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Antimicrobial peptides (AMPs) have a great potential to face the global expansion of

antimicrobial resistance (AMR) associated to the development of multidrug-resistant

(MDR) pathogens. AMPs are usually composed of 10–50 amino acids with a broad

structural diversity and present a range of antimicrobial activities. Unfortunately, even

if the oral route is the most convenient one, currently approved therapeutic AMPs

are mostly administrated by the intravenous route. Thus, the development of novel

drug delivery systems (DDSs) represents a promising opportunity to protect AMPs

from chemical and enzymatic degradation through the gastrointestinal tract and

to increase intestinal permeability leading to high bioavailability. In this review, the

classification and properties as well as mechanisms of the AMPs used in infectiology

are first described. Then, the different pharmaceutical forms existing in the market

for oral administration are presented. Finally, the formulation technologies, including

microparticle- and nanoparticle-based DDSs, used to improve the oral bioavailability of

AMPs are reviewed.

Keywords: oral route, antimicrobial peptides (AMPs), infectiology, pharmaceutical forms, drug delivery systems

(DDS)

INTRODUCTION

Almost 100 years after the discovery of antibiotics, an increasing number of multidrug-resistant
(MDR) pathogens are alarming. The overuse and misuse of antibiotics have led to antimicrobial
resistance (AMR), which is one of the most important public health threats worldwide (1–4). AMR
occurs when bacteria, viruses, or fungi develop resistance to antibiotics, antiviral, or antifungal
drugs, respectively (5, 6). At least 700,000 people die annually worldwide due to drug-resistant
diseases. Worst-case projections estimate that AMR could cause 10 million deaths each year by
2050, leading to a global economic output of 100 trillion USD (7). AMR is a complex issue
of global concern with potentially dramatic health and economic consequences. In 2015, WHO
launched the Global Action Plan on AMR and the Global AMR and Use Surveillance System
(GLASS) (8, 9). In this context, antimicrobial peptides (AMPs) provide a great potential as an
alternative strategy to fight against MDRmicroorganisms (10–12). AMPs are synthetic or naturally
conserved molecules found in organisms ranging from prokaryotes to humans and are part of
the body’s first line of defense against pathogens (bacteria, viruses, fungi, and parasites). Most of
them are positively charged with hydrophobic residues with a broad spectrum of antimicrobial
activities. For decades, AMPs have shown a growing interest as potential therapeutic agents. Several
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hundreds of AMPs are under preclinical and clinical
development, nevertheless, only a few AMPs are currently
approved (13). They are used for the treatment of infectious
diseases like bacterial skin infections, Clostridium difficile
pseudomembranous colitis, HIV infection, or Candida
infections. Thus, AMPs are a promising class of molecules active
against bacteria (14), viruses (15), or fungi (16). Furthermore,
they could be effective against MDR pathogens and have a potent
activity against intracellular bacteria and also against the biofilms
that are involved in antibiotic resistance (12, 17–20).

Now, for several reasons, the AMPs that are used
as therapeutic agents are mainly administrated by the
intravenous route rather than by the oral route. Indeed, the
gastrointestinal environment affects the drug stability, solubility,
and permeability across the mucosal barriers. In addition,
due to their nature, AMPs have a low bioavailability and
solubility, are easily degraded by proteases, and potentially
present toxicity and immunogenicity, which limit their use
as antimicrobial agents. However, the oral route has several
advantages: easy to use, non-invasiveness, and convenience
for self-administration (21). To minimize the drawbacks
of AMPs and the oral route, the development of new drug
delivery systems (DDSs) is required (10, 22, 23). This review
describes (i) the properties and activities of the AMPs that
are used against microbial pathogens, (ii) their indications
for oral administration, and (iii) the micro- and nano-
DDSs to improve oral bioavailability for local and systemic
drug delivery.

AMPs: CLASSIFICATION AND
PROPERTIES

The history of AMPs began in the early 1920s with the discovery
by Alexander Fleming of a bacteriolytic substance in the tissues
and secretions of human and animals, and in some vegetable
tissues (24, 25). The name “lysozyme” has been applied to this
enzyme, and the peptidic nature of this salivary antiseptic was
subsequently established. Since this discovery nearly a century
ago, the interest in AMPs has continued to grow, as evidenced by
the number of articles published on this topic with an average of
15,000 articles per year in the last decade. Due to the pleiotropic
functions not only killing microbes but also controlling host
physiological functions such as inflammation, angiogenesis, and
wound healing, alternative terms for AMPs have also appeared
like “host defense peptides,” “alarmins,” and even “defensins.”
AMPs are synthesized by virtually all living organisms, from
bacteria to humans via plants. AMPs represent the first line
of defense against invading pathogens, being a key part of the
innate immune system. AMPs are either ribosomally synthesized
oligopeptides or non-ribosomally synthesized peptides. In the
latter case, peptides are assembled by multimodular enzymes
designated as non-ribosomal peptide synthetases (NRPS). Several
regularly updated databases such as APD3 (26), the Collection
of AMPs (CAMP) (27), the Database of Antimicrobial Activity
and Structure of Peptides (DBAASP) (28), or the Data Repository
of AMPs (DRAMP) (29) provide information on sequences,

structures, activities, or clinical status of thousands of AMPs
identified so far.

Antimicrobial peptides are usually 10–50 amino acids long
and lower than 10 kDa, and they contain a composition rich
in cationic and hydrophobic amino acids. However, AMPs
lack any consensus amino acid sequence and present a broad
structural variety and range of antimicrobial activities. The
diversity of AMPs causes difficulty in their classification. AMPs
can be classified in numerous ways: biological sources, peptide
properties, structure, or activity.

