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Abstract. We extend universal attacks by jointly learning a set of per-
turbations to choose from to maximize the chance of attacking deep neu-
ral network models. Specifically, we embrace the attacker’s perspective
and introduce a theoretical bound quantifying how much the universal
perturbations are able to fool a given model on unseen examples. An ex-
tension to assert the transferability of universal attacks is also provided.
To learn such perturbations, we devise an algorithmic solution with con-
vergence guarantees under Lipschitz continuity assumptions. Moreover,
we demonstrate how it can improve the performance of state-of-the-art
gradient-based universal perturbation. As evidenced by our experiments,
these novel universal perturbations result in more interpretable, diverse,
and transferable attacks.

Keywords: Adversarial attacks · Generalization bounds.

1 Introduction

Embedded technologies using artificial Neural Networks (NN) are increasingly
present in our daily lives. Their high expressive power has shown great success in
various complex tasks [36, 21]. However, since the pioneering work of Szegedy et
al. [51] that showed the existence of adversarial attacks, some concerns have been
raised about the NN’s safety and, more particularly, for the safety of the user [24].
The most striking example is that of automated vehicles, where malicious attacks
could lead the car to take unwanted action with dramatic consequences [46, 42].

Most of the adversarial attacks are quasi-negligible perturbations that fool
the NN prediction. From a fast one-shot method [19] to the first iterative pro-
cedures [43, 40, 30, 9, 34], the crafting of adversarial perturbations has lately re-
ceived a lot of attention from the machine learning community. To this regard,
momentum-based methods [16, 54] have shown a promising boost in the trans-
ferability of the attacks learned on one NN to other NNs. In addition, various
contributions have investigated algorithmic concerns leading to accelerated and
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scale-invariant attacks [33] as well as parameter-free attacks [14]. In another line
of research, Finlay et al. [18] designed attacks exploiting the decision boundary
of NNs, while Zhang et al. [63] proposed to take into account the structure of
images through a principal component analysis. A key particularity of all the
above attacks is that they are specific (or example-based), meaning that they
are crafted to attack a single example. Therefore, to attack a new example, one
needs to learn the associated perturbation once again. Although they are very
effective, they have the major drawback of being time-consuming.

On the other end of the spectrum, universal (or example-agnostic) attacks [62]
aim to find an attack that, once learned, can be applied to each new example.
Moosavi-Dezfooli et al. [39] first showed that there exists a single perturbation,
coined universal adversarial perturbation (UAP), which, when added to any new
example, is very likely to fool the classifier; a variant exploiting the orientations
of the perturbation vectors was proposed [15]. Later, a more efficient method,
which relies on a projected gradient descent algorithm was developed [50]. In ad-
dition, inspired by the observation that UAP does not attack all classes equally,
a class-based universal perturbation was proposed [7]. Although these perturba-
tions are universal, it is hard to interpret why they work on a case-to-case basis.
In general, current state-of-the-art universal attacks remain hardly interpretable
out-of-the-box and require a posteriori tailored studies [61]. These works have
suggested that a reasonable assumption is that the perturbations should live
in a low-dimensional manifold [22, 52]. Some works proposed solutions to learn
such a manifold [27, 63, 4, 23, 56]. Finally, Zhang et al. [62] suggested that simple
gradient-based UAP methods may lead to better fooling performance.

Contributions. We propose an extension of universal perturbations that bridges
the gap between specific and universal perturbations. By combining the best of
both worlds, our extension allows us to fool the classifier better than UAP while
still being computationally efficient compared to specific attacks. This extension,
which we call generalized universal attacks, starts from a theoretical observation:
we derive a generalization bound on the deviation between the true and the em-
pirical fooling risks of a universal attack. Concretely, we get a bound on how
much a learned perturbation is able to fool new examples, confirming that we
can use the learned perturbation to attack a model on data coming from the same
task. While this bound stands for classical universal perturbation, it can be gen-
eralized to a set of universal perturbations. From this theoretical result, given
a set of L different universal perturbations, we introduce generalized universal
attacks as follows. The idea is to specifically craft an attack for each example by
choosing, in an unsupervised manner, a perturbation among a set of L different
universal perturbations. To do so, we define an optimization problem to jointly
learn the L perturbations allowing each example to choose its own perturbation;
L can be seen as a tuning parameter controlling the amount of diversity between
the perturbations. To solve it, we derive a gradient-based solution with conver-
gence guarantees. We then propose a simple attack procedure. Our experiments
confirm the effectiveness of the generalized universal perturbations over previous
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gradient-based UAP, in line with the conclusion of Zhang et al. [62]. Our results
also show that they lead to more interpretable and transferable attacks.
Outline. Section 2 recalls the general framework of adversarial perturbations. In
Section 3, after giving a generalization bound for classical universal attacks, we
state our main theoretical result, upon which we build our generalized universal
perturbations. We provide in Section 4 a new method to learn the generalized
universal perturbations and an approach for attacking unseen examples based on
these learned perturbations. We conduct experiments in Section 5 on benchmark
datasets. Note that we defer the proofs to the supplementary material.

2 Preliminaries and related works

We stand in a multiclass setting where X ⊆RP is a P -dimensional input space
and Y={1, . . . , c} is the set of c∈N+ classes. We consider an unknown data dis-
tribution D on X×Y that models the task; the associated marginal distribution
on X is DX . We denote Dn, resp. Dn

X , the distribution of a sample consisting of
n data points i.i.d. according to D, resp. DX .

It is important to note that we are adopting the attacker’s point of view : as
an attacker, we consider that we have at our disposal a trained model f : RP→Rc

which associates each example x∈X to its probabilities f(x)∈Rc to belong to
any of the c classes from Y; we denote by F , the set of possible such models.
The predicted class of x by f is then defined as Cf (x)=argmaxy∈Y f(x)y, where
f(x)y represents the y-th output of f(x). We aim to find for each original example
x ∼DX a point a ∈ X close to x such that Cf (a) ̸= Cf (x). Since a is close to
x, one might expect f to predict the same class for both examples. Thus, a is
called adversarial example and said to fool the classifier Cf .

There exists a vast literature for building adversarial examples, measuring
their closeness to original examples, and quantifying how much they affect the
decision process of f . Here, we embrace the common setting of adversarial exam-
ple a=x+ε built by adding an adversarial perturbation ε to an original example x.
We consider that the two are close if the ℓp-norm of the added perturbation is
small [31]: ε∈Bp(δ)={e∈RP | ∥e∥p ≤ δ}, for some budget δ>0.

To measure the discrepancy of the predictions between an original sample and
its perturbed version, we consider a loss function H :Rc×Y→R taking as inputs
f(a) and a class k from Y (that is either Cf (x) or the original class y of x). In
this paper, we use the cross-entropy loss (or its [0, 1]-bounded counterpart [17]).

