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Microfacet based material appearance models are commonly considered as a physical plausible represen-
tation of matter-light interaction. With such models, the microgeometry of a surface element is defined
by a statistical distribution of microfacets. The mathematical formulation ensures physical plausibility,
such as energy conservation and reciprocity. Many authors have addressed microfacet BSDF represen-
tations, with various Normal Distribution Functions (NDFs) and their relationship with shadowing and
masking, or the effects due to multiple light scattering on the microgeometry. However, an extensive
study on how an actual microgeometry drives material appearance still is missing. This question is a key
issue for inverse design and manufacturing. This paper contributes in filling this gap by proposing a
complete pipeline composed of a microgeometry generation process and numerical lighting simulation.
From any input NDF, our method generates a controlled and structured microgeometry, integrated within
numerical light scattering simulation. Reflected light is gathered using a virtual goniophotometer. From a
given set of parameters, we use our pipeline to study the impact of microgeometry structures on material
light scattering in case of rough surfaces. The obtained results are discussed and compared with already
existing approaches when they exist in the pipeline. © 2020 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Though material appearance modeling has been studied for
long, it still remains an intensive field of research. One key
challenge is the prediction of reflectance using numerical sim-
ulation, in order to control or simulate the final aspect of a
manufactured object [1]. In many cases, the mathematical mod-
els dedicated to material appearance (denoted as Bidirectional
Scattering Distribution Function, or BSDF) must fulfill various
requirements: Physical plausibility, ability to naturally represent
existing/measured materials, visual realism, computation effi-
ciency, etc. Microfacet distributions are considered nowadays as
a reference for physically plausible BSDF representations and is
widely studied for inverse design for instance.

With microfacet based BSDFs, a surface element is consid-
ered as a distribution of submillimeter facets, defined using a
normal distribution function (or NDF). The steeper the slopes,
the rougher the surface. In addition, shadowing and masking ef-
fects have to be accurately managed. Historically, this has been
addressed using either two dimensional V-cavity profiles, or
Smith’s assumptions. The former is mathematically correct but
does not correspond to realistic surfaces. The latter makes the
assumption that microfacet normals (slopes) are not correlated,

even in close proximity. Using one or the other model makes
a visible difference on material appearance, especially for high
roughnesses.

More recently, some authors have proposed using explicit mi-
crogeometry instead of a statistical representation. Light transfer
is performed through path tracing simulation on the correspond-
ing heightfield [2–4]. From a given normal distribution, multiple
instances of microgeometry maps can be generated. For a given
slopes distribution, strong disparities can appear, with varying
structures, including deep valleys and large plateaus or high
frequency surface variations. Besides, even small variations on
the geometry may lead to quite different BSDFs.

To the best of our, no study has been proposed for the anal-
ysis of such variations in terms of surface versus BSDF, based
on normal distributions. This paper proposes (i) a framework
dedicated to the study of BSDF behavior, based on microfacet
surface generation and (ii) an analysis of the variety of BSDFs
produced depending on the surface roughness.

Based on normal distributions and their associated plausi-
ble microgeometries, our study relies on numerical lighting
simulations, from flat surfaces, or constrained by predefined
macrostructures. This approach provides a mean to study sep-
arately the first bounce and the multi-bounce scattering effect.
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Light scattered by the surface is gathered by a virtual gonio-
photometer, that mimics real devices. We show how material
appearance changes (i.e. changes in the BSDF) according to the
underlying microgeometry, and we study the impact of micro-
geometry divergences in the corresponding BSDF, especially
for very rough surfaces. Our results illustrate various BSDFs
obtained with various microgeometry structures, that can be em-
ployed for improving material appearance with inverse design
processes. We discuss and compare our framework with several
approaches used in the litterature, most of them employed in
contexts different from ours: (i) surface reconstruction methods
from normal distributions; (ii) estimation of multi-bounce light
scattering in microfacet-based BSDFs.

This article is broken down into three distinct parts. The
first one introduces the BSDF microfacet theory, and gives an
overview of the proposed method, according to the state of the
art. The second one shows the framework to construct a height-
map from a normal distribution function. The last part proposes
a study on material appearance depending on the properties
of the microgeometry, including the comparisons mentioned
above.

2. BACKGROUND AND OVERVIEW

The Bidirectional Scattering Distribution Function (or BSDF)
f (i, o, n) describes how a surface element dS of normal n (lit by
a collimated light source from direction i) reflects light toward
an observer direction o. It is defined as the ratio between the
radiance L(i, o, n) reflected by dS toward o, and the incident irra-
diance E(i, n) coming from direction i (notations are presented
in Figure 1).

n

m

i

o

θi θm

θo

ϕm

ϕo

Fig. 1. Geometry of reflection and notations.

