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Department of Biostatistics, University of Copenhagen
Abstract: The growing use of Patient Reported Outcomes (PRO’s) calls
for user friendly software to fit IRT models in standard software like SAS
or R. This paper describes a SAS macro %rasch_mml that fits polytomous
Rasch models. The macro estimâtes item parameters using marginal max-
imum likelihood (MML) estimation and person locations using both MLE
and Warm’s Weighted likelihood estimation (WLE). A number of stan-
dard graphical présentations that are useful for investigating the properties
of items are included: plots of item characteristic curves (ICC’s), person-
item location maps (Wright maps) comparing estimâtes of person locations
and item locations, and item and test information functions. A graphical
goodness-of-fit-test is also produced.

Keywords: Rasch model, marginal maximum likelihood (MML), good-
ness of fit, SAS.

1. Introduction

Item response theory (IRT) models are statistical models used for situations
where several questions (called items) are used for ordering of a group of subjects
with respect to a unidimensional latent variable [1]. The main application hâve
been within educational research where the models describe how the probability
of a correct answer to an item in a test dépends on ability. The models are,
however, applicable in any situation where there is a need for describing the
location of persons and items on an underlying latent scale. Patient Reported
Outcomes (PRO’s) like physical functioning and psychological well-being are
typical in applications of IRT models. Traditional applications in éducation
hâve often used dichotomous (correct/incorrect) item scoring, but polytomous
items seem to be the standard in PRO’s.

With the growing use of PRO’s need for user friendly software to fit IRT
models is increasing. This paper describes a SAS macro 70rasch_mml that fits
an IRT model, the polytomous Rasch model [2, 3]. The SAS macro is available
from

http : Wbiostat. ku. dk\~kach
The macro estimâtes item parameters and plots item characteristic curves.
Moreover it estimâtes person locations and compares them to the item param-
eters in a Wright map. Item and test information fonctions are plotted and a
graphical test of fit produced.
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Several SAS macros for Rasch models already exist. Two macros %anaqol
[4] and °/0irtf it [5] that encompass a wide range of IRT models and a macro
%rasch [6] for Rasch models.

The SAS macro °/0anaqol computes Cronbachs coefficient alpha [7], several
useful graphical représentations and estimâtes the parameters for any of five
IRT models (the dichotomous Rasch model [2, 3], the Birnbaum (2PL) model
[8], OPLM, the partial crédit model [9], and the rating scale model [10]) using
marginal maximum likelihood. The SAS macro %irtfit produces a variety of
indices for testing the fit of IRT models to dichotomous and polytomous item
response data. The macro does not perform estimation of item parameters, but
requires that the item parameters hâve been estimated in IRT model software
programs. The SAS macro °/„rasch uses conditional maximum likelihood for pa-
rameter estimation in dichotomous and polytomous Rasch models and includes
simple graphical model fit diagnostics.

No matter what methods are used for estimation of item parameters and
person locations a number of standard graphical présentations are useful for
evaluating goodness of fit and also for investigating the properties of the items
and utilizing the fact that IRT models place item and person parameters on the
same scale.

1.1. Requirements

Before ordering of subjects can be done in a meaningful way a number of re-
quirements must be met

(i) Items should measure only one latent variable.
(ii) Items should be increase with the underlying latent variable.
(iii) Items should be sufficiently different to avoid redundance.
(iv) Items should function in the same way in any sub population.

These requirements are standard in educational tests where (i) items should
deal with only one subject (e.g. not be a mixture of math and language items),
(ii) the probability of a correct answer should increase with ability, (iii) items
should not ask the same thing twice and (iv) the difficulty of an item should
dépend only on the ability of the student, e.g. an item should not hâve features
that makes it easier for boys than for girls at the same level of ability.

Let 9 dénoté the latent variable and let X — (X^-i,...,/ dénoté the vector
of item responses. A mathematical formulation of the two first requirements is
the following

(i) 9 is a scalar.
(ii) 9 h-» E(Xi\9) is increasing for ail items i.

since we would expect two similar items to be highly correlated, and even to be
hâve a higher corrélation than the underlying latent variable accounts for it is
usual to impose the requirement of local independence

(iii) PÇX = x\9) = n[=i P(X% = xi\9) for ail 9.
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however, it should be noted that, while they are related, this requirement is
differed from the requirement of non-redundancy.

(iv) P(Xi — Xi\Y, 0) B P (Xi = Xi\0) for ail items i and ail variables Y.
These requirements are referred to as unidimensionality, monotonicity, local in-
dependence and absence of differential item functioning (DIF). Fitting observed
data to an IRT model enables us to test if these requirements are met.