Given the trained model f , and an unlabeled data set SX = {xi}ni=1 ∼Dn
X ,

the attacker usually crafts adversarial perturbations with two current paradigms:
(i) specific attacks, where for each x∈SX we look for a perturbation ε(x)∈Bp(δ),
specifically tailored to attack the example x (hereafter, we drop the dependency
on x and simply denote ε); (ii) universal attacks, where we look for a pertur-
bation ε such that a = x+ε is an adversarial example for all x from SX . To
learn such adversarial perturbations, we assume that we have a labeled sample
S = {(xi, yi)}ni=1 ∈ (X×Y)n consisting of n data points (where the classes are
either the true ones or the ones predicted by the classifier Cf ).
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We recall now the two most popular specific attacks.
DeepFool [40]. For a given x ∈ SX , the DeepFool attack is the smallest ℓp
perturbation managing to fool the classifier Cf . More formally, it solves

minimizeε∈RP ∥ε∥p s.t. Cf (x+ε) ̸=Cf (x). (1)

PGD [34]. Given S, and a loss function H, the adversarial perturbation for a
given (x, y)∈S is defined as the one inside the ℓp-ball which maximizes the loss
between x+ε and y. More formally, it solves

maximizeε∈RP H(f(x+ ε), y) s.t. ∥ε∥p ≤ δ. (2)

In practice, the opposite of the objective in Equation (2) is minimized by resort-
ing to a projected gradient method, hence the name of the attack.
On the other side of the spectrum, we recall popular universal attacks.
UAP [39]. The first universal perturbation ε was created iteratively in the fol-
lowing way (until some fooling rate is reached): at each iteration, an example x
is selected such that the classifier f is not fooled, i.e., where Cf (x+ε)=Cf (x),
then a perturbation ∆ε is crafted with DeepFool by solving Equation (1) to
fool the input x + ε; the new perturbation is obtained by updating ε with
ε← ProjBp(δ)(ε+∆ε), where ProjBp(δ) is the projection onto Bp(δ).
Fast-UAP [15]. This attack is a variant of UAP, where Equation (1) (associated
with DeepFool) is replaced from the second iteration by

maximize
∆ε∈RP

⟨ε,∆ε⟩
∥ε∥2∥∆ε∥2

s.t. Cf (x+ε+∆ε) ̸=Cf (x+ε),

where ⟨·, ·⟩ is the dot product. This new problem aims to find a perturbation ∆ε
with the closest orientation to the current iterate ε.
UAP-PGD [50]. Given S, the UAP-PGD attack elaborates upon PGD by fram-
ing the universal perturbation as the solution of the following problem

maximize
ε∈RP

1

n

∑
(xi,yi)∈S

H(f(xi + ε), yi) s.t. ∥ε∥p ≤ δ. (3)

CW-UAP [7]. Recently, UAP-PGD has been extended to class-wise UAP, where
a universal perturbation is built for each class. Let ∀k∈Y, Sk={xi | (xi, k)∈S}
be the set of training points of the k-th class, and nk the size of Sk, then CW-
UAP aims at solving

maximize
{εk∈RP }k∈Y

∑
k∈Y

1

nk

∑
xi∈Sk

H(f(xi + εk), k) s.t. ∀k ∈ Y, ∥εk∥p ≤ δ. (4)

The solution amounts to learning multiple independent UAP-PGD perturba-
tions, one for each class.
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3 Generalization guarantees: we can attack new examples

3.1 From universal perturbation. . .

In this section, we are interested in giving guarantees on the performance of the
learned perturbation in the case of universal perturbations. To do so, we derive
below generalization bounds (see, e.g., [37]) on the performance of the learned
universal perturbation on unseen examples. Formally we are interested in the
quality of the learned perturbation on the new examples that we measure with
the fooling risk defined by the following definition.

Definition 1 (Fooling risk for universal perturbation). Let D be a distri-
bution on X ×Y, and a labeled set S ∼Dn. Given a trained model f : RP→Rc

(learned from a set different from S), and a loss function H : R×Y→[0, 1], the
true fooling risk, resp. the empirical fooling risk, associated to the learned per-
turbation ε∈Bp(δ) is defined by

Rf
D(ε)= E

(x,y)∼D
H(f(x+ε), y), resp. Rf

S(ε)=
1

n

n∑
i=1

H(f(xi+ε), yi).

This definition extends the fooling rate, for which H is the 0-1 loss. Since our ob-
jective is to learn perturbation that fools the model, our goal is to maximize the
risk. To ensure that Rf

S(ε) is a good estimator of Rf
D(ε), we prove the following

theorem based on the Rademacher complexity [6].

Proposition 1. For any distribution D on X×Y, for any loss function H :
Rc×Y → [0, 1], for any model f : RP→Rc, for any budget δ>0, for any ℓp-norm
with p≥0 and, for any λ∈(0, 1], we have

P
S∼Dn

∀ε∈Bp(δ), ∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2RS [Bp(δ)] + 3

√
ln 4

λ

2n

 ≥ 1− λ, (5)

where we define the Rademacher complexity [5] of Bp(δ) as

RS [Bp(δ)] = E
σ∼Σn

sup
ε∈Bp(δ)

[
1

n

n∑
i=1

σiH(f(xi+ε), yi)

]
, (6)

where σ={σi}ni=1∼Σn with Σ the Rademacher distribution: Σ(−1)= 1
2 , Σ(1)= 1

2 .

For a given learned model f , Equation (5) tells that for the perturbation ε∈Bp(δ),
the empirical risk Rf

S(ε) does not deviate too much from the true risk Rf
D(ε)

when the Rademacher complexity RS [Bp(δ)] is small. Note that Proposition 1 is
valid for any perturbation ε that lives in Bp(δ) (whatever the budget δ and the
p-norm). As an attacker, we are mostly interested in the lower bound on Rf

D(ε)
that gives an estimate of the “chances” to fool the model. In other words, the
more the learned perturbation manages to fool the model f on S, the higher
the empirical fooling risk and the higher the chances of fooling the model on
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new examples coming from D. The form of the bound of Proposition 1 is quite
classical5, but it has the originality to state a theoretical certification from the at-
tacker’s point of view to estimate—given a model f—the true fooling risk Rf

D(ε)
to quantify how much the learned perturbations are able to fool a given model on
unseen examples. Indeed, in the literature, many recent works aim to understand
the generalization abilities in an adversarial setting, but they take the defender’s
point of view and provide generalization bounds for the so-called true adversar-
ial risk that measures how much the learned model is able to face adversarial
attacks on unseen examples. In other words, while we study the fooling abilities
of the perturbations for a given model, those works study the performance (or
robustness) of the model when this latter is attacked by adversarial perturba-
tions (without knowing the attack). Among these works, we can mention [58,
26, 3] that are based on an adversarial Rademacher complexity of the class F
of the models. Other generalization bounds have been derived for the adversar-
ial risk, such as with VC-dimension [1, 38], covering numbers [41], algorithmic
stability [57], perturbation analysis [60], or in PAC-Bayes [53].

3.2 . . . to generalized universal perturbations

From the attacker’s viewpoint, learning only one perturbation ε∈Bp(δ) may be
inefficient: the perturbation may not fool the model for every example in the data
set S. More formally, given one perturbation ε ∈ Bp(δ), the attacker may have
difficulties to increase the empirical fooling risk Rf

S(ε). To increase the chance of
fooling the model, we consider L∈N+ perturbations ε=[ε1, . . . , εL]∈Bp(δ)L and,
for each pair (xi, yi)∈S, we pick one of the L perturbations in ε which maximizes
the loss between f(xi+εl) and yi the most. In other words, the perturbations
are specific enough for each example while being sufficiently universal to cover
all the pairs in S. Hence, considering L perturbations may be better suited to
fool all the examples (as shown in Section 5) since it can extend our notion of
empirical and true fooling risk as follows.