A BSDF model is considered as physically plausible, if it satis-
fies Helmoltz reciprocity f (i, o, n)= f (o, i, n), and energy conser-
vation

∫

Ω+
f (i, o, n) |o · n| dωo ≤ 1, ∀i∈Ω+.

The microfacet representation of a BSDF f (i, o, n) is based on
a statistical description of a microfacet distribution. The general
equation is given by:

f (i, o, n)=
∫

Ω+

|i · m|

|i · n|
f µ(i, o, m)

|o · m|

|o · n|
D(m)G(i, o, m)dωm (1)

where f µ(i, o, m) is the BSDF of an individual microfacet as-
sociated with a normal m. Its contribution is weighted by the
distribution D(m) and a geometric attenuation factor G(i, o, m).
D(m) is the Normal Distribution Function (NDF) that defines
the surface roughness, indicating the proportion of microfacets
corresponding to a normal m; G(i, o, m) expresses the portion
of a microfacet of normal m visible from both the light source
and the observer. Many authors have studied the combinations
of distributions and geometric attenuation factors [5–14], that
have to be carefully chosen together [9, 15].

Microfacets are supposed to be oriented toward the upper
hemisphere (D(m)= 0 if m·n≤0), and their projected areas have
to be equal to the macroscopic surface:

∫

Ω+

D(m)|m · n|dωm = 1.

This paper focuses on purely specular microfacets [5, 6, 11],
for which Equation 1 simplifies to:

f (i, o, n)=
F(i, h)D(h)G(i, o, h)

4|i · n||o · n|
, (2)

where h = i+o
||i+o||

is the half-angle vector between i and o, and

F(i, h) corresponds to Fresnel’s reflectance, depending on ni, the
relative refractive index between the material and the exterior
medium refractive index.

Shadowing and Masking

The geometrical attenuation function G(i, o, m) accounts for
self-masking and self-shadowing. The widely used function
proposed by Torrance and Sparrow [5] makes the assumption
that the microsurface corresponds to a set of two dimensional
V-cavity profiles. The shadowing/masking term is thus given
by

G(i, o, h) = max

[

0, min

[

1,
2|i · n||h · n|

|i · h|
,
2|o · n||h · n|

|o · h|

]]

. (3)

This model is mathematically consistent but physically unre-
alistic [15], since no real surface may correspond to the V-
cavity assumption. Nowadays, it is widely agreed that Smith’s
shadowing-masking term [7, 16] is closest to the physical reflec-
tion behavior of rough surfaces. Shadowing and masking are
considered as independent, and G(i, o, m) is thus approximated
using the product of the same two functions G1:

G(i, o, m)= G1(i, m) G1(o, m). (4)

The most important assumption in Smith’s term is that micro-
facet normals are not correlated, even in close proximity. Mathe-
matically, this assumption can be written as follows:

G1(v, m) =







G1(v) v · m > 0

0 v · m < 0
(5)

It has been used by Ashikhmin et al. [9] to derive the following
expression:

G1(v)=
(v · n)

∫

Ω+(v)(v · m)D(m) dωm
. (6)

More convenient expressions of this function can be obtained
starting from the work proposed by Bourlier et al. [7]. For
instance, Walter et al. [11] and more recently Heitz [15] have
expressed the normal distribution in slopes space P22(p, q):

P22(p, q)= cos4 θm D(m), (7)

where p and q correspond to the microsurface slopes in the
macrosurface local coordinate system, defining the normal m,
such that p2 + q2 = tan2 θm. The one-dimensional distribution of
slopes is given by:

P2(q)=
∫ + ∞

- ∞

P22(p, q) dp. (8)
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Finally, G1(v) is obtained by the integration of P2:

G1(v)=
1

1 + Λ(v)
, (9)

where Λ(v)= 1
µ

∫ + ∞

- ∞
(q - µ)P2(q) dq and µ = cot θv. A formal

proof of these derivations is given by Heitz [15].
Ross et al. [17] or Heitz et al. [18] propose formulations with

the assumption that masking and shadowing are correlated.
These versions are considered as physically more plausible. The
following expressions is considered by several authors as the
most accurate for masking and shadowing, with an equivalent
computational cost:

G(i, o, m)=
1

1 + Λ(i)+ Λ(o)
. (10)

Smith’s shadowing-masking factor directly depends on the
chosen NDF. This latter thus has to be carefully chosen in order
to derive an analytical expression for G1 (Equation 6) and Λ

(Equations 9 or 10).

