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Abstract
Hyperuniformity is the study of stationary point processes with a sub-
Poisson variance in a large window. In other words, counting the points
of a hyperuniform point process that fall in a given large region yields
a small-variance Monte Carlo estimation of the volume. Hyperuniform
point processes have received a lot of attention in statistical physics, both
for the investigation of natural organized structures and the synthesis of
materials. Unfortunately, rigorously proving that a point process is hype-
runiform is usually difficult. A common practice in statistical physics
and chemistry is to use a few samples to estimate a spectral measure
called the structure factor. Its decay around zero provides a diagnostic
of hyperuniformity. Different applied fields use however different estima-
tors, and important algorithmic choices proceed from each field’s lore.
This paper provides a systematic survey and derivation of known or
otherwise natural estimators of the structure factor. We also leverage
the consistency of these estimators to contribute the first asymptotically
valid statistical test of hyperuniformity. We benchmark all estimators
and hyperuniformity diagnostics on a set of examples. In an effort
to make investigations of the structure factor and hyperuniformity
systematic and reproducible, we further provide the Python toolbox
structure factor, containing all the estimators and tools that we discuss.

Keywords: Structure factor; Multitapering; Multiscale debiasing;
Hyperuniformity test; Python toolbox.
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1 Introduction
Condensed matter physicists have observed that, for some random particle sys-
tems, the variance of the number of points in a large window scales slower than
the volume of that window, a phenomenon called hyperuniformity (Torquato,
2018). This statistical property, in turn, implies desirable physical proper-
ties for materials (Torquato, 2018, Section 14). Outside physics, hyperuniform
point processes have generated broad interest in statistics, machine learning,
and probability. By definition, a hyperuniform point process leads to a fast-
decaying Monte Carlo error when estimating volumes. This variance reduction
property makes hyperuniformity a natural concept for many statistical appli-
cations. Projection determinantal point processes (DPPs), a particular class
of hyperuniform point processes, have thus been proposed for Monte Carlo
integration (Bardenet and Hardy, 2020, Belhadji, Bardenet, and Chainais,
2019, 2020a, Coeurjolly, Mazoyer, and Amblard, 2021), subsampling stochas-
tic gradients (Bardenet, Ghosh, and Lin, 2021), or feature selection (Belhadji,
Bardenet, and Chainais, 2020b).

More generally, spectral properties of point configurations have been linked
to variance reduction in Monte Carlo integration (Kailkhura, Thiagarajan,
Rastogi, Varshney, and Bremer, 2018, Pilleboue, Singh, Coeurjolly, Kazhdan,
and Ostromoukhov, 2015). In probability, hyperuniform point processes also
appear across all fields. The Ginibre ensemble, arguably one of the most
famous DPPs arising from random matrix theory (Anderson, Guionnet, and
Zeitouni, 2009), is a typical example of hyperuniform point processes. In
stochastic geometry, and beyond DPPs, hyperuniform point processes appear,
e.g., in the zeros of Gaussian analytic functions (Hough, Krishnapur, Peres,
and Virág, 2009), or matching constructions (Klatt, Last, and Yogeshwaran,
2020). Intriguingly, there is also empirical evidence that repeatedly applying
an algorithm involving local repulsion of points to an initial point process leads
to a hyperuniform point process (Klatt et al., 2019). Across all these scientific
fields, there is a need for statistical diagnostics of hyperuniformity.

In theory, under mild assumptions, a point process in Rd is hyperuniform
if and only if its structure factor S(k) decays to zero as ‖k‖2 goes to zero
(Coste, 2021). The structure factor is the Fourier transform of a measure that
encodes the pairwise correlations of a point process, and the behavior in zero
of the structure factor reflects long-range correlations in the original point
process. Given a realization of a point process, the standard empirical diag-
nostic of hyperuniformity thus involves estimating and plotting the structure
factor of the underlying point process (Klatt et al., 2019, Torquato, 2018).
This graphical assessment is however not standardized and often not described
in full reproducible detail in the literature, with implementation choices and
statistical properties often part of each field’s folklore. There is also no stan-
dard software to estimate structure factors. In this paper, we contribute (i)
a survey of existing estimators of the structure factor and their main prop-
erties, (ii) a new asymptotically valid statistical test of hyperuniformity, and
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(iii) a modular, open-source Python package1 that implements all estimators,
diagnostics, and the test discussed in the paper.

In Section 2, we introduce hyperuniformity and the relevant background.
In Section 3, we rederive two families of estimators of the structure factor.
The first family assumes that the underlying point process is stationary, while
the second further requires isotropy. We also review existing hyperuniformity
diagnostics and contribute our test of hyperuniformity in Section 4, using the
seminal debiasing techniques of Rhee and Glynn (2015). We demonstrate esti-
mators and diagnostics using our companion Python toolbox structure factor
in Section 5, on four point processes exhibiting behaviors such as repulsion,
spatial independence, and clustering. In Section 6, we numerically compare the
accuracy of the estimators. We conclude with a few research leads in Section 7.

Related work
The closest work to the survey part of our paper is the preprint of Rajala,
Olhede, and Murrell (2020a). They introduce important new estimators based
on the idea of tapering in time series analysis (Percival and Walden, 2020), and
investigate central limit theorems for their estimators. On our end, we limit
ourselves to a survey – including the estimators of Rajala et al. (2020a) – and
simpler properties like asymptotic unbiasedness and its relation to implicit
implementation choices in statistical physics papers. One reason for this is our
motivation for the study of hyperuniformity: hyperuniform point processes
are unlikely to satisfy the assumptions2 behind the central limit theorems
referenced by Rajala et al. (2020a). Moreover, our survey includes a broader
choice of estimators, including numerical quadratures of Hankel transforms,
and a companion Python package. Overall, we believe that the survey part of
our paper and the paper of Rajala et al. (2020a) are complementary.3

Notation
Throughout this paper, bold lowercase letters like x, r indicate vectors in Rd,
and the corresponding non-bold characters are scalars. In particular, x =
(x1, . . . , xd). Whenever not confusing, we use the same letter in different fonts
for a vector and its Euclidean norm, i.e., r = ‖r‖2 and k = ‖k‖2.

2 Point processes and their structure factor
Investigating the hyperuniformity of a point process commonly goes through
the visual inspection of its structure factor, also known as the scaled spectral
density function. In this section, we introduce the key definitions to understand
that procedure. For a general reference on point processes, we refer to Chiu,

1https://github.com/For-a-few-DPPs-more/structure-factor
2E.g., Hypothesis (H4) of Biscio and Waagepetersen (2019), when the linear statistic is the

number of points, contradicts hyperuniformity.
3We note that during the reviewing process of our paper, a second version of the preprint

(Rajala et al., 2020a) has been arXived (Rajala et al., 2020b). The changes in the new version do
not seem to impact our work.

https://github.com/For-a-few-DPPs-more/structure-factor
https://github.com/For-a-few-DPPs-more/structure-factor
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Stoyan, Kendall, and Mecke (2013). For hyperuniformity and structure factors,
we primarily refer to Torquato (2018) for readers with a physics background,
and to Coste (2021) for readers with a mathematics background.

2.1 Point processes and their correlation measures
Loosely speaking, a point process is a random set of points, such that we can
count the number of points falling in any observation window. More formally,
let a configuration of Rd be a locally finite set X ⊂ Rd, i.e., for any compact K
of Rd, the cardinality X (K) of X ∩K is finite. The family N of configurations
of Rd is endowed by the σ-algebra generated by the mappings X 7→ X (K), for
K compact. A point process is a random element of N .

In this paper, we restrict ourselves to simple and stationary (a.k.a. homoge-
neous) point processes. By simple, we mean that the considered point process
almost surely contains only distinct points. By stationary, we mean that the
law of the point process X is identical to that of X + y , {x + y; x ∈ X},
for all y ∈ Rd. In that case, the intensity measure ρ(1) of X , defined by

ρ(1)(A) = E [X (A)] ,

is proportional to the Lebesgue measure. We then write ρ(1)(dx) = ρ dx, and
ρ ≥ 0 is called the intensity of X .

Assessing pairwise correlations in a point process, and – as we shall see –
hyperuniformity, usually goes through estimating the two-point correlation
measure ρ(2) of X . It is formally defined by

E

 6=∑
x,y∈X

f(x,y)

 =
∫
Rd×Rd

f(x,y)ρ(2)(dx, dy),

for any nonnegative measurable bounded function f with compact support. If
X is stationary with intensity ρ ≥ 0, the previous expression can be factorized
in ∫

Rd×Rd
f(x + y,y)ρ2g2(dx)dy, (1)

where g2 is called the pair correlation measure.
Intuitively, g2(dx) is the probability that X has a point at location dx,

given that X already contains the origin. If in addition g2 has a density g
w.r.t. the Lebesgue measure, i.e., g2(dx) = g(x)dx, then g is called the pair
correlation function of X . Informally, g(r) counts the pairs (x,y) ∈ X × X
such that x − y = r ∈ Rd. Finally, when X is assumed both stationary and
isotropic, i.e., the distribution of X is both, translation- and rotation-invariant,
then the pair correlation function g is radial. In that case, we abusively write
g(r) = g(r), where r = ‖r‖2. Finally, note that throughout the paper, the
assumptions of stationarity and isotropicy can be straightforwardly weakened
to assuming, e.g., that the intensity measure is invariant to translations or
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that the pair correlation function only depends on the inter-point distance.
Yet, for simplicity, we prefer to stick with assuming that the point process
under scrutiny is itself stationary/isotropic.

2.2 The Fourier transform
The Fourier transform F of an integrable function f : Rd → C is the square
integrable function

F(f)(k) =
∫
Rd
f(x)e−i〈k,x〉dx,

where 〈k,x〉 is the dot product of the wavevector k by x. If f is furthermore
a radial function, denoted abusively by f(r) = f(r), where r = ‖r‖2, then the
Fourier transform of f is the corresponding symmetric Fourier transform Fs,
namely

Fs(f)(k) = F(f)(k) =

(2π)d/2
∫ ∞

0
rd/2f(r)

Jd/2−1(kr)
kd/2−1 dr, (2)

where k = ‖k‖2 is called a wavenumber, and Jν is the Bessel function of the
first kind of order ν (Osgood, 2014). If we further define the Hankel transform
of order ν ≥ −1/2 as

Hν(f)(k) =
∫ ∞

0
f(r)Jν(kr)rdr, for k ≥ 0, (3)

then (2) rewrites as

Fs(f)(k) = (2π)d/2

kd/2−1 Hd/2−1(f̃)(k), (4)

where f̃ : x 7→ f(x)xd/2−1. Finally, note that the Fourier transform can be
generalized to tempered distributions through duality (Coste, 2021, Appendix
B).

We now introduce a function, the Fourier transform of which will be central
in studying the properties of spectral estimators based on point processes. Let
W ⊂ Rd be a convex set, later called observation window, and denote by |W |
its Lebesgue measure, i.e., its volume. The scaled intersection volume is the
function

α0(r,W ) = 1
|W |

∫
Rd
1W (r + y)1W (y)dy, (5)

and its Fourier transform is given by

F(α0)(k,W ) = 1
|W |

(F(1W )(k))2
. (6)
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In particular, if W = Bd(0, R) is the Euclidean ball of radius R, the scaled
intersection volume function (5) is radial (Torquato, 2018, Section 3.1.1). In
this case, we abusively write α0(r,W ) = α0(r,W ) and

Fs(α0)(k,W ) = 2dπd/2 Γ(1 + d/2)
kd

J2
d/2(kR), (7)

where Γ is Euler’s Gamma function. On the other hand, if W =∏d
j=1[−Lj/2, Lj/2], Equation (6) simplifies to

F(α0)(k,W ) =

 d∏
j=1

sin(kjLj/2)
kj
√
Lj/2

2

. (8)

2.3 The structure factor
The structure factor measure S of a stationary point process X in Rd with
intensity ρ > 0 is the measure on Rd, when it exists, defined by

S = Ld + ρF [g2 − Ld] = F(δ0 + ρ(g2 − Ld)), (9)

where Ld is the d-dimensional Lebesgue measure and δ0 is the Dirac mass in
0. We note that in the spectral analysis of stochastic processes S, up to a scale
factor, is also called the Bartlett spectral measure (Brémaud, 2014, Section
5.2).