The SAS macro 0/0rasch_miiil presented here extends previously implemented
macros in that it the output and features are the same for dichotomous and
polytomous item response formats. That it présents more graphies, specifically
new goodness-of-fit plot where observed item means are compared item means
simulated under the model. The macro présents both MLE and WLE of the
person locations, and the number of response options is allowed to vary across
items. The macro also contributes by presenting several plots of item and test
information functions and by presenting person-item location maps (so called
Wright maps).

2. The Polytomous Rasch Model

Consider / items, where item i has ra* + 1 response categories represented by
the numbers 0,..., m.;. Let Xi be the response to item i with realization X{. For
items i = 1the polytomous Rasch model is given by probabilities

P(Xi = Xi\0) = exp (xiO +mfKr1 (2.1)
where fji = (Pih)h=i,...,rm is the vector of item parameters, 77^0 — 0 for ail i and

Ki U Ki(6, rji) = ^2 exp(10 + pu)
imo

is a normalizing constant. An alternative way of parameterizing is in terms of
the thresholds fiik = — (pik ~ Pik-1), for i = 1,..., / and k = 1,...,that are
easily interpreted, since /3ik is the location on the latent continuum where scale
where the probability, for item i, of choosing category k—1 equals the probability
of choosing category k. This model was originally proposed by Andersen [11],
see also [10]. Masters [9] called this models the Partial Crédit model and derived
the probabilities (2.1) from the requirement that the conditional probabilities
P(Xi = k\Xi G {A: — 1, k}-, 0), for k = 1,..., ra* fît a dichotomous Rasch model:

P(Xi = k\Xie{k-l,k};0)
exp (0 - 0ik)

1 + exp (0 - pik) ‘

The thresholds (/3’s) are easier to understand, but parameterizing by the pih s
is sometimes used.
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2.1. Likelihood

Using the assumption (iii) of local independence the vector il|, r
with realization

i

P(X = x\0) = exp (^(xiÔ+ ï]iXi))K(6)~1
1=1

i

= exp(r0) exp(^^ rjiXi)K(0)~} t (2.2)
i=l

where r = Yjmxi and K{9) = n»=i By Neyman’s factorization
theorem it is clear from (2.2) that the sum of item responses R — Xi is
sufficient for 9. The joint log likelihood for a sample of v = 1, ...,N persons is
given by

N NI N

v=l v=li=1 v—1

where 0 = (91,..., 9n)t. Jointly estimating ail parameters from (2.3) does not
provide consistent estimâtes, since the number of parameters increase with the
sample size. If our interest is estimating the item parameters the person param-
eters can be interpreted as incidental or nuisance parameters [12] and for this
reason marginal or conditional estimation of item parameters is used.

3. Marginal Maximum Likelihood (MML) estimation of item
parameters

This section describes marginal maximum likelihood (MML) estimation of item
parameters and its implémentation in SAS. Let Xv = (XVi)i=dénoté the
response vector of individual v and f]i = (r]ih)h=i,...,mi the item parameters of
item i.

3.1. Marginal likelihood

Assuming that 9 has some distribution with density gu where ui dénotés a set
of parameters determining the distribution. Then the marginal log likelihood is

= Xjfx^x-+logf
where gw is typically chosen to be a normal density. If the distribution is cor-
rectly specified MLE of item parameters are consistent [13], but if the dis-
tribution is not normal then marginal ML estimâtes are not consistent. The
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intégral in (3.1) cannot be calculated explicitly and has to be approximated.
The NLMIXED procedure in SAS fits nonlinear mixed models by maximizing
an approximation to the likelihood integrated over the random effects. Different
intégral approximations are available, the principal one being adaptive Gaussian
quadrature.

3.1.1. Implémentation in SAS

The NLMIXED procedure in SAS can be used to maximize an approximation to
the likelihood integrated over the random effects. The procedure uses an adap-
tive Gaussian quadrature, found to be one of the best methods in a comparison
of several different integrated likelihood approximations [14]. The conditional
distribution (given the random effects) can be specified to be a general dis-
tribution using SAS programming statements. Examples of how to do this for
the polytomous Rasch model hâve been presented earlier [15, 4]. The macro
°/0rasch_mml uses NLMIXED and writes threshold parameter estimâtes $ih and
their asymptotic standard errors in a data set.

3.2. Estimating population parameters

This model can be extended by imposing a linear structure

ei

= Yr] +

_0N_ €m_

given by a design matrix Yq with one row for each person and a vector [ei ... ejv]T
MVN(0,o2In) of residuals. Models with this structure are often called latent
régression models and hâve been discussed by many authors for dichotomous
[16, 17, 18, 19, 20] as well as polytomous [21, 22] items. Estimating the pop-
ulation distribution however does not tell us anything about the location of
individuals.