Study overview

Microfacet based BSDF formulation, as stated in Equations 1
and 2, suffers from two major limitations. The first one is in-
herent to its statistical background which does not correspond
to actual microgeometry profiles. Both assumptions (V-cavity
and Smith) consider that no correlation exist between microfacet
slopes: This is often broken with real world materials, especially
with manufactured objects. The second limitation is related to
the fact that microfacet BSDF models do not take into account
the scattering of light between microfacets. The lighting sim-
ulation process thus results in abnormally dark surfaces, due
to incorrect loss of energy, even with non-absorptive materials.
This is particularly true with highly rough surfaces associated
with steep slopes microfacets: Microfacet models assume that
light is not scattered and never leaves the surface. A recent work
proposed by Heitz et al. [19] handles these effects with specific
normal distributions (Beckmann [20] and GGX [11]). Kulla and
Conty [21] or Turquin [22] propose to precompute and tabu-
late a non physically based approximation of the lost energy,
according to the distribution roughness parameter for the same
NDFs. Multiple scattering has also been recently addressed in
the context of V-cavity profile assumptions [23–25]. All these
methods are build upon a statistical representation of the surface
associated to the corresponding assumptions,V-cavity or Smith,
and not with actual microgeometry.

However, multiple microfacet geometric configurations may
correspond to the same NDF. The way how the surface struc-
tures drive the optical behavior of the material is not addressed
in microfacets based BSDF models and constitute one of their
weaknesses.

One important issue addressed in this paper concerns the
construction of a microfacet surface mesh from a slopes (or
normal) distribution in order to estimate the actual observed
BSDF, including light multiple scattering on the surface itself.
The key issue is to construct a plausible surface from a given
normal distribution. Many authors have proposed to generate
heightfields from height probability distributions and autocor-
relation [26, 27], but they cannot be extended to slope distribu-
tions [2]. C0 continuous surface have been generated by several
authors from Gaussian slope probability distributions [4], or
continuous C−1 surface (i.e., with height discontinuities) from
non-Gaussian slope probability distributions [28–30]. Weyrich

et al. [31, 32] propose an approach suitable for non-Gaussian
surfaces, but it still does not ensure surface continuity and it is
not designed to reproduce smooth distributions [33].

Ribardière et al. [2] propose a framework for building ex-
plicit surfaces from any input NDF, and estimating BSDF. This
paper extends this framework and studies the impact of micro-
geometry on material appearance for several configurations. As
stated above, previous methods [19, 23, 24] represent multiple
light interactions only through statistical representations of the
surface: Either with V-cavities for [23, 24] (Figure 2-a), or with
microflakes where microfacets never join in [19] (Figure 2-b).
Neither of them corresponds to a possible realistic microgeome-
try. Instead, we propose to generate a microgeometry from any
statistical description through the NDF (Section 3). We then run
numerical lighting simulation, and a virtual goniophotometer
gathers reflected light (Section 4-A). Our surface reconstruction
procedure includes the management of topology constraints to
control the microgeometry structure, and may use a user-defined
input surface. A wide range of microgeometry shapes can be
generated thanks to this process for one given NDF. Based on
this framework we study the connections between microgeome-
try shapes and material appearance for rough microsurfaces.

a)

i o

b)

oi

c)

i o

Fig. 2. Statistical methods (a-b) simulate light interaction with
unrealistic microgeometry: (a) V-cavity profiles and (b) mi-
croflakes. (c) Our method allows to generate explicit microge-
ometry from any statistical description of the geometry (NDF)
and performs numerical lighting simulation on this surface to
compute the corresponding BSDF.

3. MICROSURFACE CONSTRUCTION

The goal of our method is to construct a surface from a set of
Lm microfacet orientations, generated by an importance sam-
pling process (based on the chosen distribution function, see
Figure 3.a). In practice, the procedure consists in rearranging
the normals on a uniform grid, so as to produce a C0 continuous
surface (i.e., without discontinuities). Unfortunately, for a grid
size of 4096 by 4096 vertices, the number of possible permuta-
tions in Lm is 224!. A brute-force algorithm is thus not suitable
for exploring all the solutions. Instead, we propose to employ
an iterative shape-from-gradient approach, suitable with any
distribution: First, the set of normals Lm is randomly distributed
on the regular grid. Second, a microfacet surface is produced
thanks to this distribution, using integration, providing a start-
ing surface. Unfortunately, the resulting slopes distribution is
not consistent with the initial NDF. The iterative process consists
in the following steps (see Figure 3): (b) The derivative is com-
puted, in order to derive the associated gradient field ∇h+; (c)
The normals of the obtained surface are replaced by the closest
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Starting surface b) Surface to 

normal map c) Normal matching
d) Normal map to 

surface

e) Surface constraint

height

a) Sampling NDF

threshold

Fig. 3. Flow chart of surface reconstruction: From a sampling
NDF (a), a normal map is generated with or without a starting
surface; Then, an iterative process is used to converge towards
a surface with the same NDF (b-d); Some constraints could be
applied at each iteration (e).

