG: an LTL model checker based on symbolic observation graphs[END_REF][START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF] is an abstraction of the reachability graph of concurrent systems. The construction of a SOG is guided by the set of atomic propositions occurring in the LTL formula to be checked. Such atomic propositions are called observed, while the others are unobserved. Nodes of the SOG are called aggregates, each of them is a set of states encoded efficiently using decision diagram techniques (e.g. LDD [START_REF] Blom | Symbolic reachability for process algebras with recursive data types[END_REF], a List-implementation of Multiway Decision Diagrams). Despite the exponential theoretical complexity of the size of a SOG (a single state can belong to several aggregates), its size is, in practice, much more reduced than the one of the original reachability graph.

The difference between the event-based and the state-based versions of the SOG ( [START_REF] Haddad | Design and evaluation of a symbolic and abstractionbased model checker[END_REF] and [START_REF] Klai | MC-SOG: an LTL model checker based on symbolic observation graphs[END_REF], respectively) is the aggregation criterion. In the event-based version, observed atomic propositions correspond to some actions of the system, and aggregates contain states that are connected by unobserved actions. On the other hand, in the state-based version, observed atomic propositions are Boolean state-based conditions, and aggregates regroup states with the same truth values of the observed atomic propositions.

In this section, we present the definition of an event-state based SOG which abstracts systems' behavior while preserving hybrid LTL formulae (i.e. both state-and action-based atomic propositions can be used within a same formula). In that sense, the construction of aggregates will depend on both a set of actions and state variables appearing as atomic propositions in the checked formula. Here, systems' behavior will be modeled as Labeled Kripke Structures (LKS).

Revisiting SOG for hybrid LTL

The adaptation of the SOG to hybrid LTL leads to new aggregation criteria: (1) two states belonging to a same aggregate must have the same truth values of the state-based atomic propositions of the formula; (2) for any state s in the aggregate, any state s having the same truth values of the atomic propositions as s, and being reachable from s by the occurrence of an unobserved action, belongs necessarily to the same aggregate; and (3) for any state s in the aggregate, any state s which is reachable from s by the occurrence of an observed action, is not a member of the same aggregate (even if it has the same label as s), unless it is reachable from another state s of the aggregate by an unobserved action.

In the following, we present the formal definition of an aggregate and a SOG, according to a given LKS and the new aggregation criteria discussed above.

Definition 3 (Event-State Based Aggregate). Let K = Γ, Act, L, →, s 0 be an LKS over a set of atomic propositions AP , and Obs ⊆ Act be a set of observed actions of K. Then, UnObs = Act \ Obs denotes the set of unobserved actions. An aggregate a of K w.r.t. Obs is a triplet S, d, l satisfying:

-S ⊆ Γ where:

• ∀s, s ∈ S, L(s) = L(s ); • ∀s ∈ S, (∃(s , u) ∈ Γ × UnObs | L(s ) = L(s) ∧ s u -→ s ) ⇒ s ∈ S; • ∀s ∈ S, ((∃(s , o) ∈ Γ × Obs | s o -→ s ) ∧ ( (s , u) ∈ S × UnObs | L(s ) = L(s ) ∧ s u -→ s )) ⇒ s ∈ S. -d ∈ {true, false}; d = true iff S contains a dead state.
l ∈ {true, false}; l = true iff S contains an unobserved cycle.

Before defining event-state based SOGs, let us define the following operations:

-SAT AP (S ): for a set of states S ⊆ Γ with the same labels (i.e. such that L(s) = L(s ), for any s, s ∈ S), returns the set of states that are reachable from any state in S by a sequence of unobserved actions, and which have the same value of the atomic propositions as S. It is defined as follows:

SAT AP (S ) = s ∈ Γ ∃s ∈ S, ∃σ ∈ U nObs * , s σ -→ s ∧ ∀s ∈ Γ, ∀β prefix of σ, s β -→ s ⇒ L(s) = L(s )
-Out(a, t): returns, for an aggregate a = S, d, l and action t, the set of states that are reachable from some state in a by firing t. It is defined as follows:

Out(a, t) = if t ∈ Obs {s ∈ Γ | ∃s ∈ S, s t - → s } if t ∈ UnObs {s ∈ Γ | ∃s ∈ S, s t - → s ∧ L(s) = L(s )}
-Out τ (a): returns, for an aggregate a, the set of states whose label is different from the label of any state of a, and which are reachable from some state in a by firing unobserved actions. It is defined as follows:

Out τ (a) = t∈U nObs
Out(a, t)

-Part AP (S ): returns, for a set of states S ⊆ Γ , the set of subsets of S that defines the smallest partition of S according to the labeling function L. It is defined as follows:

Part AP (S ) = {S 1 , S 2 , . . . , S n } ⇔ S = n i=1 S i : ∀i ∈ {1..n}, ∀s, s ∈ S i , L(s) = L(s ) ∧ ∀s ∈ S i , ∀s ∈ S j , j = i, L(s) = L(s )
Now we are able to define the symbolic observation graph for hybrid LTL.

Definition 4 (Event-State Based SOG). Let K = Γ, Act, L, →, s 0 be an LKS over a set of atomic propositions AP , and Obs ⊆ Act be a set of observed actions of K. The SOG associated with K, over AP and Obs, is an LKS G = A, Obs ∪ {τ }, L , → , a 0 where: 1. A is a nonempty finite set of aggregates satisfying:

-∀a ∈ A, ∀t ∈ Obs, ∀o i ∈ Part AP (Out(a, t)), ∃a ∈ A s.t. a .S = SAT AP (o i ) -∀a ∈ A, ∀o i ∈ Part AP (Out τ (a)), ∃a ∈ A s.t. a .S = SAT AP (o i ) 2. L : A → 2 AP is a labeling function s.t. L (a = S, d, l ) = L(s) for s ∈ S; 3. → ⊆ A × Act × A is the action relation where: -(a, t, a ) ∈→ ⇔ (t ∈ Obs∧∃o i ∈ Part AP (Out(a, t)) s.t. SAT AP (o i ) = a .S) -(a, τ, a ) ∈→ ⇔ (∃o i ∈ Part AP (Out τ (a)) s.t. SAT AP (o i ) = a .S) 4. a 0 is the initial aggregate s.t. a 0 = SAT AP ({s 0 })
The finite set of aggregates A of the SOG is defined in a complete manner such that the necessary aggregates are represented. The labeling function gives to any aggregate of the SOG, the same label as its states. Point 3 defines the action relation: there exists an arc, labeled with an observed action t (resp. τ ), from a to a iff a is obtained by saturation (using SAT AP ) on a set of equally labeled reached states Out(a, t) (resp. Out τ (a)) by the firing of t (resp. any unobserved action) from states in a. Finally, point 4 characterizes the initial aggregate.

Figure 1(b) illustrates an event-state based SOG corresponding to the LKS of Figure 1(a). This SOG consists of 4 aggregates {a 0 , a 1 , a 2 , a 3 } and 4 edges. The initial aggregate a 0 is obtained by adding the initial state s 0 of the LKS, and any state labeled similarly to s 0 that is reachable from it by unobserved sequences of actions. Hence, a 0 contains the states s 0 and s 4 . State s 2 , which is reachable from s 0 by an observed action o 1 , is excluded from a 0 and belongs to a 1 . The same holds for s 6 which is reachable from s 4 by o 1 and belongs to the aggregate a 2 . State s 3 (resp. s 7 ) is added to a 1 (resp. a 2 ) because it has the same label as s 2 (resp. s 6 ) and it is reachable from it by an unobserved action.

According to Definition 4, the SOG associated with an LKS is unique. Thus, by considering the coarsest possible partition of homogeneous successor aggregates, aggregates a 1 and a 2 in Figure 1(b) will be merged into a unique aggregate since they have the same label. Note that SOGs can also be nondeterministic since, for instance, an aggregate can have several successors with τ (i.e. when the reached states, by τ , have different labels).