4. Estimation of person locations

There are various ways of estimating the person locations. An important feature
of the Rasch model is that the sum score R — Yli=i Xi is sufhcient for 0 and
consequently that the likelihood function for estimating 0V is proportional to
the probabilities

P(R = r\0) = J2P(X = x\0)
x£Ar

I m.i

= exp(r9)K(0)~1 ^ exp(^ ^rjiXi)
x£Ar i—1 h—0
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where summation is over the set Ar = {x| xi — r} of ail response vectors
with sum r. Now, define the 7-polynomials

/ 1 mi \

= E exp EE •KihTlih J
xeAr ' i= 1 h=0 '

to obtain the expression

P(R = r\9) =* exp(r9)'jrK(6)~1. (4.1)
Note from this that the normalizing constant K(6) can be written as a function
of the 7’s

I rrii R

K{9) = n5^exp(&0 + ^fc) — y^exp(r6>)7r.
i= 1 fc=0 r=0

Calculation of the 7’s is thus essential for estimation of the person locations. A
recursion formula is described in the following subsection.

4-1 • Computation of 7 functions

Let 7r dénoté the 7-polynomial based on the first i items. It is then possible
to calculate 7^ 1 by the recursion formula

7^+1) = 5^eXP (9i+l,xhrlx
X

since a total score of r on the items 1,..., i + 1 must be obtained by scoring x
on item i + 1 and r — x on the items 1,..., i. The values of x in the summation
in the formula above must be chosen in such a way that the sum of the first
items is at most Y^k=1171k and that item i is at most nii implying that r can
not exceed mi. That is 7t* becomes

min(m.i-fi ,r)

7r*+1) = exvim+ixhr-x- (4-2)
x=r—} rrib

4-2. Maximum likelihood estimation of the person locations

Since the 7’s do not dépend on 9 (4.1) is an exponential family where the
likelihood équation for estimating 9 is

Y. exp (r0)7r
r=0

= E(R\9)

and the maximum likelihood estimator (MLE) 9 can be obtained by the Newton-
Raphson algorithm. The probabilities (4.1) show that the score is increasing as
a function of 9. For individuals who hâve obtained scores of zéro or the largest
possible score R = ]P..=1 mt the probabilities (4.1) attain their maximum when
9 is — 00 and 00, respectively.
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4- 3. Bayes modal estimation of the person locations

The Bayes modal Estimator (BME) of 9 is obtained by choosing a prior density
g for the latent parameter and then maximizing the posterior density

oc P(X = x\9)g{9) (4.3)

w.r.t. 9 keeping item parameters and the observations fixed. The MLE described
above is a spécial case corresponding to gu = 1.

4-4• Weighted likelihood estimation of the person locations

Choosing the prior as the square root of the Fisher information

g(0) = sfW)
results in the weighted maximum likelihood estimator (WLE) [23]. With this
prior one obtains an estimator with minimal bias and the same asymptotic
distribution as the MLE. The équation to be solved in order to obtain the WLE
is

and the Newton-Raphson algorithm can be used for this.

4-5. Implémentation in SAS

The SAS macro 70rasch_minl uses NLMIXED and writes person locations es-
timated by maximum likelihood estimation (MLE) and by weighted likelihood
estimation (WLE) and their asymptotic standard errors in a data set. Further-
more a copy of input data set with an added column containing the maximum
likelihood estimâtes is created.

5. Simulation

When evaluating model fit it is helpful to compare what has been observed with
simulated data that describe what could hâve been observed under the model.
The SAS macro °/0rasch_mml simulâtes data sets under the model. These are

obtained by first simulating TV person locations from the empirical distribution
of the 9y s and then simulating item responses. Let L — {9v\v = 1,..., TV}
dénoté the set of estimated locations and for 9 G L defîne Ve = {v\9v — 9} C
{!,..., TV}. Let Nq = f)Ve dénoté the number of persons with each estimated
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location. First simulate 9[S\ ..., with probabilities P(9^\m 0) — next
(S)simulate XM using the probabilities

=x)= exp {x9[s) + fji^R-1 (5.1)

this procedure is repeated a number of times yielding data matrices rft ),
5=1,2,...

6. Graphics

A number of graphical représentations are made by the SAS macro 0/0rasch_imnl.
These comprise item characteristic curves, item and test information functions,
Wright maps and item fit plots.

