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Abstract

Data assimilation consists in combining a dynamical model with noisy

observations to estimate the latent true state of a system. The dynamical

model is generally misspecified and this generates a model error which is

usually treated using a random noise. The aim of this paper is to suggest

a new treatment for the model error that further takes into account the

physics of the system: the physics informed model error. This model error

treatment is a noisy stationary solution of the true dynamical model. It is

embedded in the ensemble Kalman filter (EnKF), which is a usual method

for data assimilation. The proposed strategy is then applied to study the

heat di↵usion in a bar when the external heat source is unknown. It is

compared to usual methods to quantify the model error. The numerical

results show that our method is more accurate, in particular when the

observations are available at a low temporal resolution.
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1 Introduction

This paper is part of the framework of data assimilation. In meteorology and
oceanography, see Ghil and Malanotte-Rizzoli [8], or for factory issues as ex-
plained in Ailliot et al.[1], the goal of data assimilation is to reconstruct the
real state of a system, for instance the sea surface temperature, taking into
account observation data. It consists in combining a dynamical model, which
describes the temporal evolution of the system, with observation data that con-
tain measurement errors due to the sensors. The ensemble Kalman filter (EnKF)
developed in Evensen [6] is a usual data assimilation method. The principle of
this algorithm is to compute an ensemble of possible trajectories for the system,
called the ensemble members, which are then corrected using the observation
data. However the dynamical model embedded in this method generates an
error, with respect to the reality, complicated to quantify. This model error
is usually treated using a stochastic term with zero mean and a variance to
specify. The main contribution of the paper is to propose an original treatment
for the model error which further takes into account the physics of the system.
This novel method is applied here to a simple case studied: the heat equation.
The model error is treated by using a particular solution of this equation that
includes a stochastic part. The e�ciency of this method is then assessed by
comparing its error to the ones of usual methods.

In Section 2, the model error is defined and di↵erent methodologies to mit-
igate it are given. The EnKF is then detailed in Section 3. The Section 4
describes the studied case and the new model error treatment. Numerical re-
sults are then discussed in Section 5. Finally, some remarks and perspectives
are given in Section 6.

2 The model error in data assimilation

Two steps are involved in the sequential data assimilation process : the forecast
and the analysis. For the forecast, the dynamical model is often used with
an additive Gaussian white noise, to compensate the lack of knowledge due to
unknown physical phenomena, or to correct a wrong parameterization of the
dynamical model. The latter can be determined by two di↵erent approaches. If
physical processes of the system are known, parameterized partial di↵erential
equations (PDEs) or ordinary di↵erential equations (ODEs) are solved: this
is the model-driven approach. Whereas when the underlying phenomena are
unknown, a machine learning tool based on the available observation data may
be used: this is the data-driven approach, as illustrated in Lguensat et al.[9]. For
the analysis, the new observation is used to modify the forecast. The real state
is in general partially observed by the sensors, so the observation corresponds to
the observed parts of the real state. The observation is estimated by applying
an observation operator to the forecast. This observation operator returns the
forecast for the observed parts of the real state. The di↵erence between the
observation and its estimate is called the innovation. The Kalman gain is then
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applied to this innovation to correct the forecast. It is the optimal operator in
the sense that when applied to the innovation it is supposed to minimize the
mean square error with respect to the real state.

The additive noise in the forecast step is used to probe the di↵erence between
the real state and the output of the dynamical model, which is the solution of
the dynamical model applied to the previous state estimate. This di↵erence
is the consequence of the model error. Estimating the covariance matrix of
the model error treatment allows to quantify the model uncertainty, di↵erent
techniques based on the method of moments or the maximum likelihood of the
innovation are shown in Tandeo et al.[11].

The inflation method established by Anderson and Anderson [2] is usually
used to correct the bad forecasting especially due to the treatment of the model
error. It consists in increasing the coe�cients of the covariance matrix of the
forecasts, multiplying this matrix by a time-dependent scalar determined by the
equations of Desroziers et al.[5]. A temporal smoothing could be necessary if
this inflation factor is too noisy.

