
HAL Id: hal-03615461
https://hal.science/hal-03615461v1

Submitted on 21 Mar 2022 (v1), last revised 7 Jun 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semi-Universal Adversarial Perturbations
Jordan Frecon, Paul Viallard, Emilie Morvant, Gilles Gasso, Amaury

Habrard, Stéphane Canu

To cite this version:
Jordan Frecon, Paul Viallard, Emilie Morvant, Gilles Gasso, Amaury Habrard, et al.. Semi-Universal
Adversarial Perturbations. 2023. �hal-03615461v1�

https://hal.science/hal-03615461v1
https://hal.archives-ouvertes.fr


SEMI-UNIVERSAL ADVERSARIAL PERTURBATIONS

A PREPRINT

Jordan Frecon
Normandie Univ, INSA Rouen

UNIROUEN, UNIHAVRE, LITIS
Saint-Etienne-du-Rouvray, France
jordan.frecon@insa-rouen.fr

Gilles Gasso
Normandie Univ, INSA Rouen

UNIROUEN, UNIHAVRE, LITIS
Saint-Etienne-du-Rouvray, France
gilles.gasso@insa-rouen.fr

Stéphane Canu
Normandie Univ, INSA Rouen

UNIROUEN, UNIHAVRE, LITIS
Saint-Etienne-du-Rouvray, France
stephane.canu@insa-rouen.fr

ABSTRACT

The present work introduces a frame-
work for learning and selecting semi-
universal adversarial perturbations. It re-
lies on a joint estimation of multiple uni-
versal adversarial perturbations which
are chosen in an unsupervised manner
depending on the sample to attack. Two
algorithmic solutions, with convergence
guarantees under Lipschitz continuity
assumptions, are proposed to handle ei-
ther small scale or large scale datasets.
Numerical experiments, conducted on
benchmark datasets, support its unifying
aspect between universal and specific
attacks as the number of perturbations
grows. In addition, the learned perturba-
tions display strong patterns indicative
of the existing similarities between the
training instances of different classes.

1 Introduction

Embedded technologies using artificial neural networks are
increasingly present in our daily lives. Their high expres-
sive power have shown a great success to predict various
complex tasks [1, 2]. However, since the pioneer work of
[3] which has shown the existence of adversarial attacks,
some concerns have been raised about their safety and
more particularly for the safety of the user [4]. The most
striking example is that of automated vehicles where ma-
licious attacks could lead the car to take unwanted action
with dramatic consequences [5, 6].

Most of adversarial attacks are quasi negligible pertur-
bations (see, a contrario, [7]) which, added to examples
correctly predicted, manage to fool the prediction of the
neural network. From a fast one-shot method [8] to the
first iterative procedures [9, 10, 11, 12, 13], the crafting of
adversarial perturbations has lately received a lot of atten-

tion from the machine learning community. To this regard,
momentum-based methods [14, 15] have shown a promis-
ing boost in the transferability of the attacks learned on one
neural network to other neural networks. In addition, vari-
ous contributions have investigated algorithmic concerns
leading to accelerated and scale-invariant attacks [16] as
well as parameter-free attacks [17]. In another line of re-
search, attacks exploiting the decision boundary of neural
networks have been designed in [18] while the structure of
the images to attack has been taken into account through a
principal component analysis in [19]. A key particularity
of all the prior attacks is that they are example-based (or
specific), meaning that they are specifically crafted to at-
tack a single example. Henceforth, in order to attack a new
example, one needs to learn the associated perturbation
once again. While they are very effective, they have the
major drawback of being time consuming.

On the other end of the spectrum, example-agnostic (or uni-
versal) attacks aim to find an attack which, once learned,
can be applied to every example of the test set. The work
of [20] have first demonstrated that there exist a single
perturbation, coined universal adversarial perturbations
(UAP), which, added to any test images, has a high chance
of fooling the classifier. Later, a more efficient method has
been devised in [21] by hinging on a projected gradient
descent algorithm. A variant of [20] additionally exploit-
ing the orientations of the perturbation vectors has been
devised in [22]. In addition, inspired from the observation
that UAP does not attack all classes equally, a class-based
universal perturbation (CW-UAP) has recently been pro-
posed in [23]. The reader is invited to refer to [24] for a
survey of universal adversarial attacks. However, although
these perturbations are universal, it is difficult to interpret
precisely why they work in a case to case basis. More
generally, state-of-the-art universal attacks still suffer from
a lack of interpretability.

Contributions and outline. The present work intends to
bridge the gap between specific and universal perturbations
through semi-universal adversarial perturbations (SUAP).



Semi-Universal Adversarial Perturbations A PREPRINT

Our framework is closely related to that of CW-UAP in
the sense that multiple universal perturbations are learned
but differs from the fact that they are not intended to attack
specific classes. Instead, each sample is attacked by an
universal perturbation chosen in an unsupervised manner.
As a consequence, it allows to capture both the similarity
between multiple examples and their distance to the de-
cision boundary, irrespectively of their class. In addition,
the number of perturbations acts as a tuning parameter
controlling the amount of diversity between the attacks.
After discussing the preliminaries and reviewing the re-
lated works in Section 2, we introduce the proposed semi-
universal adversarial perturbations in Section 3. Two algo-
rithmic solutions are devised in Section 4 by hinging on
either full-batch or stochastic solvers. Numerical experi-
ments are conducted in Section 5 on multiple benchmark
datasets.

Notations. We let ∥ · ∥p, with p ≥ 0, to denote the ℓp-
norm. In addition, ∥ · ∥ acts as a shorthand for the ℓ2-norm
(resp. the Frobenius norm) of vectors (resp. matrices).
Similarly, ⟨·⟩ is used to denote the dot product both in the
vector and matrix cases. Given some convex set C, we let
ProjC be the projection onto C. Finally, for x ∈ RP and
I ⊆ {1, . . . , P}, xI stands for the restriction of x to the
indices in I.

