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We present a clustering method and provide a theoretical analysis and an explanation to a phenomenon encountered in the applied statistical literature since the 1990's. This phenomenon is the natural adaptability of the order when using a clustering method derived from the famous EM algorithm. We define a new statistic, the relative entropic order, that represents the number of clumps in the target distribution. We prove in particular that the empirical version of this relative entropic order is consistent. Our approach is easy to implement and has a high potential of applications. Perspectives of this works are algorithmic and theoretical, with possible natural extensions to various cases such as dependent or multidimensional data.

Introduction

The present study follows on from the literature on model-based clustering. This research field in applied and theoretical statistics is very active since the 1990's [START_REF] Bryant | Large-sample results for optimization-based clustering methods[END_REF], [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF], [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF], [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF], [START_REF] Celisse | Consistency of maximum-likelihood and variational estimators in the stochastic block model[END_REF], [START_REF] Quost | Clustering and classification of fuzzy data using the fuzzy em algorithm[END_REF], [START_REF] Spurek | Active function cross-entropy clustering[END_REF]). In the context of statistical data modeling using mixture distributions of some independent and identically distributed (i.i.d.) sample (Z 1 , . . . , Z n ) with common probability distribution P , model-based clustering pursue the three main objectives that are, 1/ Parameter inference when adjusting the data by a product measure n k=1 ( r x=1 ν(x)g θx (Z k )), 2/ Estimation of the mixture order r, 3/ Data clustering by computing, for instance, the maximum a posteriori estimators (MAP) X k = argmax x ν(x)g θx (Z k ). While parameter inference is in general dealt with Expectation Maximization (EM) or gradient descent like algorithms [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], [START_REF] Baum | A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains[END_REF]), the order estimation is in general carried out using the model selection approach [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], [START_REF] Mallows | Some comments on cp[END_REF], [START_REF] Massart | Concentration inequalities and model selection[END_REF]) or using the famous Integrated Completed Likelihood method [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]) that performs the three tasks simultaneously.

In this paper we present a clustering method as well as theoretical foundations that explain the behavior observed in some practical uses of a predecessor of the ICL: the Classification EM algorithm [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF], [START_REF] Biernacki | Using the classification likelihood to choose the number of clusters[END_REF]). We present a pure entropic based criterion that applies on any non parametric mixture decomposition r x=1 ν(x)G x of P or of the empirical distribution P n . It is made of the sum of two entropic terms: the Shannon's entropy of ν and the weighted sum of the cross entropy of the G x 's over a parametric probability density family {g θ , θ ∈ Θ} chosen beforehand.

The purpose of statistic inference is to extract information from the data. Therefore, strong links exist between information theory [START_REF] Elwood | A mathematical theory of communication[END_REF]) and statistics (see [START_REF] Gassiat | Universal Coding and Order Identification by Model Selection Methods[END_REF]). In particular the maximum likelihood estimator (MLE) may also be seen as the minimum cross entropy estimator over a parametric family of models, that is the model that extracts the biggest quantity of information from the data. The entropy is a notion introduced by Claude Shannon for the information theory in his seminal work [START_REF] Elwood | A mathematical theory of communication[END_REF]. It measures how clumped up the probability measures are. Clumped up probability measures concentrate the total mass on a few zones. They are the most informative measures. On the contrary, spread out measures, meaning the measure with high entropy, present the most randomness and are the least informative.

Our mixing entropy criterion, that we call the mixing entropy criterion, realizes a compromise between the information contained in ν, that favors the probabilities ν concentrated on a few x's, and the weighted sum of the cross entropy G x 's over {g θ , θ ∈ Θ}, that favors sharp mixture decomposition with spread out probabilities ν's. We show that this compromise leads to a natural decomposition of the distribution and this decomposition is consistent.

We also show that our method realizes a natural selection of the number of clusters r and therefore prove the observation made in particular by [START_REF] Biernacki | Using the classification likelihood to choose the number of clusters[END_REF], [START_REF] Spurek | Active function cross-entropy clustering[END_REF] on numerical experiments. The classical model selection approach proceeds by penalization of a criterion by a term that reflects the model dimension, or its complexity in some sense, and it often relies on a manual calibration of this penalty using, for instance, the slope heuristic method (see [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF]). On the opposite, classification by minimization of the mixing entropy criterion selects a number of clusters without external calibration methods. We prove that this number, that we call the relative entropic order, is a statistic of the target distribution that is consistently estimated using its empirical version. This order represents the number of clumps in the distribution and the counting method is only relative to the chosen family of densities {g θ , θ ∈ Θ}.

Section 2 is the general section where the mixing entropy criterion is presented and where we prove that the minimum mixing entropy estimator converges when the order r is kept fixed. Section 3 is devoted to a discussion on the nature of the possible limits of this estimator. It is a transitional section where applications to the Gaussian and the binary settings are detailed. This section prepares the definition of the relative entropic order defined in Section 4. Consistency of the empirical relative entropic order is proven in the same section. In Section 5 we observe that the mixing entropy criterion is a quantity that notably appears when dealing with classical mixture models. We also show in this section that the CEM algorithm creates a sequence of decompositions with non-increasing mixing entropy. Section 6 leans on the preceding observations to build an algorithm that we use in Section 7 to illustrate, on synthetic data, the results of this paper. Note that if the distribution P is itself a mixture distribution of order r, then the relative entropic order may not be equal to r. both orders do not measure the same quantity. We illustrate this phenomena on the numerical experiments of Section 7. Finally, some detailed proofs are gathered in Section 8 and in the Supplementary material [START_REF] Dumont | Supplement paper to "adaptive clustering by minimization of the mixing entropy criterion[END_REF].

Main setting and mixing entropy

Throughout the paper we consider a probability space (Ω, F, P). Let Z be a topological space equipped with its Borel σ-algebra. We also consider some non-negative reference measure λ on Z.

Basic definitions and general assumptions

Let P be a probability distribution on Z. If P is relatively continuous with respect to λ: dP (z) = p(z)dλ (z), the Shannon's entropy of P is defined as

H(P ) := -p(z) log p(z)dλ(z) .
The cross entropy between P and a function g on Z, positive P -almost surely (a.s.) and log-integrable is:

H(P || g) := -E P (log g) := -log g(z)dP (z) .
In the case where P is relatively continuous with respect to λ, and if g is a probability density with respect with the same measure λ, then H(P || g) satisfies

H(P || g) = -p(z) log(g(z))dλ (z) ,
and KL(P ||g) := H(P || g) -H(P ) is known as the Kullback-Leibler divergence, also called the relative entropy, between p and g (see [START_REF] Kullback | Information theory and statistics[END_REF]).

In the context of inference, it is common knowledge that a nice interpretation of the classical maximum likelihood estimator (MLE) is to see the estimator as a minimizer of the relative entropy (or the Kullback-Leibler divergence):

Let (Z 1 , . . . , Z n ) be a vector of independent and identically distributed (i.i.d.) variables on Z with common distribution P , {g θ , θ ∈ Θ} be a family of densities on Z with respect with λ and be the log-likelihood function, defined, for all θ in Θ by:

(θ) = 1 n n k=1 log(g θ (Z k )) .
Denoting by P n the empirical distribution of (Z 1 , . . . , Z n ), then (θ) = -H(P n || g θ ) and a maximizer θ n of , if it exists, is also a minimizer of the cross entropy and therefore of the Kullback-Leibler divergence θ → KL(P n || g θ ). If the underlying distribution satisfies dP (z) = g θ (z)dλ(z), for some θ in Θ, then min θ KL(P || g θ ) = KL(P || g θ ) = 0. Moreover, the law of large numbers insures that H(P n || g θ ) converges, as n grows to ∞, towards H(P || g θ ). These arguments, together with continuity, compacity and identifiabily assumptions on the model, lead to the consistency of the MLE in a large variety of frameworks.