Definition 2 (Fooling risk for generalized universal perturbations). Given
the assumptions of Definition 1, the true fooling risk, resp. empirical fooling
risk, associated to the learned perturbations ε=[ε1, . . . , εL]∈Bp(δ)L is

Rf
D(ε)= E

(x,y)∼D
max
εl∈ε

H(f(x+εl), y), resp. Rf
S(ε)=

1

n

n∑
i=1

max
εl∈ε

H(f(xi+εl), yi).

We now extend Proposition 1 to the case of a set of L universal perturbations.

Theorem 1. Given the assumptions of Proposition 1, for any L∈N+, we have

P
S∼Dn

∀ε∈Bp(δ), ∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2RS

[
Bp(δ)L

]
+ 3

√
ln 4

λ

2n

≥1−λ, (7)

5 While the form of Proposition 1 is classical, the Rademacher complexity is computed
on the set of perturbations Bp(δ) rather than on the set of models F .
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where RS

[
Bp(δ)L

]
= E

σ∼Σn
sup

ε∈Bp(δ)L

[
1

n

n∑
i=1

σi max
εl∈ε

H(f(xi+εl), yi)

]
. (8)

Equation (7) is a direct extension of Equation (5): Proposition 1 is a special case
of Theorem 1 when L=1. Note that this bound is valid for any perturbation ε
that lives in Bp(δ)L with L∈N+. Importantly, Equation (7) holds for any model f
we want to attack that is not necessarily the one we used to learn ε. Hence,
the bound holds in the context of adversarial transferability, where attacks are
typically learned on simpler surrogate models in view of being used to attack
other target models [47]. More formally, given a target model f ′ whose weights
are not available, we aim to select a surrogate model f ∈ F in order to craft
adversarial perturbations ε for each example x∈DX that hopefully also fool the
target model f ′. In this context, we better consider the learned model f ∈F , as
shown in the following proposition.

Proposition 2. Given F the set of possible models and the assumptions of The-
orem 1, then we have

P
S∼Dn

 ∀f ∈ F , ∀ε ∈ Bp(δ)
L,∣∣∣Rf ′

D (ε)−Rf
S(ε)

∣∣∣≤ sup
ε′∈Bp(δ)L

∣∣∣Rf ′

S (ε′)−Rf
S(ε)

∣∣∣+
√

ln 2
δ

2n

≥ 1−λ. (9)

Equation (9) tells that the empirical risk Rf
S(ε

′) of the surrogate model f is repre-
sentative of the true risk Rf ′

D (ε′) of a target model f ′ when supε′

∣∣∣Rf ′

S (ε′)−Rf
S(ε)

∣∣∣
is small. Intuitively, this term is small if we cannot find a set of perturbations ε′
that differs too much from the perturbations ε for f ′.

4 Optimization and selection of universal perturbations

Motivated by Theorem 1, to learn the L∈N+ universal adversarial perturbations
ε=[ε1, . . . , εL]∈Bp(δ)L, we propose to maximize the empirical fooling risk.
Problem 1. Let L be the number of universal perturbations to learn. Given
S={(xi, yi)}ni=1, and the model f , find ε=[ε1, . . . , εL] solving

maximize
ε∈Bp(δ)L

{
Rf

S(ε) :=
1

n

n∑
i=1

max
εl∈ε

H(f(xi + εl), yi)

}
. (10)

When L=1 (i.e., for a single perturbation) Equation (10) boils down to Equa-
tion (3). In addition, it bears similarities with Equation (4) when L equals the
number of classes and each εl is independently learned on Sl. Due to the model f ,
it is worth stressing that Problem 1 is a difficult non-concave maximization prob-
lem. Finding its global solution is thus out of reach. To tackle this challenge, we
embrace a projected gradient ascent algorithm augmented with an Armijo-like
line-search strategy to efficiently find an approximate solution. The correspond-
ing algorithmic procedure is sketched in Algorithm 1 while details are reported in
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Algorithm 1 L-UAP
Require: Relaxation parameter ρ ∈]0, 1[

Initialize ε(0) = [ε
(0)
l ]Ll=1

for k = 0 to K − 1 do
Provide a rough estimate of γk > 0
Surrogate: h(k) : ε 7→Rf

S(ε
(k))+⟨∇Rf

S(ε
(k)), ε−ε(k)⟩−(1/2γk)∥ε−ε(k)∥2

Projected gradient step: ε(k+1/2) = ProjBp(δ)L
(ε(k) + γk∇Rf

S(ε
(k)))

ik = 0
repeat

ε(k+1) = (1− ρik )ε(k) + ρikε(k+1/2)

ik = ik + 1
until Rf

S(ε
(k+1)) ≥ Rf

S(ε
(k)) + ρik−1h(k)(ε(k+1/2))

end for
return ε(K)

supplementary material, along with an alternative solution based on a stochastic
solver fully exploiting the finite-sum nature of Problem 1. Algorithm 1 comes
with convergence guarantees stated below.

Theorem 2 (Convergence [8]). Let {ε(k)}k∈N be the sequence of Algorithm 1.
Suppose that ∇Rf

S is Lipschitz continuous. Then each limit point of {ε(k)}k is a
stationary point of Problem 1 and {Rf

S(ε
(k))}k converges towards the objective

value at the limit point. If Rf
S satisfies the Kurdyka-Łojasiewicz (KŁ) property

at any point, then the sequence converges to a stationary point of Problem 1.

The existence of a Lipschitz constant is crucial to ensure convergence guarantees.
Note that studying the Lipschitz continuity of NN and obtaining sharp Lips-
chitz constant is difficult (e.g., [12, 20]). Although most common loss functions
H for classification-based neural networks lack Lipschitz continuous gradients,
variants do exist. Hereafter, we resort to one of them, namely the bounded cross-
entropy [17] where the probabilities are bounded away from 0 and 1. This loss
comes particularly useful as it can be rescaled to yield values in [0, 1] as required
by our Theorem 1.
Remark 1. Many functions met in NNs (e.g., activation functions, loss) are
semi-algebraic or tame, and thus, satisfy the KŁ property [2, 59]. Since these
concepts are stable under many operations, it is reasonable to assume that many
deep NNs f are likely to satisfy the KŁ property and so does Rf

S.
While little attention is usually devoted to these concerns for crafting adversarial
attacks, we show empirically in Section 5 the superiority of the corresponding
principled algorithmic solution, even if these assumptions do not always hold.

According to Theorem 1, once ε has been learned with Algorithm 1 from a
sample S∼Dn, we can attack a new example by picking one perturbation among
the L perturbations as follows.
Problem 2. (Attacking unseen example) Given (x, y) ∼ D, given a NN f , the
associated attack is a=ProjX (x+ε̂) where ε̂=argmaxεl∈εH(f(x+εl), y). If y is
unavailable and assuming a well-performing model f , y is replaced by Cf (x).
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1 2 3 4 5

1 2 3 4 5
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.

Adversarial label

Fig. 1. 5-UAP attacks on MNIST. (Left panel) Learned adversarial perturbations.
(Right panel) In the fooling matrix, labels range from 0 to 9 from top to bottom and
from left to right.