2 Preliminaries and Related Works

Without loss of generality, we consider a trained neural
network f : RP → Rc which associate every example x ∈
X ⊆ RP to its probabilities f(x) ∈ Rc to belong to any of
the c ∈ N+ classes. We make the distinction between X
and RP since the input data can live inside a manifold (e.g.,
the space of images whose pixels’ intensity lies within
[0, 1]). The predicted label of x by f is then defined as the
maximizer Cf (x) = argmaxk∈{1,...,c} f(x)k. The goal of
adversarial learning is to find, for every example x ∈ X , a
sample a ∈ X close to x such that Cf (a) ̸= Cf (x). Since
a is close to x, one would have expected both examples to
be equally classified by f . Hence, a is called adversarial
and said to fool the classifier Cf .

In the next sections, we recap the two current paradigms
for crafting adversarial attacks.

2.1 Specific Attacks

In the remaining of the paper, we consider the peculiar
case of adversarial images built by adding a perturbation.
Namely, for each x ∈ X , the aim is to find a perturbation
ε(x) so that a = x + ε(x) is an adversarial example [10,
8, 12]. Note that, in the space of images, many works have
suggested that ℓp-norms are reasonable approximations
of human perceptual distance and thus can be chosen as
a measure of closeness between x and a (see [25] and
references therein). More formally, in order to ensure
closeness, we will look for a perturbation ε(x) ∈ Bp(δ) =

{e ∈ RP | ∥e∥p ≤ δ} for some small budget δ > 0.
Hereafter, we drop the dependency on x and simply denote
ε. We recall below two of the most popular specific attacks.

DeepFool [10]. The DeepFool attack is the smallest ℓp
perturbation managing to fool the classifier Cf . More
formally, it is the solution of the following optimization
problem

minimize
ε∈RP

∥ε∥p s.t. Cf (x+ ε) ̸= Cf (x). (1)

PGD [13]. This attack hinges on some similarity func-
tion H (typically the cross-entropy) measuring the (dis-
)similarity between the output f(x+ ε) of the neural net-
work and the original label y. Then, the adversarial per-
turbation is defined as the one inside the ℓp-ball which
maximizes the dissimilarity between x+ ε and y, i.e.,

maximize
ε∈RP

H(f(x+ ε), y) s.t. ∥ε∥p ≤ δ. (2)

In practice, the opposite of the objective in (2) is minimized
by resorting to a projected gradient method, hence the
name of the attack.

2.2 Universal Attacks

Departing from specific attacks, universal attacks look for
a perturbation ε such that, for every x ∼ µ sampled from
some data distribution µ, a = x + ε is an adversarial ex-
ample with high probability. In practice, such perturbation
is crafted to fool the classifier on almost all the examples
from a given dataset {xi, yi}ni=1 made of n ∈ N+ data
pairs. In the following we recall the most popular universal
attacks [24].

UAP [20]. The first universal perturbation was crafted by
aggregating individual DeepFool perturbations [10].

ε = 0P
While the target fooling rate is not achieved For each xi such that Cf (xi) = Cf (xi + ε)⌊

∆εi = DeepFool(xi)
ε = ProjBp(δ)(ε+∆εi)

(3)

where DeepFool represents the attack of (1).

Fast-UAP [22]. This attack follows the UAP procedure
but, instead of aggregating all the perturbations ∆εi, only
adds the perturbation with the closest orientation to the
current iterate ε.

UAP-PGD [21]. The UAP-PGD attack elaborates upon
PGD by framing of the universal perturbation as the solu-
tion of the following optimization problem

maximize
ε∈RP

1

n

n∑
i=1

H(f(xi + ε), yi) s.t. ∥ε∥p ≤ δ.

(4)

2



Semi-Universal Adversarial Perturbations A PREPRINT

CW-UAP [23]. Recently, UAP-PGD has been extended to
class-wise UAP where a universal perturbation is build for
each label. Let nk be the number of training samples of
the k-th class, then CW-UAP aims at solving

maximize
{εk∈RP }c

k=1

c∑
k=1

1

nk

n∑
i=1
yi=k

H(f(xi + ε), yi)

s.t. (∀k ∈ {1, . . . , c}, ∥εk∥p ≤ δ. (5)

The corresponding numerical solution amounts in learning
multiple independent UAP-PGD perturbations, i.e., one
for each label value {1, . . . , c}.

3 Semi-universal Adversarial Attack

In this section, we introduce the proposed framework for
learning and selecting semi-universal adversarial perturba-
tions.

The originality of the proposed work is to jointly learn
L ∈ N+ universal adversarial perturbations {ε1, . . . , εL}
where each εl ∈ RP . To do so, we propose to address the
following optimization problem.
Problem 1 (Learning semi-universal ℓp-perturbations).
Let L ∈ N+ be the number of semi-universal perturbations
to learn. Given some dataset {xi, yi}ni=1 made of n ∈ N+

data pairs (xi, yi) ∈ X×Rc, find ε = [ε1, . . . , εL] solving

maximize
[εl∈RP ]L

l=1

{
L(ε) = 1

n

n∑
i=1

max
l∈{1,...,L}

H(f(xi + εl), yi)

}
,

s.t. (∀l ∈ {1, . . . , L}), ∥εl∥p ≤ δ. (6)

For each pair (xi, yi), the objective in (6) will only pick
one of the L perturbations {ε1, . . . , εL} which maximizes
the dissimilarity between f(xi + εl) and yi the most. In
addition, the L constraints permits to enforce that each
perturbation lives inside a ℓp-ball of radius δ > 0. Note
that, the formulation of (6) boils down to (4) for a single
perturbation (i.e., L = 1).

It is worth stressing that Problem 1 is a difficult nonconcave
maximization problem due to the presence of the neural
network f . Hence finding the global solution of Problem 1
is out of reach. Instead, we will propose in Section 4 two
algorithmic solutions for finding an approximate solution
in an efficient manner.

Once the universal adversarial perturbations have been
learned, one can attack a new example by picking one
perturbation amongst the L perturbations as follows.
Problem 2 (Attacking unseen example). Given some data
pair (x, y) ∈ X×Rc, the corresponding adversarial attack
reads

a = PX
(
x+ εl̂

)
where l̂ = argmax

l∈{1,...,L}
H(f(x+εl), y).