6.1. Item characteristic curves

Item characteristic curves (ICC’s) display the response probabilities along the
latent continuum.

6.2. Item and test information functions

In IRT it is standard to evaluating an items contribution in estimation of 6
using the item information function

Xi(9) = V(Xi\e) (6.1)

that is easily computed by inserting estimâtes of rji in (2.1). The item informa-
tion is large for values of 0 near thresholds. For so that for instance easy items
works well in the estimation for people with low values of 6. An overall measure
is achieved by summation resulting in the test information function

1 1 / 1
m■■ = vŒXi

i—1 i= 1 ' i—1

where the last equal sign is due to the assumption (iii) of local independence.6.3.Wright maps

Item and test information functions are useful for evaluating if a set of items is
suitable for a spécifie population. The Wright map or person-item location map
also compares item and person locations.
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6.4- Item fit plots

Beyond ensuring that items are well-targeted to the population under considéra-
tion, évaluation of model fit is crucial. Many fit statistics exist [24], but the issue
of fit should also be addressed graphically. The observed mean score function
for item i is

e ^ — V mi■
v̂EVg

The simulated mean score function is obtained as follows by simulating item
/ c\ (s)

responses ,..., XyNJ as described in section 5 and calculating

9 i—^
1

e m
v£Vg

where NqS^ = )f{u|^'s'^ = 6}.

7. Goodness of fit

Infit and outfit tests statistics [25] use standardized différences between observed
and expected item responses to evaluate the fit of items. The statistical proper-
ties of the outfit and infit test statistics are not known, but transformed measures
are often assumed to hâve approximate scaled chi-squared distributions.

7.1. Infit and outfit test statistics

For an item i we consider the mean EiV «= kP{XiV = k\6v), and the
variance Viv = Y^klo k2P (Xiv = k\9v) — Efv. Infit and outfit test statistics are
based on the standardized residuals

ry «ül Xjy ^Eiy (17
Aiv /TT~ ' V**1/

v *iv

The infit test statistic for item i is the weighted mean square

sr^N y. y2
INFITi i ^V=}T lv-~- (7.2)

Eli ^
and the outfit test statistic for item i is the unweighted mean square

OUTFITi =

V = 1 V = 1

(7.3)

Person fit statistics based on standardized residuals hâve also been suggested.
The infit test statistic for person v is (Ei=i ViVZ2v)/(Ei=i V%v) and the outfit
test statistic for person v is y Ei=i Z2V = y Yli=i(Xiv — EiV)2fViV.
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7.2. Other tests

With the simulation feature implemented several other tests are possible. A test
of the assumption (iii) of local independence can be based on computing the
observed association for an item pair and comparing this to simulated values.

8. The SAS macro

The SAS macro is illustrated using data reported by Pallant and Tennant [26]
from the Hospital Anxiety and Dépréssion Scale (HADS). Designed as a brief
instrument used to assess symptoms of anxiety and dépréssion [27] the HADS
contain 14 items often scored as two seven-item sub scales: ’Depression’ (even
numbered items) and ’Anxiety’ (odd numbered items). To analyze the latter
create a SAS data set

data inames;

input item_name $ item_text $ max

cards;
AHADS1 anxl 3 AHADS3 anx3 3 AHADS5 anx5 3

AHADS7 anx7 3 AHADS9 anx9 3 AHADS11 anxll 3

AHADS13 anxl3 3

run;

that describes the items. Here itemmame is the name of the items, item_text
are text strings attached to the items, and max is the maximum item score for
each item. The HADS items are scored 0,1, 2, 3. Note that the maximum score
can vary across items. The macro is called using the statement

y„rasch_mml (DATA=work. HADS, ITEM_NAMES=inames, OUT=HADSTEST) ;

where DATA= spécifiés the data set to be analyzed, ITEM_NAMES= is the data
set that describes the items and 0UT= spécifiés a prefix for ail output data sets
generated by the macro (default MML). SAS créâtes a data set HADSTEST_ipar
that contains item parameter estimâtes and their standard errors and a data set
HADSTEST_latent that contains MLE and WLE estimâtes of person locations
and their standard errors.

proc print data=hadstest_ipar round noobs; run;

yields the (edited) output

Label

AHADS1I1
AHADS1I2
AHADS1I3

Estimate

Standard

Error

-3.4822

0.4885

1.1290

0.3213

0.1699

0.2068

AHADS7|1
AHADS7|2
AHADS7I3

-2.7261

-0.5178

2.2513

0.2817

0.1635

0.2237
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Fig 1. Item characteristic curves (ICC’s) for HADS item 7 plotted with or without the option
THRESHOLD=YES that créâtes vertical dashed Unes at the thresholds /3n = —2.7261, @72 —

-0.5178, and £73 = 2.2513.