Classification Based on Biological Sources
The biological sources of AMPs are wide. Indeed, natural
peptides have been identified in all kingdoms of life, from
bacteria, fungi, plants to animals (30, 31). Animal AMPs can be
further classified into insect AMPs, amphibian AMPs, fish AMPs,
reptile AMPs, and mammal AMPs (32–34) (Figure 1).

Classification Based on Peptide Properties
Antimicrobial peptides can be classified based on peptide
properties such as charge, amino acid composition,
hydrophobicity, and length. AMPs are oligopeptides containing
a varying number of amino acids (usually 10–50 amino acids,
ranging in size from 2 to 10 kDa). They can be sorted by
size: short (10–24 aa), medium (25–50 aa), and long (50–100
aa). Based on net charge, there can be cationic, neutral, and
anionic peptides although most of them are cationic and
display a net positive charge ranging from +2 to +13 and may
contain a specific cationic domain (35). The cationic nature
can be attributed to the presence of lysine and arginine (and
sometimes histidine) residues, which allow them to interact with
negatively charged bacterial cell membranes, causing the direct
destabilization of the surface of membranes with pore formation
and subsequent cell lysis. Based on amino acid composition,
AMPs can be predominantly rich in specific amino acids such as
proline (e.g., apidaecin and pyrrhocoricin), tryptophan, arginine,
glycine, histidine (e.g., Histatin-5), or rare modified amino acids
(e.g., nisin) (30, 36). Based on hydrophobicity, hydrophobic,
amphipathic, and hydrophilic peptides exist. Hydrophobicity
governs the extent to which AMPs will be able to be partitioned
into the membrane lipid bilayer. It is required for membrane
permeabilization, whereas amphipathicity determines whether
AMPs can be inserted into the bacterial cell membranes to form
hydrophobic channels or pores.

Classification Based on Structure
Antimicrobial peptides are classically divided into four categories
based on their structures, including linear α-helical peptides, β-
sheet peptides, both α-helix and β-sheet peptides, and a linear
extension structure. In addition to these four categories, a fifth
referred to as the topologically complex AMPs, including various
post-translationalmodifications (PTMs), has recently been added
(37) (Figure 1).

The AMPs that adopt a linear α-helix structure represent
the largest and best-studied group. They are predominantly
found in the extracellular matrix of insects and amphibians
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FIGURE 1 | Structural diversity of antimicrobial peptides (AMPs) and their activities against bacteria, viruses, or fungi. A wide variety of biological sources, including

microbes, insects, amphibians, reptiles, mammals, or plants, produce AMPs, which are classified into five structural classes. Representative examples of these five

classes are shown as a cartoon representation and colored by hydrophobicity [sourced from the RCSB Protein Data Bank (https://www.rcsb.org/)]: (A) α-helical

structure of human LL-37 (PDB entry: 2K6O); (B) β-sheet structure of bovine lactoferricin (PDB entry: 1LFC); (C) α-helix and β-sheet structure of human

beta-defensin-1 (PDB entry: 1IJV); (D) Linear extension structure of bovine indolicidin (PDB entry: 1G89); (E) Cyclic structure of Bacillus subtilis Subtilisin A (PDB entry:

1PXQ). Direct pathogen killing and immunomodulatory activities of AMPs lead to antibacterial, antiviral, and antifungal activities. AMPs’ advantages and limitations to

treat infectious diseases are listed.

like magainin from Xenopus laevis although some other well-
known examples are produced by mammals like the human
peptide LL-37, a member of cathelicidins (35, 37). Some of these
AMPs are unstructured in solution and undergo conformational
changes upon interactions with target membranes. Amidation
at the C-terminus has been shown to increase its antimicrobial
activity by stabilizing α-helical conformation and by eliminating
the negative charge of the carboxyl group, therefore enhancing
peptide binding to negatively charged target membranes (38).
AMPs in the β-family are characterized by at least a pair of two
β-strands in the structure. Almost all of these AMPs contain
cysteine residues forming one or more disulfide bonds, which
stabilize the structure (39). These peptides are therefore more
structured in solution and do not undergo major structural
changes in a membrane environment. The β-sheet peptides
include, for example, bovine lactoferricin or human defensins.
Some AMPs adopt a structure with both α-helix and β-sheet
elements, such as the cis defensins superfamily (40). The fourth
category represents AMPs with a linear extension structure,
which do not fold into a particular 3D structure. They often
contain a high proportion of certain amino acids such as arginine,
tryptophan, or proline like indolicidin (37). A recent fifth group
of AMPs has been proposed to gather AMPs with cyclic and
complex topologies (37). These peptides do not adopt a linear
structure unlike AMPs belonging to the first four classes. In this
group, two types of cyclic AMPs are found: “head to tail” and
“head to side chain” cyclic topologies. To stabilize their structure,
most of the cyclic AMPs contain disulfide bonds or thioether
bridges. Plant cyclotides represent a family of backbone-cyclic
AMPs with three stabilizing disulfide bonds. Lasso peptides like
bacterialmicrocin are part of head to side chain AMPs and consist
of a macrolactam ring formed between the N-terminal α-amino
group and an aspartate or glutamate side chain and a linear
C-terminal peptide tail (41).

AMPs FOR THE TREATMENT OF
INFECTIOUS DISEASES

Antimicrobial peptides exhibit several mechanisms of action for
an interaction with bacteria and other microorganisms such
as viruses and fungi. In general, AMPs kill microorganisms
by disturbing membrane integrity or by interacting with
the synthesis of intracellular components such as DNA,
RNA, and proteins. They can also exert a broad range of
immunomodulatory activities (Figure 1).