Checking stuttering invariant properties on SOGs

The equivalence between checking a given stuttering invariant formula (e.g. LT L\ X formula) on the new adapted SOG, and checking it on the original reachability graph is ensured by the preservation of maximal paths (i.e. finite paths leading to a dead state and infinite paths).

Note that a SOG preserves the observed traces of the corresponding model, thus it preserves the infinite runs involving infinitely often observed transitions. Then, the truth value of the state-based atomic propositions occurring in the formulae is visible on the SOG by labeling each aggregate with the atomic propositions labeling of (all) its states. Moreover, the d and l attributes of each aggregate allow detecting deadlocks and livelocks (unobserved cycles), respectively. The detection of the existence of dead states and cycles inside an aggregate is performed using symbolic operations (decision diagram-based operations) only. We can now establish that an LKS satisfies a hybrid LT L \ X formula iff the corresponding SOG does. The reader can find the proof of Theorem 1 in [START_REF] Ouni | Towards parallel verification of concurrent systems using the symbolic observation graph[END_REF].

Theorem 1. Let K be an LKS and G be the corresponding SOG over Obs and AP . Let ϕ be a hybrid LT L \ X formula on a subset of Obs ∪ AP . Then K |= ϕ ⇔ G |= ϕ.

Hybrid LTL model checker based on the SOG

In this section, we propose an on-the-fly parallel/distributed LTL model checking approach based on the event-state based SOG. Here, our aim is to compute the synchronized product between the automaton modeling the negation of the hybrid LTL formula with the SOG (LKS ), and check its emptiness on-the-fly.

For this purpose, a dedicated process, called model checker process is created (see Figure 2). It builds the Büchi automaton of the formula negation, and then it initiates the parallel construction of the SOG simultaneously with the model checking process (i.e. computation of the synchronized product and the emptiness check). Note that this process performs model checking sequentially, while SOG construction is distributed.

Regarding the construction of the SOG, it is performed by running several processes, where each process consists of several threads. The partitioning of the building of the SOG is performed at the process level, where the load balancing between processes is performed statically by using a hash function. On the other hand, the partitioning of each part of the graph, for a given process, is performed at the thread level by using a dynamic load balancing function. Since every process has its own memory, during the computation of the synchronized product the model checker process asks builder processes for an aggregate: (1) whether it contains a livelock (unobserved cycle) or a deadlock state, and (2) in the memory of which process its successors are stored. The model checker process does not require to receive the LDD structure from builder processes, but rather it receives just a unique identifier for every aggregate. This allows to reduce the size of exchanged messages between the model checker process and the builder ones, as the size of an aggregate can be huge. To do so, we use the hash function MD5 [START_REF] Dobbertin | Cryptanalysis of MD5 compress[END_REF], which is also used to decide where an aggregate will be stored during the construction of the SOG. That is, the same function is used to statically balance the load of aggregates construction on builder processes.

In order to illustrate how the model checker process retrieves information about a SOG from builder processes, we consider the SOG sample described in Figure 3(a). Let us assume that we have three builder processes, and that the static load balancing produces three graphs as illustrated in Figure 3(b). In this figure, a dotted node of a graph in a process i corresponds to an aggregate such that its LDD structure is not stored by process i. Process i stores only its MD5 value (its unique identifier) and the identity of the process that should store it. For instance, in the graph built by process 1, there is only the aggregate q a that is stored with its LDD structure by process 1. For the two other aggregates q b and q d , only their MD5 values are stored. Indeed, q b is stored in the memory of process 2, while q d and q c are stored in the memory of process 3.