(a) THRESH0LD=YES (b) THRESH0LD=N0

AHADS7 AHADS7

these are the threshold parameters (/3’s). The data set HADSTEST_latent
contains estimated person locations for each value of the total score and the
data set HADSTEST_outdata is a copy of the input data with an added variable
theta_estimate containing the estimated location. The macro also créâtes a
data set HADSTEST_logl with the likelihood value and a data set HADSTEST_ppar
with the population parameter (the variance cr2).

Several further options can be specified: The option ICC=YES yields a plot
of the item characteristic curves for each item. The ICC’s for HADS item 7 is
shown in Figure 1. An extra option THRESH0LD=YES indicates that ICC’s are to
be plotted together with dashed lines indicating threshold locations.

The option INF0RMATI0N=YES plots item and test information functions. For
each item the item information function is plotted along with the ICC’s (shown
for HADS item 7 in Figure 2, (a)) and the test information function is plotted
together with ail item information functions (Figure 2, (b)).

The option WRIGHT=YES makes the macro plot histograms of item and person
locations (cf. Figure 3).

Using the option FITPL0T=YES makes the macro plot item means against 6
as solid black lines along with item means simulated under the model plotted
as gray dashed lines. The default number of simulations is 30, but this can be
changed using the NSIMU= option. Figure 4 shows an example.

When some person locations appear infrequently a coarsening Lq C L, such
that Ne > CLASS-SIZE for ail 9 G Lq can be used. The default value is CLASS_SIZE=15.

Specifying FITTEST=YES makes the macro compute the standardized résidu-
als (7.1) along with the INFIT test statistic (7.2) and the outfit test statistic
(7.3). The macro then simulâtes NSIMU_FITTEST data sets (default value 100) to
provide confidence intervals for these and saves this to a data set HADSTEST_f it.
The macro also computes the association measure 7 for ail item pairs and com-

pares this to simulated values (output data set HADSTEST_ld). The standardized
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Fig 2. Item and test information functions for the HADS items.

(a) Item information fonction (b) Test information fonction
(HADS item 7)

Item characteristic curves and information fonction Item and test information fonctions

residuals (7.1) are saved in the data set HADSTEST_residuals. The simulation
process can be time consuming.

9. Discussion

Several proprietary software packages for fitting Rasch models exist, the most
widely used being RUMM [28], Conquest [29], and WINSTEPS [30]. With the
increasing use of IRT and Rasch models in new research areas like PRO’s where
access to specialized proprietary software is limited it is important to provide
implémentations in standard software such as R and SAS. The R package eRm
[31] is a flexible tool for these analyses, as are the SAS macros °/0anaqol [4] and
°/0rasch [6].

The SAS macro %irtf it encompasses a wide range of IRT models, but does
not estimate item parameters. The SAS macro °/0anaqol is very useful, but some
features are only available for dichotomous items and the implemented plots of
empirical and theoretical ICC’s do not show confidence limits. The SAS macro
°/0rasch plots observed and expected counts in each score group, and these plots
can be interpreted as empirical versions of the item characteristic curves. How-
ever when many score groups are small, as is often the case in applications
these plots are not helpful. Furthermore the macro °/0rasch does not produce a
single item-level goodness-of-fit plot, does not provide item or test information
functions. The SAS macro 70rasch_mnil presented here extends previously impie-
mented macros in that it the output and features are the same for dichotomous
and polytomous item response formats. That it présents more graphies, specif-
ically new goodness-of-fit plot where observed item means are compared item
means simulated under the model. The macro présents both MLE and WLE
of the person locations, and the number of response options is allowed to vary
across items. The macro also contributes by presenting several plots of item
and test information functions and by presenting person-item location maps (so
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Fig 3. Person-item location (Wright) map showing the person and item locations on the
common scale.

Wright Map
Histogram of person locations (top) and item locations (bottom) on the latent scale

Fig 4. Item fit plot for HADS item 7.
item AHADS7 anx7
Observed and expected item means

latent variable

imsart-generic ver. 2011/05/20 file: Christensen.tex date: February 19, 2013
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called Wright maps).
The implémentation of simulation in the macro appears promising, because it

enables the use of fit test statistics for which the asymptotic distribution is not
known. Extensions of this macro to more general polytomous IRT models like
the generalized partial crédit model [32] are straightforward using NLMIXED,
however the normal latent distribution is the only choice currently supported by
PROC NLMIXED. Extensions to incorporate latent régression is also feasible
in NLMIXED.
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