Another approach is detailed in Brajard et al.[4] and Farchi et al.[7], where
the model error is treated using the output of a neural network.

Stochastic parametrization is also frequently used for numerical weather pre-
diction. Instead of adding a treatment for the model error to the output of
the dynamical model, the unknown physical process is directly replaced in-
side the dynamical model by a stochastic term. The PDEs involved in the
dynamical model become Stochastic-PDEs (SPDEs) but are solved with high
computational cost to obtain the forecasts. Di↵erent strategies of stochastic
parametrizations are described in Palmer et al.[10] and Berner et al.[3].

The new approach detailed in this paper is slightly di↵erent from the others:
the model error is treated using a randomized solution of the stationary PDE
involved in the dynamical model.

3 The ensemble Kalman filter

Sequential data assimilation is based on the following state-space model

⇢
Xk = M [Xk�1] + ⌘k

Yk = H[Xk] + "k

(1a)

(1b)

where Xk 2 Rn is the real state at the discrete time tk = (k � 1)dt, with
k 2 [1, ...,Kfinal] and dt is the time step. Yk 2 Rp is the observation. M is the
dynamical model applied to the previous state andH is the observation operator
giving the observed components of Xk. ⌘k ⇠ N (0, Q) and ✏k ⇠ N (0, R) are
the uncertainties with Gaussian assumptions, respectively the treatments for
the model error and the observation error. Indeed the observation contains an
error, due to the sensor, which is often treated using a Gaussian white noise with
a covariance matrix R to specify, but this is not the purpose of the paper. The
goal is to estimate the real state given the dynamical model and the observation
data.
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The EnKF provides an ensemble of N estimates for the real state at each
time tk. During the forecast step, the EnKF determines the N forecasts Xf,i

k for
i 2 [1, ..., N ], thanks to the dynamical model and the treatment for the model
error. Then knowing the new observation Yk, those forecasts are corrected us-
ing the innovation d

i
k to obtain the N analyses X

a,i
k . X

a,i
1 corresponds to the

initial condition X0 of the dynamical model, plus ⌘
i
1 ⇠ N (0, Q), to generate

the ensemble members for the first iteration.

Forecast step:

X
f,i
k = M [Xa,i

k�1] + ⌘
i
k ⌘

i
k ⇠ N (0, Q) (2)

X
f
k =

1

N

NX

i=1

X
f,i
k (3)

P
f
k =

1

N � 1

NX

i=1

(Xf,i
k �X

f
k )(X

f,i
k �X

f
k )

T (4)

P
f
k is the estimated covariance matrix of the forecasts and notably depends

on Q.

Analysis step:

Kk = P
f
k H

T (HP
f
k H

T +R)�1 (5)

d
i
k = Yk + "

i
k �HX

f,i
k "

i
k ⇠ N (0, R) (6)

X
a,i
k = X

f,i
k +Kkd

i
k (7)

X
a
k =

1

N

NX

i=1

X
a,i
k (8)

The estimation of Q and R is a key point in data assimilation as explained in
Tandeo et al.[11]. Most of the time, the model error treatments are uncorrelated
in space. A strategy to further take into account the physics and mitigate the
model error is discussed hereafter.

4 The physics informed model error

The new approach for the treatment of the model error is applied to the assimi-
lation of temperature data of a metallic bar heated on its center. The real state
is the solution of the following inhomogeneous heat equation

@X

@t
(x, t)� ↵

@
2
X

@x2
(x, t) = r(t) for x 2 [0, 1] and t > 0 (9)
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with the initial and boundary conditions

X(x, 0) = sin(⇡x) and X(0, t) = X(1, t) = 0. (10)

X(x, t) is the real temperature at the position x on the bar at time t. The
goal is to estimate X(x, t) without knowing the external heat source r(t) on the
right-hand side of equation (9), using the EnKF with the following dynamical
model and model error treatment.