possible normals in Lm (each normal in Lm is used only once),
based on a random process in order to spread the matching error
on the surface ; (d) The resulting normal map defines a new
gradient field to integrate, producing a new rough surface h;
This process is repeated from (b) to (d) until convergence.

This process ensures that the final surface is not spatially cor-
related. We propose to enrich the process with specific starting
surfaces, chosen by the user, in order to introduce surface macro-
structures. In addition, we have managed surface constraint
filters (Figure 3.e), that can operate before the next iteration. As
an example, we have employed height limitation.

Several methods have been proposed in the literature for inte-
grating a noisy gradient field ∇h (i.e., with discontinuities) [34–
36]. The conversion of ∇h into a height field h requires that ∇h
complies with Schwarz’s theorem, expressed in its discrete form
as:

∂h(x, y)

∂x
+

∂h(x + 1, y)

∂y
=

∂h(x, y)

∂y
+

∂h(x, y + 1)

∂x
. (11)

We have chosen the Frankot-Chellappa algorithm [37], that re-
lies on a Fourier transform applied to the gradient field. This
solution guarantees Dirichlet boundary conditions, and the re-
sults are obtained within short computation times, even for large
surfaces. It consists in minimizing a least square error function
W defined by the following equation:

W =
∫ ∫

(

−∂h(x, y)

∂x
− p

)2

+

(

−∂h(x, y)

∂y
− q

)2

dxdy, (12)

where h(x, y) is the original surface. Using Parseval’s theorem,
the expression that links the Fourier transform of the surface
H(u, v) and the Fourier transform P(u, v) and Q(u, v) of the

gradients
{

p = ∂h
∂x , q = ∂h

∂y

}

is:

H(u, v) =
−juP(u, v)− jvQ(u, v)

u2 + v2
, (13)

where (u, v) 6= (0, 0). From this relation, a surface h is directly
obtained by the inverse Fourier transform of H. Due to the use of
the fast Fourier transform, a surface is obtained from a gradient
filed within short computation times, even for large surfaces.

In the same way, Step (c) is accelerated thanks an accelerating
structure. The normals of Lm expressed in the gradient domain
p and q, are placed in a uniform grid. The matching of ∇h+(x, y)
from unused values of Lm is then performed in a selected cell.

In case of missing value, the search is performed in neighboring
cells, using with a spiral path.

In the remainder of this paper, all the generated surfaces
correspond to a grid of 4096 by 4096 pixels. According to the
constraints defined at step (e) or to the starting surface, and from
a given normal distribution, the proposed method may pro-
duce surfaces with very different properties in terms of macro-
structure or height autocorrelation functions.

Figure 4 illustrates an example of four different surfaces ob-
tained from GGX distribution with σ = 1.0 and various config-
urations of the proposed method. A height threshold Zlim is
used at step (e) (see Figure 4.b), is expressed in number of pixel.
As illustrated in Figure 4, applying surface constraints does not
alter the non-correlation property while allowing to change the
macro-geometry appearance.

π
4

π
2

Fig. 4. Four height-maps obtained from GGX distribution,
with σ = 1.0 and (a) a full random process, (b) no starting
surface with an height control for the surface constraint step,
(c-d) microfacets obtained with two different starting surfaces,
respectively a "Domes" and a "Holes" surface (without any
height constraint). For each result, the autocorrelation function
is provided in inset and (e) final normal distribution.

The surfaces generated with this method follow the Smith’s
assumptions[16], unless a specific starting surface is employed;
The latter defines the final autocorrelation function. This type
of surface generally corresponds to manufactured objects. The
four examples produced by our method finally have the same
microfacet normal distribution. The estimated accuracy between
desired and obtained normal distribution curves should take
the projected microfacet area (sin θm) into account. For instance,
with a given isotropic GGX distribution with σ = 1.0, the final
surface will be defined using a low number of microfacets with
a normal angle θm close to 0 and a high number of microfacets
with a normal angle θm close to π

2 .