We now embrace this entropic point of view and build a mixing version of the criterion. Let r be a positive integer. Denote by X the set {1, . . . , r}, and by M 1 (X) the set of probability vectors ν = (ν(1), . . . , ν(r)) satisfying, for all x in X, ν(x) ≥ 0 and r x=1 ν(x) = 1. In the sequel, we indifferently use the notation H for the entropy of a density in X or in Z. Therefore, for any ν ∈ M 1 (X), H(ν) = r x=1 ν(x) log(ν(x)). Note that we use the classical convention 0 log(0) = 0. We also denote by M 1 (Z) the set of all probability distributions in Z.

Let Θ be a parameter set and {g θ , θ ∈ Θ} be a family of probability density functions relatively to a non negative reference measure λ on Z. In this section and in Section 4, we will consider the following assumptions on Z, Θ and {g θ , θ ∈ Θ}: A1 Θ is a non empty compact topological space.

A2 There exists a constant C > 1 such that, for all θ ∈ Θ, g θ is continuous and, for all z in Z, 1/C ≤ g θ (z) ≤ C

We denote by C b,C (Z) the set of all continuous upper bounded by C and lower bounded by 1/C, and we equip this space with the topology of the uniform convergence.

A3 The application θ → g θ from Θ to C b,C (Z) is continuous.
Finally we make the following assumption on the observation space Z.

A4 Z is a compact metric space. Remark 2.1.

1. In the paper we will illustrate our results by considering Z = R and g θ (z) =

1 √ 2πσ 2 exp -(z-µ) 2 2σ 2
, θ = (µ, σ 2 ) ∈ Θ = R×]0, +∞[, despite the fact that this choice does not satisfy Assumptions A1, A2 and A4. This choice provides a better understanding of the illustrated notions since the Gaussian mixture is the classical mixture setting. Moreover, while Assumptions A1, A2 and A4 are used to ease the proofs, one could project that these assumptions could be weakened, in particular for the Gaussian setting since the simulations seem to illustrate our results in that specific case.

2. Assumption A4 is a strong assumption, nevertheless it implies, thanks to the Riesz representation theorem, the compactness of M 1 (Z) stated in Proposition 2.2 below. This result is commonly known as the Banach-Alaoglu theorem (see [START_REF] Rudin | Functional Analysis. International series in pure and applied mathematics[END_REF]). Adding tightness assumptions on {g θ , θ ∈ Θ} and P could allow us to weaken A4 by assuming that Z is locally compact only. Proposition 2.2. M 1 (X) and, if Assumption A4 holds, M 1 (Z) and therefore M 1 (X) × M 1 (Z)

r are compact sets relatively to their weak topology -that is the topology of the simple convergence over the continuous functions.

In the sequel we use the following notation:

D r = M 1 (X) × M 1 (Z) r (1)

Mixing entropy criterion

For all θ = (θ 1 , . . . , θ r ) =: (θ x ) r x=1 in Θ r , we define the applications

H θ : D r -→ R (ν, (G x ) r x=1 )) -→ H(ν) + r x=1 ν(x)H (G x ||g θx )
and

H : D r -→ R (ν, (G x ) r x=1 )) -→ inf θ∈Θ r H θ (ν, (G x ) r x=1 )
2. Despite the fact that r will vary, we voluntarily omit to indicate the dependency in r of the mixing entropy functions. It is justified since, for any r > r ≥ 1, we may embed any vector (ν, (G x ) r x=1 ) in (C r ) while keeping its mixing entropy: Define, for x in {1, . . . , r}, ν(x) = ν(x) and, for r ≥ x > r, ν(x) = 0. Define, for x in {1, . . . , r}, G x = G x and, for r ≥ x > r, define G x as any element of M 1 (Z). Then, thanks to the convention 0 log 0 = 0,

H(ν, (G x ) r x=1 )) = H ν, G x r x=1 .
Proposition 2.4 below states the existence and the continuity of the mixing entropy functions under the contions A1-3. Proposition 2.4. Under A1-3,

1. for all θ in Θ H θ is well defined (H θ < ∞) , 2. H is well define ( H < ∞) and satisfies, for all (ν, (G x ) r x=1 )) in D r , H(ν, (G x ) r x=1 )) = H(ν) + r x=1 ν(x) inf θx∈Θ H (G x ||g θx ) ,
3. the functions H θ , for all θ in Θ, and H are continuous, 4. and the infimums inf θx∈Θ H (G x ||g θx ) are reached in Θ.

Proof. For all G in M 1 (Z), and all θ in Θ, H(G || g θ ) = -Z log(g θ (z))dG(z) and, by A2, | log(g θ (z))| ≤ log(C) , proving points 1 and 2. The same argument proves, by definition of the weak* topology, that, for any

θ in Θ, G → H(G || g θ ) is continuous and it is straightforward to show that ν → H(ν) = - r x=1 ν(x) log(ν(x)
) is also continuous. Thus, for all θ in Θ r , H θ is continuous. Finally, this last point together with the compactness assumption on Θ (A1) lead to the continuity of H and achieves the proof of points 3 and 4. Now, define the following subsets/condition on D r ,

(C r ) = (ν, (G x ) r x=1 )) ∈ D r such that r x=1 ν(x)G x = P , (C n r ) = (ν, (G x ) r x=1 )) ∈ D r such that r x=1 ν(x)G x = P n . (C r ) (resp. (C r )) is necessarily non empty since it contains (1, (P )) (resp. (1, (P n ))). It is made of all possible mixture decompositions of P (resp. of P n ) into r distributions. If A4 holds, then (C r ) and (C r ) are compact subsets of D r . Remark 2.5. If r = 1, (C 1 ) (resp. (C n 1 ) ) is made of the single element (1, (P )) (resp. (1, (P n ))). Proposition 2.6. Let r ≥ 1, and let (ν, (G x ) r x=1 ) be in (C r ) (resp. (C n r ))
. For all x in {1, . . . , r} such that ν(x) > 0, G x is absolutely continuous with respect with P (resp. P n ).

Proof. Let P be equal to P or P n . Let (ν, (G x ) r x=1 ) be a mixture decomposition of P . If P (A) = 0 for some measurable set A, then

r x=1 ν(x)G x (A) = x | ν(x)>0 ν(x)G x (A) = 0. Then G x (A) = 0 for all x such that ν(x) > 0.
Define the sets

D r := (ν, (G x ) r x=1 )) ∈ (C r ) such that H(ν, (G x ) r x=1 )) = inf (C r ) H , (2) 
D n r := (ν, (G x ) r x=1 )) ∈ (C n r ) such that H(ν, (G x ) r x=1 )) = inf (C n r ) H . (3) Remark 2.7. For all (ν, (G x ) r x=1
) and all σ permutation of {1, . . . , r} -we call σ a labels permutation -if

(ν, (G x ) r x=1 ) belongs to (C r ) (resp. (C n r )), then ν • σ, G σ(x) r x=1 also belongs to (C r ) (resp. (C n r ))
. Moreover, it is straightforward to see that H is invariant under labels permutation and the same result holds for D r and D n .