When the measure S is absolutely continuous w.r.t. the Lebesgue measure,
i.e., S(dk) = S(k)dk, we call S the structure factor.4 When g2 is absolutely
continuous w.r.t. the Lebesgue measure and g − 1 is integrable, S can be
explicitly written as

S(k) = 1 + ρF(g − 1)(k). (10)
If X is further assumed to be isotropic with intensity ρ > 0, then both the
pair correlation function g and the structure factor S are radial functions.
Abusively denoting S(k) = S(k), Equation (10) reads

S(k) = 1 + ρFs(g − 1)(k), (11)

see Torquato (2018, Section 2), which can be expressed analytically using (4)
as

S(k) = 1 + ρ
(2π)d/2

kd/2−1

∫ ∞
0

(g(r)− 1)rd/2Jd/2−1(kr) dr. (12)

Finally, if the pair correlation function g exists and is smooth, then one can
expect that

S(k) −−−−−−→
‖k‖2→∞

1.

4The literature is inconsistent as to whether the structure factor is the measure S or its density
S. We choose the density, which is also sometimes known as the scaled spectral density function.
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On the other hand, the behavior of S in zero measures the fluctuations of g
around 1 at large scales ‖r‖2 � 1, which can in turn help quantify properties
like hyperuniformity.

2.4 Hyperuniformity
A point process X of Rd is often said to be hyperuniform (or super-
homogeneous) if the variance of the number of points that fall in a Euclidean
ball scales slower than the volume of that ball, i.e.

lim
R→∞

Var [X (B(0, R))]
|B(0, R)| = 0. (13)

Some comments are in order. Although hyperuniformity a priori depends on
the shape of the window, e.g., a ball in (13), mild technical assumptions allow
to show that the definition is robust to the choice of the growing window
(Coste, 2021, Section 2). Second, being hyperuniform is not a standard fea-
ture of point processes; a homogeneous Poisson process, for instance, is not
hyperuniform, as the ratio in (13) is a positive constant. Third, the most gen-
eral definition of hyperuniformity goes through the structure factor of a point
process (9); under the mild assumption that g2 − 1 is a signed measure, (13)
is equivalent to S(0) = 0, see Coste (2021, Proposition 2.2) and Torquato
(2018, Section 5.3.1). Moreover, Torquato (2018, Section 5.3.2) states that if
the structure factor undergoes a power decay |S(k)| ∼ c‖k‖α2 in the neighbor-
hood of zero, the process can be classified into three categories depending on
how α compares to 1, as summarized in Table 1.

Table 1: Classes of hyperuniformity
Class α Var [X (B(0, R))]
I > 1 O(Rd−1)
II = 1 O(Rd−1 log(R))
III ∈]0, 1[ O(Rd−α)

Since the variance cannot grow more slowly than Rd−1 for a spherical win-
dow (Beck, 1987), Class I represents the strongest form of hyperuniformity. It
includes, for instance, the Ginibre point process, as we shall see in Section 2.1.
Class II hyperuniform processes include, for instance, the sine process, a cen-
tral object in random matrix theory (Anderson et al., 2009). By contrast,
systems that fall in Class III present the weakest form of hyperuniformity.
Many stationary point processes are believed to be Class III, although few rig-
orous proofs exist; one can mention the asymptotic result of (Boursier, 2021)
for the one-dimensional Riesz gaz.

A final remark about (13) is that it is in contradiction with superlinear
variance, which is sometimes defined as long memory or long-range dependence
(Daley and Vesilo, 1997, Samorodnitsky, 2016). We find the latter definition
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to be confusing given that a hyperuniform point process can also have long-
range interactions through a non-summable reduced covariance function, such
as the sine process; see (Hough et al., 2009, Section 4.3.5).

2.5 Empirical diagnostics of hyperuniformity
As suggested in Section 2.4, the behavior in zero of the structure factor quanti-
fies hyperuniformity. Investigating whether one or several samples come from
a hyperuniform point process is thus often carried out by estimating the struc-
ture factor, and then either visually inspecting the resulting plots around zero,
or regressing the estimated values. Say for a stationary and isotropic point pro-
cess, one option is to regress logS onto log k around zero, to assert a potential
value for the decay rate α in Table 1.

Another criterion of effective hyperuniformity has been proposed; see Klatt
et al. (2019, Supplementary material) and Torquato (2018, Section 11.1.6). For
a stationary and isotropic hyperuniform point process, given a set of estimated
values

{(k1, Ŝ(k1)), . . . , (kn, Ŝ(kn))}
with 0 < k1 < · · · < kn, the H-index is defined by

H = Ŝ(0)
Ŝ(kpeak)

, (14)

where Ŝ(0) is a linear extrapolation of the structure factor in k = 0 based on
the estimated values of S, and kpeak is the location of the first dominant peak
value of the estimated structure factor, defined here as

kpeak = inf
i

{
ki; Ŝ(ki) > 1, Ŝ(ki−1) < Ŝ(ki), and Ŝ(ki+1) < Ŝ(ki)

}
.

If the set is empty, we set Ŝ(kpeak) = 1 in (14). When H < 10−3, the process
is called effectively hyperuniform by Torquato (2018, Section 11.1.6). Note
that the linear extrapolation is chosen for simplicity and not based on model
selection. Like the threshold of 10−3, the definition of a dominant peak is also
somewhat arbitrary. In Section 4, we will introduce a novel statistical test that
bypasses some of these arbitrary choices.

Finally, both an estimate of the decay rate from Table 1 and the H-index
(14) require estimators of the structure factor. Before we survey these estima-
tors, we introduce a few benchmark point processes and discuss their structure
factors.

2.6 Benchmark point processes
2.6.1 The KLY process
Our first benchmark point process is the result of a matching algorithm pro-
posed by Klatt, Last, and Yogeshwaran (2020). Loosely speaking, each point
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Fig. 1: A sample of each of our four benchmark point processes
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Fig. 2: A sample from the Ginibre ensemble, and the samples obtained after
independent thinning with different retaining probabilities p

of Zd is matched with a close-by point of a user-defined point process in Rd,
like a homogeneous Poisson point process. The KLY process is an example of a
point process that is known to be stationary, ergodic, and hyperuniform (but
not isotropic). However the corresponding pair correlation function, structure
factor, and hyperuniformity class are unknown.

Klatt et al. (2020) use hyperuniformity diagnostics (Section 2.5) to assess
the degree of hyperuniformity, and we shall reproduce their experiment with
our software and all available estimators of the structure factor. Figure 1a
shows a sample from the KLY process generated by matching a subset of
Z2 with a realization of a Poisson point process with intensity ρ = 11. The
intensity of the resulting point process is equal to 1. The same parameters are
used to generate the samples from the KLY process used in Section 5.

2.6.2 The Ginibre ensemble
Our second hyperuniform point process is the Ginibre ensemble in C ≈ R2,
both stationary and isotropic. The Ginibre ensemble can be defined (and
approximately sampled) as the limit of the set of eigenvalues of matrices filled
with i.i.d. standard complex Gaussian entries, as the size of the matrix goes to
infinity (Hough et al., 2009, Theorem 4.3.10). A sample is shown in Figure 1b
as well.

Its intensity is equal to ρGinibre = 1/π, and its pair correlation function
(Figure 3a) is

gGinibre(r) = 1− exp(−r2). (15)
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The structure factor (Figure 3b) can be computed exactly,

SGinibre(k) = 1− exp(−k2/4). (16)

In particular, we have,

SGinibre(k) ∼ k2, for k → 0. (17)

Thus, according to Table 1, the Ginibre ensemble is a hyperuniform point
process of Class I, with α = 2. Much is known about the Ginibre ensemble,
and we use it to benchmark our toolbox and its different estimators, rather
than to infer new results about it.

2.6.3 The homogeneous Poisson point process
The homogeneous Poisson point process of intensity ρ of Rd is stationary and
isotropic. It is often thought of as having as little structure as possible and
can be defined as the limit of N uniform i.i.d. points in a window of volume
N/ρ, as N goes to infinity. In particular, for any collection of mutually disjoint
measurable subsets of Rd, the number of points that fall in these subsets are
independent; Figure 1c displays a realization from a Poisson process with the
same intensity ρPoisson = 1/π as the Ginibre ensemble. In the same vein, the
pair correlation function and the structure factor of the Poisson point process
are both equal to one; see Figures 3a and 3b. The Poisson process is not
hyperuniform.

2.6.4 The Thomas point process
The Thomas point process is a point process in Rd that is reminiscent of a
mixture of Gaussians and typically exhibits clusters (Chiu et al., 2013, Section
5.3). Formally, consider a homogeneous Poisson point process Xparent of inten-
sity ρparent, and let λ, σ be positive. Conditionally to Xparent, let (Nx)x∈Xparent

be i.i.d. Poisson variables with mean λ. For any x ∈ Xparent, conditionally to
Nx, let (Yx,i)Nx

i=1 be i.i.d. centered two-dimensional isotropic Gaussian vectors
with variance σ. The resulting Thomas process is given by

XThomas = ∪x∈Xparent{x + Yx,i, i = 1, . . . , Nx},

and its intensity is given by ρThomas = ρparent×λ. Figure 1d shows a realization
of a Thomas point process of intensity 1/π, generated from a parent Poisson
point process of intensity ρparent = 1/(20π), and a standard deviation σ = 2.
Since σ is small enough compared to λ = 20, clusters naturally appear. The
pair correlation function and the structure factor of the Thomas process, see
Figures 3a and 3b, are both radial functions (Chiu et al., 2013, Equation 5.52),
given by

gThomas(r) = 1 + 1
ρparent(

√
4πσ2)d

exp(− r2

4σ2 ), (18)
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and
SThomas(k) = 1 + λ exp

(
−k2σ2) . (19)

The intuition that the Thomas point process is not hyperuniform is confirmed
by the expression of the structure factor (19) which is even larger than 1.
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Fig. 3: Pair correlation functions g(r) and structure factors S(k) of some point
processes

2.6.5 Thinning the Ginibre ensemble
To benchmark diagnostics of hyperuniformity, it is useful to have a
parametrized non-hyperuniform point process with S(0) arbitrarily close to
zero. To create such a point process, we sample a Ginibre point process and
keep each point independently with probability p ∈ (0, 1). The resulting point
process is simple, stationary, and isotropic, with intensity ρp = p × ρGinibre.
Figure 2 shows such thinned Ginibre samples, with retaining probabilities
p ∈ {0.1, 0.5, 0.9}. The pair correlation function of the thinned point pro-
cess is independent of p, and actually equal to the Ginibre counterpart
gp(r) = gGinibre(r). However, the structure factor becomes

Sp(k) = pSGinibre(k) + 1− p. (20)

Clearly, 0 < Sp < 1 so the obtained point process is not hyperuniform, and as
p increases, Sp(0) decreases, making it harder to distinguish hyperuniformity
based on an approximate value of the structure factor. The structure factor
Sp is shown in Figure 4 for a few values of p.

3 Estimators of the structure factor
Starting from the theoretical definition (10) of the structure factor, we derive
all known estimators and add a few other natural candidates based on
numerical quadratures of the symmetric Fourier transform. We pay particu-
lar attention to the sources of asymptotic (in the size of the window) bias for
each estimator. We split the estimators according to whether they only assume
stationarity or stationarity and isotropy.
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Fig. 4: Structure factor of the Ginibre before and after applying independent
thinning with different retaining probabilities p

3.1 Assuming stationarity
The most common estimator of the structure factor is the so-called scatter-
ing intensity (Coste, 2021, Klatt et al., 2019, 2020, Torquato, 2018). Its name
stems from its origins in the physics of diffraction, and it corresponds to a
scaled version of Bartlett’s periodogram in time series analysis. After intro-
ducing the scattering intensity, we follow Rajala et al. (2020a), who generalize
it to so-called tapered estimators. We group our assumptions and notation in
Assumption A1.