4. LIGHT SCATTERING SIMULATION AND ANALYSIS

From a surface obtained using the reconstruction process de-
scribed above1, numerical lighting simulations can be per-
formed, in order to gather the corresponding practical BSDF.
Our virtual goniophotometer is described in Section A. In the

1Note that the obtained heighfield is converted to geometrical mesh composed
of triangles
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case of Beckmann’s distribution, a comparison is given in Sec-
tion B. The chosen case studies and the results of our analysis
are discussed in Section C.

The panel of appearance configurations that can be produced
by microfacet based BSDF is infinitely wide, and we propose to
address the main features offered by our method for generating
rough microgeometry and simulating the material appearance.
Moreover, for the sake of clarity, we set the Fresnel term to 1,
that corresponds to perfect mirror microfacets, and we consider
a mono-wave length case.

A. Virtual Goniophotometer

Let us consider a virtual gonioreflectometer defined as a hemi-
spherical sensor [38] with equal-area cells (i.e., iso-solid angle
and with the same aspect ratio for all cells to mitigate acquisition
bias). Similarly to a real gonioreflectometer system, a collimated
light beam illuminates the microsurface from a fixed direction,
defined by spherical angles θi and ϕi (Figure 5).

(a) Hemispherical sensor (b) Numerical lighting simula-
tion

Fig. 5. Virtual goniophometer and lighting simulation

The reflected light leaving the microsurface is captured by the
hemispherical sensor cells, after one bounce (L1), two bounces
(L2), or more (L2+). The resulting histogram (i.e., values gath-
ered in each sensor’s cell) is proportional to f (i, o) cos θo, with
o the center direction of one sensor’s cell. Virtual gonioreflec-
tometers have been used for long [39, 40] and by many authors.
Our system differs from these previous work in two ways: (i) It
handles all light bounces on the surface, and (ii) it uses a high
resolution sensor instead of basis functions (e.g. spherical har-
monics in [39, 40]), that are prone to filtering artifacts and/or
require a large number of coefficients. In our case, the maximum
area of the sensor cells have to be carefully chosen, because
accuracy depends on (i) the generated surface size and (ii) the
input normal distribution roughness. We generate 40962 grids,
corresponding to 16mm2 real patches. To efficiently cover all
the surface, the number of light paths samples for each incident
direction is set to 3 × 40962. The goal is to statistically reach all
the sensor cells. The angular cell resolution is set to 0.35◦, for all
the results produced in this paper. It corresponds to a balance
between avoiding over-filtering effects due to low number of
cells, and noisy representation in reconstructed signal due to too
small cells (Figure 6). As a comparison, the EZ-Contrast from
Eldim [41] has an angular resolution of 0.4◦ and the ConDOR
facility (Conoscopic Device for Optic Reflectometry) [42] devel-
oped by the LNE-CNAM has an angular resolution of 0.018◦

(this is one of the most precise existing device). The latter is ded-
icated to study the shape of a 1◦ width specular peak that does
not correspond to our level of surface roughness study. With
this system, only the specular peak can be analyzed, because of
the required acquisition time.
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Fig. 6. Sensor resolution has to be carefully chosen according
to the BSDF signal reconstruction accuracy. Low resolutions
produce strong filtering effects while high resolutions pro-
duce noisy signals. The virtual goniophotometer is employed
with 40962 2D mesh grids, built from GGX distribution with
σ = 0.05 (high frequency BSDF) and σ = 1 (low frequency
BSDF). For each roughness, first row stands for L1 and second
row for L2+.

B. Comparisons with existing approaches

Firstly, we propose a comparison of our microsurface construc-
tion against the method proposed by Heitz et al. [3, 4]. This
latter is limited to Beckmann’s distribution, and to the best of
our knowledge no other alternative exists in the literature for
generating a C0 continuous surface from a given normal distri-
bution. As shown in Figure 7, the results are similar for both
L1 (with height correlated Smith’s GAF) and L2+. This results
illustrates that for the specific case of Beckmann’s distribution,
our approach provides consistent results compared to Heitz’s.