Mechanisms of Action of AMPs
Antibacterial Activities
Membrane interaction is a key factor for the direct activity
of AMPs. Many AMPs cause disruption of the physical
activity of the microbial membrane and/or translocation
across the membrane into the cytoplasm of bacteria to act
on an intracellular target. Some of them are presented in
Table 1. AMPs kill bacteria by disturbing membrane integrity
through membrane lysis (i.e., colistin, bacitracin, daptomycin,
and polymyxin B), membrane poration (i.e., gramicidin D
and tyrothricin), or the inhibition of cell wall synthesis (i.e.,
teicoplanin and vancomycin) (Table 1). Gram-negative and
Gram-positive bacteria have molecules at the surface that confer
a negative charge, allowing an electrostatic interaction with
cationic peptides. Thus, teichoic acids in the cell wall of Gram-
positive bacteria and lipopolysaccharides in the outer membrane
of Gram-negative bacteria provide additional electronegative
charge to the bacterial surface. Several models have been
proposed to explain the interaction of AMPs with the bacterial
membrane. Thus, three possible pathways to disrupt the
inner membrane have been described: (i) in the barrel-stave
model, peptides can perpendicularly insert into the membrane,
promoting peptide–peptide interactions thanks to the AMP’s
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TABLE 1 | The antimicrobial peptide (AMP) drugs approved by the Food and Drug Administration (FDA).

Antimicrobial

peptide

Drug name Source Peptide type Mechanism of

action

Administration Antimicrobial

activity

Application FDA approval References

Antibacterial drug

Colistin (polymyxin

E)

Coly-Micins® Coli

Genta AP-

HP®, Koolistin®

Bacillus colistinus Cyclic

lipopeptide

Membrane lysis Intravenous Oral

(suspension)

Gram-negative

bacteria

Bacterial

infections

1962 (32, 42, 43)

Bacitracin Baciim® Bacillus subtilis Cyclic

polypeptide

Membrane lysis Topical Gram-positive

bacteria

Skin and eye

infections

1984 (13, 19, 42)

Dalbavancin Dalvance®

Xydalba®
Semisynthetic

derivative of

teicoplanin

Lipoglycopeptide Inhibitor of cell wall

synthesis

Intravenous Gram-positive

bacteria

Acute bacterial

skin infections

2014 (13, 19, 42)

Daptomycin Cubicin® Streptomyces

roseosporus

Cyclic

lipopeptide

Membrane lysis Intravenous Gram-positive

bacteria

Bacterial skin

infections

2003 (13, 19, 42)

Gramicidin D Neosporin® Bacillus brevis Linear peptide Membrane

poration

Topical Gram-positive

bacteria

Bacterial

conjunctivitis

1995 (42)

Oritavancin Orbactiv® Semisynthetic

derivative of

vancomycin

Lipoglycopeptide Membrane lysis

Inhibitor of cell wall

synthesis

Intravenous Gram-positive

bacteria

Acute bacterial

skin infections

2014 (13, 19, 42)

Polymyxin B Poly-Rx® Bacillius polymyxa Cyclic

lipopeptide

Membrane lysis Intravenous Gram-negative

bacteria

Bacterial

infections

1964 (42)

Teicoplanin Targocid®

Teicomid®

Actinoplanes

teichomyceticus

Lipoglycopeptide Inhibitor of cell wall

synthesis

Intravenous Oral Gram-positive

bacteria

Bacterial infections

Clostridium

difficile

associated diarrhea

1990 (13, 19, 44)

Tyrothricin Tyrozet®

Lemocin®

Dorothricin®

Anginovag®

Bacillus brevis Linear peptide Membrane

poration

Oral (lozenge) Gram-positive

bacteria

Acute

pharyngitis

N.D (45, 46)

Telavancin Vibativ® Semisynthetic

derivative of

vancomycin

Lipoglycopeptide Membrane lysis

Inhibitor of cell wall

synthesis

Intravenous Gram-positive

bacteria

Acute bacterial

skin infections

2009 (13, 19, 42)

Vancomycin Vancocin®

Vancomycin® EG

Streptomyces

orientalis

Lipoglycopeptide Inhibitor of cell wall

synthesis

Intravenous Oral

(capsule

or powder)

Gram-positive

bacteria

Bacterial infections

Clostridium

difficile

associated diarrhea

1983 (13, 19, 42, 47)

Antiviral drug

Azatanavir Reyataz® Synthetic Azapeptide

protease

inhibitor

Protease inhibitor Oral (capsule) Human

immunodefiency

virus (HIV)

HIV-1 infection 2003 (48)

Enfuvirtide Fuzeon® Synthetic Polypeptide Membrane fusion

inhibitor

Subcutaneous Human

immunodefiency

virus (HIV)

HIV-1 infection 2003 (13, 15, 19, 49)

(Continued)
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amphipathic structure and resulting in the formation of a
peptide-lined transmembrane pore, (ii) concerning the toroidal-
pore model, the insertion of the peptides is induced by a
curvature in the lipid layer, and a pore is generated by both the
peptide and the phospholipid head group, and (iii) in the carpet-
model, the peptide is absorbed onto the membrane, covering
the entire surface leading to the loss of the membrane integrity
and the formation of micelles (Figure 1). Moreover, peptides can
translocate into the cytoplasm and directly inhibit the cell wall
and protein synthesis, bacterial cell division, or DNA replication
by interacting with specific proteins involved in the biological
process (18, 19, 48, 50).