Assumption A1 X is a stationary simple point process of Rd with intensity ρ > 0.
Its pair correlation function g exists, and r 7→ g(r)−1 is integrable on Rd. Moreover,
we only observe a realization of

X ∩W = {x1, . . . ,xN}

in a centered, rectangular window

W =
d∏
j=1

[−Lj/2, Lj/2].

We write L = (L1, . . . , Ld).

3.1.1 The scattering intensity
In the physics literature, the following derivation is often assumed to be known
to reader , and it seemed worthwhile to us to make it explicit. This allows, in
particular, to understand the role played by the so-called allowed wavevectors.
Note that Rajala et al. (2020a) provide similar derivations.

The basic idea is to introduce the scaled intersection volume α0 (5) in the
definition (10) of the structure factor. We obtain

S(k) = 1 + ρ

∫
Rd

(g(r)− 1)e−i〈k,r〉 dr
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= 1 + ρ

∫
Rd

lim
W↑Rd

(g(r)− 1)α0(r,W )e−i〈k,r〉 dr

= 1 + lim
W↑Rd

ρ

∫
Rd

(g(r)− 1)α0(r,W )e−i〈k,r〉 dr, (21)

where we used dominated convergence and the limit limW↑Rd α0(r,W ) = 1. In
the notation W ↑ Rd, the limit is taken so that the window progressively covers
the whole space at roughly equal speed in all directions, i.e., minj Lj →∞ in
Assumption A1. Splitting the integral from (21) into two, we shall recognize
an expectation under our censored point process X ∩W and a bias term,

S(k)− 1 =

lim
W↑Rd

[
ρ

|W |

∫
Rd

∫
Rd
e−i〈k,r〉1W×W (r + y,y)︸ ︷︷ ︸

f(r+y,y)

g(r)dydr− ρF(α0)(k,W )︸ ︷︷ ︸
ε0(k,L)

]
.

Now, by definition (1) of the pair correlation measure, and still for any k ∈ Rd,
S(k)− 1 is the limit as W ↑ Rd of

ρ

ρ2|W |
E

 x 6=y∑
x,y∈X

1W (x)1W (y)e−i〈k,x−y〉

− ε0(k,L),

so that

S(k) = lim
W↑Rd

1
ρ|W |

E

 ∑
x,y∈X∩W

e−i〈k,x−y〉

− ε0(k,L)

= lim
W↑Rd

1
ρ|W |

E

∣∣∣∣∣ ∑
x∈X∩W

e−i〈k,x〉

∣∣∣∣∣
2
− ε0(k,L). (22)

Note that, by (8), the bias term satisfies

|ε0(k,L)| = ρ
F2(1W )(k)
|W |

= ρ

( d∏
j=1

sin(kjLj/2)√
Ljkj/2

)2

≤



0 if k ∈ AL,

ρ
d∏
j=1

Lj as ‖k‖2 → 0,

22d
d∏
j=1

1
Ljk2

j
as ‖k‖2 →∞,
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where we defined

AL =
{

k ∈ (R∗)d such that kj = 2πn
Lj

for some j ∈ {1, . . . , d} and some n ∈ Z∗
}
.

(23)

We have thus proved the following proposition.

Proposition 1 Under Assumption A1, for k ∈ AL, the scattering intensity
estimator

ŜSI (k) , 1
ρ|W |

∣∣∣∣∣∣
N∑
j=1

e−i〈k,xj〉

∣∣∣∣∣∣
2

(24)

is asymptotically unbiased, i.e.,

sup
k∈AL

∣∣∣E[ŜSI(k)]− S(k)
∣∣∣ −−−−→
W↑Rd

0.

This motivates restricting to k ∈ AL if one is interested in estimating the
behavior of S in zero. In the literature, the scattering intensity is actually
often evaluated on a subset of AL, namely

Ares
L =

{(
2πn1

L1
, . . . ,

2πnd
Ld

)
; n ∈ (Z∗)d

}
. (25)

The set Ares
L is called the set of allowed wavevectors in physics (Klatt et al.,

2020, Section 10), or part of the dual lattice of fundamental cell W in sam-
pling theory (Osgood, 2014, Chapter 5), or Fourier grid in time series analysis
(Rajala et al., 2020a). We add the superscript res to underline that it is actu-
ally a restriction of the set AL of wavevectors justified by the cancellation of
the asymptotic bias.

It is unclear to us why one should consider Ares
L instead of AL. In particular,

the minimal wavenumber (the norm of a wavevector) in Ares
L is

kres
min = 2π

√√√√ d∑
j=1

L−2
j ,

while working with AL in (23) relaxes this threshold to a kmin satisfying

2π
maxjLj

< kmin < kres
min.

To see how far we can hope going down in k > 0, we give evidence below as to
why the scattering intensity should never be evaluated for ‖k‖2 ≤ π√

dmaxj Lj
.
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Finally, when ρ is unknown, and X is further assumed to be ergodic, it
is common to replace the denominator ρ|W | by N in (24), leading to the
self-normalized scattering intensity estimator

ŜSI,s(k) , 1
N

∣∣∣∣∣∣
N∑
j=1

e−i〈k,xj〉

∣∣∣∣∣∣
2

. (26)

Indeed, by ergodicity,
ŜSI,s

ŜSI

a.s.−−−−→
W↑Rd

1.

Many authors define the scattering intensity as its self-normalized version
(Coste, 2021, Klatt et al., 2019, Torquato, 2018), but we argue that when ρ
is known, it is not clear whether this estimator has a smaller mean squared
error than (24).

For the reader interested in second order properties of this estimator, its
second moment on Poisson input is derived in Appendix B.

A lower bound for kmin.
It is clear that when W is fixed, the scattering intensity (26) is not relevant
when k is too close to 0, since for a fixed sample XN = {x1, . . . ,xN},

lim
k→0

ŜSI,s(k) = N.

The theoretical convergence to 0 for hyperuniform processes is dictated by the
compensation occurring between exponential terms e−i〈k,xj〉 on large portions
of the space. One can safely infer that if a large portion of the terms gives a
positive contribution, then the compensation does not occur and the global
result will not be accurate. Still with the notation in Assumption A1, if ‖k‖2 <

π√
dmaxj Lj

, then for x ∈W , |〈x,k〉| ≤ π/2, so that there exists ε > 0 such that

1
N

∣∣∣∣∣∣
N∑
j=1

e−i〈k,xj〉

∣∣∣∣∣∣
2

≥ (Nε)2

N
.

Thus for any ‖k‖2 < π√
dmaxj Lj

, we have a lower bound of ŜSI,s(k) that is
independent of the point process, and which diverges as the number of points
goes to infinity. Consequently, we argue that π/

√
dmaxj Lj is a lower bound

for accessible wavenumbers, which one might improve with a finer study of
the estimator bias.
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3.1.2 Tapered variants of the scattering intensity
The derivation of the scattering intensity can be generalized to the tapered
estimator

ŜT(t,k) , 1
ρ

∣∣∣∣∣∣
N∑
j=1

t(xj ,W )e−i〈k,xj〉

∣∣∣∣∣∣
2

, k ∈ Rd, (27)

where t(·,W ) is a uniformly (in W ) square-integrable function supported on
the observation window W , called a taper. The tapered estimator (27) cor-
responds to a scaled version of what is called a tapered periodogram in the
signal processing literature (Rajala et al., 2020a, Section 3). The vocabulary
is adapted from the spectral analysis of time series, where tapers are now well
established (Percival and Walden, 2020).

In particular, one recovers the scattering intensity (24) from the tapered
formulation (27) by plugging the taper

t0(x,W ) , 1√
|W |

1W (x). (28)

To follow the derivation of (22), we further let

αt(r,W ) ,
∫
Rd
t(r + y,W )t(y,W )dy, (29)

and require that

lim
W↑Rd

αt(r,W ) = 1 and αt(0,W ) = 1, (30)

where the limit is again taken as minj Lj → ∞ under Assumption A1. Note
first that our requirement that (30) holds differs from the treatment of Rajala
et al. (2020a). We find (30) to be a more natural generalization of the scattering
intensity arguments of Torquato (2018). Note also that, for simplicity, we
denoted αt0 by α0 in Section 2.2, and we shall stick to this simplified notation.

Now, Cauchy-Schwarz inequality and the uniform integrability of t guar-
antee that αt(·,W ) is uniformly (in W ) bounded, so that by dominated
convergence,

S(k) = 1 + ρ lim
W↑Rd

∫
Rd

(g(r)− 1)αt(r,W )e−i〈k,r〉 dr.

Following the lines of (22), we obtain

S(k) = lim
W↑Rd

E
[
ŜT(t,k)

]
− ρ |F(t)(k,W )|2︸ ︷︷ ︸

εt(k,L)

 . (31)
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where the tapered estimator ŜT is defined in (27). To eliminate the asymptotic
bias εt(k,L), one can restrict oneself again to a set of allowed wavevectors as
we did in (23), i.e., the zeros of εt(·,L). For general tapers, however, finding
these zeros is not straightforward, and an alternative way to escape the bias
is to correct it, as in

ŜUDT(t,k) , 1
ρ

∣∣∣∣∣∣
N∑
j=1

t(xj ,W )e−i〈k,xj〉

∣∣∣∣∣∣
2

− ρ |F(t)(k,W )|2 . (32)

We refer to ŜUDT as the undirectly debiased tapered estimator, which is a scaled
version of what Rajala et al. (2020a) define. The major issue of Estimator
(32) is that it may give negative values. To remedy this, Rajala et al. (2020a)
propose to remove the bias inside the summation before taking the squared
modulus, namely, to define the directly debiased tapered estimator

ŜDDT(t,k) , 1
ρ

∣∣∣∣∣∣
N∑
j=1

t(xj ,W )e−i〈k,xj〉 − ρF(t)(k,W )

∣∣∣∣∣∣
2

. (33)

Finally, note that these debiasing techniques naturally apply to the special
case of the scattering intensity, and thus offer an alternative to using allowed
values (23).

3.1.3 The multitapered estimator
In the spectral analysis of time series, multitapering (MT) was first introduced
by Thomson (1982); see also Percival and Walden (2020) for a modern refer-
ence. The idea is to average a periodogram over many tapers, in the hope to
reduce the variance of the resulting estimator. Rajala et al. (2020a) propose
to adapt the method to point processes, and we follow their lines.

For any k ∈ Rd and P ∈ N∗, and under Assumption A1, Rajala et al.
(2020a) define the multitapered estimator ŜMT by

ŜMT((tq)Pq=1,k) = 1
P

P∑
q=1

Ŝ(tq,k), (34)

where the P tapers (tq )Pq=1 are typically taken to be pairwise orthogonal square
integrable functions, and Ŝ(tq, ·) is any of the tapered estimators, whether
undebiased (27), undirectly debiased (32), or directly debiased (33). The
directly and undirectly debiased versions of ŜMT will be respectively denoted
by ŜDDMT and ŜUDMT.
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3.1.4 On the choice of tapers
Common taper choices in time series analysis are Slepian tapers, sinusoidal
tapers, and minimum bias tapers (Riedel and Sidorenko, 1995). For instance,
still assuming a centered rectangular window W =

∏d
j=1[−Lj/2, Lj/2], the

family of sinusoidal tapers (tq)q≥1 supported on W is defined by

tq(x,W ) = t(x,pq,W ) , 1W (x)√
|W |

d∏
j=1

√
2 sin

(
πpqj
Lj

(xj + Lj
2 )
)
, (35)

where pq = (pq1, . . . , p
q
d) ∈ (Nd)∗ and x = (x1, . . . , xd) ∈ Rd. The sinu-

soidal tapers are pairwise orthogonal, and an easy direct computation shows
that they also satisfy (30). Moreover, for k = (k1, . . . , kd) ∈ Rd the Fourier
transform F(tq)(k,W ) of tq for any q is

1√
|W |

d∏
j=1

√
2i(p

q
j
+1)
[ sin

((
kj −

πpq
j

Lj

)
Lj
2

)
kj −

πpq
j

Lj

− (−1)p
q
j

sin
((
kj + πpq

j

Lj

)
Lj
2

)
kj + πpq

j

Lj

]
.