(7)

Algorithm 1 SUAP-PG
Require: Parameter ρ ∈]0, 1[

Initialize ε(0) = [ε
(0)
l ]Ll=1

for k = 0 to K − 1 do
Provide a rough estimate of γk > 0
Projected gradient step
ε(k+1/2) = ProjBp(δ)L(ε

(k) + γk∇L(ε(k)))
Choice of relaxation parameter
ik = 0
repeat

ε(k+1) = (1− ρik)ε(k) + ρikε(k+1/2)

ik = ik + 1
until L(ε(k+1)) ≥ L(ε(k)) + ρik−1h(k)(ε(k+1/2))

end for
return Semi-universal adversarial perturbations ε(K)

Solving Problem 2 requires to perform L independent for-
ward passes through the neural network f in order to eval-
uate which perturbation {ε1, . . . , εL} maximizes the dis-
similarity. Note that, since they are independent, they can
be performed in parallel in order to accelerate the computa-
tion. We provide below a complexity comparison between
specific, semi-universal and universal attacks.
Remark 1. Given a neural network f whose forward
complexity is of O(d) for a single input sample, then the
complexity to compute ∇H(f(x), y) is of order O(2d),
since the backward pass is also of order O(d). Then, it
follows that

(specific) for K iterations, cost ∼ O(2Kd),

(semi-universal) for L perturbations, cost ∼ O(Ld),

(universal) cost ∼ O(1 ).

Hence, from the standpoint of computational complexity,
universal attacks are the most efficient. To a lesser ex-
tent, one-shot specific attacks (i.e., K = 1, such as in
FGSM [8]) and the proposed semi-universal attack achieve
comparable complexity for small L.

4 Algorithmic Solutions

In this section, we present two algorithmic solutions for
solving Problem 1.

4.1 Full-Batch Solver

In order to maximize L in Problem 1, we embrace a
projected gradient ascent algorithm augmented with an
Armijo-like line-search strategy in order to ensure some
sufficient increase at each iteration. Its principle is in-
spired from the minorize-maximization algorithm where,
at each step, a lower-bound of the objective function L is
maximized.

Let ε = [ε1, . . . , εL] be the concatenation of the L per-
turbations and {γk}k∈N+

be some sequence of step-sizes.

3



Semi-Universal Adversarial Perturbations A PREPRINT

Then, at each iteration k ∈ N+ the algorithm looks for
ε(k+1/2) ∈ Bp(δ) which maximizes the linearized surro-
gate of the form

h(k)(ε) = L(ε(k))+∇L(ε(k))⊤(ε−ε(k))− 1

2γk
∥ε−ε(k)∥2.

(8)
Such choice is motivated by the fact that, for concave and
µ-smooth functions L, then for every γk ≤ 1/µ, L(ε) ≥
h(k)(ε). Henceforth,

ε(k+1/2) = argmax
ε∈Bp(δ)

h(k)(ε) = PBp(δ)

(
ε(k) + γk∇L(ε(k))

)
,

(9)
which recast into one projected gradient ascent step. Note
that the differentiability of L depends on the choice of the
loss function H and on the neural network f to attack. For
instance, for ReLu-based neural network, it is likely that
∇L(ε(k)) is not well defined. In that case and whenever
L is not differentiable, we resort to a sub-gradient instead.
We additionally consider a relaxation step of the form

ε(k+1) = (1− αk)ε
(k) + αkε

(k+1/2), (10)

where the relaxation parameter αk ∈ (0, 1] is appropriately
chosen by an Armijo-like line-search strategy to ensure
some sufficient increase in L [26]. The full algorithmic
procedure is sketched in Algorithm 1. In practice, we
suggest to initialize the L universal perturbations in a non-
informative manner by randomly sampling each ε

(0)
l ∼

[−δ, δ]P and additionally projecting onto the ball Bp(δ).
We recall below the convergence guarantees.

Theorem 1 (Convergence [26]). Let {ε(k)}k∈N be the se-
quence of Algorithm 1 and suppose that ∇L is Lipschitz
continuous. Then each limit point of {ε(k)}k∈N is a sta-
tionary point of Problem 1 and {L(ε(k))}k∈N converges
towards the objective value at the limit point. In addition,
if L satisfies the Kurdyka-Łojasiewicz (KŁ) property at any
point, then the sequence converges to a stationary point of
Problem 1.

The existence of the Lipschitz constant plays a central
role for ensuring convergence guarantees of the algorithm.
Note that studying the Lipschitz continuity of neural net-
works and obtaining sharp Lipschitz constant is difficult
(see, e.g., [27, 28] and references therein).

Remark 2. Many functions met in neural networks (e.g.,
activation functions, loss) are semi-algebraic or tame, and
therefore satisfy the KŁ property (see, e.g., [29, 30]). Since
these “concepts” are stable under many operations, it is
reasonable to assume that many deep neural network f
are likely to satisfy the KŁ property and so does L.

While few attention is usually devoted to these concerns
for crafting adversarial attacks, we will show in Section 5
the superiority of the corresponding principled algorithmic
solution even though these assumptions do not always
hold.

Algorithm 2 SUAP-ProxSAGA

Initialize ε(0) = [ε
(0)
l ]Ll=1

Set gi = ∇ℓi(ε
(0)) for every i ∈ {1, . . . , n}

Set ḡ(0) = (1/n)
∑n

i=1 gi
for k = 0 to K − 1 do

Instant gradient computation
Uniformly pick a batch Ik ⊂ {1, . . . , n} of size b
gIk

=
∑

i∈Ik
∇ℓi(ε

(k))
Projected gradient step
α(k) = 1

b (gIk
− g̃Ik

) + ḡ(k)

ε(k+1) = ProjBp(δ)(ε
(k) + γkα

(k))
Updates
ḡ(k+1) = 1

n (gIk
− g̃Ik

) + ḡ(k)

g̃Ik
= gIk

end for
return Semi-universal adversarial perturbations ε(K)

4.2 Stochastic Solver

We now propose a different solver fully exploiting the
finite-sum nature of the loss in Problem 1. To this re-
gard, we begin by rewriting it by means of the sample-
wise losses ℓi, i.e., L(ε) = 1

n

∑n
i=1 ℓi(ε) with ℓi(ε) =

max
l∈{1,...,L}

H(f(xi + εl), yi).

