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Introduction

The number of Twin primes: There are infinitely many twin primes. Two primes (p, q) are called twin primes if their difference is 2. Let π 2 (x) be the number of primes p such that p <= x and p + 2 is also a prime. Then it is known:

π 2 (x) ≤ C 1 C 2 x (log x) 2 1 + O log log x log x
where C 2 = P >2 1 -(p -1) -2 = 0.66016 . . . is the twin-prime constant. Another constant C 1 is conjectured to be 2, by Hardy and Littlewood, but the best result so far is C 1 = 7 + ε obtained by Bombieri, Friedlander, and Iwaniec (1986). In practice this seems to be a exceptionally good estimate (even for small N) {seeTable 1}. 

1 p + 1 p + 2 < ∞.
B is now called the Brun's constant. (B = 1.90216054 . . .)

Prime pairs {n, n + 2k}, q in N. What if we replace the polynomials {n, n + 2} with {n, n + 2k}. In this case w(p) = 1 if p/2k and w(p) = 2 otherwise.. 

C 2,k = C 2 p|k,p>2 p -1 p -2 .
The expected number of prime pairs f{p, p + 2k} with p <= N is

π k (x) = 2c 2,k N 2 dx (log x) 2 ≈ 2c 2,k N (log N ) 2
For example, when searching for primes {n, n + 210} we expect to find (asymptotically) Table 2 shows that this is indeed the case. Erdos was the first to prove that there are infinitely many n for which p n+1 -p n is appreciably greater than log p n , and Rankin proved that there are infinitely many n for which

p n+1 -p n > c (log p n ) (log 2 p n ) (log 4 p n ) (log 3 p n ) 2
where log 2 x = log log x and so on, and c is a positive constant. In the opposite direction, Bombieri and Davenport (1966) proved that there are infinitely many n for which

p n+1 -p n < (0.46 • • • ) log p n
Of course, if the "prime twins" conjecture is true, there are infinitely many n for which p n+1 -p n = 2.

There is a somewhat paradoxical situation in connection with the limit points of the sequence

p n+1 -p n log p n
Erd"os,and Ricci (independently) have shown that the set of limit points has positive Lebesgue measure, and yet no number is known for which it can be asserted that it belongs to the set.

Part I. Existence theorems twin primes

Theorem 1

Every positive integer if written in the form p = 3k + 1 or p = 3k -1, with k ∈ N can be prime if and only if κ = 2µ, µ ∈ N and the prime to be derived in the form 6µ + 1 or 6µ -1 respectively.

Proof

We assume that the prime p is written in the form p = 3k + 1 or p = 3k -1 then p > 2. We have 2 choices .... a) k = 2µ + 1 ⇒ p = 3(2µ + 1) + 1 = 2(3µ + 2) or p = 3(2µ + 1) -1 = 2(3µ + 1) ie 2/p which is absurd, because p is prime and not composite with p > 2. b) The second case is summarized as k = 2µ ⇒ p = 3(2µ) + 1 = 6µ + 1 or p = 6µ -1.

Theorem 2. (Wilson's)

An integer p > 1 is prime if and only when applicable the modulus (p -1)! = -1(modp).

Proof

It is easy to check the result when p is 2 or 3, so let us assume p > A positive integer m, It can be written in the form mod(m, 3

) = u ⇔ m = k • 3 + u, k ∈ N with 0 ≤ u < 3.
According to Theorem 1 and by definition that two primes (p, p ′ ) are called q twin primes if pp ′ = 2q, q ∈ N, we get that every prime p of q-twin primes, had to be written in the form . . .

Mod[p, 3] = u ∧ p -p ′ = 2q, q ∈ N, 0 ≤ u < 3.

Proof

Generally accept as valid for a prime p belonging to N that

Mod[p, 3] = u ⇔ {p = 3k + u, p ′ = 3k + (u -2q), q, k ∈ N, 0 ≤ u < 3} (1) 
We examine three cases for q = 1 (Twin Primes).

(i) From ( 1) if u = 2 then {p = 3k + 2, p ′ = 3k} which true when k = 1, because if k > 1 the p, p ′ not both first. Readily accepted result only pair primes (p, p ′ ) = (5, 3).

(ii (iii) The case u = 0 is not valid, because one the prime of twin pair, it shows composite as a multiple of the number 3 and the other even.

) If u = 1 then {p = 3k + 1, p ′ = 3k -1} with k = 2µ,
Generalization when q > 1 and u ̸ = 0

From the general equation ( 1) is obtained..