This closed-form expression can thus be used in any debiasing scheme. Note
that this analytical tractability, along with the absence of a sensitive parameter
like a lengthscale, lead us to choose the sine taper over, say, a multidimensional
generalization of Slepian tapers (Percival and Walden, 2020, Rajala et al.,
2020a).

3.2 Assuming stationarity and isotropy
For isotropic point processes, a common approach is simply to numerically
rotation-average the structure factor estimators presented in Section 3.1.
Alternatively, one could start from the analytical expression (11) of the struc-
ture factor as symmetric Fourier transform – a univariate integral – involving
the pair correlation function. Then again, two approaches have been identi-
fied. First, identifying an expectation under the point process as in Section 3.1
leads to a natural estimator originally derived by Bartlett (1964). Second, esti-
mation of the pair correlation followed by numerical quadrature leads to at
least two natural estimators, depending on whether the quadrature is that of
Ogata (2005), or that of Baddour and Chouinard (2015). We review all these
estimators in turn. All point processes in Section 3.2 satisfy Assumption A2.

Assumption A2 X is a simplex stationary isotropic point process of Rd, of intensity
ρ. Its pair correlation function g exists, and r 7→ g(r) − 1 is integrable. Moreover,
we only observe a realization of X ∩W = {x1, . . . ,xN} in the centered ball W =
Bd(0, R).
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3.2.1 Bartlett’s isotropic estimator
From the observation that the scaled intersection volume α0 (5) is a radial
function, α0(r,W ) = α0(r,W ), and following the lines of Section 3.1,
dominated convergence yields

S(k)− 1 =

lim
R→∞

[
ρ

(2π) d2
k
d
2−1

∫ ∞
0

α0(r,W ) g(r)r d2 Jd/2−1(kr)dr − ρF(α0)(k,W )︸ ︷︷ ︸
,ε1(k,R)

]
. (36)

Now, precisely because α0 is radial, we have

α0(r,W ) = 1
ωd−1

∫
Sd−1

α0(ru,W )du, (37)

where du is the (d − 1)-dimensional Hausdorff measure and Sd−1 is the unit
sphere of Rd, with surface area ωd−1. Plugging (37) into (36) yields

S(k)− 1 = lim
R→∞

ρ(2π) d2 k1− d2

|W |ωd−1

∫ ∞
0

∫
Sd−1

∫
Rd
r
d
2 Jd/2−1(kr)

g(r)1W×W (ru + y,y) dydudr − ε1(k,R)

= lim
R→∞

ρ(2π) d2
|W |ωd−1

∫ ∞
0

∫
Sd−1

∫
Rd

Jd/2−1(kr)
(kr)d/2−1 g(r)

1W×W (ru + y,y) dydu rd−1dr − ε1(k,R)

= lim
R→∞

ρ(2π) d2
|W |ωd−1

∫
Rd

∫
Rd
1W×W (r + y,y)

Jd/2−1(k‖r‖2)
(k‖r‖2) d2−1

g(‖r‖2) dydr− ε1(k,R).

We now recognize an expectation using (1), so that S(k)− 1 rewrites as

lim
R→∞

(2π) d2
ρ|W |ωd−1

E

 x 6=y∑
x,y∈X∩W

Jd/2−1(k‖x− y‖2)
(k‖x− y‖2)d/2−1

− ε1(k,R). (38)

We thus define a new estimator

ŜBI(k) = 1 + (2π) d2
ρ|W |ωd−1

N∑
i,j=1
i6=j

Jd/2−1(k‖xi − xj‖2)
(k‖xi − xj‖2)d/2−1 , (39)
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along with its self-normalized version

ŜBI,s(k) = 1 + (2π) d2
Nωd−1

N∑
i,j=1
i6=j

Jd/2−1(k‖xi − xj‖2)
(k‖xi − xj‖2)d/2−1 , (40)

as in the case of the self-normalized scattering intensity (26). When d = 2,
ŜBI,s corresponds to Bartlett’s isotropic estimator (Bartlett, 1964).

Here also, there are two sources of bias in the estimator (39). The first
one is due to the restriction of the point process to a bounded observation
window, which shall disappear as the window grows. The second source of
bias ε1(k,R) is again related to the Fourier transform of the scaled intersec-
tion volume α0(·,W ). Diggle et al. (1987) observed that |ε1(k,R)| is larger
when k > 0 is small, and proposed to artificially set the value of the esti-
mator to some constant when k is smaller than a certain threshold (Diggle
et al., 1987, Equation 3.4). Obviously, this correction is inadequate to study
hyperuniformity, i.e., the behavior of S near zero.

An alternative to Diggle’s clipping procedure is to proceed as done for the
scattering intensity (24) and estimate the structure factor only at a set of
allowed wavenumbers, defined as the zeros of ε1(·, R). Using (7), it comes, for
fixed d,

ε1(k,R) = F(α0)(k)

= 2dπd/2 Γ(d/2 + 1)
kd

J2
d
2
(kR)

=


0 if k ∈ { xR ; J d

2
(x) = 0},

O(Rd) as k → 0,
O
(

1
kd(Rk)2/3

)
as k →∞.

The two bounds respectively come from the fact that Jν(x) ∼ 1
Γ(ν+1) (x2 )ν in

the neighborhood of zero, and that for all ν > 0 and x ∈ R, |Jν(x)| ≤ c|x|−1/3

(with c ≈ 0.8) (Landau, 2000). Thus, for the estimator (39), we let the set of
allowed wavenumbers associated to the window W = Bd(0, R) be

AR =
{ x
R
∈ R, s.t. Jd/2(x) = 0

}
. (41)

Proposition 2 Under Assumption A2, for k ∈ AR, the estimator ŜBI is asymptot-
ically unbiased, i.e.,

sup
k∈AR

∣∣∣E [ŜBI(k)
]
− S(k)

∣∣∣ −−−−→
R→∞

0.
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Note that we can also define debiased tapered and multitapered versions
of Bartlett’s estimator, as done in Section 3.1, but the choice of the taper(s)
requires more attention, as they must be separable and radial.

3.2.2 Using Ogata’s quadrature
Still working under Assumption A2, we can define alternative estimators of
the structure factor (11) by first approximating the pair correlation function
from a realization of X , and then approximating the Hankel transform (4).

Estimators of the pair correlation function have been thoroughly investi-
gated; see (Baddeley et al., 2015). In a nutshell, they divide in, on one side,
numerical derivatives of estimates of Ripley’s K function, and on the other
side, direct kernel density estimators based on the collection of pairwise dis-
tances in the sample. Both families come with sophisticated edge correction
techniques, and, at least for small sample sizes, it seems reasonable to build
on this previous work. Henceforth, we assume that an estimator of the pair
correlation function is available, and defer the discussion of which estimator
to use to Section 5.

It remains to perform a numerical quadrature on a Hankel transform.
Ogata (2005) approximates integrals of the form

Iν(f) =
∫ ∞

0
f(x)Jν(x)dx

as

π
∞∑
j=1

wν,jf(π
h
ψ(hξν,j))Jν(π

h
ψ(hξν,j))ψ′(hξν,j), (42)

with wν,j = Yν(πξν,j)
Jν+1(πξν,j) and ψ(t) = t×tanh(π2 sinh(t)). Yν is the Bessel function

of the second kind of order ν, h is a positive constant called the stepsize,
and (ξν,j)j≥1 are the positive zeros of the Bessel function Jν(πx) of the first
kind of order ν, arranged in increasing order. In practice, the infinite sum on
the right-hand side of (42) can be truncated at a small number of function
evaluations since the quadrature nodes approach the zeros of Jν(x), that is
π
hψ(hξν,j) ∼ πξν,j , very fast as j →∞.

Ogata’s quadrature applies to the Hankel transform (3) of an integrable
function f , since

Hν(f)(k) = Iν
(
x 7→ x

k2 f (x/k)
)
. (43)

In particular, it applies to the computation of structure factors since, by (11)
and (4),

S(k) = 1 + ρFs(g − 1)(k)

= 1 + ρ
(2π)d/2

kd/2−1 Id/2−1

(
x 7→ xd/2

kd/2+1 g(x/k)− 1
)
.
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We thus define the Hankel-Ogata estimator of the structure factor as

ŜHO(k) = 1 + ρ
(2π)d/2π

kν

N∑
j=1

wν,j h̃k

(π
h
ψ(hξν,j)

)
Jν

(π
h
ψ(hξν,j)

)
ψ′(hξν,j),

(44)
with ν = d/2 − 1, N ∈ N, h̃k(x) = xd/2

kd/2+1 (ĝ(x/k) − 1), and ĝ an estimator
of the pair correlation function. Finally, note that Ogata’s quadrature is also
implemented in the Python package hankel of Murray and Poulin (2019).

Relation between kmin and rmax

There exists a hidden inverse proportionality relation in Equation (44),
between the minimal wavenumber kmin for which we can hope the estima-
tor to be accurate and the maximal radius rmax at which the pair correlation
function has been estimated. Truncating the infinite sum after N terms in
Equation (42) has been informally justified by

ψ(hξd/2−1,N ) ≈ hξ d
2−1,N (45)

The maximum radius rmax at which ĝ is available should in turn satisfy

rmax = max
j

{ π

hk
ψ(hξ d

2−1,j); k ∈ R∗
}

(46)

Together, (45) and (46) entail that

kmin ≈
πξd/2−1,N

rmax
. (47)

Thus kmin is not only proportional to 1/rmax but also to the largest considered
zero of the Bessel function Jd/2−1(x).

3.2.3 Using the quadrature of Baddour and Chouinard
Instead of using the quadrature of Ogata (2005), one can estimate Han-
kel transforms more directly, similarly to how the discrete Fourier transform
is used to approximate Fourier transforms. Intuitively, assuming that either
f or its Hankel transform Hν(f) (3) has bounded support allows rewriting
it as a Fourier-Bessel series, with coefficients involving evaluations of either
Hν(f) or f , respectively. Truncating the resulting Fourier-Bessel series yields
approximate direct and inverse Hankel transforms. This discrete Hankel trans-
form (DHT) was derived by Baddour and Chouinard (2015), and originally
implemented in Matlab. Moreover, Guizar-Sicairos and Gutiérrez-Vega (2004)
developed a Python package, pyhank, based on the same idea.

https://pypi.org/project/hankel/
https://sourceresearchsoftware.metajnl.com/articles/10.5334/jors.82/
https://pypi.org/project/pyhank/
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In detail, let N > 0 and f : R+ → R be a continuous function, Baddour
and Chouinard (2015) approximate

Hν(f)(km) ≈ r2
max
ην,N

N−1∑
j=1

2Jν
(
ην,mην,j
ην,N

)
f(rj)

ην,NJ2
ν+1(ην,j)

, (48)

where ην,m = πξν,m is the mth positive zero of the Bessel function Jν(x) of
the first kind, 1 ≤ j,m ≤ N − 1 and

rj = ην,j
ην,N

rmax, km = ην,m
ην,N

kmax, kmax = ην,N
rmax

, with rmax > 0. (49)

The user thus needs to specify both N and rmax. Intuitively, the choice of rmax
is governed by how far on the positive axis one has been able to evaluate f .
Once rmax is fixed, N decides how large kmax is, that is, how high in frequency
one wishes to estimate the Hankel transform.