Hereafter, we resort to a stochastic solver based on the well-
known variance reduction technique [31, 32, 33]. Since the
main computational load comes from the backpropagation
through the neural network, we favor the proxSAGA algo-
rithm [31] which does not require an additional loop over
multiple epochs. The corresponding algorithmic solution
is reported in Algorithm 2. Such solver should become
particularly useful to deal with large datasets by treating
one sample at a time. We recall below the convergence
guarantees under the assumption of Lipschitz continuity.

Theorem 2 (Convergence [31]). Suppose that ∇L is Lips-
chitz continuous with Lipschitz constant β. Let {ε(k)}k∈N
be the sequence of Algorithm 2 with fixed step-size γk =
γ ≤ 1/(5βn) and batch-size b = 1. Then, for k uniformly
sampled from {1, . . . ,K}, the following holds:

E
[
∥Gγ(ε

(k))∥2
]
≤ 50βn2

5n− 2

L(ε⋆)− L(ε(0))
K

, (11)

where ε⋆ is a maximizer of L and Gγ : ε 7→ γ−1(ε −
PBp(δ)(ε+ γ∇L(ε))) is the gradient mapping.

Note that Theorem 2 relies on the Lipschitz constant β
whose calculation is out of reach. Instead, in practice we
suggest either to choose β large enough or to compute
rough estimate at each iteration.

5 Numerical Experiments

Throughout the section, we conduct numerical experiments
on three of the most popular benchmark classification

4



Semi-Universal Adversarial Perturbations A PREPRINT

0 250 500 750 1000
Epochs

0.05

0.10

0.15

0.20

Tr
ai

ni
ng

 lo
ss

1.10%

2.60%
3.28%
3.68% 1-SUAP

3-SUAP
5-SUAP
10-SUAP

Figure 1: Training behavior of ℓ∞-based SUAP attacks
on MNIST. The averaged training loss is reported for
different number of universal perturbations (1, 3, 5 and 10)
along with the associated test fooling rate.

datasets. Hereafter, we consider the classical scenarios
of ℓ∞ and ℓ2-based attacks with a maximum budget δ of
8/255 and 0.5, respectively.

5.1 MNIST Experiments

We begin with the simple yet interesting MNIST dataset
which happens to be useful to interpret the learned adver-
sarial perturbations.
Data splitting and pre-processing. The 60K samples
of the training set undergo random affine transformations
keeping the center invariant. To this effect, we use random
rotations between [11.25,+11.25] degrees and a random
scaling selected in [−0.825,+0.825]. These deformed
samples are used to learn f while we randomly pick 500
original un-deformed images from the training dataset to
learn the (semi-)universal attacks. The 10K images of
the test set are used to evaluate the performance of the at-
tacks. All images are flatten into 784 dimensional rescaled
vectors so that the pixel intensity lies within [0, 1].

Model to attack. We consider a differentiable model
satisfying the KŁ property assumed in Theorem 1 (see Re-
mark 2). To this effect, we resort to the simple multi-layer
perceptron from [34] which manages to achieve under 1%
test accuracy. It is made of scaled hyperbolic tangent acti-
vation functions as well of an input layer, 8 hidden layers
and an output linear layer of sizes 784×1000, 1000×1000
and 1000× 10, respectively. The network is trained using
a stochastic gradient descent with batch size 100 with a
learning rate linearly decreasing from 10−3 to 10−6 over
103 epochs.

Training behavior. We analyze the training behavior of
L-SUAP attacks with L ∈ {1, 3, 5, 10} universal pertur-
bations learned with the Algorithm 1. The experiment is
repeated over 5 independent seeds and the averaged train-
ing loss is reported in Fig. 1. Independently of L, it shows
the well-behaved increasing behavior of the loss along the
number of epochs. In addition, it supports the fact that hav-
ing more universal perturbations does permit to achieve
higher dissimilarity hence higher loss values. This is also
seconded by the mean test fooling rate reported for each of
the L-SUAP attacks since we observe an increased fooling
rate as L grows. On a side note, on this simple dataset, it
is difficult to fool the studied network f , hence justifying
the small fooling rates depicted in Fig. 1.

Illustration and role of the universal perturbations. For
illustration purposes, we report in Fig. 2 the learned uni-
versal perturbations of 5-SUAP decomposed into positive
parts (top plots) and negative parts (bottom plots). In-
terestingly, they all exhibit strong patterns. In particular,
we observe that ε1 and ε5 are very similar up to the sign
difference (see ε+1 and ε−5 ). Indeed, since the proposed
framework does not handle the tuning of the sign of the
perturbation, it might happen that two perturbations are the
opposite of each others. It is also worth noticing that the
universal perturbations learned are consistent throughout
multiple splits and random initializations.

We additionally report in Fig. 3 the fooling matrices associ-
ated to each of the perturbations {εl}5l=1. The latter show
the correspondence between the predicted target Cf (x) of
some image x and the label of the associated adversarial
attack, i.e.., Cf (x+ εl̂) (see Problem 2). The fooling ma-
trices highlight that each universal perturbation plays a
different role. For instance, ε1 mostly permits to attack
images of digits “3” and “9” into being misclassified as
“5” and “4”, respectively. Instead, ε3 is principally used
to attack images of “5” into “3”. Coincidentally, one can
distinguish the tilted number three in ε3 (see Fig. 2). As
opposed to CW-UAP, the proposed SUAP attack allows
to automatically capture the similarity between multiple
digits such as “3” and “9”.

5.2 CIFAR-10 Experiments

We now turn to CIFAR-10 dataset [35] and compare the
performance of the proposed attack with the baselines.