Mod[p, 3] = u ⇔ {p = 3k + u, p ′ = 3k + (u -2q), q, k ∈ N, 0 ≤ u < 3}
and distinguish two cases equivalent, with respect to the choice of q as an even or odd . . .

(i) lf q = 2µ + 1 or q = 2µ with u = 2 ∧ u = 1 ∧ u ̸ = 0 then p ′ = 3k + 2 ∧ p = 3k + 2 -2q ∧ p ≤ p ′ and p ′ = 3k + 1 ∧ p = 3k + 1 -2q ∧ p ≤ p ′ , {p, p ′ },
it must be Primes and also apply 0

≤ k ≤ IntegerPart [m/3]
(ii) In the most powerful form of force Mod[p, 3] ̸ = 0 ∧ p -p ′ = 2q ∧ p < m, {p ′ , p}, Primes, with q = 2µ + 1 or q = 2µ.

Example twin primes until the integer 100, in a language mathematica

1 st Method in(1): m:=100; q:=3; Reduce [Mod[p, 3] ̸ = 0 And p -p ′ == 2q ∧ p < m, {p ′ , p}, Primes] Count [Reduce[ Mod[p,3] ̸ = 0 And p-p'==2q ∧p <= m, {p ′ , p}, Primes], Except[False]] → Out[2] := {p ′ == 5&&p == 11) || (p ′ == 7&&p == 13) || (p ′ == 11&&p == 17) || (p ′ == 13&& p == 19)|| (p ′ == 17&&p == 23) || (p ′ == 23&&p == 29) || (p ′ == 31&&p == 37) || (p ′ == 37 &&p == 43)|| (p ′ == 41&&p == 47) || (p ′ == 47&&p == 53) || (p ′ == 53&&p == 59) || (p ′ == 61&&p == 67)|| (p ′ == 67&&p == 73) || (p ′ == 73&&p == 79) || (p ′ == 83&&p == 89} Out[3] := 15 2 nd Method in(1) : m:=100;q:=2; Cases [ Table[Reduce[ p ′ == 3k + 2 And p == 3k + 2 -2q ∧ p <= p ′ ∧ p ′ <= m, {p, p ′ }, Primes], {k,0,lntegerPart[m/3]}],Except[False]] Count[Table[ Reduce[ p ′ == 3k + 2 And p == 3k + 2 -2q ∧ p <= p ′ ∧ p ′ <= m, {p ′ , p}, Primes], {k, 0, IntegerPart [m/3]}], Except[False]]
Out [START_REF]The distribution of small gaps between successive prime numbers[END_REF] :

{p == 7&&p ′ == 11, p == 13&&p ′ == 17, p == 19&&p ′ == 23, p == 37&&p ′ == 41, p == 43&&p ′ == 47, p == 67&&p ′ == 71, p == 79&&p ′ == 83} Out[3]:=7
We are continuing the process of analysis with 1mod(3) :

in(1): m:=100;q:=2; Cases[Table[Reduce[ p ′ == 3k + 1 And p == 3k + 1 -2q ∧ p <= p ′ ∧ p ′ <= m, {p, p ′ }, Primes], {k, 0, IntegerPart [m/3]} ],Except [False]] Count[Table[Reduce[ p ′ == 3k + 1 And p == 3k + 1 -2q ∧ p <= p ′ ∧ p ′ <= m, {p ′ , p}, Primes], {k, 0, IntegerPart [m/3]} Out[2] : {p == 3&&p ′ == 7} Out[3]:=1
Therefore Number twin primes = 7 + 1 = 8.

Theorem 4.

For any integer n greater than 2, the pair {n(n + 2)} is a pair of twin primes if only if : 4[(n -1)! + 1] + n = 0 mod n(n + 2). This characterization factorial and modular OF twin primes was discovered by P. A. Clement in 1949 [START_REF]The distribution of small gaps between successive prime numbers[END_REF].

Proof. The sufficiency is obvious as divisions by n and n + 2 separately reduce either Wilson's theorem or to a simple modification of it. The necessity follows as easily, but we wish to indicate how (1) may be obtain directly. Thus, with n and n + 2 both primes, we have

(n -1)! + 1 = 0 mod n (2) (n + 1)! + 1 = 0 mod (n + 2) (3) 
Reducing the factorial of (3) mod(n + 2) and rewriting as an equation we obtain

2(n -1)! + 1 = k(n + 2), k ∈ N (4) 
Using [START_REF]The distribution of small gaps between successive prime numbers[END_REF] we have 2k+1 = 0 mod n (5). Substitution of ( 5) in (4) determines the congruence of the theorem.