To conclude, given an estimator ĝ of the pair correlation function, we define
yet another estimator of the structure factor, called the Hankel-Baddour-
Chouinard estimator,

ŜHBC(km) = 1 + ρ(2π) d2 r
2
max
ην,N

N−1∑
j=1

2Jν
(
ην,mην,j
ην,N

)
ην,NJ2

d/2(ην,j)kνm
h̃(rj), (50)

where ν = d/2−1, h̃(x) = xν(ĝ(x)−1), and the set of wavenumbers {km}m is
fixed by (49). Finally, we can deduce from (49) that the minimal wavenumber
of ŜHBC (50) is k1 = k

d/2−1
1 = ηd/2−1,1

rmax
. Comparing k1 with the minimal

wavenumber kmin (47) of ŜHO (44), for the same number of points N and the
same rmax, we observe that k1 < kmin, as k1 is proportional to the first zero
of the Bessel function Jd/2−1(x) while kmin is proportional to the N th zero
of Jd/2−1(x). For the study of hyperuniformity, this suggests an advantage to
using ŜHBC.

4 A statistical test of hyperuniformity
In Section 3, we have surveyed estimators Ŝ of the structure factor S of a sta-
tionary point process X . In the best case, we had an asymptotically unbiased
estimator of S. Furthermore, hyperuniformity diagnostics like the effective
hyperuniformity surveyed in Section 2.5 require subjective algorithmic choices
and do not come with a statistical guarantee.

In this section, we use the debiasing device of Rhee and Glynn (2015) to
turn realizations of any of the nonnegative, asymptotically unbiased estima-
tors of Section 3, on windows of increasing size, into an unbiased estimator
of a truncated equivalent to S(0). We then propose the first asymptotically
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valid test of hyperuniformity. We group our assumptions and notation for this
section in Assumption A3.

Assumption A3 X is a stationary point process of Rd with intensity ρ > 0. Its
pair correlation function g exists, and r 7→ g(r)− 1 is integrable on Rd.

4.1 The coupled sum estimator
Consider a stationary point process X of Rd, of which we observe the inter-
section of a single realization with multiple increasing windows. Formally, we
consider an increasing sequence of sets (X ∩Wm)m≥1, with Ws ⊂ Wr for all
0 < s < r, and W∞ = Rd. For simplicity, we assume that the windows are
centered and either rectangular as in Assumption A1, or ball-shaped as in
Assumption A2 if X is isotropic.

We consider any of the positive, asymptotically unbiased estimators Ŝm of
S listed in Section 3, applied to X∩Wm. All such estimators are asymptotically
unbiased on a set of values Bm, possibly in the sense of Proposition 1, and
there exists kmin

m ∈ Bm with kmin
m → 0. The reader can keep in mind the

scattering intensity of Section 3.1.1, with, say, the minimum restricted allowed
value kmin

m = (2π/Lm1 , . . . , 2π/Lmd) ∈ Zd, but the proofs hold more generally.
We define the sequence of random variables

Ym = 1 ∧ Ŝm(kmin
m ), m ≥ 1, (51)

We cap the estimators at 1 arbitrarily to make them uniformly bounded. The
idea is to use the sequence (Ym) to test whether S(0) = 0.

Following (Rhee and Glynn, 2015, Section 2), we first define a new sequence

Zm =
m∧M∑
j=1

Yj − Yj−1

P(M ≥ j) , m ≥ 1, (52)

where M is an N-valued random variable such that P(M ≥ j) > 0 for all j,
and Y0 = 0 by convention. Rhee and Glynn (2015) observed that

E[Zm] = E[Ym] and Zm
a.s.−−−−→

m→∞
Z,

where Z is the coupled sum estimator

Z =
M∑
j=1

Yj − Yj−1

P(M ≥ j) . (53)

Under some conditions, Rhee and Glynn (2015) proved that if Ym → Y in
L2, then Z ∈ L2 is an unbiased estimator of E[Y ] with a square root con-
vergence rate. For our choice of (Ym)m, the assumptions of (Rhee and Glynn,
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2015, Theorem 1), especially the L2 convergence of Ym, may not hold for non-
hyperuniform point processes. We thus use weaker assumptions that are still
enough to build a hyperuniformity test.

Proposition 3 Under Assumption A3, with Z defined in (53), assume that M ∈ Lp
for some p ≥ 1. Then Z ∈ Lp and Zm → Z in Lp. Moreover,

1. If X is hyperuniform, then E[Z] = 0.
2. If X is not hyperuniform and

sup
m

E[Ŝ2
m(kmin

m )] <∞, (54)

then E[Z] 6= 0.

The proof is deferred to Appendix A. Assumption (54) bears on the esti-
mator that we use for the structure factor and the point process. We believe
it not to be too strong and we prove it in Appendix B for the scattering inten-
sity for a Poisson point process. Proposition 3 naturally leads to a test of
hyperuniformity.

4.2 A multiscale test
We apply Proposition 3 with p = 2, say M is a Poisson random variable with
mean λ > 0. Then Var[Z] < ∞, and we can apply the central limit theorem
to build a standard test comparing E[Z] to zero.

Consider A i.i.d. pairs (Xa,Ma)Aa=1 of realizations of (X ,M), and let
Z1, · · ·ZA be the A corresponding i.i.d. copies of Z. Now, denote the sample
mean and sample standard deviation of Z by Z̄A and σ̄A. Since the variance
of Z is finite, Slutsky’s lemma yields the usual asymptotic confidence interval
CI[E[Z]] of level ζ for E[Z],[

Z̄A − zσ̄AA−1/2, Z̄A + zσ̄AA
−1/2

]
, (55)

where z is chosen such that P(−z < N (0, 1) < z) = ζ, and N (0, 1) denotes
the standard normal distribution. By Proposition 3, for an estimator of the
structure factor satisfying (54), a test of hyperuniformity of asymptotic level
ζ consists in assessing whether 0 lies in the interval (55). Since the estimators
Z correspond to windows of different sizes, we call the test multiscale.

5 Demonstrating all estimators
We have implemented all estimators of Section 3, as well as the regression
diagnostics of Section 2.5, in an open-source Python toolbox called structure
factor5.

5https://github.com/For-a-few-DPPs-more/structure-factor

https://github.com/For-a-few-DPPs-more/structure-factor
https://github.com/For-a-few-DPPs-more/structure-factor
https://github.com/For-a-few-DPPs-more/structure-factor


28 CONTENTS

In this section, we quickly demonstrate the toolbox on the four point pro-
cesses described in Section 2.6, that is, the KLY process of intensity ρKLY = 1,
the Ginibre ensemble of intensity ρGinibre = 1/π, the Poisson process of inten-
sity ρPoisson = 1/π, and the Thomas process with intensity ρThomas = 1/π,
ρparent = 1/(20π) and σ = 2. Our choice of observation window depends on
the intensity and makes sure that we get samples of around 5800 points. The
dimension is always d = 2. All figures in this section can be reproduced by
following our demonstration notebook 6.

5.1 Basic software objects
While we refer to our online documentation7 for details, we believe that a
quick overview of the main objects of our package is useful. All estimators from
Section 3 are methods of the class StructureFactor. The class constructor
takes as input an object of type PointPattern. In a nutshell, for a station-
ary point process X of intensity ρ, a PointPattern encapsulates a sample
of X ∩ W = {x1, . . . , xN}, the observation window W , and the intensity ρ
(optional). If the intensity of X is not provided by the user, it is automatically
approximated by the asymptotically unbiased estimator ρ̂ = N

|W | . Finally, to
comply with the requirements of estimators on specific windows, we provide
a restrict to window() method for the class PointPattern.

5.2 Demonstrating estimators that only assume
stationarity

The scattering intensity
Figure 5 illustrates the scattering intensity estimator of Section 3.1. Columns
respectively correspond to the KLY, Ginibre, Poisson, and Thomas point pro-
cesses. The first row contains a sample of each point process, observed in
square windows. The second row shows the scattering intensity ŜSI in (24) on
arbitrary wavevectors k, while in the third row, the estimators are only eval-
uated on a subset of the allowed wavevectors (23). The fourth and fifth rows
illustrate the debiasing techniques, respectively the directly debiased scatter-
ing intensity ŜDDT(t0,k) from (33), and the undirectly debiased scattering
intensity ŜUDT(t0,k) from (32).

The clouds of grey points are the approximated structure factors of the
samples observed in the first row of the figure. For isotropic point processes,
the structure factor S is a radial function, so we plot k 7→ Ŝ(k), k ∈ R and
not k 7→ Ŝ(k), k ∈ R2. The KLY process is the only non-isotropic example:
in that case, we numerically average Ŝ(k) over vectors satisfying ‖k‖2 = k.
To regularize the obtained estimator, we bin the norm of the wavevectors
regularly and provide the empirical mean (in blue) and the empirical standard
deviation of the mean (red bars indicate ±3 such standard deviations). Note
that the binning can be specified by the user in our library. On each plot, the

6https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks
7https://for-a-few-dpps-more.github.io/structure-factor/

https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks
https://for-a-few-dpps-more.github.io/structure-factor/
https://github.com/For-a-few-DPPs-more/structure-factor/tree/main/notebooks
https://for-a-few-dpps-more.github.io/structure-factor/
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Ŝ

Poisson

Exact S(k)

mean ± 3 · std

Ŝ
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Ŝ

Poisson

mean ± 3 · std

10−1 100 101

Wavenumber (||k||)

10−4

10−3

10−2

10−1

100

101

S
tr

uc
tu

re
fa

ct
or

(S
(k

))

Ŝ
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Ŝ

Poisson

mean ± 3 · std

10−1 100 101

Wavenumber (||k||)

10−4

10−3

10−2

10−1

100

101

102

S
tr

uc
tu

re
fa

ct
or

(S
(k

))

Ŝ
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Ŝ

Poisson

Exact S(k)

mean ± 3 · std

KLY Ginibre Poisson Thomas

Fig. 5: Variants of the scattering intensity estimator applied to four point
processes. The computation and visualization are done using structure factor
(see Section 5.2 for details)

exact structure factor is represented by a green line when it is known. Finally,
the dashed black lines are the structure factor of the homogeneous Poisson
process, for reference.

While we refer to Section 6 for a more detailed comparison, one can already
observe from Figure 5 that the most accurate estimators are the scattering
intensity ŜSI (24) evaluated on the set of allowed wavevectors (23) and the
debiased scattering intensity ŜDDT(t0,k) (33). The bias at small, non-allowed
wavenumbers of the scattering intensity is visible in the second row. As for
the undirectly debiased variant, it produces a few negative values, visible as
large error bars on our log-log plot.

https://github.com/For-a-few-DPPs-more/structure-factor
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Using an alternate taper
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Fig. 6: Tapered estimator and the corresponding debiased versions: KLY
process (first column), Ginibre ensemble (second column), Poisson process
(third column), and Thomas process (last column). The computation and
visualization are done using structure factor

Now, as mentioned in Section 3, the scattering intensity ŜSI is a particular
case of the tapered estimator ŜT, with the specific taper t0. We are free to use
other tapers verifying (30).

Figure 6 shows the estimated structure factors of the same four benchmark
point processes (first row), using ŜT (second row), the corresponding directly
debiased version ŜDDT (third row), and the undirectly debiased version ŜUDT
(last row). The taper used is the first sinusoidal taper t1(x,W ) = t(x,p1,W )
with p1 = (1, 1) in (35). The same legend applies as for Figure 5.

First, the asymptotic bias of ŜT at small wavenumber k is visible in the
second row. Second, for the KLY process (first column), the Ginibre ensemble
(second column), and the Poisson process (third column) the estimator ŜUDT
(last row) returned a few negative values again, resulting in large inaccuracies
in our log-log scale. The directly debiased estimator ŜDDT yields the most

https://github.com/For-a-few-DPPs-more/structure-factor
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accurate approximation of known structure factors, consistently across point
processes.