Antiviral Activities
Some AMPs may present their activities against viruses. Antiviral
peptides (AVPs) can cause membrane instability by integrating
into viral envelopes. Both enveloped RNA and DNA viruses
can be targeted by AVPs. AVPs can (i) interact with different
glycoaminoglycans present on the cell surface competing with the
virus for cellular binding sites, (ii) block the viral entry into the
cell, (iii) suppress the cell fusion by interfering with the activity
of ATPase protein, (iv) suppress viral gene expression, or (v)
interfere with the assembly process of the viruses (13, 18, 19). As
examples among the AVPs approved by the FDA, the polypeptide
enfuvirtide that is a membrane fusion inhibitor block virus (HIV-
1) from entering the host cells and azatanavir, an inhibitor
of HIV-1 proteases, preventing the maturation of the proteins
needed to assemble the viral capsid, can be cited (Table 1).

Antifungal Activities
Some AMPs pass through the fungal membrane by pore
formation or act on beta-glucan or chitin synthesis and others
interact with themembrane and cause cell lysis of fungi. They can
lead to fungi death by (i) the inhibition of DNA, RNA, or protein
synthesis, (ii) induction of apoptosis, (iii) permeabilization of
membrane, and (iv) inhibition of cell wall synthesis and enzyme
activity (18). Thus, the cyclic lipopeptides (anidulafungin and
caspofungin) that are used as antifungal drugs are the inhibitors
of the beta-(1,3)-D-glucan synthase (Table 1).

Immunomodulatory Activities
In addition to a broad spectrum of antimicrobial activities,
AMPs have anti-inflammatory and immunomodulatory
properties. They are described as the effective modulators of
inflammation and neutralizers of toxins. AMPs can indirectly
promote pathogen clearance of the host by stimulating
chemotaxis (by recruiting/activating immunocytes), immune
cell differentiation, and the initiation of adaptive immunity,
while also preventing harmful inflammation and sepsis by
the inhibition of cytokine release and direct scavenging of
bacterial endotoxins (20, 50). Indeed, some AMPs modulate host
immunity by influencing Toll-like receptor (TLR) recognition
of microbial products (i.e., the neutralization of bacterial
products such as lipopolysaccharide and lipoteichoic acid to
suppress inflammation) and nucleic acids released upon tissue
damage to promote auto-inflammation (51) (Figure 1). AMPs
having immunomodulatory activities belong to the two major
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families: defensins and cathelicidins. Human defensins exhibit
chemotactic properties and are produced by multiple cell types
(i.e., neutrophils, macrophages, lymphocytes, and intestinal
epithelial cells). The human cathelicidin membrane disrupting
peptide LL-37 acts as a chemoattractant for monocytes,
neutrophils, mast cells, and T cells (11, 49, 51). In addition,
the immunomodulatory properties of several marine-derived
AMPs have been demonstrated. Thus, defensins from oyster
or mytilus are the AMPs acting as host defense peptides that
disrupt the membrane of microbial pathogens and play a major
role in immunomodulation by acting on the innate and adaptive
immune response (29). Among the approved AMPs that are used
as antibacterial agents, the glycopeptide vancomycin exhibits
pharmacological activity against Gram-positive bacteria and
immunomodulatory activity affecting tumor necrosis factor-
alpha (TNF-α) pathways. Thus, Arbabanel et al. showed that
oral vancomycin can be used as an effective treatment for
concomitant primary sclerosing cholangitis and inflammatory
bowel disease in pediatric. Indeed, oral vancomycin-mediated
disease resolution is associated with elevated peripheral TGF-β
levels without alterations in Th1 or Th2 cytokine production
patterns and increased regulatory T-cell levels (52).

Advantages and Limitations of AMPs
Antimicrobial peptides have a broad spectrum of antimicrobial
activities (antibacterial, antiviral, and antifungal) and are a
promising class of drugs to face the development of MDR
pathogens. They have advantages over conventional antibiotics
or antifungals, which include slower emergence of resistance,
antibiofilm activity, and an ability to modulate the host immune
response. AMPs are less immunogenic than recombinant
proteins and antibodies. In addition, they are in general
considered to have a safety profile because their metabolites are
natural amino acids and there are having short half-life, few
peptides accumulate in tissues (10, 13). However, despite the
beneficial properties of AMPs, they present some limitations
such as: (i) short half-life because of a rapid degradation
by proteolytic enzymes, both in the bloodstream and in the
gastrointestinal system; (ii) plasma protein binding, which leads
to their inactivation; (iii) low metabolic stability and low oral
bioavailability; (iv) rapid excretion through the kidneys and
liver; (v) high toxicity (i.e., nephrotoxicity) and immunogenicity;
(vi) a poor correlation between in vitro antimicrobial activity
and their efficacy in vivo; and (vii) high costs of production
(22, 42, 50) (Figure 1). For these reasons, their use for in
vivo applications has not been fully satisfactory and to date,
only a few AMPs are approved by the FDA for clinical use
(Table 1). Most of the commercialized AMPs (except colistin
and polymyxin B) are used for treating Gram-positive bacterial
infections, and the development of AMPs to treat Gram-negative
bacterial infections is needed. Moreover, concerning the route
of administration, therapeutic peptides are mostly restricted to
topical administration (skin and eye infections) or to parenteral
administration, while the oral route (p.o) is mostly convenient
for medication adherence. Indeed, p.o provides treatment
acceptability for patients and facilitates the administration with
non-invasive and ambulatory treatments; it is also the main route

for local treatment of the gastrointestinal tract. Accordingly, it
constitutes the first investigated administration route during the
pharmaceutical development of a new drug. Unfortunately, this
oral administration route is most of the time not suitable for the
emerging therapeutic peptides, and significant efforts to knock
down the locks of peptide administration by p.o are conducted.
Indeed, after oral administration, peptides are exposed to
the aggressive biological environment (pH, enzymes, and gut
microbiota) and a complex structure (mucus, epithelial barrier,
and hepatic first pass) of the gastrointestinal tract before they
have local action or reach the systemic circulation (Figure 2).
Generally, gastrointestinal degradation and low permeability lead
to oral peptide bioavailability <1–2% (53).