As a straightforward consequence of the continuity of H in Proposition 2.4, Proposition 2.8 below holds: Proposition 2.8. Assume A1-4, then for all r ≥ 1, inf

(C r ) H (resp. inf (C n r ) H ) is reached in (C r ) (resp. in (C n r )
) and, consequently, D r and D n r are non empty.

D r (resp. D n r ) is made of the mixture decompositions of P (resp. P n ) that minimize the mixing entropy H which is the best compromise between the entropy of ν and the average cross entropy between the distributions G x 's and the family {g θ , θ ∈ Θ}. The first remarkable result is given by Theorem 2.9 below that ensures the consistency of the optimal mixture decompositions of P n . Theorem 2.9. Assume A1-4, then for all r ≥ 1,

a.s. , lim n→∞ D n r ⊂ D r , meaning that if we choose, for all n ≥ 1, (ν n , (G n x ) r x=1 )) in D n r , then any convergent subsequence (ν un , (G un x ) r x=1
)) n≥1 in the compact set D r (1) has its limit in D r .

Proof. We start the proof with Lemma 2.10 that allows, in the context of a mixture distribution, to build the hidden variable posteriorly on the observation. Let (ν , (G x ) r x=1 ) be any decomposition of P in (C r ). Let X, Z be a random vector where X is distributed according to ν and, conditionally on X = x, Z is distributed according to G x . Define, for all z in the support of P , and all x in X,

Φ(x|z) = P X = x| Z = z . (4) Lemma 2.10. If Z is a random variable distributed according to P . If, conditionnaly on Z, X is distributed according to Φ(•|Z), defined by (4), then (X, Z) is distributed according to the joint distribution P (x, dz) = ν (x)G x (dz).
The proof of Lemma 2.10 is straightforward. Now, let (ν un , (G un x ) r x=1 ) n≥1 such as in the statement of Theorem 2.9. Denote by (ν ∞ , (G ∞ x ) r x=1 ) the limit, in D r , of this subsequence. By the law of large number,

(ν ∞ , (G ∞ x ) r x=1 ) belongs to (C r ). Now, let (ν , (G x ) r x=1
)) be any element of D r , and let, for all k in {1, . . . , n}, Φ k (x) = Φ(x|Z k ) and X k a random variable distributed according to Φ k such as described in Lemma 2.10. Define 

ν n (x) = 1 n n k=1 1 x (X k ) and G n,x = n k=1 1 x (X k )δ Z k ν n (x) if ν n (x) =
H ν n , (G n,x ) r x=1 = H (ν , (G x ) r x=1 ). Moreover, by definition of (ν un , (G un x ) r x=1 ) n≥1 , for all n, H ν un , (G un,x ) r x=1 ≥ H (ν un , (G un x ) r x=1 ) , which leads, when n tends to ∞, to inf (C r ) H = H (ν , (G x ) r x=1 ) ≥ H (ν ∞ , (G ∞ x ) r x=1 ) .
3 Properties of D r

Interpretation of D r as a classification rule

Throughout this section we assume that the following assumption holds:

A5 For all θ in Θ, Z |log(g θ (z))| dP (z) < ∞ . Let r ≥ 1. Let (ν, (G x ) r x=1
) be any element in (C r ). From Proposition 2.6, for all x in {1, . . . , r}, there exists g x in L 1 (P ) such that dG x (z) = g x (z)dP (z). Define,

φ x = ν(x)g x .
(5)

Let Φ r (Z) be the set of all the functional vectors (φ x ) r x=1 such that for all x in {1, . . . , r}, φ x is a measurable, [0, 1]-valued, function of Z satisfying, for all z in Z, belongs to Φ r (Z) even if that means changing the g x 's on a P -negligible set. Conversely, for all (φ x ) r x=1 in Φ r (Z), for all x in {1, . . . , r}, define ν φ (x) and G φ

x by :

ν φ (x) := Z φ x (z)dP (z) , (6) 
dG φ x (z) := 1 ν φ (x) φ x (z)dP (z) , (7) 
where ( 7) only applies if ν φ (x), given by ( 6), is positive (otherwise set G φ x to any distribution in M 1 (Z)). Define for all φ in Φ r (Z) the mixing entropy of φ relatively to P :

H P (φ) := H ν φ , G φ x r x=1 . (8) 
Then, a basic manipulation of (8) shows that, if we define, for all θ = (θ 1 , . . . , θ r ),

H p (φ, θ) := - r x=1 Z log g θx (z)ν φ (x) φ x (z)dP (z) , then H p (φ) = inf θ∈Θ r H p (φ, θ). Moreover, we necessarily have inf Φr(Z) H p (φ) = inf (C r ) H (ν, (G x ) r x=1 ) . (9) 
Define

Φ r := φ ∈ Φ r (Z) | H p (φ) = inf Φr(Z) H p (φ) , (10) 
then Proposition 3.1 below is straightforward: Proposition 3.1. If Φ r is not empty, then

D r = ν φ , G φ x r x=1 | φ ∈ Φ r .

Now consider the following assumptions:

A6 The topology of Z is induced by a metric d.

If A6 holds, we denote by B d (z 0 , ε) the open ball in Z with respect to d, centered in z 0 and of radius ε. In that framework, we define the support of the Borel measure P as the set of all z in Z such that for all ε > 0,

P (B d (z, ε)) > 0.
A7 For all θ in Θ, g θ is a continuous positive function of Z.

A8

There exists an open subset U , containing an infinite number of elements of Z, that is included in the support of P .

A9 For all θ 1 and θ 2 in Θ, if for some constant K > 0, g θ1 (z) = Kg θ2 (z) for an infinite number of z's in Z then, necessarily g θ1 = g θ2 . Remark 3.2. Using Definition 10.1.5 of [START_REF] Cappé | Inference in Hidden Markov Models[END_REF]. Consider the case where the family {g θ , θ ∈ Θ} is an exponential family of Z which is: for all θ in Θ and all z in Z,

g θ (z) = h(z) exp ψ(θ) t S(z) -c(θ) ,
where S (known as as the vector of natural sufficient statistics) and ψ are vector valued functions of the same dimension on Z and Θ respectively, c is a real-valued function on Θ and h is a non-negative real valued function on Z. Then A9 is equivalent to: z → ψ t S(z) constant for an infinite number of z's i.i.f. ψ = 0. It is the case in the Gaussian setting where Z = R and S(z) = (1, z, z 2 ): ψ 0 + ψ 1 z + ψ 2 z 2 = 0 for more than three z' i.i.f. ψ 0 = ψ 1 = ψ 2 = 0.

Alternatively to A6-9, we will consider the following assumption: A10 P is a discrete distribution on Z. Theorem 3.3. Assume A5. Assume A6-9 or A10. For all r ≥ 1, all φ in Φ r (Z) and all θ in Θ r , if there exists x 0 in {1, . . . , r} such that P φ x0 ∈ {0, 1} > 0, then there exists φ in Φ r (Z) such that:

H (φ, θ ) < H (φ , θ ) .
Therefore, if φ belongs to Φ r , then, for all x in {1, . . . , r}, P -a.s., φ x = 0 or φ x = 1. Equivalently, for any mixture decomposition (ν, (G x ) r x=1 ) in D r , the G x 's are necessarily singular. The proof of Theorem 3.3 is postponed in Section 8. Remark 3.4. Define the empirical version of Φ r (Equation (10)),

Φ n r := φ ∈ Φ r ({Z 1 , . . . , Z n }) | H P n (φ) = min
Φr({Z1,...,Zn})

H P n , (11) 
then P n satisfies A10 and Theorem 3.3 applies to P n : for all φ in Φ n r , for all x in {1, . . . , r} and all z in {Z 1 , . . . , Z n }, φ x (z) equals 1 or 0. Moreover, φ belongs to Φ r ({Z 1 , . . . , Z n }), thus r x=1 φ x (z) = 1 and there exists exactly one x in {1, . . . , r} such that φ x (z) = 1. We can therefore define, for all k in {1, . . . , n}, x φ k as the unique x in {1, . . . , r} such that φ x (Z k ) = 1. Thus, the determination of Φ n r consists in finding the assignment (X 1 , . . . , X n ) in {1, . . . , r} n (the classification rule) that minimizes the mixing entropy criterion.