Theorem 5.

The number of pairs of twins primes is infinite and this follows from Theorem 4 , since the ratio

g = [4[(n -1)! + 1] + n]/[modn • (n + 2)] → ∞ if n → ∞. Proof. Applicable to (n -1)! > n n-1 e n-1 (1) and the relation [4[(n -1)! + 1] + n] = g[n(n + 2)] (2)
where g belong in Z+. From (1) and (2) explicit that,

g > 4 • n n-1 e n-1 + 4 + n n(n + 2) = 4 • n n-1 e n-1 • (n + 2) • n + 4 + n (n + 2) • n → ∞ + 0 → ∞ ie we see if n → ∞ ⇒ g → ∞
Therefore because g > 1 there are always twins primes and infinite as increases n, ie. If n → ∞ ⇒ g → ∞.

If g <= 1 we would have limited couples primes and possibly to decrease in number.

Theorem 6.

Equivalence finding process primes couples to conjecture Goldbach to find pairs of twins primes method.

Proof. According to Theorem 1 , each positive integer m can write as mod (m, 3) = u, ⇔ m = k • 3 + u, k ∈ N with 0 ≤ u < 3 and by definition that two primes (p, p ′ ) are called q twin primes if p -p ′ = 2q, q ∈ N , we have that the pair q twin, had to be written in the form:

Mod[p, 3] = u ∧ p -p ′ = 2q, q ∈ N, 0 ≤ u < 3. But if p + (-p ′ ) = 2q, q ∈ N which means 2 choices: i) lf q in N with u = 2 ∨ u = 1 with u ̸ = 0 then p = 3k + 2 ∧ -p ′ = 3k + 2 -2q ∧ p ≤ p ′ and p = 3k + 1 ∧ -p ′ = 3k + 1 -2q ∧ p ≤ p ′ , {p, p ′ }, it must be Primes and also into force 0 ≤ k ≤ IntegerPart [m/3] + 1 ii) If q in N with u = 2 ∨ u = 1 and u ̸ = 0 then Mod (p ′ , 3) ̸ = 0 ∧ p + p ′ = 2q ∧ p ≤ p ′ and p ≤ 2q, {p, p ′ }, it must be Primes.
By applying program format language mathematica for both cases, for example if we take 2q = 200 ⇒ q = 100 and therefore:

1 st Method in(1): q := 100; Cases[Table[Reduce[ p ′ == 3k + 1[ And ]p == -3k -1 + 2q ∧ p <= p ′ , {p, p ′ }, Primes], {k, 0, IntegerPart [2q/3] + 1}], Except[False]] Count[Table[Reduce[ p == -3k -1 + 2q ∧ p <= p ′ , {p ′ , p}, Primes], {k, 0, IntegerPart [2q/3] + 1}], Except[False]] Cases[Table[Reduce[ p ′ == 3k + 2[ And ]p == -3k -2 + 2q ∧ p <= p ′ , {p, p ′ }, Primes], {k, 0, IntegerPart [2q/3] + 1}], Except[False]] Count[Table[ Reduce[ p ′ == 3k + 2[ And ]p == -3k -2 + 2q ∧ p <= p ′ , {p ′ , p}, Primes], {k, 0, IntegerPart [2q/3] + 1}], Except[False]]
Out [START_REF]The distribution of small gaps between successive prime numbers[END_REF]:

{p == 97&&p ′ == 103, p == 73&&p ′ == 127, p == 61&&p ′ == 139, p == 43&&p ′ == 157 p == 37&&p ′ == 163, p == 19&&p ′ == 181, p == 7&&p ′ == 193} Out[3]:=7 Out[4]:={p == 3&&p ′ == 197} ; Out[5] := 1 2 nd Method in(1): q := 100; Reduce[ Mod [p ′ , 3] ̸ = 0[ And ] p + p ′ == 2q ∧ p <= 2q ∧ p ′ > p, {p ′ , p}, Primes], Count[Reduce[ Mod [p ′ , 3] ̸ = 0 [And] p + p ′ == 2q ∧ p <= 2q ∧ p ′ > p, {p ′ , p}, Primes], Except[False]] Out[2]:= (p ′ == 103&&p == 97) ∥(p ′ == 127&&p == 73)∥ (p ′ == 139&&p == 61) ∥ (p ′ == 157&&p == 43) ∥(p ′ == 163&&p == 37) || (p ′ == 181&&p == 19)∥ (p ′ == 193&&p == 7) || (p ′ == 197&&p == 3) Out[3]:=8
Part II. Asymptotic Density of Prime k-tuples II.1. Let (α 1 , α 2 , . . . , α k ) denote a monotonically increasing sequence of positive even integers and let p be a prime number. Then if the numbers p + α i for all 1 ≤ i ≤ k are prime, the sequence P = (p, pα 1 , pα 2 , . . . , pα k ) is a prime k-tuple. Moreover, if these numbers do not form a complete residue class with respect to any prime, P is admissible. Hardy and Littlewood [START_REF] Cram´er | On the order of magnitude of the difference between consecutive prime numbers[END_REF] made several conjectures concerning the infinitude of admissible prime k-tuples. In particular, they conjectured that their asymptotic density can be calculated in terms of the α 1 , α 2 , . . . , α k as follows Conjecture 1 (Asymptotic density of prime k-tuples) Let P p (k) = (p, p + α 1 , p + α 2 , . . . , p + α k ) denote an admissible prime k-tuple and let π p (n) denote the number of primes p less than a positive integer n such that for all 1 ≤ i ≤ k, p + α i is prime. Then

π p (n) ∼ Cα 1 , α 2 , . . . , α k n 2 dt log k+1 t (1)
where C, α 2 , . . . , a k is a constant obtained through a product over all primes q greater than 2 and the amount of distinct residues of α 1 , α 2 , . . . , α k modulo q, denoted by w (q; α 1 , α 2 , . . . , α k ), as follows:

Ca 1 , α 2 , . . . , α 1 = 2 k q 1 - w (q : α 1 , α 2 , . . . , α k ) q 1 - 1 q k+1 (2)
For example, when k = 1 and α 1 = 2 (i.e., the twin primes), we have

C 2 = 2 p>2 p prime 1 - 1 (p -1) 2 = p>2 p prime p(p -2) (p -1) 2 = 1.320323632 (3) 
We will see the proof below.

Named Patterns

Several 

II.2. Twin primes Constant

The Twin primes It can be defined

C 2 = p>2 p prime 1 - 1 (p -1) 2 = p>2 p prime p(p -2) (p -1) 2 (4) 
C 2 = exp        p>2 p prime ln p(p -2) (p -1) 2        = exp        p>2 p prime ln 1 - 2 p -2 ln 1 - 1 p        (5) 
where the p > in sums and products are taken over primes only. This can be written as

C 2 = exp 2 -2 n n P (n) -2 -n (6) 
where is the P (n) prime zeta function. Flajolet and Vardi (1996) give series with accelerated convergence

C 2 = ∞ n=2 ζ(n) 1 -2 -n -ln • = 3 • 15 • 35 4 • 16 • 36 ∞ n=2 ζ(n) 1 -2 -n 1 -3 -n 1 -5 -n 1 -7 -n -ln (7) with I n = 1 n d/n µ(d)2 n/d is the Mobious function
Was computed to 45 digits by Wrench (1961) and Gourdon and Sebah list 60 digits. For 20 digits we will have an approximation C 2 = 0.6601618158468695739. Is a special case of the k-tuple conjecture with S = {0, 2}, where is known as the twin primes constant.

The following special case of the conjecture is sometimes known as the prime patterns conjecture. Let S be a finite set of integers. Then it is conjectured that there exist infinitely many k for which {k + s : s ∈ S} are all prime iff S does not include all the residues of any prime. This conjecture also implies that there are arbitrarily long arithmetic progressions of primes.

Prime constellations

The diameter of a k-tuple is the difference of its largest and smallest elements. An admissible prime k tuple with the smallest possible diameter d (among all admissible k-tuples) is a prime constellation. For all n ≥ k this will always produce consecutive primes. [15] (Remember that all n are integers for which the values (n + a, n + b, . . .) are prime.)

This means that, for large n:

p n+-1 -p n ≥ d
where p n is the nth prime.