Indication of AMPs After the Oral
Administration of Conventional Dosage
Forms
Local Treatment of Gastrointestinal Diseases
Some peptides are already used or currently used in clinical
trials to treat local diseases of the gastrointestinal tract, including
colon infection disease such as amoebiosis and C. difficile
or Enterococcus infections. First, some AMPs present an
interest after oral administration without pharmaceutical forms.
For example, Stiefel et al. (54) administered ramoplanin, a
glycolipodepsipeptide, in drinking water (at 100µg/ml of water)
in female mice and demonstrated that it could potentially
be used to reduce cross-transmission of vancomycin-resistant
Enterococcus. Nevertheless, this work demonstrated some
limitations notably due to the administration of this AMP
in drinking water that, for example, may not reproduce the
pharmacokinetic of human dosing.

LFF571, a new investigational thiopeptide, was synthesized to
treat C. difficile infections. The aqueous solubility of this analog
was enhanced in comparison with 4-aminothiazolyl analogs
of the antibiotic natural product GE2270A. Pharmacokinetic
studies of the infected hamster were performed, and LFF571
solution (prepared with PEG-400 or Cremophor R©EL, two
solubilizing agents) was administrated at a dosage of 20mg.kg−1

(55). A very low bioavailability was observed (as expecting to
treat local C. difficile infection) and no detectable levels of
C. difficile toxins A and B were measured in cecal content
(animals were successfully treated). A randomized clinical study
(phase II exploratory study in USA and Canada) was performed
to compare LFF571 and vancomycin safety and efficacy (56).
Moreover, a study was conducted to evaluate the safety,
tolerability, and pharmacokinetic of LFF571 in healthy human
volunteers (57). In both studies, LFF571 was well-tolerated in
patients and in comparison with vancomycin administration,
and the frequencies of serious adverse events were similar.
Unfortunately, this phase II study was discontinued in 2019.

Moreover, to date, a few small peptides are on the market:
peptides with good stability and high potency. These peptides
are administrated with conventional forms [composed of active
pharmaceutical ingredient (AMPs) and excipient(s)]. They
include solid dosage forms such as tablets, capsules, powders,
granules, lozenges, and liquid dosage forms such as solutions,
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FIGURE 2 | Barriers of AMP absorption and interest of drug delivery systems by oral route. Current drug delivery systems (DDS), including microparticles,

nanoparticles, liposomes, and self-emulsifying drug delivery systems (SEDDS), are assessed for oral antimicrobial peptides (AMPs) administration. The encapsulation

of AMPs in DDS presents advantages to avoid gastrointestinal barriers.

emulsions, suspensions, and syrups. For example, vancomycin
is administered by the oral route for both local and systemic
delivery (Table 1). For local delivery, vancomycin is formulated
in 125- and 250-mg capsules or in powder for oral solution to
treat the infection of the intestinal mucosa (pseudomembranous
colitis induced by C. difficile). Indeed, after oral administration,
vancomycin is not usually absorbed into the blood and is
excreted almost exclusively in the feces. However, absorption is
reported in patients with inflammatory disorders of the intestinal
mucosa (47). Nisin containing pectin/hydroxypropyl methyl
cellulose (HPMC) compression-coated tablets was formulated
for the treatment of local colon diseases such as irritable bowel
syndrome, inflammatory bowel disease, and ulcerative colitis
(58). Authors propose to coat a tablet with pectin and HPMC
(two hydrophilic polymers, which swell to form a hydrogel layer
upon contact with aqueous media) to form an enzymatically
controlled delivery system. Adding pectin limits the hydration
and swelling of HPMC that allow to maintain tablet integrity
and thus nisin stability. Furthermore, in vivo studies with
pectin/HPMC-coated tablet formulation conducted in healthy
volunteers have demonstrated an interesting interplay between
the tablet position in the gut, the hydration of the matrix,
and the subsequent release pattern. Thus, HPMC maintains
tablet integrity until the colon (59). For surotomycin (CB-315),
peptides were proposed to treat diarrhea with severe C. difficile
infection, tablet, and age-appropriate oral solid formulation that
can be dispersed or dissolved. During clinical trials phase I, an
insignificant absorption of surotomycin was observed and the
primary route of elimination was in the feces following oral
administration (60). Throat lozenge pharmaceutical forms were

also developed to administer tyrothricin by the oral route in the
treatment of patients with acute pharyngitis. Finally, liquid forms
prepared from powders were used. Indeed, teicoplanin, to treat
diarrhea with severe C. difficile infection, is presented as powder
for oral solution at the dosages of 100, 200, and 400mg. During
pharmacokinetic studies, when teicoplanin is administered by
the oral route at a 250- or 500-mg single dosage to healthy
subjects, it was demonstrated that teicoplanin was not detected
in the serum or urine but only recovered in feces (about 45% of
the administered dosage) as unchanged medicinal product (44).
Colistin sulfate was administered orally as a suspension via a
nasogastric tube in the gastrointestinal tract for selective digestive
tract decontamination in intensive care units (43).

Systemic Treatment After the Oral Administration of

AMPs
Despite limited oral absorption of peptides, some of them are
still administered orally and indicated for systemic bacterial
or viral infections. For example, capsules (200mg) of a HIV
protease inhibitor, atazanavir (ATV), are on the market. ATV
has a low oral bioavailability, which can be enhanced clinically
by a co-administration with ritonavir and food (Table 2). To
avoid food and ritonavir co-administration uses, amorphous
solid dispersion system of ATV was also prepared with sodium
lauryl sulfate as a carrier and polyoxylglycerides (Gelucire R©

50/13) as an absorption enhancer (Table 2). ATV solid dispersion
showed a 4.7-fold increase in bioavailability compared with ATV
alone (61).