Mixing entropy in the Gaussian mixture case

We focus here on the case where {g θ , θ ∈ Θ} is the Gaussian density family (c.f. Remark 2.1). Define, for all

θ = (µ, σ 2 ) in R×]0, ∞[, g θ (z) = 1 2πσ 2 exp - (z -µ) 2 2σ 2 .
We also assume that there exist

(ν 1 , ν 2 ) in M ({1, 2}), θ 1 = µ 1 , σ 1 2 and θ 2 = µ 2 , σ 2 2 such that P (dz) = p (z)dz, with p = ν 1 g θ 1 + ν 2 g θ 2
(12) Remark 3.5. Note that, using Remark 3.2, Theorem 3.3 applies and, if ((ν(1), ν(2)), (G 1 , G 2 )) belongs to D 2 , with ν(1), ν(2) ∈ {0, 1}, then, for x = 1, 2, there exist φ x such that, for all z in R, φ x (z) belong to {0, 1} and such that dG x (z) = φ x (z)p (z)dz. Therefore, if g x (z) = φ x (z)p (z), there exists A open subset of R such that g x (z) = 0 almost everywhere in A (there exists

A such that G 1 (A) = 0, G 2 (A) = 1, G 1 (A c ) = 1 and G 2 (A c ) = 0 ). In particular g x , or any representative of g x in L 1 (R), can not belong to {g θ , θ ∈ Θ}.
The purpose of this section is to compare the mixing entropy of the underlying mixture decomposition (ν 1 , ν 2 ), g θ 1 , g θ 2 (12) and the entropy of the "merged" version ((1), P ).

We first provide in Proposition 3.6 below a nice expression of the minimum of the relative entropy over the Gaussian density family. Proposition 3.6. For all

G in M 1 (R), such that 0 < σ 2 = E G (Z 2 ) -E G (Z) 2 < ∞. Define µ = E G (Z) and θ = µ, σ 2 . Then min θ=(µ,σ 2 ) H (G || g θ ) = H G || g θ , = 1 2 log σ 2 + log(2π) + 1
Proof. The proof is straightforward since, for all θ = (µ, σ 2 ),

H (G || g θ ) = - R log 1 √ 2πσ 2 exp - (z -µ) 2 2σ 2 G(dz) = 1 2 log(2π) + log(σ 2 ) + 1 σ 2 R (z -µ) 2 G(dz) ,
which is minimized taking θ = θ. 18) (lower graphic with σ = s 2 ). In each graphic are represented P (bold line and filling), the two mixture components g (0,1) and g θ (thin lines) and g θ , θ = argmin θ H (P ||g θ ) (dotted line) Thanks to proposition 3.6, we can easily show that

H (ν 1 , ν 2 ) , g θ 1 , g θ 2 = H(ν ) + 1 2 ν 1 log(σ 1 2 ) + ν 2 log(σ 2 2 ) + 1 2 [log(2π) + 1] , (13) 
and that

H ((1) , (P )) = 1 2 log σ 2 + log(2π) + 1 , (14) 
where

σ 2 = E P Z 2 -E P (Z) 2 = ν 1 σ 1 2 + ν 2 σ 2 2 + ν 1 ν 2 (µ 1 -µ 2 ) 2 . Proposition 3.7. H ((1) , (P )) > H (ν 1 , ν 2 ) , g θ 1 , g θ 2 i.i.f. log (σ ) > ν 1 log σ 1 ν 1 + ν 2 log σ 2 ν 2 . ( 15 
)
Consequently, if Condition (15) is satisfied, then D 1 ⊂ D 2 (16) Remark 3.8.

1. ( 16) is a notation to assess that for any element ((ν 1 , ν 2 ) , (G 1 , G 2 )) in D 2 , (ν 1 , ν 2 ) can not be equal to (1, 0) or to (0, 1).

If ν

1 = ν 2 = 1
2 and σ 1 = σ 2 = 1, Condition (15) becomes the following condition on (µ 1 , µ 2 ):

|µ 1 -µ 2 | > 2 √ 3 . (17) 3. If ν 1 = ν 2 = 1 2 , µ 1 = µ 2 and σ 1 = 1, Condition (15) becomes the following condition on σ 2 : σ 2 ∈ [s 1 , s 2 ] , (18) 
where s 1 = 4 -√ 15 and s 2 = 4 + √ 15.

Figure 1 represents the cases of equality in ( 17) and ( 18). Despite the relatively large separation between the two mixtures, H is minimum for the merged version of this mixture. On Figure 1 is represented the maximum likelihood of P in C 1 : g θ . One can observe that g θ can be far from the true distribution P . However, we should not misinterpret the definition of D 2 . Proposition 3.7 states that if the component of the mixture are close enough, the mixture decomposition of P that realizes the minimum mixing entropy in (C 2 ) is P itself. We are not performing here an estimation or an approximation of P by g θ .

Mixing entropy in the binary case

We consider here the binary case where Z = {0, 1} and where the parameters θ = (µ 0 , µ 1 ) satisfy, for z in {0, 1}, µ z ≥ 0 and µ 0 + µ 1 = 1. We define g θ = µ 0 δ 0 + µ 1 δ 1 and assume that P belongs to the family {g θ , θ ∈ Θ}:

P = µ 0 δ 0 + µ 1 δ 1 = g θ .
The objective of this section is to provide a full description of D r for any r ≥ 1, in this case.

Proposition 3.9. For all r ≥ 3, D r = D 2 which means that for all (ν, (G x ) r x=1 ) in D r , there exits a permutation σ of {1, . . . , r} such that, for all x ≥ 3, ν(x) = 0.

Moreover, for all ((ν(1), ν( 2

)), (G 1 , G 2 )) in D 2 , either • ((ν(1), ν(2)), (G 1 , G 2 )) belongs to D 1 which means that (ν(1), ν(2)) = (1, 0) and G 1 = P , or (ν(1), ν(2)) = (1, 0) and G 2 = P ,
• or ((ν(1), ν(2)), (G 1 , G 2 )) = ((µ 0 , µ 1 ), (δ 0 , δ 1 ))

• or ((ν(1), ν(2)), (G 1 , G 2 )) = ((µ 1 , µ 0 ), (δ 1 , δ 0 )). Consequently, if 0 < µ 0 , µ 1 < 1, then, D 1 D 2 = D 3 = D 4 = . . . ,
and if µ 0 = 1 or µ 1 = 1 , then, D 1 = D 2 = D 3 = D 4 = . . . .
In particular Proposition 3.9 asserts that the sequence of sets (D r ) r≥1 is constant after either rank r = 1 or r = 2 depending on the values of µ 0 and µ 1 . The proof of Proposition 3.9 is detailed in the Supplementary material [START_REF] Dumont | Supplement paper to "adaptive clustering by minimization of the mixing entropy criterion[END_REF].