The dynamical model:

The misspecified dynamical model used is the homogeneous heat equation:

@X

@t
(x, t)� ↵

@
2
X

@x2
(x, t) = 0 (11)

with the same initial and boundary conditions as (10).
The space is then discretized such as 0 = x1 < ... < xj < ... < xn = 1, with

dx the space step. The semi-discretization in space of (11) is led by using the
centered finite di↵erence scheme

@X

@t
(xj , t) = ↵

X(xj+1, t)� 2X(xj , t) +X(xj�1, t)

(dx)2
for j 2 [2, ..., n� 1] (12)

with X(xj , 0) = sin(⇡xj) and X(x1, t) = X(xn, t) = 0.

Then this ODE is discretized in time and solved using a RK4-5 scheme with
the R-function ode. The latter allows to give the solution of the dynamical
model for t = dt knowing the initial condition X0.

The model error treatment (physics informed model error):

As the external heat source r(t) is unknown, the use of a relevant treatment
for the model error is necessary to compensate this lack of knowledge. The
solution of the stationary heat equation with noisy right-hand side is chosen to
treat the model error. To determine it we solve the related stationary equation
with r(t) = r unknown constant

�↵
@
2
X

@x2
(x, t) = r since

@X

@t
(x, t) = 0

() @X

@x
(x, t) = � r

↵
x+ c1

() X(x, t) = � r

2↵
x
2 + c1x+ c2.

The constants c1 and c2 are determined thanks to the boundary conditions

X(0, t) = c2 = 0

X(1, t) = � r

2↵
+ c1 = 0 ) c1 =

r

2↵
.
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So the solution of the stationary equation is w(x) = r
2↵ (�x

2 + x). This
solution is made noisy by replacing r by a one-dimensional noise rik ⇠ N (0,�2),
which refers to the ensemble member i and the time tk for the forecast step.
The parameter � is to specify by practice. The resulting model error treatment
is

w
i
k =

0

BBBBBB@

w
i
k(x1)
...

w
i
k(xj)
...

w
i
k(xn)

1

CCCCCCA
with w

i
k(xj) =

r
i
k

2↵
(�x

2
j + xj). (13)

The algorithm used to estimate the temperature X(x, t) is detailed in Ta-
ble 1. In the forecast step, the term M [Xa,i

k�1] corresponds to the solution at

t = dt of the dynamical model with the initial condition X0 replaced by X
a,i
k�1.

In the analysis step, p points on the bar among n are observed, these observation
data are contained in Yk.

Table 1: EnKF with the physics informed model error.

Initialization: for i = 1, . . . , N
generate w

i
1

X
a,i
1 = X0 + w

i
1

For k � 2
Forecast : for i = 1, . . . , N
generate w

i
k

X
f,i
k = M [Xa,i

k�1] + w
i
k

X
f
k = 1

N

PN
i=1 X

f,i
k

P
f
k = 1

N�1

PN
i=1(X

f,i
k �X

f
k )(X

f,i
k �X

f
k )

T

Analysis : for i = 1, . . . , N
generate "

i
k ⇠ N (0, R)

Kk = P
f
k H

T (HP
f
k H

T +R)�1

d
i
k = Yk + "

i
k �HX

f,i
k

X
a,i
k = X

f,i
k +Kkd

i
k

X
a
k = 1

N

PN
i=1 X

a,i
k

5 Numerical results

The e�ciency of the treatment of the model error previously detailed is assessed
by comparing this method to reference methods used to mitigate the model error
in the EnKF. The following algorithms used for the comparison embed the same
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dynamical model for the forecast step, which corresponds to the homogeneous
heat equation (11) where the di↵usion coe�cient ↵ is known. However the
treatment for the model error in the forecast step is di↵erent for each algorithm.
The analysis step is the same for all the algorithms, with the same observations
simulated by following (1b).