When f is a NN, in order to evaluate which perturbation from ε= [ε1, . . . , εL]
maximizes the loss function, solving Problem 2 requires performing L indepen-
dent forward passes through f . Note that since they are independent, they can
be performed in parallel to accelerate the computation. We provide below a
complexity comparison between specific and (generalized) universal attacks.
Remark 2. Given a model f that is a neural network whose forward complexity
is of O(d) for a single input sample, then the complexity to compute ∇H(f(x), y)
is of order O(2d), since the backward pass is also of order O(d). Then, it follows
that (specific) for K iterations, cost∼O(2Kd); and (generalized-universal) for
L perturbations, cost∼O(Ld); (universal) cost∼O(1 ).
Hence, from the standpoint of computational complexity, universal attacks are
the most efficient. To a lesser extent, one-shot specific attacks (i.e., K=1, such as
in FGSM [19]) and our proposed generalized universal attack achieve comparable
complexity for small L.

5 Numerical experiments

We now conduct experiments on 3 popular benchmark classification datasets
and 2 NN architectures: a differentiable multi-layer perceptron (MNIST [32])
and ResNets (CIFAR-10 [29] and ImageNet). We consider ℓ∞-attacks with a
maximum budget δ=8/255. For reproducibility purposes, we report implemen-
tation details such as pre-processing, data splitting, and model tuning in the
supplementary material, as well as results on ℓ2-attacks.

5.1 MNIST Experiments

We begin with the MNIST dataset, useful for interpreting perturbations.
Illustration and role of the universal perturbations. Fig. 1 (left) reports
the learned universal perturbations of 5-UAP. Interestingly, they all exhibit
strong patterns. In particular, we observe that ε1 and ε5 are very similar up to
the sign difference. Indeed, since our framework does not handle tuning the sign
of the perturbation, two perturbations might be the opposite of each other. It is
worth noticing that the universal perturbations learned are consistent through-
out multiple splits and random initializations. We report in Fig. 1 (right) the fool-
ing matrices associated to each of the perturbations {εl}5l=1. The latter shows the
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1 2 3 4 5
1 2 3 4 5

Pr
ed

.

Adversarial label

(a) 5-UAP attacks.

airplane bird deer frog

Adversarial label

Pr
ed

.

(b) CW-UAP attacks. Each row of the
fooling matrix indicates the adversarial label
found for each 10 attacks.

UAP

Adversarial label

Pr
ed

.

(c) UAP attack.

Fig. 2. ℓ∞-based attacks on CIFAR-10. In the fooling matrices, labels range {air-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, truck} from top to bottom
and left to right.

correspondence between the predicted target Cf (x) of some image x (in lines)
and the label of the associated adversarial attack (in columns), i.e., Cf (x+ ε̂)
(see Problem 2). The fooling matrices highlight that each universal perturbation
plays a different role. For instance, ε1 mostly allows to attack images of digits
“3” and “9” to be misclassified as “5” and “4”, respectively. Instead, ε3 is mainly
used to attack images of “5” into “3”. Coincidentally, we can distinguish the tilted
digit “3” in ε3. As opposed to CW-UAP, our UAP attack automatically captures
the similarity between multiple digits such as “3” and “9”.
Illustration of the behavior of the generalization bound. We report in
Fig. 3 an estimation of the lower and upper bounds on Rf

D(ε) from Equation (7).
The Rademacher complexity is approximated by resorting to the maximization
Algorithm 1 where Rf

S is replaced by the quantity inside the sup of Equation (8).
The maximum value of the objective is then averaged over multiple draws of
σ∼Σn. As expected, we observe that the empirical fooling risk increases with L.
While the Rademacher complexity (and so the generalization gap between Rf

D(ε)

and Rf
S(ε)) also increases with L, it is interesting to remark that the lower

bound on Rf
D(ε) tends to grow, suggesting that considering generalized universal

perturbations can increase the chances to fool a model.
Baselines.6
We turn to the CIFAR-10 dataset and compare our L-UAP attack with the
following universal attacks baselines.
• We compare with UAP-PGD [50] which is closely related to our 1-UAP with a
single perturbation, but differs from two aspects. First, the authors have consid-
ered a capped loss with parameter β to prevent any single sample from dominat-
6 Pytorch codes of UAP, Fast-UAP baselines, and our proposed UAP attack will be

made publicly available in order to contribute to the TorchAttacks repository [28].
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ing the objective (hereafter, we use the value β=9 that was found to be the best
in [50]). Second, the authors resort to the stochastic normalized gradient method
ADAM to learn the perturbation. Since their code is not publicly available, we
tried to reproduce their version as closely as possible.
• For the sake of consistency, we implemented a Pytorch version of FAST-
UAP [15] originally designed for TensorFlow. We use the same hyper-parameters:
a desired fooling rate of 80%, a maximum of 10 iterations for DeepFool, and an
overshoot of 0.02 to prevent vanishing updates.
• We compare against CW-UAP [7] whose code was granted by the authors.
• We consider standard specific attacks such as FGSM [19] and PGD [34] as well
as more advanced techniques, i.e., MI-FGSM [16] and AutoAttack [14], in order
to grasp the existing gap of performance between specific and universal attacks.
To this effect, we resort to the TorchAttacks repository [28].
Illustration & insights about UAP attacks. Similarly to the MNIST exper-
iment, we report in Fig. 2 (a) the learned 5-UAP universal perturbations (left)
and their fooling matrices (right). We observe that each UAP universal perturba-
tion plays a different role and illustrates the diversity in perturbations. Indeed,
for instance, ε2 is mostly used to attack images of animals (bird, cat, dog, frog,
horse) so that they become misclassified as deer : in ε2 one can distinguish two
deer facing each other. Another example is ε3 which is mostly used to misclassify
images of airplane and ship as bird ; in ε3 one can distinguish a bird. We report
in Fig. 2 (b) and (c) the fooling matrices and some universal perturbations of the
CW-UAP attack and UAP attack, respectively. Contrary to UAP, we merged all
10 fooling matrices of CW-UAP (one for each class) into a single one since they
are all disjointed. Thus, each row of Fig. 2 (b) (left) corresponds to the adversar-
ial label obtained for each of 10 independent class-wise attacks. Unsurprisingly,
many of the same couples (predicted label, adversarial label) appear in the fool-
ing matrices of UAP, CW-UAP, and UAP. This makes sense since, ultimately,
each (predicted label, adversarial label) depends on the similarity between image
classes and how the classifier proceeds to distinguish between the classes. Despite
this resemblance, the key point is that all three methods operate differently. Es-
pecially, by its construction L-UAP is able to find an overlapping decomposition
of the (predicted label, adversarial label) couple. As such, it automatically unveils
the similarity between examples belonging to 2 different classes.
Impact of the numbers of training samples. We now take a deeper look
at the impact of two parameters on the performance of UAP attacks. More
precisely, we study the influence of the number of training samples n and the
number of perturbations L (see Problem 1) on the test fooling rate. To this end,
we let n and L vary in {1K, 2K, 3K, 4K} and {1, 3, 5, 7, 10}, respectively. All
learned L-UAP attacks are evaluated on a distinct test set. Results, averaged
over multiple splits, are reported in Fig. 4. Overall, we observe that increasing L
improves the performance, thus confirming that having more perturbations is
beneficial to attack f . This observation has to be contrasted with the fact that
the amount of data n required to achieve good performance goes in pair with
the complexity of Problem 1, hence with L. As such, for n = 1K or 2K, the
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Table 1. Transferability of ℓ∞-attacks on a ResNet18 trained on CIFAR-
10.Results are split into universal (top), proposed (middle), and specific (bottom)
attacks, with bold fonts indicating the highest fooling rate for each target model.