Averaging over multiple tapers
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Ŝ
M

T

10−1 100 101

Wavenumber (||k||)

10−3

10−2

10−1

100

101

102

103

S
tr

uc
tu

re
fa

ct
or

(S
(k

))

Ŝ
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Ŝ

Poisson

mean ± 3 · std

10−1 100 101

Wavenumber (||k||)

10−1

100

101

S
tr

uc
tu

re
fa

ct
or

(S
(k

))

Ŝ
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Fig. 7: Multitapered estimator and the debiased versions: KLY process (first
column), Ginibre ensemble (second column), Poisson process (third column),
and Thomas process (last column). The computation and visualization are
done using structure factor

The multitapered estimator ŜMT of (34) is now investigated in Figure 7,
using the first four sinusoidal tapers, i.e., (tq)4

q=1 with tq(x,W ) = t(x,pq,W )
and pq ∈ {1, 2}2 in (35). We also show the results of the corresponding directly
and undirectly debiased versions, ŜDDMT and ŜUDMT. We again observe the
bias of ŜMT at small wavenumbers (second row), and that the negative values
output by ŜUDMT at small wavenumbers (last row) make visual assessments
of hyperuniformity less straightforward. Like with single tapers, the directly
debiased estimator ŜDDMT gives a consistently accurate approximation. Com-
pared to Figure 6, however, it is not obvious whether multitapering yields a

https://github.com/For-a-few-DPPs-more/structure-factor
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smaller mean square error than single tapers, and a more quantitative study
will investigate this in Section 6.

5.3 Demonstrating estimators that assume isotropy
Bartlett’s isotropic estimator
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Ŝ

Exact S(k)

Poisson

KLY Ginibre Poisson Thomas

Fig. 8: Bartlett’s isotropic estimator: KLY process (first column), Gini-
bre ensemble (second column), Poisson process (third column), and Thomas
process (last column). The computation and visualization are done using
structure factor

Figure 8 illustrates Bartlett’s isotropic estimator of Section 3.2. Columns
respectively correspond to the KLY, Ginibre, Poisson, and Thomas point pro-
cesses. The first row contains a sample of each point process, observed in ball
windows. The second row shows ŜBI on arbitrary wavenumbers k, while in
the last row, the estimator is only evaluated on a subset of the Bessel-specific
allowed wavenumbers (41).

First, we note that, unlike scattering intensity variants, plotting Bartlett’s
isotropic estimator k 7→ ŜBI(k) in (39) does not require binning. On the other
hand, Bartlett’s estimator is significantly costlier than its scattering intensity
counterpart; See Section 6.1. Now, we comment on the accuracy of the estima-
tor in Figure 8. Here again, small, non-allowed wavenumbers give rise to large
biases for ŜBI(k), especially for the two hyperuniform point processes (KLY
and Ginibre). When applied to allowed wavenumbers, the estimator shows

https://github.com/For-a-few-DPPs-more/structure-factor
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accuracy across all point processes, similarly to the directly debiased tapered
estimators.

Estimating the pair correlation function
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Fig. 9: Approximated pair correlation function: KLY process (first col-
umn), Ginibre ensemble (second column), Poisson process (third column), and
Thomas process (last column). The computation and visualization are done
using structure factor

The last two estimators of the structure factor are ŜHO in (44) and ŜHBC in
(50). These estimators require an approximation of the pair correlation func-
tion (pcf) of the point process. We thus quickly investigate standard estimators
of the pcf on our benchmark point processes.

There are two types of estimators of the pcf for stationary isotropic point
processes (Baddeley et al., 2015): kernel density estimators applied to pair-
wise distances and numerical derivatives of Ripley’s K function. The R library
spatstat implements both, respectively as pcf.ppp, which uses an Epanech-
nikov kernel and Stoyan’s rule of thumb for bandwidth selection (Baddeley
et al., 2015, Section 7.6.2), and pcf.fv, which computes the derivative of a
polynomial estimator of Ripley’s K function. The kernel density estimator
behaves badly for small values of r: for many point processes, its variance
becomes infinite when r goes to 0. The derivative estimator is recommended
for large datasets, where direct estimation of the pcf can be time-consuming
(Baddeley et al., 2015, Section 7.6.2). Figure 9 shows the two estimators of the

https://github.com/For-a-few-DPPs-more/structure-factor
https://spatstat.org/
https://www.rdocumentation.org/packages/spatstat.core/versions/2.1-2/topics/pcf.ppp
https://www.rdocumentation.org/packages/spatstat.core/versions/2.1-2/topics/pcf.fv
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pair correlation function of the benchmark point processes. Note that we pro-
vide an independent, open-source Python interface8 to the R library spatstat.
The second row shows the estimation of the pair correlation function using
pcf.ppp. This method provides a choice of boundary corrections, like "trans",
"iso", or none ("un"). For more details see Baddeley et al. (2015, Sections
7.4.4 and 7.4.5). The last row of Figure 9 shows the estimation of the pair
correlation function using pcf.fv.

We observe that, for the cardinalities considered here, the choice of edge
correction method is irrelevant, as long as there is one. As expected, the uncor-
rected version "un" underestimates the pcf as r increases. This results from
counting only the pairs of points that fall inside the observation window, with-
out correcting for border effects. We also observe that the two methods for
estimating the pcf perform similarly, and we pick pcf.fv for the rest of this
section. We manually remove undefined values (NaN, -Inf, or Inf), and we
interpolate the obtained discrete approximation of g, in order to evaluate it
at any point required by the quadratures of Section 3.2.2, and 3.2.3. Finally,
note that the maximum radius rmax at which spatstat provides an approx-
imation of g is limited by the size of the observation window. Typically, it
should be less than half the window diameter for a ball window, and less than
1/4 of the smaller side length of the window for a rectangular window; see
the documentation of spatstat. For larger values than the rmax provided by
spatstat, we manually set g to be identically 1, which has the effect of auto-
matically truncating quadratures that evaluate g− 1, like Ogata’s quadrature
(44).

Hankel transform quadratures
Figure 10 shows the results of Ogata’s ŜHO (second row) and Baddour-
Chouinard’s ŜHBC (last row) on our four benchmark point processes from
Section 2.1. The legend is the same as for Figure 5; see Section 5.2. For the
accuracy of the estimators, we can see that ŜHO failed to approximate the
structure factor of the KLY process. Even the results of ŜHBC seem to be
unreliable. The non-isotropy of the KLY process may be the reason for the
fluctuations of its approximated pair correlation function in Figure 9, lead-
ing to the inaccuracies of the quadratures. For the remaining point processes,
ŜHBC seems to give more accurate results than ŜHO.

5.4 Hyperuniformity diagnostics
We now demonstrate the estimation of the hyperuniformity index H from
Section 2.5, the multiscale hyperuniformity test from Section 4, and the esti-
mation of the decay rate α from Section 2.4 using A = 50 samples from the
point processes of Section 2.1.

https://www.rdocumentation.org/packages/spatstat.core/versions/2.3-1/topics/Kest
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Fig. 10: Estimation using Hankel transform quadratures: KLY process (first
column), Ginibre ensemble (second column), Poisson process (third column),
and Thomas process (last column). The computation and visualization are
done using structure factor
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Fig. 11: Violin plots of H across A = 50 samples from the KLY, Ginibre, Pois-
son, and Thomas point process. Note the different y-scales. The computation
is done using structure factor.

Effective hyperuniformity
Figure 11 illustrates the violin plots9 of H across A = 50 samples from the
benchmark point processes. We used the results of ŜBI, across A samples of

8At https://github.com/For-a-few-DPPs-more/spatstat-interface and on PyPI.
9A violin plot gathers a box plot and a kernel density estimator of the assumed underlying

density. The former shows the median (white point), the interquartile range (thick black bar in
the center), and the rest of the distribution except for points determined as outliers (thin black
line in the center). We also add the mean (red point).

https://github.com/For-a-few-DPPs-more/structure-factor
https://github.com/For-a-few-DPPs-more/structure-factor
https://github.com/For-a-few-DPPs-more/spatstat-interface
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roughly 104 points each (see Section 5.3). To fit the line required to compute
H, we considered the wavenumbers up to 0.6 for the Thomas process and 1 for
the remaining point processes. These values were chosen manually: the trade-
off is to remain close to zero while including enough data points to fit a line.
The violin plots of Figure 11 indicate that, consistently across realizations of
the Poisson and Thomas point processes, H is larger than, say, 0.5. This is a
strong hint that these point processes are not hyperuniform. On the contrary,
for Ginibre, H is even slightly negative, hinting at hyperuniformity. For the
KLY process, although H is close to zero, we note that a threshold of 10−3

would not lead to the same answer across all 50 realizations.

Multiscale hyperuniformity test

Table 2: Multiscale hyperuniformity test

Z̄A CI[E[Z]] Z̄A CI[E[Z]]
KLY 0.003 [−0.003, 0.009] 0.003 [−0.0003, 0.007]
Ginibre 0.015 [−0.021, 0.051] 0.007 [−0.003, 0.011]
Poisson 0.832 [0.444, 1.220] 0.781 [0.560, 1.001]
Thomas 0.928 [0.788, 1.068] 1 [0.999, 1]
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Fig. 12: Violin plots of Z across 50 samples from the KLY, Ginibre, Pois-
son, and Thomas point process using ŜSI (first line) and ŜBI (last line). The
computation is done using structure factor

Table 2 summarizes the results of the multiscale hyperuniformity test of
Section 4.2, for the scattering intensity and Bartlett’s isotropic estimators,

https://github.com/For-a-few-DPPs-more/structure-factor
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on rectangular windows for the former and ball windows for the latter. To
compute Z̄A, we used A draws of (Xa,Ma). In practice, the Ginibre ensem-
ble cannot be sampled on arbitrarily large windows on a personal computer.
We thus proceed as follows. Let Lmax be the maximum sidelength, respec-
tively maximum radius Rmax, of the box- (respectively ball-) shaped window
on which the point process can be sampled in practice. Since Ma is Pois-
son with parameter λ, we choose λ such that the probability that WMa is
larger than WLmax (respectively WRmax) is smaller than 10−4. Precisely, for
the scattering intensity, λ = 85, and the sidelength of the box window ranges
from Lmin = 20 to Lmax = 140, with a unit stepsize for the Ginibre, the
Poisson and the Thomas process. The wavevectors used {kmin

m }m≥1 are the
minimum wavevectors of (25) corresponding to {Wm}m≥1. Finally, the asymp-
totic confidence interval (55), denoted by CI[E[Z]] in Table 2, has a 99.7%
asymptotic level since we use three standard deviations. For Bartlett’s esti-
mator, we use ball windows with a minimum radius Rmin = 30, a maximum
radius Rmax = 100, a unit step size, λ = 50, and the minimum wavenumbers
of (41) corresponding to the subwindows for the Ginibre, the Poisson and the
Thomas process. For the KLY process having bigger intensity than the other
benchmarks point processes, we use smaller parameters Lmax = 80, Rmax = 56
and L0 = R0 = 20.

We can see from Table 2 that the test successfully rejects hyperuniformity
for the Poisson and Thomas point processes, and does not reject for the Ginibre
and the KLY process, as expected. Moreover, we note that ŜBI provides tighter
confidence intervals. Yet, one should bear in mind that, because ŜSI uses a
rectangular window and Ginibre is naturally sampled on disk-like windows,
ŜBI has access here to a sample of larger cardinality than ŜSI. Moreover, ŜSI
is also computationally more expensive to evaluate.

Note that the coverage of the confidence interval on which our test is based
is only controlled when A goes to infinity. For a fixed λ, we thus recommend
choosing A as large as possible. In particular, the overly wide confidence inter-
val for the Poisson process in Table 2 calls for increasing A. Indeed, the violin
plot of the 50 realizations of Z (Figure 12) has large support. Increasing A
naturally reduces the size of that support; see Figure 13. Note in passing how
Z̄A does not converge to S(0) = 1, which is an effect of our capping the esti-
mated structure factor in (51). Overall, there is no free lunch: our test might
fail in diagnosing hyperuniformity if A or λ is too small.