Setting. We consider the pre-trained ResNet18
model from [36] augmented with an input
normalizing layer of channel-wise means
(0.4914, 0.4822, 0.4465) and channel-wise standard
deviations (0.2471, 0.2435, 0.2616). In addition, if not
mentioned otherwise, we split the test set into 20K images
for learning (semi-)universal perturbations and 80K
independent images used for evaluating the attacks.

Baselines. The proposed SUAP attack is brought into
comparison against the following universal attacks1.

We compare with the UAP-PGD from [21] which is closely
related to our proposed SUAP with a single perturbation.
However it differs from two aspects. First, the authors have
considered a capped loss with parameter β to prevent any
single sample from dominating the objective (hereafter we
use the value β = 9 that was found to be the best in [21]).
Second, the authors resort to the stochastic normalized gra-
dient method ADAM to learn the perturbation. Since their
code is not publicly available, we have tried to reproduce
their version as closely as possible.

1Pytorch codes of UAP and Fast-UAP baselines will be made
publicly available along with our proposed SUAP attack in order
to contribute to the TorchAttacks repository [37].

5



Semi-Universal Adversarial Perturbations A PREPRINT

1 2 3 4 5

Figure 2: Illustration of ℓ∞-based SUAP perturbations
learned on MNIST dataset. Each of the 5 universal per-
turbations of 5-SUAP are reported from left to right. The
top plots correspond to their positive part while the bottom
plots are their negative parts.

1 2 3 4 5

Pr
ed

.

Adversarial label

Figure 3: Fooling matrices of ℓ∞-based SUAP attacks
on MNIST. For each universal perturbation εl permitting
to attack an image x, we report the predicted label Cf (x)
and the adversarial label Cf (x+ εl).

For the sake of consistency, we have implemented a Py-
torch version of the FAST-UAP [22] originally designed
for TensorFlow. We use the same hyper-parameters as in
their code, namely a desired fooling rate of 80%, a maxi-
mum of 10 iterations for DeepFool [10] and an overshoot
of 0.02 to prevent vanishing updates.

We also compare against the CW-UAP [23] method whose
code was kindly granted by the authors.

In addition, we consider standard specific attacks such
as FGSM [8] and PGD [13] as well as more advanced
techniques, i.e., MI-FGSM [14] and AutoAttack [17], in
order to grasp the existing gap of performance between
specific and universal attacks. To this effect, we resort to
the TorchAttacks repository [37].

Illustration and insights about SUAP attacks. Simi-
larly to the MNIST experiment, we report in Fig. 4 and
Fig. 5 the learned 5-SUAP universal perturbations and their
fooling matrices. We do observe that each SUAP univer-
sal perturbation plays a different role. For instance, ε2 is
mostly used to attack images of animals (bird, cat, dog,
frog and horse) so that they become misclassified as deer.
Indeed, with a little imagination one can distinguish two
deer facing each other in ε2. Let us also note that ε3 is
mostly employed to misclassify images of airplane and
ship as bird.

We also report in Fig. 6 and Fig. 7 the fooling matrices
and some universal perturbations of the CW-UAP attack
and UAP attack, respectively. Note that, contrary to SUAP,
we have merged all 10 fooling matrices of CW-UAP (one

1 2 3 4 5

Figure 4: Illustration of ℓ∞-based SUAP attacks learned
on CIFAR-10 dataset. Each of the 5 universal perturba-
tions of 5-SUAP are reported from left to right. The top
plots correspond to their positive part while the bottom
plots are their negative parts.

1 2 3 4 5

Pr
ed

.

Adversarial label

Figure 5: Fooling matrices of ℓ∞-based SUAP attacks
on CIFAR-10. For each universal perturbation εl permit-
ting to attack an image x, we report the predicted label
Cf (x) and the adversarial label Cf (x + εl). The labels
are {airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck}.

for each class) into a single one since they are all dis-
jointed. Thus, each row of Fig. 6 (left) corresponds to the
adversarial label obtained for each of 10 independent class-
wise attacks. Unsurprisingly, the sum of SUAP fooling
matrices bear some similarities with the fooling matrices
corresponding to CW-UAP and UAP. Indeed, ultimately,
the couple (predicted label, adversarial label) depends on
the similarity between images classes and how the classi-
fier proceeds to distinguish between the classes. Hence it
makes sense that all summed fooling matrices look some-
what similar. However, the interesting point to highlight
is how all three methods operate. Here, SUAP finds over-
lapping decompositions of the (predicted label, adversarial
label) couple. As such, it automatically unveils the similar-
ity between examples belonging to two different classes.

Impact of the numbers of training samples. Herein,
we take a deeper look at the impact of two parameters
on the performance of SUAP attacks. More precisely, we
study the influence of the amount of training samples n
and the number of perturbations L (see Problem 1) on
the test fooling rate. To this end, we let n and L vary
in {1K, 2K, 3K, 4K} and {1, 3, 5, 7, 10}, respectively. All
learned L-SUAP attacks are then evaluated on a distinct
test set. Results, averaged over multiple splits, are reported
in Fig. 8. Overall, we observe that increasing L improves
the performance, thus confirming that having more per-
turbations is beneficial to attack the network f . However,
this observation has to be contrasted with the fact that the
amount of data n required to achieve good performance
goes in pair with the complexity of the learning Problem 1,

6



Semi-Universal Adversarial Perturbations A PREPRINT

Adversarial label

Pr
ed

.
1 2 3 4

Figure 6: Illustration of ℓ∞-based CW-UAP attacks
of the CIFAR-10 dataset. Left: global fooling matrix
where each row indicates the adversarial label obtained
for each of the 10 class-wise attacks. Right: universal
attacks learned for fooling the classes 0 (airplane), 2 (bird),
4 (deer) and 6 (frog).

Adversarial label

Pr
ed

.