Currently, vancomycin was administered by the oral
route only for local C. difficile treatment. Indeed, after oral
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TABLE 2 | Oral AMP formulations to improve bioavailability.

AMP Formulation

(trade name)

Interest of the

formulation

Oral bioavailability of

drug alone

Increased oral bioavailability

with

formulation/AUC0-∞/AUC0–t

(µg/mL)

Relative

bioavailability

References

Azatanavir Co-administered with

ritonavir and food

- Inhibit cytrochrome P450

3A

- Inhibit P-gp

19.6% AUC0−∞ = 3.58 µg. h. mL−1 100% (61)

Solid dispersion using

sodium lauryl sulfate and

Gelucir® 50/13

- Improve dissolution rate

and amount (amorphous

state)

- Absorption enhancer

AUC0−∞ = 1.56 to 3.33 µg. h.

mL−1

43–93% (61)

SNEDDS - Enhancement of oral

bioavailability of lipophilic

drug

- Bypass hepatic portal

route

- Promote the lymphatic

transport of

lipophilic drugs

AUC0−12 ≈ 1 µg. mL−1 N.D. (62)

Eudragit® RL 100

nanoparticles

- Improve intestinal

permeability (2.11-fold)

Low AUC0−24 AUC0−24 = 1.407 ± 2.18 µg.

mL−1 at 8.01 h

N.D (63)

Daptomycin Proliposome - Protect against harsh

conditions presented in

the GI tract

- Improve oral absorption

low AUC0−t 46.39 ± 5.69 µg.h.

mL−1

N.D. (64)

Polymyxin B Alginate microparticles - Protect to gastric

environment

- Absorbed by a lymphoid

transport across M cell in

the follicle-associated

epithelium

- Prolonged serum levels

compared with the drug

dosed in a water solution

N.D (serum level peak ∼=

0.2mg mL−1 at 48 h)

/ / (65–67)

Niosome - Improve stability in

simulated gastrointestinal

fluids

- Absorbed through M-cells

N.D. AUC0−48h 0.398 ± 0.03mg. h.

L−1

N.D. (68)

Vancomycin Water-in-oil-in-water

multiple emulsion

< 2% Between 1.2 and 2.3 µg. h.

mL−1

Between 30

and 50%

(69)

Microemulsion - Micelle formation

- Pgp inhibition

AUC0−6h between 12.94 ± 1.26

to 39.17 ± 6.30 µg. h. mL−1

N.D (70)

SEDDS - Improve mucus

permeation

- Improve intestinal

permeation (4–8-fold

compared to free

vancomycin solution)

N.D N.D (71)

Folic acid-coated liposome - Improve

intestinal permeability

1.74% AUC0−last = 1.40 mL−1.min.kg−1 21.8% (72)

Tetraether lipid liposomes - High stability in

gastrointestinal fluids

1.5% N.D. 4.8% (after 1h) (73)

N.D., no data; AUC, Area under the curve; SNEDDS, Self-nanoemulsifying drug delivery system; SEDDS, Self-emulsifying drug delivery system; GI, Gastrointestinal.

administration, during pharmacokinetic studies in human
adults and during multiple dosing of vancomycin hydrochloride
capsule at 250mg every 8 h for seven dosages, no blood
concentration was detected (74). So, to extend the use
of vancomycin, pharmaceutical forms have been studied
to improve its oral bioavailability. For example, multiple

emulsion (water-in-oil-in-water) was proposed to administer
vancomycin (as the model drug). The emulsion incorporating
C18 unsaturated fatty acid oil (linoleic acid or linolenic acid)
has improved the bioavailability more than 40% after emulsion
administration into the rat colon loop (at a dosage of 5mg.kg–1

of vancomycin) (69) (Table 2). On the other hand, for emulsion
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incorporating C18 unsaturated fatty acid oil (oleic acid) or
docosahexaenoic acid, enteral bioavailability was lower (more
than 25%) (69). Similarly, the formulation of a solution
with a co-administration of the surfactant as an absorption
promoter [PEG-8 caprylic/capric glycerides (Labrasol R©) and
D-α-tocopheryl polyethylene glycol 1,000 succinate (TPGS)]
was studied (70). Vancomycin solutions were administered at a
dosage of 20mg.kg–1 into the rat ileum. Formulation containing
50% of Labrasol R© and 12.5% of TPGS increased the AUC0−6h

value of the vancomycin about 2.4 times in comparison with the
formulation with 50% of Labrasol R© without TPGS (70).

Thus, the excipients that are used in pharmaceutical forms
have demonstrated their importance to improve the absorption
of AMPs. In addition, the stability, biocompatibility, safety,
and efficacy of AMPs can be further improved through novel
formulation strategies and design of new DDSs.

DDSs FOR THE ORAL ADMINISTRATION
OF AMPs

After oral ingestion peptides can be easily affected by
an biological environment; pepsin, protease (trypsin and
chymotrypsin), acidic, or neutral pH, temperature resulting in
the loss of their bioactivity in the gastrointestinal tract. Moreover,
after oral administration, to obtain systemic delivery, besides
potential gastrointestinal degradation, peptides have also to be
transport across mucosal, epithelial, and endothelial barriers
(75). Broadly, different approaches to update the inconvenience
of conventional dosage forms were proposed to protect and/or
to improve intestinal absorption of peptides. In this context,
a number of approaches such as chemical modification of the
peptide structure, a co-administration of absorption enhancer
and/or protease inhibitor and/or mucolytic agents, or peptide
encapsulation in well-adapted DDSs are proposed (76, 77).