Relative entropic order

The property of constancy after a certain rank of the sequence (D r ) r≥1 induced by Proposition 3.9 in the binary case may be extended to the general case: Theorem 4.1. Assume A1-4. The sequence (D r ) r≥1 (resp. (D n r ) r≥1 ) is constant after a certain rank r (resp. r n ). We call this rank the entropic order of P (resp. of P n ) relatively to the family {g θ , θ ∈ Θ}.

Remark 4.2.

1. Following Remark 3.8, this constancy of (D r ) r≥r (resp. (D n r ) r≥r n ) means that for all r > r (resp. r > r n ), and all ν, G x r x=1 in D r (resp. D n r ), ν contains at least r -r (resp. r -r n ) zeros.

2. We will also call r n the empirical relative entropic order.

3. We could reformulate Theorem 4.1 as follow: Define for all r ≥ 1 and n ≥ 1,

rank (r) := max card{x|ν(x) > 0} such that there exists (G x ) r x=1 satisfying (ν, (G x ) r x=1 ) ∈ D r (19) rank n (r) := max card{x|ν(x) > 0} such that there exists (G x ) r x=1 satisfying (ν, (G x ) r x=1 ) ∈ D n r ( 20 
)
Then there exist r and r n ≥ 1 such that for all r ≥ r , rank (r) = r and for all r ≥ r n , rank n (r) = r n

Proof. The proof is written for P . The same arguments hold for P n . For all r ≥ 1, let (ν r , (G r x ) r x=1 )) be in D r . Since the entropic functions are invariant by permutation of X one can suppose that, for all r, x → ν r (x) is non increasing. The proof of Theorem 4.1 relies on two basic lemmas:

Lemma 4.3. ν r (1) ≥ 1 C 2 .
Proof. By definition of (ν r , (G r x )

r x=1 )), r x=1 ν r (x) log(ν r (x)) + r x=1 ν r (x) sup θx∈Θ E G r x (log(g θx )) ≥ sup θ∈Θ E P (log(g θ ))
Then, by A2 and since x → ν r (x) is non increasing,

log(ν r (1)) ≥ r x=1 ν r (x) log(ν r (x)) ≥ -2 log(C) Lemma 4.4. For all x ∈ {1, . . . , r}, ν r (x) = 0 or ν r (x) ≥ 1 C 2 (C 2 -1) Proof. Let x 0 such that ν r (x 0 ) > 0. We compare the value of H (ν r , (G r x ) r x=1 ) with the configuration consisting in merging x = x 0 with x = 1. Define ν r , G r x r x=1 by setting G r 1 = ν r (1)G r 1 +ν r (x0)G r x 0 ν r (1)+ν r (x0) , ν r (1) = ν r (1) + ν r (x 0 )
, ν r (x 0 ) = 0, and ν r x , G r x = (ν r x , G r x ) for x / ∈ {1, x 0 }. Let, for all x ≤ r, θ r x be a parameter minimizing θ → H (G r

x ||g θ ). Then, by a simple manipulation, of H θ ,

H θ ν r , G r x r x=1 -H θ (ν r , (G r x ) r x=1 ) = ν r (x 0 ) log (ν r (x 0 )) - ν r (1) ν r (x 0 ) log 1 + ν r (x 0 ) ν r (1) -log(ν r (1) + ν r (x 0 )) + E G r x 0 log(g θ r x 0 ) -E G r 1 log(g θ r 1 )
And, by A2 and Lemma 4.3,

H θ ν r , G r x r x=1 -H θ (ν r , (G r x ) r x=1 ) ≤ ν r (x 0 ) log ν r (x 0 )C 2 C -2 + ν r (x 0 ) By definition of (ν r , (G r x ) r x=1 ) and θ, H θ ν r , G r x r x=1 -H θ (ν r , (G r x ) r x=1 ) can not be negative which implies, since ν r (x 0 ) > 0, ν r (x0)C 2 C -2 +ν r (x0) > 1.
This concludes the proof.

We now achieve the proof of Theorem 4.1. Assume, by contradiction, that, for all r ≥ 1, there exists r > r and

x > r such that ν r (x) > 0. Then we can build a sequence (u r ) r≥1 growing to infinity, such that for all r ≥ 1 ν r (u r ) > 0. Notice that, necessarily, ν r (u r ) converges towards 0 as r grows to infinity and thus there exists r such that 0 < ν r (u r ) < 1 C 2 (C 2 -1) which contradicts Lemma 4.4. Thus, there exists r ≥ 1 such that, for all r > r and all x > r , ν r (x) = 0. A11 supposes that, if r > 1, then D r -1 ∩ D r = ∅. In particular, Assumption A11 excludes the binary case studied in section 3.3 where H can be minimized both in (C 1 ) and in (C 2 ) \ (C 1 ). Theorem 4.6. Assume A1-4. Asymptotically, almost surely, r n does not over estimate r . Moreover, if A11 holds, then almost surely, lim n→∞ r n = r

Proof. Asymptotically, r n does not overestimate r : Using Remark 4.5, let r 0 = C 2 (C 2 -1) + 1 (where • designates the upper whole part), then r 0 ≥ r + 1, r 0 ≥ r n + 1 and rank (r 0 ) and rank n (r 0 ) defined by ( 19) and ( 20) satisfy rank (r 0 ) = r and rank n (r 0 ) = r n .

For all n ≥ 1, let (ν n , (G n x ) r0 x=1 ) in D n r0 . Assume that x → ν n (x) is decreasing (even if that means permuting the labels x). From Theorem 2.9 and Theorem 4.

1, if (ν ∞ , (G ∞ x ) r0 x=1 ) is a limit of a subsequence (ν un , (G un x ) r0 x=1 ) n≥1 , then (ν ∞ , (G ∞ x ) r0 
x=1 ) belongs to D and, a.s. lim n→∞ ν un (r + 1) = 0 , then, by Lemma 4.4, a.s. ν un (r + 1) = 0 after a certain rank. This implies that a.s. there exists N ≥ 1 such that, for all n ≥ N , rank n (r 0 ) = r n ≤ r .

Asymptotically, r n does not underestimate r :

Let (ν n , (G n x ) r0 x=1 ) in D n r0 , then any converging subsequence of (ν n , (G n x ) r0 
x=1 ) n≥1 converges in D r 0 . However if A11 holds, then any possible limit (ν , (G x ) r0 x=1 ) in D r 0 has exactly r states x such that ν (x) = 0 and, for all x, lim n→∞ ν n (x) = ν (x). Therefore, r n can not underestimate r asymptotically.

Remark 4.7. Theorem 4.6 and Remark 3.4, insure that the order r n in the mixing entropy classification method adjusts itself automatically and converges towards the relative order r . Unsupervised classification by minimization of the mixing entropy criterion, and, therefore, the classification maximum log-likelihood (see Section 5.1 below), are self calibrated methods (adaptive). Unlike classical classification methods such as k-means, the mixing entropy criterion does not encourage to choose the largest number of classes possible.