Attack
Source Transfer
ResNet18 ResNet50 MobileNetv2 r-ResNet18 r-ResNet50

UAP-PGD [50] 12.53 ± 0.60 21.51 ± 0.18 39.37 ± 0.19 2.01 ± 0.01 2.54 ± 0.05
FAST-UAP [15] 11.16 ± 1.03 19.65 ± 1.22 36.51 ± 0.30 1.94 ± 0.01 2.33 ± 0.05
CW-UAP [7] 13.85 ± 0.18 21.95 ± 0.28 39.62 ± 0.33 2.26 ± 0.07 2.26 ± 0.06
1-UAP 36.83 ± 0.93 27.45 ± 0.81 44.11 ± 0.35 2.27 ± 0.02 2.27 ± 0.08
3-UAP 54.03 ± 0.54 28.49 ± 0.56 45.42 ± 0.32 2.55 ± 0.03 2.95 ± 0.08
5-UAP 55.56 ± 0.57 28.87 ± 0.07 46.09 ± 0.10 2.56 ± 0.05 3.10 ± 0.05
FGSM [19] 53.82 ± 0.00 28.55 ± 0.00 38.10 ± 0.00 3.02 ± 0.00 3.14 ± 0.00
MI-FGSM [16] 80.76 ± 0.00 29.95 ± 0.01 35.46 ± 0.01 2.60 ± 0.00 3.41 ± 0.00
PGD [34] 93.61 ± 0.06 30.47 ± 0.12 38.17 ± 0.37 1.94 ± 0.05 2.53 ± 0.08
AutoAttack [14] 93.07 ± 0.00 31.79 ± 0.16 38.08 ± 0.27 1.91 ± 0.02 2.41 ± 0.02

performance does not significantly improve (or worse, decrease) with larger L.
In what follows, we restrict to a setting made of few samples (i.e., n=2K).

Comparison with baselines. Table 1 reports the performances of ℓ∞-attacks,
in terms of fooling rate. 1-UAP outperforms all universal attacks (UAP-PGD,
FAST-UAP, CW-UAP) and, most importantly, it surpasses UAP-PGD, which is
closely related. We believe that this is due to our algorithm, which benefits from
better optimization guarantees (see supplementary material). In addition, as L
grows, we observe an increase in the performance of UAP attacks, thus justify-
ing the advantages of having more degrees of freedom. Interestingly, the UAP
attacks manage to improve upon the one-shot specific FGSM attack. However,
the performances are still very far behind the more advanced specific attacks.
Nonetheless, such differences in performance have to be contrasted with their
associated computational complexity (see Remark 2). Overall, L-UAP yields a
competitive trade-off between universality and specificity by tuning L.
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Transferability of attacks. We now evaluate how the learned attacks on the
ResNet18 model manage to fool more complex architectures such as the pre-
trained ResNet50 and MobileNetv2 [48] models. We additionally consider two
robust models from the RobustBench repository [13], namely r-ResNet18 [49]
and r-ResNet50 [10], which are trained with some defense mechanisms against
ℓ∞-attacks of budget δ=8/255. Results are reported in Table 1. Overall, L-UAP
systematically yields better transferability than all universal attacks, as shown
by the higher fooling rates. Moreover, it manages to outperform specific attacks
when the target model architecture is different from the base model on which the
attacks have been learned (i.e., Mobilenetv2 vs. ResNet18). Note that this is pre-
cisely the setting where most universal attacks also show greater transferability
than specific attacks. Surprisingly, although the momentum-based attack MI-
FGSM has shown success on ImageNet [16], it does not demonstrate significant
transferability on CIFAR10. Interestingly, L-UAP shows competitive results on
robust models. It is important to remark that our experimental results are in
line with the theory proposed in Proposition 2, which shows that choosing two
different architectures may not have an influence on the fooling rate as long as
the perturbations similarly fool the two models.

5.2 ImageNet experiments

We tackle a large-scale scenario made of 1K classes. Such a setting is problematic
for CW-UAP as computing or storing 1K perturbations exceeds most memory
storage spaces: it is not studied here.
Results. We report the results in Table 2. Again, we observe a drastic gap in
performance between UAP-PGD and 1-UAP, confirming the superiority of the
numerical solution of Algorithm 1 for L=1 over standard UAP-PGD solver [50].
UAP achieves performance of the order of magnitude as specific attacks (e.g.,
MI-FGSM). It suggests that, for large-scale settings with numerous classes, solely
a few universal perturbations are enough to attack most of the images.

6 Conclusion

We have established a theoretical foundation for attackers by deriving a gen-
eralization bound that quantifies the effectiveness of universal attacks on new
examples and other neural network models. This bound not only applies to clas-
sical universal perturbations but also extends to our novel generalized universal
perturbations. The latter stands halfway between specific and universal attacks,
as evidenced by our numerical experiments. Beyond the gain in performance,
generalized universal attacks pull out of existing attacks by capturing meaning-
ful patterns describing the most common flaws to fool the model. We believe
that the latter might help to shed some light on how the model operates.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article
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Table 2. Performance of ℓ∞-attacks on a ResNet18 trained on ImageNet.
Bold fonts highlight the top fooling rate for each type of attacks.

Attack ResNet18
UAP-PGD [50] 27.36 ± 0.00
FAST-UAP [15] 23.46 ± 0.25

Attack ResNet18
1-UAP 83.17 ± 2.62
5-UAP 88.98 ± 1.06
10-UAP 87.24 ± 1.16

Attack ResNet18
FGSM [19] 84.53 ± 0.05
MI-FGSM [16] 90.04 ± 0.02
PGD [34] 94.99 ± 0.06
AutoAttack [14] 88.23 ± 0.05

Ethic Statement. While focused on DNN attacks, the identified weaknesses could
aid in improving their robustness, fostering the development of more reliable DNNs.
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A Algorithmic solutions

In this section, we detail the algorithmic procedures used to learn the generalized
universal perturbations.

Notations. For x ∈ RP and I ⊆ {1, . . . , P}, xI stands for the restriction of x
to the indices in I.