Secondly, we also provide comparisons of light multiple re-
flexions on microfacet surfaces with the two most recent ap-
proaches: (i) V-cavity representations, that received recent im-
provement to take into account multiple-scattering [23, 24]; (ii)
Heitz’s approach [19], based on a fully probabilistic raytracing
built upon Smith’s assumptions [16]. Figure 8 illustrates the
results of BSDF simulations corresponding to GGX distribution
with σ = 1.0 for both L1 and L2+ and for two incident direc-
tions (θi = 0o and θi = 57.3o ). BSDF values are represented
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Fig. 7. BSDF comparisons with Beckmann’s distribu-
tion (σ = 0.75), between surfaces generated with Heitz’s
method [3] and ours. The incident angle is θi = 1.5 rad, with
Er the total amount of reflected energy, L1 one-bounce BSDF,
and L2+ multiple-bounce BSDF only. Column Model L1 corre-
sponds to Cook-Torrance model (one bounce only), Column
6= L1 corresponds to the absolute difference between L1 and
Model L1.

in false color with a projection of the virtual goniophotometer
hemispherical sensor data on the surface mean plane. Each row
illustrates the results obtained with a chosen strategy. Very simi-
lar results are obtained for L1 with Heitz’s approach and ours
when no height constraint is applied (2nd and 3rd row). How-
ever, the former one produces uniform values for L2+ when ours
provide an highlights in case of an incident angle equal to 0. The
same phenomenon can be observed with V-cavities, that exhibit
a higher intensity and for all incident angles. Note that the use of
V-cavities tends to produce a BSDF which is very different from
the results obtained using the uncorrelated assumption (which
is physically much more plausible). Height limits and macro
structure constraints have been applied to constrain the surface
shape, for the same GGX distribution configuration. As is shown
in lines 4-6 in Figure 8, L2+ values obtained with continuous
surfaces are never close to the results obtained by Heitz’s ap-
proach, showing how the micro-geometry orgnaization impacts
the BSDF shape and so the material appearance).

C. Case study and analysis

To study at which slope intensity multiple scattering become
prohiminent, we also use an inverse shifted heaviside step func-
tion as a normal distribution. Depending on an angle θc that
represents the slope limit of microfacets, surfaces are generated
(Figure 9). For two incident angles and one slice plane, the result-
ing BDRF for each surface height-map is illustrated in Figure 10.
These results highlight several interesting remarks. As expected
for θi = 0, the multi-bounce L2+ coefficient is close to zero when
micro-facet slope angle θc is always under π

4 . Moreover with
this configuration, L1 is close to constant for θo from −2θc to 2θc

that corresponds to the maximum mirror angle. For different
θi angles, L2+ values can be modelled by a single lobe: Thinner
with a significant value towards the mirror angle when θc is
under 3π

16 and, larger with back-scattering reflections such as L1

values when θc is over π
4 . For lower values of θc from π

8 to π
4

and for θi = 0, L2+ values define a two lobe function that be-
comes a single one. Figure 11 shows this phenomenon for lower
variations of θc. For more grazing incident angles θi, the L2+

lobe is firstly centered to the mirror angle and it slowly shifts to
produce back-scattering effects.

In the next experiment, the height level of the generated

Er =0.453 Er =0.546 Er =0.766 Er =0.234

Er =0.307 Er =0.693 Er =0.434 Er =0.566

Er =0.434 Er =0.552 Er =0.650 Er =0.344

Er =0.309 Er =0.669 Er =0.505 Er =0.440

Er =0.397 Er =0.595 Er =0.615 Er =0.381

Er =0.334 Er =0.658 Er =0.497 Er =0.486

0 0.02 0.04 0.06 0.08 0.1 0 0.04 0.08 0.12 0.16 0.2

0 0.04 0.08 0.12 0.16 0.20 0.2 0.4 0.6 0.8 1

Fig. 8. Comparisons between different strategies for numerical
BSDF calculation from GGX distribution with σ = 1.0. The
two first rows correspond to the state of the art and the others
to our method with various constraints.

height-maps is constrained, with θc =
π
2 , corresponding to GGX

with σ = 1.0 (third and fourth row of the figure 8 and figure
12). The auto-correlation function shows that height-maps do
not contain any macro structure. Counterintuitively, L1 is more
diffuse in the case of a higher height limitation, for all incident
angles (figure 13), in contrast to the L2+ coefficient that is thinner
when θi equal to zero and lower than others for more grazing
incident angle, as might be anticipated. Because all these height-
maps do not contain any macro structure, the resulting BSDFs
are fully isotropic. Rather, a macro structure constraint could
strongly modified the BSDF shape. The three last rows of the
figure 8 illustrate this phenomenon, for a same NDF (i.e. θc =

π
2 ),

the holes constrained height-map produce a structured BSDF
shape when domes or height limit constraints do not really
modify the BSDF shape compared to unconstrained height-map
generation. Finally, a visual comparison of these different results
is shown in figure 14 with physically-based rendering using a
path tracing method. The two state-of-the-art methods produce
very different visual results. V-cavities provide mirror effects
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Fig. 9. Generated height-maps from an inverse shifted Heavi-
side step function with different value of θc, with ∆θc

= π
200
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Fig. 10. BSDF results obtained from the surfaces illustrated in
figure 9.
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Fig. 11. L2+ BSDF results for low variations of θc around π
4 .