5 Similarities with the classical mixture models framework

Complete likelihood in mixing models

In the context of inference in mixing model, if (Z 1 , . . . , Z n ) are observations in Z, the classical MLE, for a given r ≥ 1 is defined as

ν, θ x r x=1 = argmax (ν,θ)∈M1(X)×Θ r log r x1=1 . . . r xn=1 n k=1 ν(x k )g θx k (Z k ) . (21) 
Performing the maximization in ( 21) is challenging because of the sums appearing inside the log and methods such as gradient descent or Expectation-Maximization (EM) algorithm are needed in order to approximate the MLE ν, θ

. Now let's focus on the problem of minimization of the complete log-likelihood, also known as Classification loglikelihood [START_REF] Bryant | Large-sample results for optimization-based clustering methods[END_REF], defined as follow:

n ((x k ) n k=1 , ν, θ) := log n k=1 ν(x k )g θx k (Z k ) , (22) 
= n k=1 log (ν(x k )) + n k=1 log g θx k (Z k ) . Note that, if (x k ) n k=1 in {1, . . . , r} n is set, one can independently maximize n ((x k ) n k=1
, ν, θ) in ν and θ. In particular, the choice for ν maximizing n ((x k ) n k=1 , ν, θ) is, for all x in {1, . . . , r}, ν(x) = 1 n n k=1 1 x (x k ). Therefore, the maximization of the complete log-likelihood (22) requires the maximization of the function of (x k ) n k=1 :

n ((x k ) n k=1 ) := n k=1 log ( ν(x k )) + max θ∈Θ r n k=1 log g θx k (Z k ) , =n r x=1 ν(x) log ( ν(x)) + r x=1 max θx∈Θ 1 n n k=1 log (g θx (Z k )) 1 x (x k ) ,
Remark 5.1. Notice that repetitions may occur in the vector (Z 1 , . . . , Z n ). We denote by n z ≥ 1 the number of k in {1, . . . , n} satisfying Z k = z Define φ (x k ) n k=1 in Φ r ({Z 1 , . . . , Z n }) as: for all x in {1, . . . , r} and all z in {Z 1 , . . . , Z n },

φ (x k ) n k=1 x (z) = 1 n z k / Z k =z 1 x (x k ) , then n ((x k ) n k=1 ) =n r x=1 ν(x) log ( ν(x)) + r x=1 max θx∈Θ z∈{Z1,...,Zn} log (g θx (z)) n z n φ (x k ) n k=1 x (z) , (23) 
and we recognize, in ( 23), the mixing entropy of φ (x k ) n k=1 :

n ((x k ) n k=1 ) = -n • H P n φ (x k ) n k=1 , (24) 
where

P n = z∈{Z1,...,Zn} n z n δ z .
Conversely, for every φ in Φ r ({Z 1 , . . . , Z n }), consider x φ 1 , . . . , x φ n as defined in Remark 3.4. Then

H P n (φ) = - 1 n n x φ k n k=1 . (25) 
A consequence of Equations ( 24) and ( 25) is that maximizing n in {1, . . . , r} n is the same problem as minimizing the entropy H P n among Φ r ({Z 1 , . . . , Z n }). Thus, the minimization of the mixing entropy and the maximization of the classification maximum log-likelihood (CML) of [START_REF] Bryant | Large-sample results for optimization-based clustering methods[END_REF] correspond to the exact same problem.

An other consequence is that, thanks to Theorem 4.1, there exists r n ≥ 1 such that for all r ≥ r n , such that the CML satisfies max

(x k ) n k=1 ∈{1,...,r} n n ((x k ) n k=1 ) = max (x k ) n k=1 ∈{1,...,r n } n n ((x k ) n k=1 ) .
Moreover, if (Z 1 , . . . , Z n ) is a an i.i.d. sample of P , then Theorem 2.9 implies that (r n ) n≥1 is bounded almost surely and if A11 holds, r n converges almost surely to the entropic order of P relatively to the family {g θ , θ ∈ Θ}.

Connection with the EM algorithm

The complete likelihood (22) discussed in Section 5.1 appears when implementing the Expectation-Maximization (EM) Algorithm of [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. The EM algorithm is an iterative procedure of optimization to approximate the MLE whenever the likelihood takes an integral form which is the case when dealing with mixing models. First introduce the intermediate quantity: for all ν, ν in M 1 ({1, . . . , r}), and θ, θ in Θ r ,

Q ((ν, θ); (ν , θ )) := E (ν ,θ ) [ n ((X k ) n k=1 , ν, θ) |Z 1 , . . . , Z n ] ,
where E (ν ,θ ) is the expectation under the hypothesis that (X k , Z k ) n k=1 are i.i.d. with common joint distribution p(x, dz) = ν (x)g θ x (z)dλz. Consider an initial parameter value (ν (0) , θ (0) ). The EM algorithm consists in repeating the following two step: For all i ≥ 0,

E-Step: Compute Q (ν, θ); (ν (i) , θ (i) )
M-Step: Define (ν (i+1) , θ (i+1) ) as one of the maximizer (provided that it has a sens) of (ν, θ) → Q (ν, θ); (ν (i) , θ (i) ) .

We introduce the shortest notations ω = (ν, θ), x = (x 1 , . . . , x n ) in {1, . . . , r} n and Z = (Z 1 . . . , Zn). Then

Q (ω; ω ) = x p ω (x|Z) log(p ω (x, Z)) ,
where p ω (x, Z) and p ω (x|Z) are short notations for p ω (x, Z) = n k=1 ν(x k )g θx k (Z k ) and p ω (x|Z) = p ω (x, Z)/ ( x p ω (x , Z)). Using these notations, define the log-likelihood

(ω) := log x p ω (x, Z) ,
then, the intermediate quantity may be rewritten

Q (ω; ω ) = (ω) -H (p ω (•|Z) || p ω (•|Z)) . (26) 
Relation ( 26) between the intermediate quantity, the objective log-likelihood function and the cross entropy between the conditional distributions provides that, for every i ≥ 0,

(ω (i+1) ) -(ω (i) ) = Q ω (i+1) ; ω (i) -Q ω (i) ; ω (i) + KL (p ω (•|Z) || p ω (•|Z))
which shows the fundamental inequality of the EM that is

(ω (i+1) ) -(ω (i) ) ≥ Q ω (i+1) ; ω (i) -Q ω (i) ; ω (i) ≥ 0 . (27) 
Inequality ( 27) states that the the log-likelihood associated with the sequence (ω (i) ) i≥0 produced by the EM algorithm , (ω (i) ) i≥0 is necessarily non-decreasing.

We now detail the E-Step using the definition (22) of n ((X k ) n k=1 , ν, θ). First define, for all x = 1, . . . , r and all z ∈ {Z 1 , . . . , Z n }, φ (i) x (z) :

= P ω (i) [X 1 = x | Z 1 = z] = ν (i) (x)g θ (i) x (z) r x =1 ν (i) (x )g θ (i) x (z) . ( 28 
)
Let n z be defined as in Remark 5.1, then

Q (ν, θ); ω (i) = r x=1 z∈{Z1,...,Zn} n z φ (i) x (z) log(ν(x)) (29) + r x=1 z∈{Z1,...,Zn} n z φ (i) x (z) log(g θx (z)) .
Using the definition (7), let G φ (i)

x be the probability distribution on {Z 1 , . . . , Z n } define by

G φ (i) x = z∈{Z1,...,Zn} n z φ (i) x (z)δ z z∈{Z1,...,Zn} n z φ (i) x (z) , ( 30 
)
where δ z is the notation for the Dirac distribution on the singleton {z}. Then

Q (ν, θ); ω (i) = -nH θ ν, G φ (i) x r x=1 . (31) 
Moreover, if P n = z∈{Z1,...,Zn} nz n δ z , then the EM algorithm also provides a sequence of elements of Φ r ({Z 1 , . . . , Z n }): φ (i) i≥0 such that, their corresponding mixing entropy satisfies, for all i ≥ 0, i+1) ; ω (i) .