A.1 Deterministic solver

To maximize Rf
S in Problem 1, we embrace a projected gradient ascent algo-

rithm augmented with an Armijo-like line-search strategy (for ensuring some
sufficient increase at each iteration). Its principle is inspired from the minorize-
maximization algorithm where, at each step, a lower bound of the empirical
fooling risk Rf

S is maximized. Let ε = [ε1, . . . , εL] and some sequence of step-
sizes {γk}k∈N+

. Then, at each iteration k∈N+ the algorithm looks for ε(k+1/2)∈
Bp(δ)L which maximizes the surrogate h(k)(ε)=Rf

S(ε
(k))+

〈
∇Rf

S(ε
(k)), ε−ε(k)

〉
−

(1/2γk)∥ε−ε(k)∥2 with ⟨·,·⟩ the Frobenius inner product and ∥·∥ the induced norm.
Such choice is motivated by the fact that, for concave and µ-smooth functions
Rf

S , and for all γk≤ 1
µ , we have Rf

S(ε)≥h(k)(ε). Henceforth, we have

ε(k+1/2) = argmax
ε∈Bp(δ)L

h(k)(ε) = ProjBp(δ)L

(
ε(k) + γk∇Rf

S(ε
(k))
)
, (11)

which recasts into one projected gradient ascent step. Note that the differentia-
bility of Rf

S depends on the choice H and on the NN f to attack. For instance, for
ReLu-based NN, it is likely that ∇Rf

S(ε
(k)) is not well-defined. In that case, and

whenever Rf
S is not differentiable, we resort to a sub-gradient instead. We addi-

tionally consider a relaxation step of the form ε(k+1)=(1−αk)ε
(k)+αkε

(k+1/2),
where the relaxation parameter αk∈(0, 1] is appropriately chosen by an Armijo-
like line-search strategy to ensure [8] some sufficient increase in Rf

S . This algorith-
mic procedure is sketched in Algorithm 1 and referred to as L-UAP. In practice,
we suggest initializing the L universal perturbations in a non-informative man-
ner by randomly sampling each ε

(0)
l ∼ [−δ, δ]P and additionally projecting onto

the ball Bp(δ).

About the max operator. Note that Rf
S is first and foremost not differentiable

because of the max term of the objective recalled below.

1

n

n∑
i=1

max
εl∈ε

H(f(xi + εl), yi). (12)

To avoid this concern, one could replace max with a smooth approximation.
However, empirically, iterates almost never lie at such singularities. To evidence
such finding, we have conducted an additional experiment where the absolute
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difference between the two largest values of {H(f(xi + εl), yi)}εl∈ε is computed.
In particular, we have inspected the smallest absolute difference over the training
set, as a function of the iterates ε(k) of Algorithm 1. We report in Figure 5 one
representative run to learn 5-UAP on MNIST (see Section D.1 for details about
the experimental setting). At every iteration, the smallest “distance to singular-
ity” is always strictly positive. Hence, the iterates never lie at the discontinuities
of the max term.

A.2 Stochastic solver

We propose an additional solver fully exploiting the finite-sum nature of the
loss in Problem 1. To this regard, we begin by rewriting it by means of the
sample-wise losses ri, i.e.,

Rf
S(ε) =

1

n

n∑
i=1

ri(ε), with ri(ε) = max
l∈{1,...,L}

H(f(xi + εl), yi).

Hereafter, we resort to a stochastic solver based on the well-known variance
reduction techniques (see [25, 55, 44]). Since the main computational load comes
from the backpropagation through the neural network, we favor the proxSAGA
algorithm [25], which does not require an additional loop over multiple epochs.
The corresponding algorithmic solution is summarized in Algorithm 2.

Algorithm 2 UAP-ProxSAGA
Initialize ε(0) = [ε

(0)
l ]Ll=1

Set gi = ∇ri(ε
(0)) for every i ∈ {1, . . . , n}

Set ḡ(0) = (1/n)
∑n

i=1 gi
for k = 0 to K − 1 do

Instant gradient computation
Uniformly pick a batch Ik ⊂ {1, . . . , n} of size b
gIk =

∑
i∈Ik

∇ri(ε
(k))

Projected gradient step
α(k) = 1

b
(gIk − g̃Ik ) + ḡ(k)

ε(k+1) = ProjBp(δ)
(ε(k) + γkα

(k))
Updates
ḡ(k+1) = 1

n
(gIk − g̃Ik ) + ḡ(k)

g̃Ik = gIk

end for
return Generalized universal adversarial perturbations ε(K)

Such a solver should become particularly useful in dealing with large datasets
by treating one sample at a time. We recall below the convergence guarantees
under the assumption of Lipschitz continuity.
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Theorem 3 ([25]). Suppose that ∇Rf
S is Lipschitz continuous with Lipschitz

constant β. Let {ε(k)}k∈N be the sequence of Algorithm 2 with fixed step-size
γk = γ ≤ 1/(5βn) and batch-size b=1. Then, for k uniformly sampled from
{1, . . . ,K}, the following holds:

E
[
∥Gγ(ε

(k))∥2
]
≤ 50βn2

5n− 2

Rf
S(ε

⋆)−Rf
S(ε

(0))

K
, (13)

where ε⋆ is a maximizer of Rf
S and Gγ : ε 7→ γ−1(ε − PBp(δ)(ε + γ∇Rf

S(ε))) is
the gradient mapping.

Note that Theorem 3 relies on the Lipschitz constant β whose calculation is
out of reach. Instead, in practice, we suggest either choosing β large enough or
computing a rough estimate at each iteration.

B Proof of Proposition 1 and Theorem 1

The proof of Proposition 1 and Theorem 1 relies on Theorem 3.3 of Mohri et
al. [37].
Theorem 3.3 of Mohri et al. [37]. For any distribution D on X ×Y, for any
set G of functions g : X × Y → [0, 1], for any λ ∈ (0, 1], we have

P
S∼Dn

(
∀g ∈ G, E

(x,y)∼D
g(x, y)− 1

n

n∑
i=1

g(xi, yi)

≤ 2 E
σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(xi, yi)

]
+ 3

√
ln 2

λ

2n

 ≥ 1− λ. (14)

Before proving Proposition 1 and Theorem 1, we recall how we can obtain a
two-sided generalization bound from Mohri et al. [37]’s Theorem 3.3.

Mohri et al. [37]’s Theorem 3.3 brings a one-sided generalization bound, i.e., an
upper bound on E(x,y)∼D g(x, y) − 1

n

∑n
i=1 g(xi, yi). That being said, Proposi-

tion 1 and Theorem 1 provide a two-sided bound, i.e., an upper bound on the
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term
∣∣E(x,y)∼D g(x, y)− 1

n

∑n
i=1 g(xi, yi)

∣∣. One common solution is to use the
union bound (e.g., [35]). For the sake of completeness, we state the two-sided
bound associated with Theorem 3.3. of Mohri et al. [37] in the following lemma.

Lemma 1 (Two-sided generalization bounds). For any distribution D on
X ×Y, for any set G of functions g : X ×Y → [0, 1], for any λ ∈ (0, 1], we have

P
S∼Dn

(
∀g ∈ G,

∣∣∣∣∣ E
(x,y)∼D

g(x, y)− 1

n

n∑
i=1

g(xi, yi)

∣∣∣∣∣
≤ 2 E

σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(xi, yi)

]
+ 3

√
ln 4

λ

2n

 ≥ 1− λ. (15)

Proof. We can go through the exact same proof of Mohri et al. [37]’s Theo-
rem 3.3 but with 1

n

∑n
i=1 g(xi, yi)−E(x,y)∼D g(x, y) instead of E(x,y)∼D g(x, y)−

1
n

∑n
i=1 g(xi, yi). Hence, we obtain with probability at least 1−λ

2 over S ∼ Dn

∀g ∈ G, 1

n

n∑
i=1

g(xi, yi)− E
(x,y)∼D

g(x, y)

≤ 2 E
σ∼Σn

[
sup
g′∈G

1

n

n∑
i=1

σig
′(xi, yi)

]
+ 3

√
ln 4

λ

2n
. (16)

Hence, by combining Equations (14) and (16) from a union bound (and with
λ/2 instead of λ), we obtain Equation (15).