UAP

Figure 7: Illustration of ℓ∞-based UAP attacks of the
CIFAR-10 dataset. Left: fooling matrix. Right: universal
attack

hence with L. As such, for n = 1K or 2K, the performance
does not significantly improve (or worse, decrease) with
larger L. In what follows, we restrict to a setting made of
few samples (i.e. n = 2K).

Comparison with baselines. Performances, in terms of
fooling rate, are reported in Table 1 for both ℓ∞ and ℓ2-
attacks. First of all, we observe that 1-SUAP outperforms
all universal attacks (i.e., UAP-PGD, FAST-UAP and CW-
UAP) and, most importantly, it surpasses UAP-PGD which
is closely related. We believe that this is due to the pro-
posed algorithmic solution which benefits from better op-
timization guarantees. In addition, as the number of uni-
versal perturbation grows, we do observe an increase in
performance of SUAP attacks, thus justifying the advan-
tages of having more degrees of freedom. Interestingly,
the SUAP attacks also manage to improve upon the one-
shot specific FGSM attack. However, the performance are
still very far behind the more advanced specific attacks.
Nonetheless, such difference in performance have to be
contrasted with their associated computational complexity
(see Remark 1). Overall, L-SUAP yields a competitive
trade-off between universality and specificity by tuning the
number L of universal perturbations.

Transferability of attacks. We further evaluate how
the learned attacks on the ResNet18 model manage to
fool more complex architectures such as the pre-trained
ResNet50 and Mobilenetv2 [38] models. We additionally
consider two robust models from the RobustBench repos-

#Perturbations L2 4 6 8 10

#Samples n 1000
2000

3000
4000

Fooling rate

40
45
50
55
60

50

55

Figure 8: Influence of the number of CIFAR-10
samples. Depending on the number of samples n ∈
{1K, 2K, 3K, 4K}, we report the fooling rate of ℓ∞-based
SUAP attacks for various number of perturbations L.

Attack ℓ∞-fooling rate (%) ℓ2-fooling rate (%)
UAP-PGD [21] 12.53 (± 0.60) 2.67 (± 0.21)
FAST-UAP [22] 11.16 (± 1.03) 2.53 (± 0.19)
CW-UAP [23] 13.85 (± 0.18) 2.77 (± 0.09)
1-SUAP 36.83 (± 0.93) 3.43 (± 0.26)
3-SUAP 54.03 (± 0.54) 4.93 (± 0.50)
5-SUAP 55.56 (± 0.57) 7.09 (± 1.22)
FGSM [8] 53.82 (± 0.00) N/A
MI-FGSM [14] 80.76 (± 0.00) N/A
PGD [13] 93.61 (± 0.06) 89.23 (± 0.02)
AutoAttack [17] 93.07 (± 0.00) 92.41 (± 0.01)

Table 1: Performance of attacks on a ResNet18 trained
on CIFAR-10. Bold fonts highlight the best fooling rate
in universal (top), semi-universal (middle) and specific
(bottom) attacks.

itory [39], namely r-ResNet18 [40] and r-ResNet50 [41],
which are trained with some defense mechanisms against
ℓ∞-attacks of budget δ = 8/255. Results are reported in
Table 2.

Overall, SUAP systematically yields a better transferability
than all universal attacks, as shown by the higher fooling
rates. In addition, it also manages to outperform specific
attacks when the target model architecture is significantly
different than the base model on which the attacks have
been learned (i.e., Mobilenetv2 vs. ResNet18). Note that
this is precisely the setting where most universal attacks
also show greater transferability than specific attacks. In-
terestingly, SUAP also shows competitive results on robust
models.

5.3 ImageNet Experiments

Herein, we tackle a large scale scenario with 1K classes.
Note that such setting is known to be problematic for CW-
UAP [23] since computing or even storing 1K perturba-
tions exceeds most memory storage spaces. Hence, it will
not be studied here.

Data splitting and pre-processing. We resort to the
popular ILSVRC2012 validation subset of the ImageNet

7



Semi-Universal Adversarial Perturbations A PREPRINT

Attack / Model ResNet50 Mobilenetv2 [38] r-ResNet18 [40] r-ResNet50 [41]
UAP-PGD [21] 21.51 (± 0.18) 39.37 (± 0.19) 2.01 (± 0.01) 2.54 (± 0.05)
FAST-UAP [22] 19.65 (± 1.22) 36.51 (± 0.30) 1.94 (± 0.01) 2.33 (± 0.05)
CW-UAP [23] 21.95 (± 0.28) 39.62 (± 0.33) 2.26 (± 0.07) 2.26 (± 0.06)
1-SUAP 27.45 (± 0.81) 44.11 (± 0.35) 2.27 (± 0.02) 2.27 (± 0.08)
3-SUAP 28.49 (± 0.56) 45.42 (± 0.32) 2.55 (± 0.03) 2.95 (± 0.08)
5-SUAP 28.87 (± 0.07) 46.09 (± 0.10) 2.56 (± 0.05) 3.10 (± 0.05)
FGSM [8] 28.55 (± 0.00) 38.10 (± 0.00) 3.02 (± 0.00) 3.14 (± 0.00)
MI-FGSM [14] 29.95 (± 0.01) 35.46 (± 0.01) 2.60 (± 0.00) 3.41 (± 0.00)
PGD [13] 30.47 (± 0.12) 38.17 (± 0.37) 1.94 (± 0.05) 2.53 (± 0.08)
AutoAttack [17] 31.79 (± 0.16) 38.08 (± 0.27) 1.91 (± 0.02) 2.41 (± 0.02)

Table 2: Transferability of ℓ∞-attacks on a ResNet18 trained on CIFAR-10. Results are divided into universal (top),
semi-universal (middle) and specific (bottom) attacks. Bold fonts highlight the best fooling rate in each attack category
for each target model (along the columns).

dataset [42]. The 50k images are randomly split into two
halves. The first half is used to learn the (semi-)universal
perturbations while the second half is regarded as test set to
evaluate the attacks. All images are resized into 256× 256
followed by a cropping of size 224×224 around the center
and a rescaling of the pixels intensity into [0, 1]. Results
are averaged over 5 splits.