Finally, we demonstrate the test on three thinned versions of the Gini-
bre samples with retaining probabilities p = {0.9, 0.5, 0.1}, as described in
Section 2.6.5. The corresponding point processes have respectively S(0) =
{0.1, 0.5, 0.9}. We have noticed that the estimator ŜBI provides tighter confi-
dence intervals, and thus focused here on ŜBI to compute Z̄50. We keep the
same parameters as before. Note that we use the same 50 realizations of the
Ginibre ensemble across the four different values of p (including p = 1), so that,
strictly speaking, the asymptotic confidence intervals are to be understood
with a Bonferroni correction.
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Fig. 13: CI[E[Z̄]] for a Poisson point process with the scattering intensity, as
a function of the number of realizations of Z.

Table 3 summarizes the obtained results, and Figure 14 shows the cor-
responding violin plots. The test successfully rejects the hyperuniformity for
the three thinned versions. Note that the test is more sensitive when using
ŜSI within different trials. Nevertheless, the failure of the test can be noticed
from the wide confidence intervals obtained in general. As mentioned before,
getting a wide confidence interval call for increasing A. We recommend using
ŜBI, if possible. Finally, as expected for the window sizes/intensity that we
consider, the case 0.9 < p < 1 remains difficult: in preliminary experiments,
we did not reject hyperuniformity without hand-tuning the test’s parameters
to reach the desired conclusion. We leave this critical case to future work.

Table 3: Multiscale hyperuniformity test obtained using ŜBI on the thinned
Ginibre process.

Z̄A CI[E[Z]]
Ginibre 0.0057 [−0.0042, 0.0156]
Thinning p = 0.9 0.0865 [0.0411, 0.1318]
Thinning p = 0.5 0.5722 [0.4227, 0.7217]
Thinning p = 0.1 0.611 [0.2082, 1.0137]
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Fig. 14: Violin plots of Z obtained using ŜBI across A = 50 samples
from the Ginibre and the corresponding independent thinning with retaining
probability p. The computation is done using structure factor.
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Hyperunifomity class
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Fig. 15: Violin plots of α across A samples of the KLY and the Ginibre point
process. The computation is done using structure factor

Figure 15 shows the violin plots of the estimated power decay α across
A samples, of roughly 104 points each, of the KLY and the Ginibre point
processes. We used the results of ŜBI. To approximate the decay rate α of the
structure factor, the maximum wavenumber used to fit the polynomial is equal
to 0.45 for the Ginibre ensemble, and to 0.6 for the KLY process. Again, these
thresholds are fit manually and represent a trade-off between having enough
points to fit our monomial and being close to zero.

Results are shown in Figure 15. There is limited evidence that the KLY pro-
cess is indeed hyperuniform: while the support of the distribution is large and
includes 0, most estimated values of α are positive, and concentrate around
0.5. This could be further taken as a hint that KLY belongs to Class III in
Table 1. Nevertheless, KLY is known to be Class I when matching a Poisson
process with a grid (Klatt et al., 2020), so we’d expect α to be bigger than
1. The misleading concentration around 0.5 may result from the non-isotropy
of the KLY process and calls for caution when making claims on the hype-
runiformity class from regression diagnostics. For the Ginibre ensemble, the
concentration of values of α around 2 successfully reflects the known power
decay (Section 2.1).

6 A quantitative comparison of the estimators
We now compare the cost and accuracy of all estimators more quantitatively.

6.1 A note on computational costs
For a given wavevector, evaluating any single-tapered estimator requires a
sum of N terms. Multitapering naturally multiplies the cost by the number
of tapers, but it can be trivially parallelized, especially since the number of
tapers remains low in practice (Rajala et al., 2020a).

On the other hand, for a sample of N points, Bartlett’s estimator ŜBI is a
sum of O((N2−N)/2) evaluations of a Bessel function. This makes Bartlett’s

https://github.com/For-a-few-DPPs-more/structure-factor
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estimator significantly costlier than its scattering intensity counterpart. As an
example, for a realization of N = 104 points from a point process in R2, using
a modern laptop, the evaluation of ŜSI at a single wavevector took about one
millisecond, compared to 2 seconds for ŜBI. Note however that for a similar
accuracy on an isotropic point process, ŜBI needs to be evaluated at fewer
wavevectors than, say, the scattering intensity. Indeed, a single value of the
former should be compared to a binwise average of the latter.

Now, for Hankel quadrature estimators, the main bottleneck is the approx-
imation of the pcf. A kernel density estimator based on N points is again a
quadratic computation. In our experience, combining the estimator pcf.fv,
based on numerically differentiating an estimated Ripley’s K function, and a
Hankel quadrature to build ŜHO and ŜHBC is the least expensive pipeline.

6.2 Measuring the accuracy of the estimators near zero
To confirm the intuitions gained from Section 5, in particular that the multita-
pered variant of the scattering intensity and Bartlett’s estimator dominate the
others when it comes to visual diagnostics of hyperuniformity, we now com-
pare the mean square error of the different estimators of the structure factor,
integrated near 0.

For a subdivision [k1, k2) ∪ · · · ∪ [kJ−1, kJ) of some interval [k1, kJ), the
integrated MSE reads

iMSE(Ŝ) =
∫ kJ

k1

MSE(Ŝ)(k)dk

=
∫ kJ

k1

E[Ŝ(k)− S(k)]2dk

= E

[∫ kJ

k1

[Ŝ(k)− S(k)]2dk
]
.

A crude numerical integration using the trapezoidal rule gives,

iMSE(Ŝ) ≈ E
[ J−1∑
j=1

1
2(kj+1 − kj)

{
[Ŝ(kj+1)− S(kj+1)]2 + [Ŝ(kj)− S(kj)]2

}]
,

(56)
The expectation in (56) is under the investigated point process. Assuming
it is easy to sample from the point process, we can estimate the iMSE in
(56) by an empirical average îMSE over point process samples. Similarly, the
difference of the iMSEs of two different estimators of S can be approximated
by an empirical average of differences of îMSEs. This yields a natural (paired)
Student test to assess whether the difference of the iMSEs of two different
estimators of S is 0.
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6.3 Comparing variants of the scattering intensity
In Section 5, we derived the intuition that ŜSI on its allowed values,
ŜDDT(t0,k) , ŜDDT(t1,k), and ŜDDMT((tq)4

q=1,k) gave the most accurate
approximations among the estimators of Section 3. We further expect
ŜDDMT((tq)4

q=1,k) to have the smallest integrated MSE among them.
To test this, we run three paired, one-sided Student tests, comparing
ŜDDMT((tq)4

q=1,k) to each of the three former estimators.
Specifically, we use 50 independent realizations of approximately 5800

points each, from the Ginibre, Poisson, and Thomas point processes, for which
we know the exact structure factor. The intensity of all processes is ρ = 1/π.
The additional parameters of the Thomas process are, as used throughout the
paper, ρparent = 1/(20π), and σ = 2. We evaluated ŜSI (24) on its allowed
wavevectors (23), between k1 = 0.1 and kJ = 2.8. For the other estimators,
ŜDDT(t0,k), ŜDDT(t1,k) (33), and ŜDDMT((tq)4

q=1,k) (34), we used arbitrary
wavevectors keeping the same range of the wavenumbers used for ŜSI. The
tapers used are t0 (28), and the first 4 tapers (tq)4

q=1 of the family of sinusoidal
tapers (35). As we got different approximated values of S for different wavevec-
tors of the same wavenumber, for each wavenumber we set the estimated
structure factor to the sample mean of these values.

Table 4: Paired t-tests

Estimators T -score p-value T -score p-value T -score p-value
ŜDDMT, ŜSI −29.53 3× 10−33 −41.59 3× 10−40 −9.24 10−12

ŜDDMT, ŜDDT −22.40 10−27 −30.42 8× 10−34 −6.38 2× 10−8

ŜDDMT, ŜDDT −12.18 9× 10−17 −25.39 3× 10−30 −7.16 10−9

Ginibre Poisson Thomas
T -scores of the îMSE and the associated p-values

Table 4 summarizes the results of the paired one-sided Student tests. For
each point process, applying a Bonferroni correction, we can simultaneously
reject at the level 0.01 the three hypotheses that there is no difference in mean
between the estimated iMSEs. This confirms our intuition that ŜDDMT((tq)4

1)
yields the smallest integrated MSE among the considered variants of the
scattering intensity. In particular, multitapering helps.

For information, the estimated iMSEs are given in Table 5, in the form of
a confidence interval (CI) of the îMSEs plus or minus 3 empirical standard
deviations of the mean. There is roughly a factor 4 between the îMSE of the
directly debiased multitapered estimator and each of the other three, which
confirms its domination. For reference, we have also indicated the contribution
of the sample integrated variance (îVar) to each îMSE. Clearly, the variance is
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the biggest contributor, and the squared bias is at least one order of magnitude
smaller, for all point processes.

Finally, Figure 16 shows the pointwise average of each estimator, across the
50 point process realizations. A reduction of bias at small k for ŜDDT(t1,k)
and ŜDDMT((tq)4

q=1,k) is visible for Ginibre.

Table 5: Sample integrated variance and MSE

Estimators îVar CI[îMSE] îVar CI[îMSE] îVar CI[îMSE]
ŜSI(2πn/L) 0.32 0.32± 0.02 1.31 1.34± 0.06 69.51 70.71± 17.95
ŜDDT(t0) 0.32 0.33± 0.03 1.44 1.47± 0.1 72.15 73.63± 26.12
ŜDDT(t1) 0.34 0.35± 0.06 1.47 1.50± 0.14 79.29 80.51± 27.20
ŜDDMT((tq)4

1) 0.08 0.08± 0.007 0.37 0.38± 0.02 17.90 18.19± 4.19
Ginibre Poisson Thomas
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Fig. 16: Pointwise averages of the variants of the scattering intensity, numer-
ically rotation-averaged, across 50 independent realizations of the Ginibre,
Poisson, and Thomas point processes. The computation and visualization are
done using structure factor

6.4 Comparing estimators that assume isotropy
We now run the same comparison on ŜBI (39), ŜHO (44), and ŜHBC (50). For
this study, we have sampled 50 independent realizations of approximately 5800
points each, from the Ginibre, Poisson, and Thomas processes, with the same
parameters as in Section 6.3, except that the observation window for all point
processes is now a 2-dimensional ball window centered at the origin. For ŜHO,

https://github.com/For-a-few-DPPs-more/structure-factor
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and ŜHBC we used the method pcf.fv to approximate the pair correlation
function with maximal approximation radius rmax = 30.

We have noted in Section 5 that ŜHBC is more robust to non-isotropy
than ŜHO, and that ŜBI gave the tightest approximations in this family of
estimators.

Table 6: Paired t-tests

Estimators T -score p-value T -score p-value T -score p-value
ŜBI vs. ŜHO −12.24 7× 10−17 −6.60 10−8 −5.32 10−6

ŜBI vs. ŜHBC −25.51 2× 10−30 −5.32 10−6 −5.16 2× 10−6

Ginibre Poisson Thomas

T -scores of the îMSE and the associated p-values

Table 6, summarizes the results of two one-sided paired t-tests per point
process. For each point process, we can again simultaneously reject at level
0.01 the hypotheses that there is no difference between the estimates iMSEs.
This confirms the claim that Bartlett’s estimator is the most accurate near
0, among estimators that assume isotropy. For reference, Table 7 gives the
same summary statistics as Table 5 did for scattering intensity variants.
Bartlett’s estimator yields îMSEs one order of magnitude smaller than both
Hankel transform quadratures, for both Ginibre and Poisson, and a factor 3
for Thomas. Again, the integrated MSE is mostly variance.

Table 7: Sample integrated variance and MSE

Ŝ îVar CI[îMSE] îVar CI[îMSE] îVar CI[îMSE]
ŜBI 3.9× 10−3 4.0× 10−3 ± 3× 10−4 0.057 0.058± 9× 10−3 11.25 11.65± 4.71
ŜHO 0.37 0.38± 0.09 2.12 2.14± 0.93 43.63 46.70± 18.40
ŜHBC 0.03 0.03± 0.01 2.44 2.45± 1.33 57.62 63.02± 28.62

Ginibre Poisson Thomas

Finally, Figure 17 shows the pointwise average of each estimator, across
the 50 point process realizations. The accuracy of Ogata’s quadrature at small
wavenumbers is poor. The bias of the two Hankel quadrature estimators is well
visible at small k for all point processes. This is likely due to poor estimation
of the pair correlation function at large scales.