With the above in mind, we next describe the algorithm of the model checker process shown in Figure 2. The process starts by requesting from process 1 the initial aggregate. The builder process gets as an answer its MD5 value. When the model checker asks the successors of an aggregate, it sends its request to the process storing the aggregate. For instance, for the SOG of Figure 3(b), when the builder process wants to explore the successors of the initial aggregate, it sends a request to the builder process 1. As an answer to this request, the model checker process should get the MD5 values of aggregates q b and q d , and the identities of the processes storing these successors. Following the same approach, in order to get the successors of q b , the model checker process will send its request to process 2. The termination is fully managed by the model checker process, since it may request information from builder processes even if they terminate the SOG construction. In fact, termination is achieved when the model checker process detects an acceptance run or when it is not possible to progress in the computation of the synchronization product, i.e. the result is an empty set. Now we describe the algorithm of builder processes (see Figure 4). The process starts by creating several threads. One of them is dedicated for communication with other processes, while the others operate in a loop as follows. At each iteration, it pops a set of markings from which it builds an aggregate. The latter is canonicalized [START_REF] Ouni | Reducing time and/or memory consumption of the SOG construction in a parallel context[END_REF] (i.e. aggregates a and a are equals iff they have the same canonical representation), then through a hash function the thread determines if the computed aggregate should be stored by its process or to be sent to another builder process. In order to minimize communication cost, only markings of the canonicalized version of an aggregate are sent. Function idPr(A) returns the process identity that has to store the aggregate A. If an aggregate should be sent to another process, only its hash identifier is stored by the current process. Note that only thread 1 of the first builder process has to initiate the construction of the distributed SOG by pushing an initial marking into its stack.

Different messages can be received by a builder process from the model checker process. We use the function Receive(TAG, message, 0 ) to receive a message of type TAG from process with ranking 0. Function Send(TAG, message, 0 ) allows for sending a message of type TAG to process with ranking 0. A builder process can receive the following types of messages from a model checker process:

-Message ASK INITIAL corresponds to a request from the model checker process to get the MD5 value and the identity of the process storing the aggregate. This message is only received by the master builder process. -Message ASK SUCCESSORS corresponds to a request from the model checker process to get the list of successors of the aggregate having the MD5 value specified in the message. Also, information about divergence and deadlocks related to this aggregate are concerned. -Message TERMINATE is sent by the model checker process in order to terminate builder processes. This message is sent when the model checker process has already performed the emptiness check.

Implementation and Experiments

The implementation of the hybrid model checker is based on the Spot library [START_REF] Duret-Lutz | Spot 2.0 -A framework for LTL and ω-automata manipulation[END_REF]: an object-oriented model checking C++ library that offers a set of building blocks to develop LTL model checkers based on the automata-theoretic approach. Experiments were performed on the Magi cluster (http://magi.univ-paris13. fr/wiki/) of University Sorbonne Paris Nord and on the Grid'5000 network [START_REF] Bolze | Grid'5000: A large scale and highly reconfigurable experimental grid testbed[END_REF]. For the former, we used the partition COMPUTE which has 40 processors (two Intel Xeon E5-2650 v3 at 2.30GHz) connected by an InfiniBand network, and 64GB of RAM. For the latter, we used the gros cluster composed of 124 processors connected by a 25 Gbps Ethernet network, and 96GB of RAM.

A total of 5 models from the Model Checking Contest (https://mcc.lip6.fr/ models.php) were used in our experiments: Philosophers (philo), RobotManipulation(robot), SwimmingPool (spool), CircularTrains (train), and TokenRing (tring). Due to lack of space, we show only some of these figures. The reader can find the files needed to reproduce our experiments and all the figures at https://up13.fr/?G8tMFVS2. Experiments on models philo and train were performed on Grid'5000, while for the other models they were on Magi.

We measured the time (in seconds) consumed by the verification of 200 random formulae by progressively increasing the number of processes and cores. For this, we set a timeout of 10 minutes. LT L \ X formulae were generated by the tool randltl (provided by Spot), and filtered into 100 satisfied and 100 violated properties. In the following, the figures are presented using a logarithmic scale, where each point represents a formula (green if satisfied and red if violated).

First, we compared the performance of our hybrid model checker (pmc-sog) when using only one process (multi-core execution) and several processes. processes with models tring10 and philo10 as inputs. Observe that the hybrid execution outperforms the multi-core one, and the verification performance is improved by using more processes despite the induced communication overhead.