The algorithm that treats the model error by using the method in Section 4 is
called the Physics Informed Model Error algorithm (PIME) and the associated
parameter � is denoted as �PIME . The other algorithms used for the comparison
treat the model error using a Gaussian white noise ⌘

i
k, see (2), but with a

di↵erent covariance matrix Q. One uses Q = �
2
QDIn (In is the n by n identity

matrix): it is called the Q-Diagonal algorithm (QD). Whereas the other puts
Q(i, j) = �

2
QSSe

��|xi�xj | for 1  i, j  n : it is called the Q-Spatial Structure
algorithm (QSS) because it takes into account the position on the bar. The
values of the diagonal of this covariance matrix are equal to �

2
QSS and the more

the elements of the matrix are away from the diagonal, the more the values of
these elements are close to zero, with a speed that depends on the value of the
spatial scale parameter �. The parameters �PIME , �QD, �QSS and � are to
optimize by practice.

As said in Section 4, the real state is the solution of equation (9). The goal
of this study is to compare the e�ciency of each algorithm to retrieve the real
state, without knowing the external heat source r(t).

For the real state we put r(t) = 0.1 sin(t), to have an external heat source
that will alternatively reheat or refresh the bar over time.

The parameters values for the three algorithms are given in Table 2. Among
the n points of interest on the bar, only one in two is observed with low temporal
frequency (every time period dt) and with an important observation noise.

Parameter Value
n 100
p 50
N 30
R 0.01In

Kfinal 30
↵ 0.05
dt 1

Table 2: Parameters values.

Each algorithm is assessed using the global Root Mean Square Error

Global RMSE =
1

Kfinal

KfinalX

k=1

vuut 1

nN

NX

i=1

(Xa,i
k �Xk)T (X

a,i
k �Xk). (14)

For QSS, the global RMSE is computed for di↵erent values of �QSS and �.
The global RMSE of QSS is more sensitive to the value of �QSS than to the
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value of �. To minimize the global RMSE of QSS with respect to �, we put
� = 0.01.

The parameters �PIME , �QD and �QSS are optimized by minimizing the
global RMSE for each algorithm. To this end, we put �PIME = �QD = �QSS =
� and vary � using the logarithmic scale

�
10�5

, 10�4.9
, 10�4.8

, ..., 10�0.1
, 1
 
.

The global RMSE of each algorithm for each value of � is plotted in Figure 1.

Figure 1: Optimization of �PIME , �QD and �QSS .

For each algorithm, the value of � that minimizes the global RMSE is shown
in Table 3. The numerical results reported hereafter are obtained using these
values.

�PIME 0.016
�QD 0.001
�QSS 0.050

Table 3: Optimal values for �PIME , �QD and �QSS

The temporal evolution of the heat di↵usion in the bar is shown in Figure
2. The average of the analysis ensemble X

a
k is used to obtain the image of the

di↵usion for each algorithm. Contrary to QD and QSS, PIME partially retrieves
the reheating of the bar (at t9, t15 and t28) due to the unknown external heat
source.
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Figure 2: Comparison of the evolution of the heat di↵usion for the analysis of
each algorithm (the more the color is red, the more the temperature is close to
zero).

The global RMSE is computed for each algorithm and given in Table 4.
PIME is the most accurate, followed by QSS and QD.

Algorithm Global RMSE
PIME 0.017
QD 0.048
QSS 0.025

Table 4: Global RMSE of each algorithm.

Focusing on time t4, X
f
4 and X

a
4 are plotted for each algorithm with the real

state X4 and the observation Y4 in Figure 3.
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Figure 3: Comparison of the values of Xf
4 and X

a
4 for the di↵erent algorithms.