We are now ready to prove Proposition 1 and Theorem 1. Note that the
proofs are based on Lemma 1.

Proposition 1. For any distribution D on X×Y, for any loss function H :
Rc×Y → [0, 1], for any model f : RP→Rc, for any budget δ>0, for any ℓp-norm
with p≥0 and, for any λ∈(0, 1], we have

P
S∼Dn

∀ε∈Bp(δ), ∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2RS [Bp(δ)] + 3

√
ln 4

λ

2n

 ≥ 1− λ, (5)

where we define the Rademacher complexity [5] of Bp(δ) as

RS [Bp(δ)] = E
σ∼Σn

sup
ε∈Bp(δ)

[
1

n

n∑
i=1

σiH(f(xi+ε), yi)

]
, (6)

where σ={σi}ni=1∼Σn with Σ the Rademacher distribution: Σ(−1)= 1
2 , Σ(1)= 1

2 .

Proof. We will now provide an upper bound of the gap
∣∣∣Rf

D(ε)−Rf
S(ε)

∣∣∣. To do
so, we define the set of function G by

G :=
{
g : (x, y) 7→ H(f(x+ ε), y)

∣∣∣ ε ∈ Bp(δ)}.
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By applying Lemma 1 on the set G, with probability at least 1− λ over S ∼ Dn

we have for all ε ∈ Bp(δ)

∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2 E

σ∼Σn
sup

ε∈Bp(δ)

[
1

n

n∑
i=1

σiH(f(xi+ε), yi)

]
+ 3

√
ln 4

λ

2n
,

which is the desired result.

We now prove Theorem 1 that has a similar proof than the one of Proposi-
tion 1.

Theorem 1. Given the assumptions of Proposition 1, for any L∈N+, we have

P
S∼Dn

∀ε∈Bp(δ), ∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2RS

[
Bp(δ)L

]
+ 3

√
ln 4

λ

2n

≥1−λ, (7)

where RS

[
Bp(δ)L

]
= E

σ∼Σn
sup

ε∈Bp(δ)L

[
1

n

n∑
i=1

σi max
εl∈ε

H(f(xi+εl), yi)

]
. (8)

Proof. We will now provide an upper bound of the gap
∣∣∣Rf

D(ε)−Rf
S(ε)

∣∣∣. To do
so, we define the set of function G by

G :=
{
g : (x, y) 7→ max

εl∈ε
H(f(x+εl), y)

∣∣∣ ε ∈ Bp(δ)L}.
By applying Lemma 1 on the set G, with probability at least 1− λ over S ∼ Dn

we have for all ε ∈ Bp(δ)L

∣∣∣Rf
D(ε)−Rf

S(ε)
∣∣∣ ≤ 2 E

σ∼Σn
sup

ε∈Bp(δ)L

[
1

n

n∑
i=1

σi max
εl∈ε

H(f(xi+εl), yi)

]
+ 3

√
ln 4

λ

2n
,

which is the desired result.

C Proof of Proposition 2

In order to prove Proposition 2, we first prove the following lemma.

Lemma 2. For any distribution D on X × Y, for any set G of functions g :
X ×Y → [0, 1], for any set G′ of functions g′ : X ×Y → [0, 1], for any λ ∈ (0, 1],
with probability at least 1−λ over S ∼ Dn we have

P
S∼Dn

(
∀S′∈(X × Y)m, g∈G, g′∈G′,

∣∣∣∣∣ E
(x,y)∼D

g(x,y)− 1

m

m∑
i=1

g′(x′
i,y

′
i)

∣∣∣∣∣
≤ sup

g∈G

∣∣∣∣∣ 1n
n∑

i=1

g(xi, yi)−
1

m

m∑
i=1

g′(x′
i, y

′
i)

∣∣∣∣∣+
√

ln 2
δ

2n

)
≥ 1− λ
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Proof. First of all, we have

sup
g∈G

(
E

(x,y)∼D
g(x,y)

)
= sup

g∈G

(
E

S∼Dn

1

n

n∑
i=1

g(xi,yi)

)
≤ E

S∼Dn
sup
g∈G

(
1

n

n∑
i=1

g(xi,yi)

)
.

(17)

Then, from McDiarmid’s inequality, we have with probability at least 1 − λ/2
over S ∼ Dn

E
S∼Dn

sup
g∈G

(
1

n

n∑
i=1

g(xi,yi)

)
≤ sup

g∈G

(
1

n

n∑
i=1

g(xi,yi)

)
+

√
ln 2

δ

2n
. (18)

Hence, by combining Equations (17) and (18), we have

sup
g∈G

(
E

(x,y)∼D
g(x,y)

)
≤ sup

g∈G

(
1

n

n∑
i=1

g(xi,yi)

)
+

√
ln 2

δ

2n
. (19)

We add 1
m

∑m
i=1−g′(x′

i,y
′
i) to both sides of the inequality to obtain for all S′ ∈

(X × Y)m and g′ ∈ G′

sup
g∈G

(
E

(x,y)∼D
g(x,y)− 1

m

m∑
i=1

g′(x′
i,y

′
i)

)
(20)

≤ sup
g∈G

(
1

n

n∑
i=1

g(xi,yi)−
1

m

m∑
i=1

g′(x′
i,y

′
i)

)
+

√
ln 2

δ

2n

≤ sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

g(xi,yi)−
1

m

m∑
i=1

g′(x′
i,y

′
i)

∣∣∣∣∣+
√

ln 2
δ

2n
. (21)

We can follow the exact same steps as before, but with supg∈G(−E(x,y)∼D g(x,y))

and 1
m

∑m
i=1 g

′(x′
i,y

′
i) instead of supg∈G(E(x,y)∼D g(x,y)) and 1

m

∑m
i=1−g′(x′

i,y
′
i),

to obtain with probability at least 1− λ/2 over S ∼ Dn

sup
g∈G

(
1

m

m∑
i=1

g′(x′
i,y

′
i)− E

(x,y)∼D
g(x,y)

)
(22)

≤ sup
g∈G

(
1

m

m∑
i=1

g′(x′
i,y

′
i)−

1

n

n∑
i=1

g(xi,yi)

)
+

√
ln 2

δ

2n

≤ sup
g∈G

∣∣∣∣∣ 1m
m∑
i=1

g′(x′
i,y

′
i)−

1

n

n∑
i=1

g(xi,yi)

∣∣∣∣∣+
√

ln 2
δ

2n
. (23)

Finally, by combining Equations (21) and (23), we have the desired result.