The first few prime constellations are: 

k d Constellation smallest 2 2 (0,2) (3,5) 3 6 (0,2,6) (5,7,11) (0,4,6) (7,11,13) 4 8 (0,2,6,8) (5,7,11,13) 5 12 (0,2,6,8,12) (5,7,11,13,17) (0,4,6,10,12) (7,11,13,17,19) 6 16 (0,4,6,10,12,16) (7,11,13,17,19,23) 7 20 

II.3. Computational and Logarithmic Method

Note that the pseudo-code presented in this section, supplemented with code used for plotting purposes and gathering other secondary data was implemented in Wolfram Mathematica 12.

Example: In the general case of twin primes we will have the relations for multiplicity k,

π 2k = 2C 2k n 2 dt log 2 t predicted 1 ∼ 2C 2k n (log[n]) 2 predicted 2 (8) C 2k = C 2 p/k,p>2 p -1 p -2 (9) 
To see how these forms work we look at 3 examples:

1. If 2 * k = 6 and k = 3 and therefore p = 3.

C 6 = C 2 p/k,p>2 p -1 p -2 = C 2 • 3 -1 1 = 2 • C 2 2.
If 2 * k = 30 and k = 15 = 3 • 5 and therefore p = 3, 5 therefore: 

C 30 = C 2 p/k,p>2 p -1 p -2 = C 2 • 3 -1 3 -2 • 5 -1 5 -2 = 8 3 • C 2 = 2.66 • C 2
C 210 = C 2 p/k,p>2p-2 p -1 p -C 2 3 -1 3 -2 • 5 -1 5 -2 • 7 -1 7 -2 = 2 1 • 4 3 • 6 5 C 2 = 48 15 C 2 = 3.2 • C 2
This method examines k in a first factor analysis and from this the product. Furthermore, the table we will formulate clearly shows that the method with the integral is better suited to approximate the number of pairs.

Table 3. Prime pairs {n,n+2k} with n → N

We note that for formula [START_REF] Fr¨oberg | On the sum of inverses of primes and twin primes[END_REF] the integral is very close to the objective result and is the case of predicted1 while the second relation does not yield relatively close, and this is clearly seen in predicted 2.

The total instances of Prime k-tuples are shown for some categories asymptotic density in Table 4. III.2 Relationships related to these two functions [START_REF] Jotsov | On prime k-tuples Conjectures[END_REF] Let P x (p, p + d 1 , . . . , p + d k-1 ) is considered and d k-1 is the maximal number from the ordered set (d 1 , . . . , d k-1 ) then apply P

Tuple

i < d i+1 < d i+2 , i ≥ 1 ÷ ∞, d is even.
x (p, p + d 1 , . . . , p + d k-1 ) > π k (x), k ≥ 2 (1 * )
Apply also the borders to P k (d) and for π k (d) This happen because x → ∞ if k << +∞. Therefore we have π k (x) and P x (p, p + d 1 , . . . , p + d k-1 ) "They have a limit of infinity when x has a limit of infinity".

x (log(x)) k < P x (p, p + d 1 , . . . , p + d k-1 ) < 45 16 3.75 k-2 (π(x)) k x k-1 (2 * ) x (log(x)) k < π k (x) <
Furthermore, in k tuples it is also true that we do not always have P x (p, p + d 1 , . . . , p + d k-1 ) for any combination of (d 1 , . . . , d k-1 ) and of course the same will apply to the π k (x).

Epilogue

According to the methods we have followed and Theorems 5 and 7, it turns out that the number of twin numbers is infinite. This is generalized in Theorem 7, to any k-tuples of prime numbers but in cases where we have k-tuples and they exist. The issue of k-tuples is under research and there are different theories for the determination of the grid, always approximate, of course.

p 1 -

 1 w(p)/p (1 -1/p) k so the adjustment factor becomes

  resulting pairs of primes according to form pairs according to form pairs, ie δnλαδ ń {p = 6µ + 1, p ′ = 6µ -1} where m in N and for certain values of µ.

3 .