H P n φ (i) = - 1 n Q ω (
(32)

Note that, while the sequence of log-likelihood (ω (i) ) i≥0 produced by the EM algorithm is necessarily nondecreasing, we have no guaranty that the sequence H P n φ (i) i≥0 is non-increasing. A slight modification of the EM algorithm proposed in [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF] will allow us to construct a non-increasing mixing entropy sequence.

Before presenting this algorithm, we introduce the following notation: for all z ∈ {Z 1 , . . . , Z n } and all x in {1, . . . , r}, denote

[φ] (i) x (z) = 1 if φ (i) x (z) = max x φ (i) x (z) (33) 
= 0 otherwise.

The computation of [φ]

(i)

x is equivalent to the computation of the maximum a posteriori (MAP) estimator in the mixture model defined by ω (i) . Proposition 5.2. For all i ≥ 0,

H P n [φ] (i+1) ≤ H P n φ (i)
Proof. For all φ in Φ r ,

H θ (i) ν (i+1) , G φ x r x=1 = - z∈{Z1,...,Zn} n z r x=1 φ x (z) log ν (i+1) (x)g θ (i+1) x (z)
.

Note that, for all z in {Z 1 , . . . , Z n },

r x=1 φ x (z) log ν (i+1) (x)g θ (i+1)
x (z) is maximized under the constraints r x=1 φ x (z) = 1 and φ x (z) ≥ 0 when φ satisfies:

φ x (z) = 1 if x maximizes x → ν (i+1) (x)g θ (i+1)
x (z), and φ x (z) = 0 otherwise, which is when φ = [φ] (i+1) . Then

H P n [φ] (i+1) ≤ H θ (i+1) ν (i+1) , G [φ] (i+1) x r x=1 ≤ H θ (i+1) ν (i+1) , G φ (i) x r x=1 = H P n φ (i)
where the last equality comes from (31) and (32). Now consider the Classification EM algorithm (CEM), introduced by [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF], and rewritten here using the entropy notations (thanks to Equation ( 31)). The CEM Algorithm is described by Algorithm 1.

Algorithm 1 CEM algorithm of [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF] Require: (ν (0) , θ (0) ) an initial parameter value.

Repeat the following three steps until convergence E-Step: Compute φ (i) following (28). C-Step: Compute the MAP estimator [φ] (i) using (33). M-Step: Define (ν (i+1) , θ (i+1) ) as one of the minimizer (provided that it has a sens) of

(ν, θ) → H θ ν, G [φ] (i) x r x=1 .
Proposition 5.3 is a straightforward generalization of Proposition 2 of [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF]. Its proof relies on the adaptation of Proposition 5.2 to the sequence φ (i) i≥0 re-defined in Algorithm 1. Proposition 5.3 (Proposition 2 of [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF]). if A1-4 are satisfied, the sequence

H P n [φ] (i) i≥0 ,
produced by Algorithm 1, is non-increasing and converges to a stationary value. Moreover, the sequences [φ] (i) i≥0 and ν (i) , θ (i) i≥0 remain constant after a certain i 0 .

6 Practical implementation of D n r

The empirical version of ( 9) is min Φr({Z1,...,Zn})

H P n = min (C n r )
H .

We can thus focus on the practical computation of Φ n r defined by (11). From Theorem 3.3, for all φ = (φ 1 , . . . , φ r ) in Φ n r , for all x in {1, . . . , r} and all z in {Z 1 , . . . , Z n }, φ x (z) = 0 or φ x (z) = 1. Thus, the number of potential functions φ in Φ n r corresponds to the number of possible classifications (X k ) k=1,...,n in {1, . . . , r} n , which grows exponentially with n. Thus, the exact of minimization of φ → H P n (φ) is a NP-hard problem.

Proposition 5.3 shows that Algorithm 1 in Section 5.2 provides a non-decreasing sequence of H P n [φ] (i) i≥0 . However we showed that the minimum mixing entropy does not decrease when r exceeds the relative entropic order r n and Algorithm 1, that is defined for a given order r, does not take that property into account. Moreover, when executing Algorithm 1 with large values of r, the C-step provokes an extinction of some classes after the first loops of the algorithm meaning that, for small values i and some x in {1, . . . , r}, [φ] (i)

x (z) = 0, for all z in {Z 1 , . . . , Z n }, without giving the opportunity to the EM algorithm to reorganize the data. Algorithm 2 is an alternative that browses a larger set of φ's. It runs the sequences (φ (i) ) i≥0 produced by the classical EM algorithm initiated with N init random values φ (0) rather that initiating with initial parameters (ν (0) , θ (0) ) like EM and CEM algorithm do. The considered values for r grow until no improvement is made (after stop r ≥ 1 increasing values of r without any improvement of the mixing entropy). Finally, exploiting Proposition 5.2, Algorithm 2 runs the classifier [φ] in parallel at each step and tests if the mixing-entropy decreases or not.

Algorithm 2 Pseudo-code for the construction of φ Require:

N init ≥ 1 stop em ≥ 1, stop r ≥ 1, ind em = 1, ind r = 1, H = ∞, r = 1, ind r = 0, while ind r < stop r do ind r = ind r + 1, for init in {1, . . . , N init } do randomly initialize φ (0) x (z), x = 1, . . . , r, z ∈ {Z 1 , . . . , Z n } in Φ r ({Z 1 , . . . , Z n }), i = 0, ind em = 0, while ind em < stop em do ind em = ind em + 1, define ω i+1 = argmin ω=(ν,θ) H θ ν, G φ (i)
x r x=1 using (30), define φ (i+1) using ( 28) and [φ] (i+1) using (33), calculate i+1) .

[H] = H P n [φ] (i+1) , if [H] < H then Update: H = [H] , φ = [φ] ( 
Reset: ind em = 0 and ind r = 0. end if i = i + 1, end while end for r = r + 1. end while 7 Illustration with synthetic data

In this section we will execute Algorithm 2 on synthetic data. We do not intend to provide an exhaustive analysis of the performance of this method. Our purpose is to illustrate the results discussed through out the paper. Table 1: 

√ 3) 1 1 0.75 • (2 √ 3) 1 2 0.9 • (2 √ 3) 1 2 2 √ 3 1 2 1.1 • (2 √ 3) 2 2
where µ > 0 and g θ is given by (34).

Once again, we observe on Table 2 and Figure 4 the merging tendency of the classes as the clumps of the distribution P get closer to each other.