We are now ready to prove Proposition 2.
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Proposition 2. Given F the set of possible models and the assumptions of The-
orem 1, then we have

P
S∼Dn

 ∀f ∈ F , ∀ε ∈ Bp(δ)
L,∣∣∣Rf ′

D (ε)−Rf
S(ε)

∣∣∣≤ sup
ε′∈Bp(δ)L

∣∣∣Rf ′

S (ε′)−Rf
S(ε)

∣∣∣+
√

ln 2
δ

2n

≥ 1−λ. (9)

Proof. We will now provide an upper bound of the gap
∣∣∣Rf ′

D (ε)−Rf
S(ε)

∣∣∣. To do
so, we apply Lemma 2 with the fixed sets G and G′ and with S′ = S ∼ Dn.
Given L ∈ N+, we define the sets of functions G and G′ by

G :=

{
g : (x, y) 7→ max

εl∈ε
H(f ′(x+ εl), y)

∣∣∣∣ ε = [ε1, . . . , εL] ∈ Bp(δ)L
}
,

and G′ :=
{
g : (x, y) 7→ max

εl∈ε
H(f(x+ εl), y)

∣∣∣∣ f ∈ F , ε = [ε1, . . . , εL] ∈ Bp(δ)L
}
.

Hence, by applying Lemma 2, we have with probability at least 1−λ over S ∼ Dn

∀f∈F , ε ∈ Bp(δ)L, ε′ ∈ Bp(δ)L,∣∣∣Rf ′

D (ε′)−Rf
S(ε)

∣∣∣ ≤ sup
ε′∈Bp(δ)L

∣∣∣Rf ′

S (ε′)−Rf
S(ε)

∣∣∣+
√

ln 2
δ

2n
.

Finally, by setting ε′ = ε, we have the desired result.

D Experimental settings

In this section, we further detail how the numerical experiments were conducted.

D.1 MNIST experiments

Data splitting and pre-processing. The 60K samples of the training set un-
dergo random affine transformations keeping the center invariant. To this effect,
we use random rotations between [11.25,+11.25] degrees and a random scaling
selected in [−0.825,+0.825]. These deformed samples are used to learn f while
we randomly pick 500 original un-deformed images from the training dataset
to learn the (generalized) universal attacks. The 10K images of the test set are
used to evaluate the performance of the attacks. All images are flattened into
784 dimensional rescaled vectors so that the pixel intensity lies within [0, 1].

Model to attack. We consider a differentiable model satisfying the KŁ prop-
erty assumed in Theorem 2 (see Remark 1). To this effect, we resort to the simple
multi-layer perceptron from [11], which manages to achieve under 1% test ac-
curacy. It is made of scaled hyperbolic tangent activation functions as well of
an input layer, 8 hidden layers and an output linear layer of sizes 784 × 1000,
1000× 1000 and 1000× 10, respectively. The network is trained using a stochas-
tic gradient descent with batch size 100 with a learning rate linearly decreasing
from 10−3 to 10−6 over 103 epochs.
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D.2 CIFAR10 experiments

Data splitting and pre-processing. If not mentioned otherwise, we split CI-
FAR10 test set into 2K images for learning (generalized) universal perturbations
and 8K independent images for evaluating the attacks.

Model to attack. We consider the trained ResNet18 model of Phan [45],
which we augmented with an input normalizing layer channel-wise of means
(0.4914, 0.4822, 0.4465) and standard deviations (0.2471, 0.2435, 0.2616).

D.3 ImageNet experiments

Data splitting and pre-processing. We resort to the popular ILSVRC2012
validation subset of the ImageNet dataset. The 50k images are randomly split
into two halves. The first half is used to learn the universal perturbations while
the second half is regarded as test set to evaluate the attacks. All images are
resized into 256× 256 followed by a cropping of size 224× 224 around the center
and a rescaling of the pixels intensity into [0, 1]. Results are averaged over 5 splits.

Model to attack. We analyze a pretrained ResNet18 model from the Torchvi-
sion library augmented with a normalizing layer of mean (0.485, 0.456, 0.406)
and standard deviation (0.229, 0.224, 0.225) achieving a test accuracy of 69.76%.

L-UAP solver. Contrary to the previous experiments, we consider the Prox-
SAGA solver of Algorithm 2 in order to learn the L-UAP perturbations. The
step-size and batch-size are set to γ = 0.05 and b = 1, respectively.

E Additional results

In the next sections, we provide complementary results on both MNIST and
CIFAR10 datasets.

E.1 MNIST experiments

We analyze the training behavior of L-UAP attacks with L ∈ {1, 3, 5, 10} univer-
sal perturbations learned with the Algorithm 1. The experiment is repeated over
5 independent seeds and the averaged training loss is reported in Figure 6. Inde-
pendently of L, it shows the well-behaved increasing behavior of the loss along
the number of epochs. In addition, it supports the fact that having more uni-
versal perturbations does permit the achievement of higher dissimilarity, hence
higher loss values. This is seconded by the mean test fooling rate reported for
each of the L-UAP attacks since we observe an increased fooling rate as L grows.
On a side note, on this simple dataset, it is difficult to fool the studied network
f , hence justifying the small fooling rates depicted in Figure 6.
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Fig. 6. Training behavior of ℓ∞-based L-UAP attacks on MNIST. The averaged
training loss is reported for 1, 3, 5 and 10 universal perturbations along with the
associated test fooling rate.

E.2 CIFAR10 experiments

Comparison between ℓ∞ and ℓ2 attacks. We report in Table 3 the performance
comparison of both ℓ∞ and ℓ2-attacks with a maximum allowable budget of
δ = 8/255 and δ = 0.5, respectively.

Comparison of UAP solvers for L = 1 perturbation. We compared our proposed
deterministic solver from Algorithm 1 with the stochastic solvers advocated in
[50]), namely SGD and Adam with a batch size of 128. All three solvers are
initialized identically and are run until convergence is reached. Learning rates
are cross-validated in a fine logarithmic grid between 10−1.5 and 103. To eliminate
any potential influence of our different loss function on the observed performance
improvement, we thoroughly examined all three loss functions H. More precisely,
we have considered the cross-entropy (ce), the bounded cross entropy (bce) [17]
and the capped cross entropy (max-ce) introduced by the authors of the UAP-
PGD attack [50]). The test fooling rate, averaged over multiple data splits, are
reported in Figure 7. Interestingly, the choice of loss does not significantly impact
the results. In addition, both SGD and Adam yield similar performance, while
our deterministic solver substantially improves the quality of the learned attack.

Table 3. Performance of attacks on a ResNet18 trained on CIFAR-10. Bold
fonts highlight the best fooling rate in universal (top), sproposed (middle) and specific
(bottom) attacks.

Attack ℓ∞-fooling rate (%) ℓ2-fooling rate (%)
UAP-PGD [50] 12.53 (± 0.60) 2.67 (± 0.21)
FAST-UAP [15] 11.16 (± 1.03) 2.53 (± 0.19)
CW-UAP [7] 13.85 (± 0.18) 2.77 (± 0.09)
1-UAP 36.83 (± 0.93) 3.43 (± 0.26)
3-UAP 54.03 (± 0.54) 4.93 (± 0.50)
5-UAP 55.56 (± 0.57) 7.09 (± 1.22)
FGSM [19] 53.82 (± 0.00) N/A
MI-FGSM [16] 80.76 (± 0.00) N/A
PGD [34] 93.61 (± 0.06) 89.23 (± 0.02)
AutoAttack [14] 93.07 (± 0.00) 92.41 (± 0.01)
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Fig. 7. Comparison of solvers for L = 1. The averaged test fooling rate is reported
when learning a single perturbation with multiple solvers and different type of losses H.
We have considered the cross entropy (ce), its bounded variant (bce) and its clamped
version (max-bce).