 3 If 2 * k = 210 and k = 105 = 3 • 5• and therefore p = 3, 5, 7 therefore:

  II. Prime counting function π k (d) is defined as the number of primes of the differentials between of pairs (p, p + d 1 , . . . , p + d k-1 ), resulting from the set of pairs of primes from the function P x (p, p + d 1 , . . . , p + d k-1 ).

  k-2 (π(x)) k x k-1 (3 * )III.3 Theorem 7. The limit of functions π k and P k tends to infinityWe started from the well-known basic relationshipsx log x > π(x)a stronger inequality is achieved by a relationshipx (log x) 2 > (π(x)) 2 x (5 * )On the k th steps the formula looks sox (log x) k < (π(x)) k x k-1 (6 * )for k > 3 tuples the amounts for x (log x) k and (π(x)) k diverge.The proof of the divergence is the base the next resultlim x→∞ (π k (x)) x k-1 > 1 (7) ∧ lim x→∞ (P x (p, p + d 1 , . . . , p + d k-1 )) x/(log x) k > 1 (8 * )We now return to the main part of the proof of the twins. What happen for Limit to infinity of functions.The question focuses on proving whether the lim x→∞

TABLE 1

 1 

		. Twin primes less than N
		actual	predicted	
	N	number	Integral	ratio
	10 3	35	46	28
	10 4	205	214	155
	10 5	1224	1249	996
	10 6	8169	8248	6917
	10 7	58980	58754	50822
	10 8	440312	440368	389107
	10 9	3424506	3425308	3074426
	10 10	27412679	27411417	24902848
	10 11	224376048	224368865	205808661
	10 12	1870585220	1870559867	1729364449
	10 13	15834664872	15834598305	14735413063
	10 14	135780321665	135780264894	127055347335
	10 15 1177209242304 1177208491861 1106793247903
			1	

  of the shortest k-tuples are known by other common names:

	(0,2)	twin primes
	(0,4)	cousin primes
	(0,6)	sexy primes
	(0,2,6), (0,4,6)	prime triplets
	(0,6,12)	sexy prime triplets
	(0,2,6,8)	prime quadruplets, prime decade
	(0,6,12,18)	sexy prime quadruplets
	(0,2,6,8,12), (0,4,6,10,12)	prime quintuplets
	(0,4,6,10,12,16)	prime sextuplets

Table 4 .

 4 Prime k-tuples considered[START_REF]On the Asymptotic Density of Primes k-tuples and Conjecture of Hardy and Littlewood[END_REF] PART III. Generalization of the number of k-tuples of prime numbers when d k tends to infinity III.1 Definitions π k and P k . an amount of couples of primes function of the primes p and p + d with d is even number, which are P x (p, p + d 1 , . . . , p + d k-1 ) i.e a number of those sequences (p, p + d 1 , . . . , p + d k-1 ) for which p + d k-1 ≤ x and all the elements are primes with assumptions that d i is a prime number and d

		Definition	Conjectured asymptotic density
	P 2a	(p, p + 2)	2	p≥3	p(p -2) (p -1) 2 Li 2 (n)
	P 2b	(p, p + 4)	2	p≥3	p(p -2) (p -1) 2 Li 2 (n)
	P 3a	(p, p + 2, p + 6)	9 2	p≥5	p 2 (p -3) (p -1) 3 Li 3 (n)
	P 3b	(p, p + 4, p + 6)	9 2	p≥5	p 2 (p -3) (p -1) 3 Li 3 (n)
	P 4a	(p, p + 2, p + 6, p + 8)	27 2		p≥5	p 3 (p -4) (p -1) 4 Li 4 (n)
	P 4b	(p, p + 4, p + 6, p + 10)	27	p≥5	p 2 (p -3) (p -1) 3 Li 3 (n)
	P 5a	(p, p + 2, p + 6, p + 8, p + 12)	15 4 2 11	p≥7	p 4 (p -5) (p -1) 5 Li 5 (n)
	P 5b	(p, p + 4, p + 6, p + 10, p + 12)	15 4 2 11	p≥7	p 4 (p -5) (p -1) 5 Li 5 (n)
	P 6	(p, p + 4, p + 6, p + 10, p + 12, p + 16)	15 5 2 13	p≥7	p 5 (p -6) (p -1) 6 Li 6 (n)

I. P x (p, p + d n ) ∞ n=0 is defined

Continuing this process if we move up k-tuples order, always relying on the original 2-tuples, we move up order k. In particular we consider the case of 4-tuples. m := 20000; q := 2; q ′ := 4; q ′′ := 2;

Programs for 4-tuples

Output(1):

Output(2): 19

By simulation we find from Program 1, that the constant for the 4-tuples arrangement according to Table 4 at 0.3074948 and simulating approximate for n = 20.000 we find Fin. n = 19.2. With the Program 2, which is real we achieve a number of quads of prime numbers 19. We have i.e. a good approximation of 4-tuples calculation with this theory. By the same logic we continue for k-tuples at a higher order. There are of course some differences in some cases and this is done at a lower number of numbers N.