8 Proof of Theorem 3.3

We assume that there exists x 0 in {1, . . . , r} such that P φ x0 ∈]0, 1[ > 0. Using Borel-Cantelli Lemma we can therefore consider an α in ]0, 1 2 [ satisfying P φ x0 ∈ [α, 1 -α] > 0. Since r x=1 φ x = 1, we can also assume the existence of an other x 1 = x 0 such that P φ x0 ∈ [α, 1 -α] and φ x1 ∈ [α, 1 -α] > 0, even if it means choosing a smaller α. Denote by A α the set

A α = A α (x 0 , x 1 ) = z ∈ Z | φ x0 (z) ∈ [α, 1 -α] and φ x1 (z) ∈ [α, 1 -α] ,
and let A be any measurable subset of A α satisfying P (A) > 0. Let θ = (θ x ) Let δ be a real number satisfying 0 < δ < α. Let φ be such that: For all x = x 0 , x 1 , φ x = φ x , and, for x ∈ {x 0 , x 1 },

φ x0 (z) = φ x0 (z) if z ∈ A ,φ x0 (z) = φ x0 (z) + δ if z ∈ A , φ x1 (z) = φ x1 (z) if z ∈ A ,φ x1 (z) = φ x1 (z) -δ if z ∈ A .
By the definition of A, φ belongs necessarily to Φ r . We now explicit H p (φ, θ ): Using that, for all x = x 0 , x 1 , ν φ (x) = ν φ (x), ν φ (x 0 ) = ν φ (x 0 ) + δP (A) and ν φ (x 1 ) = ν φ (x 1 ) -δP (A). Now (z) ν φ (x 1 ) dP (z) . Now, either there exists δ > 0 such that H p (φ, θ ) < H p (φ ), proving Theorem 3.3, or, for all δ > 0, H p (φ, θ ) ≥ H p (φ ) and the numerator H p (φ, θ ) -H p (φ ) is non negative while the sign of the denominator is the sign of δ thus, the limit in ( 38) is necessarily zero and and, using A9, necessarily, g θ x 0 = g θ x 1 and ν φ (x 0 ) = ν φ (x 1 ). Now defining, for all x = x 0 , x 1 , φ x = φ x , for x = x 0 , φ x0 = φ x0 + φ x1 and, for x = x 1 , φ x1 = 0, then, for all x = x 0 , x 1 , ν φ (x) = ν φ (x), ν φ (x 0 ) = ν φ (x 0 ) + ν φ (x 1 ) and ν φ (x 1 ) = 0 = -ν φ (x 0 ) + ν φ (x 1 ) log ν φ (x 0 ) + ν φ (x 1 ) (41) + ν φ (x 0 ) log ν φ (x 0 ) + ν φ (x 1 ) log ν φ (x 1 ) .

H p (φ, θ ) = -

  r x=1 φ x (z) = 1. If the φ x 's are defined by (5), then (φ x ) r x=1

Figure 1 :

 1 Figure 1: Representation of P in the critical cases (17) (upper graphic with µ = 2√ 3) and (18) (lower graphic with σ = s 2 ). In each graphic are represented P (bold line and filling), the two mixture components g (0,1) and g θ (thin lines) and g θ , θ = argmin θ H (P ||g θ ) (dotted line)

  Remark 4.5. From Lemma 4.4, r and r n are necessarily upper bounded by C 2 (C 2 -1) A11 For any ν , (G x ) r x=1 in D r , for all x in {1, . . . , r }, ν (x) > 0.
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  Gaussian Family (34) Exponential family (35) -α = 0.005 0.70 • (2

  Figure 3: Histograms of the data regrouped by class (corresponding to Table 1) with, µ = 0.75 * (2 √ 3) (Left), µ = 2 √ 3 (Middle), µ = 1.1 * (2 √ 3) (Right), relatively to the Gaussian family (35) (Top) and the exponential family (35) (Bottom)

r

  Figure 4: Histograms of the data regrouped by class using the exponential family (35) (corresponding to the right column of Table 2) with, from top to bottom and left to right, µ = 0.50 * (2 √ 3), µ = 0.60 * (2 √ 3), µ = 0.70 * (2 √ 3) and µ = 2 √ 3.
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Figure 2: Representation of a bi-sided, asymmetrical exponential density. For both graphics, p = 0.7, A L = 1, λ R = 1, λ L = 10. On the graphic on the left hand side A R = 1, and on the right hand side A R = 1.2.

We choose for the underlying distribution P of the synthetic data a Gaussian mixture distributions with various order and parameters. We also perform our classification relatively to two classes of densities: the classical Gaussian densities:

and the bi-sided, asymmetrical exponential densities defined as:

An illustration of such a density is provided in Figure 2.

Remark 7.1. 1. Following Remark 2.1, neither the Gaussian family nor the bi-sided exponential familly satisfies Assumptions A2 and R is not a compact metric space. The minimization of

Indeed, if we concentrate G 1 on only one value of z by, for instance, taking ν(1) = 1 n and G 1 = δ Z1 . Then considering µ 1 = Z 1 and σ 1 → 0 in the Gaussian setting or A R = Z 1 and λ R → +∞ in the bi-sided, asymmetrical exponential setting gives H (ν, (G x ) r x=1 ) = -∞. It is conceivable to restrict {g θ , θ ∈ Θ} by bounding the parameter sets in order to avoid such behavior. However, when running Algorithm 2, such concentration phenomenon do not appear before Algorithm 2 stops, and no such restrictions were needed to obtain the practical results in this section.

2. We could consider any other class of density. For instance, on the same model, we could define bi-sided, asymmetrical Gaussian densities. The choice of exponential is here arbitrary.

3. The restriction p ∈ [α, 1 -α] (we choose α very small in practice) is made to avoid the phenomenon discussed in Section 3.

and the two mixture decompositions with different orders provide the same mixing entropy and Assumption 11 can not be satisfied.

First start with the application of Algorithm 2, when the synthetic data is generated as an i.i.d. sample of size n = 10000 on R of dP (z) = p (z)dz with

where µ > 0 and g θ is given by (34).

Table 1 and Figure 3 represent the results obtained for different values of the only free parameter in this case : µ . We observe that, when dealing with the Gaussian family, the threshold between the cases r n = 1 and r n = 2 occurs somewhere near the theoretical threshold obtained in (17): µ = 2 √ 3, whereas the threshold is smaller when using the bi-sided asymmetrical exponential family. This may be explained by the richness of the bi-sided asymmetrical exponential family compared with the classical, symmetrical Gaussian family.

We confirm this observation with the second application of Algorithm 2 where we assume that p (z) is given by ν φ (x 0 ) and ν φ (x 1 ) being positive, then the right hand side in ( 41) is negative and thus H p (φ, θ ) -H p (φ ) < 0 , concluding the proof in the case 1.

Case 2 : If A10 is satisfied, then P = N i=0 p (z i )δ zi where 1 ≤ N ≤ ∞, for all i z i ∈ Z and p (z i ) > 0 with N i=0 p (z i ) = 1. If we intend to use the same scheme of proof as in Case 1 , the open balls B(z 0 , ε) are made of the single element {z 0 } for ε small enough. The equality, up to a constant, between g θ x 0 (z) and g θ x 0 (z) does not necessarily hold for an infinite amount of z's in this case. However, arguments adapted to the discrete case paired with Equation (40) achieve the same result which is the construction of a φ with lower entropy than φ .

Denote by A 0 the set of all z 0 in {z i } N i=1 such that there exists x in {1, . . . , r} satisfying 0 < φ x (z 0 ) < 1. We assumed at the beginning of the proof that A 0 is non empty. For all z 0 in A 0 choose arbitrarily one x 0 such that 0 < φ x0 (z 0 ) < 1. Therefore x 0 depends on z 0 in A 0 that is considered. For all x 1 satisfying 0 < φ x1 (z 0 ) < 1, one can embed A = {z 0 } in A α (x 0 , x 1 ). Moreover P (A) = p (z 0 ) > 0, we can therefore apply (40) to A = {z 0 } which gives:

and then

Below, we use the notation A c 0 to designate the (possibly empty) set of all z in {z i } N i=1 that do not belong to A 0 . Define φ x (z) for all x in {1, . . . , r} and z in {z i } N i=1 : A 0 being non empty, necessarily ν φ = ν φ and -KL ν φ ||ν φ < 0, concluding the proof in Case 2.