Then, we performed a comparison between our tool (pmc-sog) and the LTSmin model checker [START_REF] Kant | LTSmin: high-performance language-independent model checking[END_REF]. LTSmin (https://ltsmin.utwente.nl/) is an LTL/CTL/µcalculus model checker that accepts inputs in different modeling formalisms, e.g. PNML, UPPAAL, DiVinE. For sake of simplicity, we choose the traditional place/transition Petri nets in PNML format, thus we run pnml2lts-mc in our experiments since it is the LTSmin frontend that performs LTL model checking for PNML models. We also adopted the DFS (Depth-First Search) algorithm for all approaches. It is worth noting that we only used formulae whose atomic propositions are based on states because LTSmin is a state-based model checker.

We keep all the parameters across the different model checkers the same. Tuning these parameters on a per-model basis could give faster results, however it would hide the real performance gains obtained by parallelization. We also avoid resizing of the state storage in all cases by increasing the initial hash table size enough for all benchmarked input models.

We show in Figures 6 and7 a selection of our experimental results. As we can observe, our approach performs better than LTSmin for big models (i.e. robot50, spool5). For instance, LTSmin could not verify 96 formulae of robot50 due to timeout, lack of memory or unknown errors. On the other hand, pmc-sog could not verify 49 formulae. We also note that LTSmin has a better performance for small models (i.e. philo10, train12). Indeed, at the right of each figure the number of states explored by LTSmin during the verification of each formula, confirms this observation. For the model robot50, LTSmin explores 3.64 × 10 9 states on average for verifying violated formulae, and 2.56×10 9 states on average for verifying satisfied properties. On the other hand, for the model train12, LTSmin explores 4.94 × 10 3 states on average for verifying violated formulae, and 2.22 × 10 3 states on average for verifying satisfied properties. This disparity w.r.t. explored states allows LTSmin to quickly verify properties on small models. In this case, the performances of our tool are reduced due to the communication overhead induced by the increase of the number of processes (contrary to LTSmin that does not require any communication since it is a multi-core tool), as well as the time consumed by MD5 computation, the construction and the reduction of the SOG aggregates. Besides, our tool outperforms LTSmin for bigger models since more space memory in total is allocated by the operating system to the tool, and the storage of a SOG is split over processes. Thus, processes can be speedier as they manage less memory space to store parts of the SOG, or they terminate the model checking while LTSmin cannot due to lack of memory.

To improve our tool performances against relatively small models, we could use some heuristics to stop the local computation of an aggregate, and prioritize the building of the synchronized product and the search for an accepting cycle. A possible heuristic could be a predefined threshold (parameter of our tool) defining the maximum number of states per aggregate. Once this threshold is reached for a current aggregate, its construction is stopped (i.e. split the aggregate). In this case, some aggregates would be connected by a τ transition (i.e. unobserved).

As a preliminary deduction, no model checker has an absolute advantage over the other: our model checker is the fastest for checking properties that require to explore a large number of states, while LTSmin performs better for cases requiring less states to explore. Finally, it is important to emphasize that our tool is still a prototype and its results should be confirmed by more testing and improving some of its aspects.

Conclusion

In this paper, we proposed a hybrid parallel model-checker approach for eventand state-based LT L\X logic. This approach targets both distributed and shared memory architectures, and operates on a hybrid representation of the state space called SOG. Preliminary results of experiments on state-based formulae (only) show that our approach is competitive in comparison with the LTSmin parallel model checker. Our approach has the advantage to handle event-and statebased LT L \ X, allowing to make formulae containing state and action atomic propositions. This allows to express simple properties intuitively, leading to a smaller state space to explore during the verification process. We plan to pursue the evaluation of our prototype on real word examples and against other model checking tools. Also, many improvements of our algorithm will be investigated, e.g. heuristics to increase efficiency for small models, parallelize the emptiness check, combine symbolic representation and partial order reduction, etc.
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