In Figure 3, for the three algorithms the analysis is better than the forecast
as expected. PIME gives the best analysis. The one of QSS is slightly less
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accurate, mainly at the boundaries of the bar. QD gives the worst analysis and
the temperature fields are not smooth in space: this is a consequence of using a
diagonal matrix for Q and thus no spatial correlation for the model error treat-
ment.

The e�ciency of each algorithm is now studied for the middle of the bar,
which is the point where the error is the most important. To achieve this,
the value of the 50th component of Xa

k is plotted as a function of tk for each
algorithm. In Figure 4, PIME and QSS can retrieve the oscillations of the
temperature due to r(t), with a better accuracy for PIME. Whereas QD is
unable to reconstruct these oscillations.

Figure 4: Temporal evolution of the estimated temperature of the middle
point for each method.

The same study is done when the time period between two consecutive ob-
servations is increased to dt = 1.5. As there are less observations that contain
informations about r(t), the model error is more important and its treatments
are to adapt by optimizing �PIME , �QD and �QSS with the method related to
Figure 1.
PIME again gives the best estimate in Figure 5 and widens the gap with the
other methods.
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Figure 5: Temporal evolution of the estimated temperature of the middle
point for each method with dt = 1.5.

The e�ciency of PIME, in comparison with the other algorithms, is more
obvious when dt is important. This is also shown in Figure 6, where the global
RMSE for each value of dt is plotted for each algorithm. The parameters �PIME ,
�QD and �QSS are optimized for each value of dt.

Figure 6: Global RMSE of each algorithm according to the value of dt.

When dt is smaller, PIME and QSS are more accurate and have nearly the
same error. There are more observations that give informations on the real
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states, that is why the error of each algorithm is less important. The added
value of PIME cannot be seen easily when dt is too small, because the system
does not evolve enough to let appear a sort of stationary state which is ap-
proached by PIME thanks to its physics informed model error.

Lastly, to check if the results discussed above for PIME are robust versus
random perturbations in the observation noise and in the noise of the model
error treatment, a confidence interval for the temporal evolution of the RMSE
of PIME is built. To this end, the experience of the heat di↵usion in the bar
is repeated 100 times for PIME with the parameters values of Table 2 and
�PIME = 0.016. The real state, dynamical model and model error remain the
same, whereas the values of the observations and of the model error treatment
vary from one experience to another because of the random noise. At each
experience, the temporal evolution of the RMSE of PIME is determined by
computing the RMSE for each time tk

RMSE(tk) =

vuut 1

nN

NX

i=1

(Xa,i
k �Xk)T (X

a,i
k �Xk). (15)

The average of these temporal evolutions of RMSE is plotted in red in Figure 7
and the 95% confidence interval in grey is computed for each time tk.

Figure 7: Confidence interval for the temporal evolution of the RMSE of
PIME.

The evolution of the RMSE depends on the evolution of the external heat
source: larger RMSE values are obtained when |r(tk)| is larger.

The peak at t1 is due to X
a,i
1 for which the initial condition X0 is perturbed

by w
i
1 to generate the ensemble members (see Table 1), producing first a rela-

tively important RMSE that then decreases by using the dynamical model in
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the forecast step at t2. This peak is also observed for the other algorithms and
for the same reason.

The confidence interval is globally narrow. This shows that PIME is stable
with respect to the observation noise and the noise in the model error treatment.

6 Conclusion

A new treatment for the model error in the EnKF was introduced, taking
further into account the physics of the system. This treatment is a randomized
solution of the stationary PDE involved in the dynamical model. This method
was applied to the heat di↵usion in a bar, where the goal was to estimate the
temperature of the bar over time without knowing the external heat source. In
this context, our method was compared to reference methods to mitigate the
model error. The numerical results showed the e�ciency of our physics
informed model error, especially when the frequency of the observations was
low.
The online estimate of �PIME by using the state augmentation method may
be interesting to further vary in time the physics informed model error and
could lead to better results.
The physics informed model error may be extended to more complex physical
phenomena such as the estimation of the sea surface temperature (SST).
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