Fig. 12. Height-maps obtained form the GGX distribution
with σ = 1.0 and a constraint of height limit. For each height-
map, the inset shows the autocorrelation function.
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Fig. 13. BSDF results form surfaces shown in figure 12.

when Heitz’s results are much closer to the expected aspects.
Our method with height limitation is also close to this latter.
However, different shiny effects can be also observed. More
importantly, our generated height-maps with macro-geometric
constraint produces very interesting results, with anisotropy
despite an isotropic NDF.

Fig. 14. Images rendered with numerical lighting simulation
using BSDF from Figure 8

This phenomenon is confirmed by the BSDF as shown in fig-
ure 15 with GGX distribution with σ = 1.0 for both L1, L2+ and
two values of ϕi. Figure 16 illustrates the NDF of the "Domes"
and "Holes" surface for various values of ϕi. Despite an isotropic
NDF, this result demonstrates that the BSDF of a surface depends
on different levels of microfacet geometry.

In the last experiment illustrated in this paper, hand made
distribution based on an anisotropic cardinal sinus function
is used to evaluate the possibilities offered by our framework.
Figure 17 shows the obtained BSDF from this normal distribution
whitout any constraint during surface construction. It is a well-
known fact that a specific NDF has a significant impact on the
appereance and this final result shows this phenomenon.

5. CONCLUSION

This paper presents a complete framework for numerically pre-
dicting the material appearance of rough microgeometries. Our
approach relies on the construction of a realistic height-map
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Fig. 15. Numerical BSDF calculation from GGX distribution
with σ = 1.0 and two different values of ϕi for generated
height-map with "Domes" or "Holes" initial constraint.
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Fig. 16. Normal distribution of "Domes" and "Holes" height-
map according to θm, for several values of ϕi.

with controlled geometric properties, for taking into account
multi-bounces of light reflections. The proposed method is com-
pared to the state of the art, with (i) the V-Cavity assumption
and (ii) the fully probabilistic approach of Heitz [19] that does
not relie on any practical microgeometry. As illustrated in our
results, the appearance of a rough surface depends on both the
normal distribution function and the macro-geometry structure
(i.e. the height distribution function or geometric structure). The
key feature of our framework is the management of various
parameters for controlling macro- and micro-geometry, that in-
fluence the final material appearance. It is an essential step to
create new BSDF models that better take account of the surface
structure diversities. In the context of 3D printing, such a control
on the microgeometry is mandatory in order to manage the final
appearance, as shown in [1]. Thus, a natural extension of our
method is to make use of the constraints due to 3D printers to
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Fig. 17. A hand made anisotropic distribution: The top-left
image compares the input NDF (L) with the resulting NDF
(∇h+), the second image corresponds to the surface generated
by our process. The other images show the BSDF captured by
our virtual goniophotometer.

manage side effects and control for instance new visual patterns.

Disclosures. The authors declare no conflicts of interest.

REFERENCES

1. A. Luongo, V. Falster, M. B. Doest, M. M. Ribo, E. R. Eiriksson, D. B.

Pedersen, and J. R. Frisvad, “Microstructure control in 3d printing with

digital light processing,” Comput. Graph. Forum n/a (2019).

2. M. Ribardière, B. Bringier, L. Simonot, and D. Meneveaux, “Microfacet

bsdfs generated from ndfs and explicit microgeometry,” ACM Trans.

Graph. 38, 143:1–143:15 (2019).

3. E. Heitz, “Generating procedural beckmann surfaces,” Tech. rep. (2015).

Https://eheitzresearch.wordpress.com/research/.

4. E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering

microfacet bsdfs with the smith model,” ACM Transactions On Graph.

SIGGRAPH Asia proceedings 35 (2016).

5. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection

from roughened surfaces,” J. Opt. Soc. Am. 57 (1967).

6. R. L. Cook and K. E. Torrance, “A reflectance model for computer

graphics,” in ACM SIGGRAPH proceedings, (1982).

7. C. Bourlier, G. Berginc, and J. Saillard, “One- and two-dimensional

shadowing functions for any height and slope stationary uncorrelated

surface in the monostatic and bistatic configurations,” IEEE Transac-

tions on Antennas Propag. 50 (2002).