Model and attacks setting. We analyze a pretrained
ResNet18 model augmented with a normalizing layer
of mean (0.485, 0.456, 0.406) and standard deviation
(0.229, 0.224, 0.225) achieving a test accuracy of 69.76%.
Contrary to the previous experiments, we now consider
the ProxSAGA solver of Algorithm 2 in order to learn the
SUAP perturbations. The step-size and batch-size are set
to γ = 0.05 and b = 1, respectively.

Results. Performance are reported in Table 3. Once again,
we observe a drastic gap of performance between UAP-
PGD and 1-SUAP, thus confirming the superiority of the
numerical solution of Algorithm 2 for L = 1 perturbation
over the standard UAP-PGD solver [21]. Overall, SUAP
achieves performance of the order of magnitude as spe-
cific attacks (e.g. MI-FGSM). Therefore, it suggests that,
for large-scale settings with numerous classes, solely a
few universal perturbations are enough to attack most of
images.

6 Conclusion

The present work introduced a framework for crafting
semi-universal attacks. The latter permit to bridge the gap
between universal and specific attacks by jointly learn-
ing multiple universal perturbations. When facing an un-
seen example, an adversarial example is built by selecting,
in an unsupervised manner, the appropriate perturbation
amongst all. Numerical experiments support that the num-
ber of perturbations does act as a trade-off between uni-
versality and specificity. Beyond the gain in performance,
semi-universal attacks pull out of existing attacks by cap-

Attack ℓ∞-fooling rate (%)
UAP-PGD [21] 27.36 (± 0.00)
FAST-UAP [22] 23.46 (± 0.25)
1-SUAP 83.17 (± 2.62)
5-SUAP 88.98 (± 1.06)
10-SUAP 87.24 (± 1.16)
FGSM [8] 84.53 (± 0.05)
MI-FGSM [14] 90.04 (± 0.02)
PGD [13] 94.99 (± 0.06)
AutoAttack [17] 88.23 (± 0.05)

Table 3: Performance of ℓ∞-attacks on a ResNet18
trained on ImageNet. Bold fonts highlight the best fool-
ing rate in universal (top), semi-universal (middle) and
specific (bottom) attacks.

turing meaningful patterns describing the most common
flaws to fool the classifier. The latter shed some light
both on how the classifier operates and on the existing
similarities between the training instances. Future works
will be devoted to the design of a defense mechanisms
against semi-universal attacks as well as the derivation of
generalization bounds.

References

[1] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dud-
ley, “Deep learning for healthcare: review, opportu-
nities and challenges,” Briefings in bioinformatics,
vol. 19, no. 6, pp. 1236–1246, 2018.

[2] S. Grigorescu, B. Trasnea, T. Cocias, and G. Mace-
sanu, “A survey of deep learning techniques for au-
tonomous driving,” Journal of Field Robotics, vol. 37,
no. 3, pp. 362–386, 2020.

[3] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,
D. Erhan, I. J. Goodfellow, and R. Fergus, “Intriguing
properties of neural networks,” in 2nd International
Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference

8



Semi-Universal Adversarial Perturbations A PREPRINT

Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2014.

[4] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun,
E. Thamo, M. Wu, and X. Yi, “A survey of safety
and trustworthiness of deep neural networks: Verifi-
cation, testing, adversarial attack and defence, and
interpretability,” Computer Science Review, vol. 37,
p. 100270, 2020.

[5] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha,
“Securing connected amp; autonomous vehicles:
Challenges posed by adversarial machine learning
and the way forward,” IEEE Communications Sur-
veys Tutorials, vol. 22, no. 2, pp. 998–1026, 2020.

[6] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel,
O. Drokin, and Y. Elovici, Phantom of the ADAS:
Securing Advanced Driver-Assistance Systems from
Split-Second Phantom Attacks. New York, NY,
USA: Association for Computing Machinery, 2020,
p. 293–308.

[7] C. Laidlaw and S. Feizi, “Functional adversarial at-
tacks,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.
Curran Associates, Inc., 2019, pp. 10 408–10 418.

[8] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Ex-
plaining and harnessing adversarial examples,” in 3rd
International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2015.

[9] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson,
Z. B. Celik, and A. Swami, “The limitations of deep
learning in adversarial settings,” in 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P).
IEEE, mar 2016.

[10] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard,
“Deepfool: A simple and accurate method to fool
deep neural networks,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016. IEEE
Computer Society, 2016, pp. 2574–2582.

[11] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Ad-
versarial examples in the physical world,” in 5th In-
ternational Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Work-
shop Track Proceedings. OpenReview.net, 2017.

[12] N. Carlini and D. Wagner, “Towards evaluating the
robustness of neural networks,” in 2017 IEEE Sympo-
sium on Security and Privacy (SP), 2017, pp. 39–57.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to
adversarial attacks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings, 2018.

[14] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and
J. Li, “Boosting adversarial attacks with momentum,”
in 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition. IEEE, jun 2018.

[15] X. Wang, J. Lin, H. Hu, J. Wang, and K. He, “Boost-
ing adversarial transferability through enhanced mo-
mentum,” arXiv preprint arXiv:2103.10609, 2021.

[16] J. Lin, C. Song, K. He, L. Wang, and J. E. Hopcroft,
“Nesterov accelerated gradient and scale invariance
for adversarial attacks,” in International Conference
on Learning Representations, 2020.

[17] F. Croce and M. Hein, “Reliable evaluation of ad-
versarial robustness with an ensemble of diverse
parameter-free attacks,” in Proceedings of the 37th
International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, H. D.
III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul
2020, pp. 2206–2216.

[18] C. Finlay, A.-A. Pooladian, and A. Oberman, “The
logbarrier adversarial attack: making effective use
of decision boundary information,” in Proceedings
of the IEEE/CVF International Conference on Com-
puter Vision, 2019, pp. 4862–4870.

[19] Y. Zhang, X. Tian, Y. Li, X. Wang, and D. Tao, “Prin-
cipal component adversarial example,” IEEE Trans-
actions on Image Processing, vol. 29, pp. 4804–4815,
2020.