Drug delivery systems exhibit different chemical or physical
properties; they can be a protected drug, modified drug
pharmacokinetic, controlled drug release, and improved
therapeutic efficacy with less side effects of drugs (78). Thus,
these systems emerge as pioneering and promising forms
to enhance therapeutic effectiveness. DDSs are particulate
pharmaceutical forms such as microparticles and nanoparticles
(including liposomes, polymer- and lipid-based nanoparticles,
and micelles) that allow drug encapsulation (Figure 2).

DDSs for Gastrointestinal Diseases
The loading of AMPs into DDS could protect peptides
from enzymatic degradation after oral administration for local
treatment of the gastrointestinal tract. For example, the loading of
nisin into the DDS is interesting due to its loss of bioactivity after
an interaction with food (inactivation by enzymatic degradation,
inactivity at alkaline pH). To demonstrate the interest of
encapsulation, different nanoparticles as well as microparticle
system were developed (79–85), but even if encapsulation
improves the stability of nisin at alkaline pH or in the presence
of enzymes, no pharmaceutical indications were described after
oral administration. Thus, these different works demonstrated

the interest of DDS to protect the peptide from gastrointestinal
media. Similarly, the encapsulation of microcin J25 (the peptide
with a bactericidal activity against a range of pathogenic enteric
bacteria such as Escherichia coli and Salmonella) into the
liposome coated with whey protein and pectin has protected
significantly the peptide during in vitro digestion study (86).
Finally, the efficacy of orally administered encapsulated cryptdin-
2 onto chitosan nanoparticles (more than 105 nm particle
size) was also demonstrated against Salmonella Typhimurium
infection in mice (87). The property of chitosan can modulate
the intestinal behavior of nanoparticles, which increase stability
and protect cryptdin-2 against gastrointestinal conditions.

DDSs for Systemic Delivery
To enhance the absorption of AMPs following oral
administration, microparticulate and more specifically,
nanoparticulate systems introduced advanced features. Indeed,
due to their size, surface charge, and/or targeting moieties on
the surface, nanoparticles are expected to diffuse through the
mucus layer and to transport peptides across the intestinal
barrier to reach blood circulation by different pathways
(mainly transcellular pathways) (88). As a consequence, a lot of
nanoparticulate delivery systems are described in the literature
to improve the oral bioavailability of AMPs (Table 2; Figure 2).

Self-Emulsifying DDSs
Self-emulsifying DDS (SEDDS) and self-nanoemulsifying
DDS (SNEDDS) are defined as the isotropic mixtures of oil,
surfactants, and co-solvents. They present advantages for oral
drug delivery like the protection against enzymatic degradation,
reduced first pass metabolism, exhibiting mucus permeating
properties, and enhanced absorption (89). Accordingly,
daptomycin was incorporated into SEDDS that was prepared
with tricaprylin (Dermofeel R©MCT) and mono-diglyceride of
medium chain fatty acids (mainly caprylic and capric) (Capmul R©

MCM) as oil and PEG-40 hydrogenated castor oil (Cremophor R©

40) as the surfactant. Daptomycin was studied for the treatment
of complicated skin infections, bacteremia, and right-side
endocarditis caused by multiresistant Gram-positive bacteria.
In vitro mucus permeation study demonstrated that SEDDS
formulation improved daptomycin permeation by a factor 2
in comparison to pure daptomycin and protected daptomycin
against enzymatic degradation (90). Similarly, SEDDS containing
vancomycin, 25% of glycerol monocaprylate (Capmul R© 808G),
37.5% of PEG-40 (Cremophor R© R40), 13.6% of diethylene
glycol monoethyl ether (Transcutol R© HP), and 26.5% of
dimethyl sulfoxide (DMSO) was developed. SEDDS formulation
improved intestinal in vitro mucosa permeating properties,
nearly 45% of vancomycin permeated the mucus in SEDDS
formulation within 4 h, whereas <5% permeated with free
vancomycin (Table 2). Ex vivo permeation across porcine small
intestinal mucosa confirmed these results (30 vs. 5% with SEDDS
formulation and free vancomycin, respectively) (71). SNEDDS
formulation of ATV was also developed. Optimized formulation
was prepared with glyceryl monolinoleate (MaisinTM35-1) as
oil and diethylene glycol monoethyl ether (Transcutol R©P) as
the surfactant. After oral administration into rats at a dosage of
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7.2mg.kg–1 of ATV, the area under the curve (AUC) of ATV
was improved 2.57-fold with SNEDDS compared to pure ATV
(administered in the form of 0.3% carboxymethyl cellulose
suspension) (62) (Table 2).

Microparticle Delivery System
Microparticles (microspheres or microcapsules) are defined
as particles with size larger than 1µm. They are promising
encapsulation systems for protecting peptides from degradation,
enhancing peptide stability, and providing an increased surface to
volume ratio for peptide release and gastrointestinal absorption
(91). In this way, oral polymeric microparticulate as a carrier
of polymyxin B was developed. Polymyxin B, which has a
potent bactericidal activity against a broad range of Gram-
negative bacteria (e.g., Pseudomonas aeruginosa), is not absorbed
orally. After encapsulation into crosslinked alginate/chitosan
microparticles, the biological activity of polymyxin B was
conserved due to microparticle stability in a gastric environment
(Table 2) (65–67). Moreover, these microparticles demonstrated
their ability to target the gut-associated lymphoid tissue
(GALT) by Peyer’s patch uptake, but more experiments have
to be performed to demonstrate an eventual improvement of
polymyxin B absorption (67).