7 Summary and discussion
We surveyed estimators of the structure factor of a stationary point process,
along with numerical diagnostics of hyperuniformity. We also proposed the
first (asymptotic) test of hyperuniformity based on the debiasing techniques
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ŜHO(k)
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Fig. 17: Pointwise averages of the three estimators that assume isotropy,
across 50 independent samples of the Ginibre, Poisson, and Thomas point
processes. The computation and visualization are done using structure factor

of (Rhee and Glynn, 2015). We provided an open-source Python toolbox
structure factor containing all estimators and diagnostics and used it to bench-
mark known estimators. The two estimators that fared best in our benchmark
are the multitapered variant of the scattering intensity and, in the case of
isotropic point processes, Bartlett’s isotropic estimator. Further comparing
these two estimators is a natural avenue for further work, but needs careful
thinking. For starters, the two estimators are not defined on similar windows,
and they do not require the same number of evaluations for a similar accuracy.
Then, it is not clear how to best choose the tapers in the multitaper estima-
tor, not even mentioning that a multitapered version of Bartlett’s estimator
can also in principle be derived. On the other hand, the computational cost
of Bartlett’s estimator should be lowered, e.g. by subsampling pairs of points.

Estimators based on Hankel transform quadratures, which rely on first
estimating the pair correlation function g, comparatively showed poor perfor-
mance. But it is still possible that estimating g first can help estimating S if,
say, edge correction plays an important role. If the user only has data collected
on a non-rectangular, non-ball window, we would then recommend trying
the Hankel-Baddour-Chouinard estimator. For our benchmarks, though, the
large cardinalities and the regular windows involved do not build upon this
strong point of quadrature-based estimators. It would also be interesting to
investigate edge correction, or regularization schemes for the pair correlation
function, that are tailored to structure factor estimation.

On another note, since the structure factor is a Fourier transform, one
might be tempted to periodize one’s sample before computing estimators.
However, we do not see a clear argument for (or against) periodization yet.
First, if one is using the scattering intensity applied on any of the restricted
allowed wavectors in AresL , then periodizing the point process has no effect
on the estimator. The case of wavevectors in AL, and of other estimators, is

https://github.com/For-a-few-DPPs-more/structure-factor
https://github.com/For-a-few-DPPs-more/structure-factor
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less straightforward. Second, adding periodic boundaries forces an arbitrary
regularity at long distances, which intuitively would impact any empirical
diagnostic of hyperuniformity.

Finally, on the point process side, we hope that our survey and software
can contribute to the standardization and reproducibility of empirical investi-
gations involving structure factors, including the study of hyperuniform point
processes.

Acknowledgements
We thank Jean-François Coeurjolly, Michael Andreas Klatt, David Dereudre,
and Simon Coste for insightful discussions along this project.

Funding
This work is supported by ERC-2019-STG-851866 and ANR-20-CHIA-0002.

Declarations
Conflicts of interest/Competing interests
The authors have no conflicts of interest to declare that relate to the content
of this article.

Code availability
The code is published as an open-source Python toolbox under the project
name structure-factor. The package is licensed under the MITlicense and
is available on Github10 and PyPI11.

References
G. W. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Ran-

dom Matrices. Cambridge University Press, Cambridge, 2009. ISBN
9780511801334. doi: 10.1017/CBO9780511801334.

A. Baddeley, E. Rubak, and R. Turner. Spatial Point Patterns : Methodol-
ogy and Applications with R. Chapman and Hall/CRC, nov 2015. ISBN
9780429161704. doi: 10.1201/B19708.

N. Baddour and U. Chouinard. Theory and operational rules for the discrete
Hankel transform. Journal of the Optical Society of America A, 32(4):611,
apr 2015. ISSN 1084-7529. doi: 10.1364/JOSAA.32.000611.

R. Bardenet and A. Hardy. Monte Carlo with determinantal point processes.
The Annals of Applied Probability, 30(1), feb 2020. ISSN 1050-5164. doi:
10.1214/19-AAP1504.

10https://github.com/For-a-few-DPPs-more/structure-factor
11https://pypi.org/project/structure-factor/

https://github.com/For-a-few-DPPs-more/structure-factor/blob/main/LICENSE
https://github.com/For-a-few-DPPs-more/structure-factor/tree/tapered_periodogram
https://pypi.org/project/structure-factor/
https://github.com/For-a-few-DPPs-more/structure-factor
https://pypi.org/project/structure-factor/


46 CONTENTS

R. Bardenet, S. Ghosh, and M. Lin. Determinantal point processes based on
orthogonal polynomials for sampling minibatches in SGD. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

M. S. Bartlett. The spectral analysis of two-dimensional point processes.
Biometrika, 51(3-4):299–311, mar 1964. ISSN 0006-3444. doi: 10.1093/
biomet/51.3-4.299.

J. Beck. Irregularities of distribution. I. Acta Mathematica, 159(0):1–49, 1987.
ISSN 0001-5962. doi: 10.1007/BF02392553.

A. Belhadji, R. Bardenet, and P. Chainais. Kernel quadrature with DPPs. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32,
pages 12927–12937, 2019.

A. Belhadji, R. Bardenet, and P. Chainais. Kernel interpolation with contin-
uous volume sampling. In H. D. III and A. Singh, editors, International
Conference on Machine Learning (ICML), volume 119 of Proceedings of
Machine Learning Research, pages 725–735. PMLR, 2020a.

A. Belhadji, R. Bardenet, and P. Chainais. A determinantal point process for
column subset selection. Journal of Machine Learning Research, 21(197):
1–62, 2020b.

C. A. N. Biscio and R. Waagepetersen. A general central limit theorem and a
subsampling variance estimator for α-mixing point processes. Scandinavian
Journal of Statistics, 46(4):1168–1190, dec 2019. ISSN 0303-6898. doi:
10.1111/sjos.12389.

J. Boursier. Optimal local laws and CLT for 1D long-range Riesz gases. ArXiv
e-prints, Dec 2021. doi: 10.48550/arXiv.2112.05881.
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Schönhöfer, B. S. Gardiner, A.-S. Smith, G. E. Schröder-Turk, and
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A Proof of Proposition 3
Proof Let M ∈ Lp with p > 0. We first prove that Zm → Z in Lp. As we have
Zm → Z a.s., it is enough to show that Zm is uniformly bounded in Lp. For a
realization M ′ of M we have,

|Zm| ≤
m∧M ′∑
j=1

|Yj − Yj−1|
P(M ≥ j) ≤

M ′

P(M ≥M ′) .

By assumption M ∈ Lp so Zm is uniformly bounded in Lp. This proves the first part
of the proposition.

Before proving the additional two points, note that, since S is continuous,
E[Ŝm(kmin

m )] −−−−→
m→∞

S(0). (57)
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Now, let us prove the first point of the proposition. Assume that M ∈ L1 and X is
hyperuniform, so that S(0) = 0. Since Ŝm is nonnegative, Equation (57) yields

Ŝm(kmin
m ) L1

−−−−→
m→∞

0.

Moreover, letting f : x 7→ 1 ∧ x, |f(x)| ≤ x on R+, so that

E[|f(Ŝm(kmin
m ))|] ≤ E[Ŝm(kmin

m )]→ 0,

and
Ym = f(Ŝm(kmin

m )) L1
−−−−→
m→∞

0. (58)

Since E[Ym] = E[Zm] and Zm converges in L1 to Z, by unicity of the limit, we have
E[Z] = 0.

It remains to show the last point of the proposition. Assume again that M ∈ L1,
but that X is not hyperuniform, so that S(0) > 0. Reasoning by contradiction,
assume that E[Z] = 0. As E[Ym] = E[Zm] and Zm converges in L1 to Z, we get

E[Ŝm(kmin
m )1{Ŝm(kmin

m )<1}] −−−−→m→∞
0, (59)

and
E[1{Ŝm(kmin

m )≥1}] −−−−→m→∞
0. (60)

Meanwhile,
E[Ŝm(kmin

m )] −−−−→
m→∞

S(0) > 0.

Using Equation (59), we get

E[Ŝm(kmin
m )1{Ŝm(kmin

m )≥1}] −−−−→m→∞
S(0) > 0. (61)

Finally, Cauchy-Schwarz, together with Condition (54) and Equation (60) yield

E[Ŝm(kmin
m )1{Ŝm(kmin

m )≥1}] ≤ E1/2[Ŝ2
m(kmin

m )]× E1/2[1{Ŝm(kmin
m )≥1}]

→ 0,

which contradicts Equation (61) and ends the proof. �

B Validity of Assumption (54)
In what follows, we show that Assumption (54) is satisfied for a homoge-
neous Poisson point process X of intensity ρ, Ŝ = ŜSI, and Wm are increasing
rectangular windows.

Let Nm = |X ∩Wm|. Then

ρ2|Wm|2E[Ŝ2
m(k)] = E

∣∣∣∣∣ ∑
x∈X∩Wm

e−i〈k,x〉

∣∣∣∣∣
2
2

= E
[
N2
m +

( x 6=y∑
x,y∈X∩Wm

e−i〈k,x−y〉)2 + 2Nm
x 6=y∑

x,y∈X∩Wm

e−i〈k,x−y〉
]

= E
[
2N2

m −Nm
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+
x 6=y∑

x,y∈X∩Wm

2Nme−i〈k,x−y〉 + e−i2〈k,x−y〉

+
x6=y 6=z∑

x,y,z∈X∩Wm

2e−i〈k,x−y〉 + e−i〈k,2x−y−z〉 + ei〈k,2x−y−z〉

+
x6=y 6=z 6=t∑

x,y,z,t∈X∩Wm

e−i〈k,x−y+z−t〉
]

= E
[
2N2

m −Nm +
x 6=y∑

x,y∈X∩Wm

4e−i〈k,x−y〉 + e−i2〈k,x−y〉

+
x 6=y 6=z∑

x,y,z∈X∩Wm

4e−i〈k,x−y〉 + e−i〈k,2x−y−z〉 + ei〈k,2x−y−z〉

+
x 6=y 6=z 6=t∑

x,y,z,t∈X∩Wm

e−i〈k,x−y+z−t〉
]

= E[2N2
m −Nm]

+
∫
Wm×Wm

(
4e−i〈k,x−y〉 + e−i2〈k,x−y〉

)
ρ2dxdy

+
∫
Wm×Wm×Wm

(
4e−i〈k,x−y〉 + e−i〈k,2x−y−z〉

+ ei〈k,2x−y−z〉
)
ρ3dxdydz

+
∫
Wm×Wm×Wm×Wm

e−i〈k,x−y+z−t〉ρ4dxdydzdt.

The last line was obtained using the definition of the n-th product density
ρ(n) and that for any n ≥ 1, ρ(n) of X simplifies to ρn. It is a well-known
property of homogeneous Poisson point processes (Chiu et al., 2013, Section
2.3.3). Now, using the parity of 1Wm and that Nm is a Poisson r.v., we get

E[Ŝ2
m(kmin

m )] = 1
(ρ|Wm|)2

[
ρ|Wm|+ 2(ρ|Wm|)2

+ ρ4F4(1Wm)(kmin
m )

+ ρ2
(

4F2(1Wm)(kmin
m ) + F2(1Wm)(2kmin

m )
)

+ ρ3
(

4|Wm|F2(1Wm)(kmin
m )+

2F(1Wm)(2kmin
m )F2(1Wm)(kmin

m )
)]
. (62)
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Upon noting that kmin
m = ( 2π

L1
, · · · , 2π

Ld
) and

F(1Wm)(k) =
d∏
j=1

sin(kjLj/2)
kj/2

.

Equation (62) simplifies to

E[Ŝ2
m(kmin

m )] = 1
ρ|Wm|

+ 2.

Thus Assumption (54) holds.
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