[20] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and
P. Frossard, “Universal adversarial perturbations,” in
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, jul 2017.

[21] A. Shafahi, M. Najibi, Z. Xu, J. Dickerson, L. S.
Davis, and T. Goldstein, “Universal adversarial train-
ing,” Proceedings of the AAAI Conference on Artifi-
cial Intelligence, vol. 34, no. 04, pp. 5636–5643, apr
2020.

[22] J. Dai and L. Shu, “Fast-UAP: An algorithm for expe-
diting universal adversarial perturbation generation
using the orientations of perturbation vectors,” Neu-
rocomputing, vol. 422, pp. 109–117, jan 2021.

[23] P. Benz, C. Zhang, A. Karjauv, and I. S. Kweon,
“Universal adversarial training with class-wise per-
turbations,” in 2021 IEEE International Conference
on Multimedia and Expo (ICME). IEEE, 2021, pp.
1–6.

[24] C. Zhang, P. Benz, C. Lin, A. Karjauv, J. Wu, and I. S.
Kweon, “A survey on universal adversarial attack,”
in IJCAI, 2021, pp. 4687–4694.

[25] C. Laidlaw, S. Singla, and S. Feizi, “Perceptual ad-
versarial robustness: Defense against unseen threat
models,” in International Conference on Learning
Representations, 2021.

[26] S. Bonettini, I. Loris, F. Porta, M. Prato, and S. Re-
begoldi, “On the convergence of a linesearch based

9



Semi-Universal Adversarial Perturbations A PREPRINT

proximal-gradient method for nonconvex optimiza-
tion,” Inverse Problems, vol. 33, no. 5, p. 055005,
2017.

[27] P. L. Combettes and J.-C. Pesquet, “Lipschitz certifi-
cates for layered network structures driven by aver-
aged activation operators,” SIAM Journal on Math-
ematics of Data Science, vol. 2, no. 2, pp. 529–557,
2020.

[28] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree,
“Regularisation of neural networks by enforcing lips-
chitz continuity,” Machine Learning, vol. 110, no. 2,
pp. 393–416, 2021.

[29] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence
of descent methods for semi-algebraic and tame prob-
lems: proximal algorithms, forward–backward split-
ting, and regularized gauss–seidel methods,” Mathe-
matical Programming, vol. 137, no. 1-2, pp. 91–129,
aug 2011.

[30] J. Zeng, T. T.-K. Lau, S. Lin, and Y. Yao, “Global
convergence of block coordinate descent in deep
learning,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, K. Chaudhuri and
R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15
Jun 2019, pp. 7313–7323. [Online]. Available:
http://proceedings.mlr.press/v97/zeng19a.html

[31] S. J. Reddi, S. Sra, B. Poczos, and A. J. Smola, “Prox-
imal stochastic methods for nonsmooth nonconvex
finite-sum optimization,” in Advances in Neural In-
formation Processing Systems, D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29.
Curran Associates, Inc., 2016.

[32] Z. Wang, K. Ji, Y. Zhou, Y. Liang, and V. Tarokh,
SpiderBoost and Momentum: Faster Stochastic Vari-
ance Reduction Algorithms. Red Hook, NY, USA:
Curran Associates Inc., 2019.

[33] N. H. Pham, L. M. Nguyen, D. T. Phan,
and Q. Tran-Dinh, “Proxsarah: An efficient
algorithmic framework for stochastic composite
nonconvex optimization,” Journal of Machine
Learning Research, vol. 21, no. 110, pp. 1–48,
2020. [Online]. Available: http://jmlr.org/papers/v21/
19-248.html

[34] D. C. Cireşan, U. Meier, L. M. Gambardella, and
J. Schmidhuber, “Deep, Big, Simple Neural Nets for
Handwritten Digit Recognition,” Neural Computa-
tion, vol. 22, no. 12, pp. 3207–3220, 12 2010.

[35] A. Krizhevsky and G. Hinton, “Learning multiple
layers of features from tiny images,” University of
Toronto, Toronto, Ontario, Tech. Rep. 0, 2009.

[36] H. Phan, “huyvnphan/pytorch cifar10,” Jan. 2021.
[Online]. Available: https://doi.org/10.5281/zenodo.
4431043

[37] H. Kim, “Torchattacks: A pytorch repository for ad-
versarial attacks,” arXiv preprint arXiv:2010.01950,
2020.

[38] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and
linear bottlenecks,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[39] F. Croce, M. Andriushchenko, V. Sehwag,
E. Debenedetti, N. Flammarion, M. Chiang, P. Mit-
tal, and M. Hein, “Robustbench: a standardized
adversarial robustness benchmark,” 2021.

[40] V. Sehwag, S. Mahloujifar, T. Handina, S. Dai, C. Xi-
ang, M. Chiang, and P. Mittal, “Robust learning
meets generative models: Can proxy distributions
improve adversarial robustness?” in International
Conference on Learning Representations, 2022.

[41] T. Chen, S. Liu, S. Chang, Y. Cheng, L. Amini,
and Z. Wang, “Adversarial robustness: From self-
supervised pre-training to fine-tuning,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2020, pp. 699–708.

[42] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “ImageNet Large Scale Visual Recognition Chal-
lenge,” International Journal of Computer Vision
(IJCV), vol. 115, no. 3, pp. 211–252, 2015.

10

http://proceedings.mlr.press/v97/zeng19a.html
http://jmlr.org/papers/v21/19-248.html
http://jmlr.org/papers/v21/19-248.html
https://doi.org/10.5281/zenodo.4431043
https://doi.org/10.5281/zenodo.4431043

	Introduction
	Preliminaries and Related Works
	Specific Attacks
	Universal Attacks

	Semi-universal Adversarial Attack
	Algorithmic Solutions
	Full-Batch Solver
	Stochastic Solver

	Numerical Experiments
	MNIST Experiments
	CIFAR-10 Experiments
	ImageNet Experiments

	Conclusion