Liposome Delivery System
Liposomes (vesicles in which an aqueous volume is entirely
surrounded by a bilayer phospholipid membrane) are the first
nanoparticulate delivery systems that reached the market (92).
Conventional formulations of liposomes were instable in the
gastrointestinal environment, but the modification of their
composition by incorporating a specific phospholipid (e.g.,
DSPC, DPPC, and tetraether lipids) (92, 93) or by polymer
coating (e.g., chitosan and PEG) (93, 94) enhanced their
stability. Recent research on oral delivery systems has shown
that liposomes can be employed to improve the bioavailability of
encapsulated materials by protecting them against the chemical
or enzymatic degradation environment and by improving their
intestinal absorption (95). Uhl et al. (73) prepared a vancomycin-
loaded liposome containing glycerylcaldityltetraether lipid
(TEL). For in vivo studies, different vancomycin formulations
were administered by gavage in Wistar rats. The obtained
bioavailability 1 h after oral administration demonstrated
that a 3-fold increase of vancomycin was observed by using
TEL-liposome. Anderson et al. (72) formulated another
vancomycin-loaded liposomes coated with folic acid to target
intestinal epithelial cells expressing folic acid receptors. After the
oral administration of vancomycin formulations (61.75mg.kg−1)
in Sprague–Dawley rats, the absolute bioavailability was 1.74,
6.7, and 21.8% from vancomycin solution, uncoated liposome,
and folic acid-coated liposome, respectively. Thus, the folic
acid and the liposomal formulation increase by a 12.5-fold the
vancomycin bioavailability compared to vancomycin solution.
In the same way, Arregui et al. (64) prepared a proliposome
formulation [defined as dry, free-flowing particles coated
with phospholipids, which can immediately form a liposomal
suspension when in contact with water (96)] containing diacetyl
phosphate and stearylamine to increase drug loading and to

enhance the oral absorption of daptomycin. Pharmacokinetic
studies in rats demonstrated that, after the oral administration of
daptomycin at a dosage of 40mg.kg–1, a greater AUC0−t (46.39
± 5.69 µg/ml/h), and higher Cmax (8.35 ± 0.64µg/ml) were
observed with proliposomal compared to free drug (AUC0−t and
Cmax were less than the limit of quantification) (Table 2).

Nanoparticle Delivery System
Nanoparticles (including nanospheres and nanocapsules) are
lipid- and polymer-based nanocarriers. These nanoparticle
approaches have some advantages for oral administration by
protecting the encapsulated drug from enzymatic degradation,
facilitating mucus diffusion, and membrane permeation (45). All
these systems have already demonstrated their ability to improve
peptide bioavailability (97–99).

Concerning AMPs, niosomes were developed. Niosomes
(lipid-based nanoparticles) are similar to liposomes, but a bilayer
is formed by a non-ionic surfactant and stabilized by the
addition of cholesterol. These particles show a high stability
in the gastric environment and a high permeability across the
intestine (100). Polymyxin B niosomes were prepared using
sorbitan monostearate (Span R© 60) and cholesterol. Vesicles were
stable in simulated gastric and intestinal fluids, and about 86.2
and 78.5% of polymyxin B were retained, respectively (Table 2).
Pharmacokinetic studies (at 2.0mg.kg–1 dosage of polymyxin B
in rats) demonstrated that polymyxin B niosome administrated
orally present pharmacokinetic parameters (AUC0−48, t1/2)
similar to polymyxin B sulfate administrated intravenously (68).

Polymeric nanoparticles provide also the possibility to
enhance oral absorption. Eudragit R© RL 100 [a copolymer of
poly (ethylacrylate and methyl-metacrylate)] nanoparticles
were prepared by nanoprecipitation to encapsulate
ATV. During in vivo pharmacokinetic studies in rats (at
7.2mg.kg−1 dosage of ATV), the values of Cmax and
AUC0−24 increased to 1.1- and 2.91-fold, with pure drug
and optimized nanoparticle formulation, respectively. These
results demonstrate the considerable performance of the
nanoparticulate DDS in enhancing the bioavailability of
ATV (63).

CONCLUSION

To date, there have been numerous studies investigating the
interest of AMPs. Indeed, they display an antibiotic alternative
and have already demonstrated their great potential to treat
infectious diseases, including those caused by MDR strains.
To be approved as therapeutic agents, AMPs must overcome
their disadvantages, which limit their administration. Thus,
in terms of future perspectives, one of the biggest challenges
will be the development of pharmaceutical forms of the
AMPs for all routes of administration and especially, oral
administration, the main convenient administration route.
Nevertheless, formulated with conventional forms, AMPs are
always subjected to their limitations (enzymatic degradation,
low bioavailability, rapid metabolism, opsonization, etc.). By
this way, nano- and micro-DDSs emerge to play a critical role
in determining the success of current and future products.
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Indeed, nanotechnology is an emerging field that offers a unique
potential in comparison with conventional forms, including,
for example, the protection against biological environment,
the transport through barrier and cells, the improvement
of bioavailability, or release modification. In this review, we
have described the significance and high potential of AMPs
to treat both systemic and local gastrointestinal infectious
diseases as well as the oral AMP delivery systems available
as innovative formulations. These new systems have to
overcome the lack of specific regulatory guidelines notably for
their characterizations (the absence of harmonized standard
protocols), the complexity of their process of formulation and
scale-up, and the uncertainties of their toxicity. They also
require additional in vivo pharmacokinetic studies. In future, the
encapsulation of AMPs into the DDS and their use in synergy
with conventional antimicrobial drugs could be promising to
obtain more effective oral treatments especially to treat MDR
pathogen infections.
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