8. M. Oren and S. K. Nayar, “Generalization of lambert’s reflectance

model,” in ACM SIGGRAPH proceedings, (1994).

9. M. Ashikhmin, S. Premoze, and P. Shirley, “A microfacet-based BRDF

generator,” in Proceedings of the 27th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH 2000, New Orleans,

LA, USA, July 23-28, 2000, (ACM, 2000), pp. 65–74.

10. C. Kelemen and L. Szirmay-Kalos, “A Microfacet Based Coupled

Specular-Matte BRDF Model with Importance Sampling,” in Eurograph-

ics 2001 - Short Presentations, (Eurographics Association, 2001).

11. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet

models for refraction through rough surfaces,” in Computer Graphics

Forum, EGSR proceedings, (2007).

12. M. M. Bagher, C. Soler, and N. Holzschuch, “Accurate fitting of mea-

sured reflectances using a shifted gamma micro-facet distribution,”

Comput. Graph. Forum 31 (2012).

13. J. Dupuy, E. Heitz, J. Iehl, P. Poulin, F. Neyret, and V. Ostromoukhov,

“Linear efficient antialiased displacement and reflectance mapping,”

ACM Trans. Graph. 32, 211:1–211:11 (2013).

14. M. Ribardière, B. Bringier, D. Meneveaux, and L. Simonot, “STD: Stu-

dent’s t-Distribution of Slopes for Microfacet Based BSDFs,” Comput.

Graph. Forum (2017).



Research Article Applied Optics 9

15. E. Heitz, “Understanding the masking-shadowing function in microfacet-

based brdfs,” J. Comput. Graph. Tech. 3 (2014).

16. B. Smith, “Geometrical shadowing of a random rough surface,” IEEE

Transactions on Antennas Propag. 15, 668–671 (1967).

17. V. Ross, . Dion, and G. Potvin, “Detailed analytical approach to the

gaussian surface bidirectional reflectance distribution function specular

component applied to the sea surface,” J. Opt. Soc. Am. A 22 (2005).

18. E. Heitz, C. Bourlier, and N. Pinel, “Correlation effect between transmit-

ter and receiver azimuthal directions on the illumination function from

a random rough surface,” Waves in Random and Complex Media 23
(2013).

19. E. Heitz, J. Hanika, E. d’Eon, and C. Dachsbacher, “Multiple-scattering

microfacet bsdfs with the smith model,” ACM Trans. Graph. 35, 58:1–

58:14 (2016).

20. P. Beckmann and A. Spizzichino, The scattering of electromagnetic

waves from rough surfaces (Pergamon Press, 1963).

21. C. Kulla and A. Conty, “Physically based shading in theory and practice -

revisiting physically based shading at imageworks,” in ACM SIGGRAPH

2017 Courses, (2017).

22. E. Turquin, “Practical multiple scattering compensation for microfacet

models,” Tech. rep. (2019).

23. J. H. Lee, A. Jarabo, D. S. Jeon, D. Gutierrez, and M. H. Kim, “Practical

multiple scattering for rough surfaces,” ACM Trans. Graph. 37, 275:1–

275:12 (2018).

24. F. Xie and P. Hanrahan, “Multiple scattering from distributions of specu-

lar v-grooves,” ACM Trans. Graph. 37, 276:1–276:14 (2018).

25. D. Saint-Pierre, P. Chavel, L. Simonot, and M. Hébert, “Angular re-

flectance model for ridged specular surfaces, with comprehensive

calculation of inter-reflections and polarization,” J. Opt. Soc. Am. A 36,

C51–C61 (2019).

26. T. H. Naylor, J. L. Balintfy, D. S. Burdick, and K. Chu, Computer Simu-

lation Techniques (Wiley, 1966).

27. E. I. Thorsos, “The validity of the kirchhoff approximation for rough

surface scattering using a gaussian roughness spectrum,” J. Acoust.

Soc. Am. 83, 78–92 (1988).

28. J. S. Gondek, G. W. Meyer, and J. G. Newman, “Wavelength dependent

reflectance functions,” in Proceedings of the 21st Annual Conference

on Computer Graphics and Interactive Techniques, (ACM, New York,

NY, USA, 1994), SIGGRAPH ’94, pp. 213–220.

29. A. Luongo, V. Falster, M. B. Doest, D. Li, F. Regi, Y. Zhang, G. Tosello,

J. Nielsen, H. Aanæs, and J. R. Frisvad, “Modeling the anisotropic

reflectance of a surface with microstructure engineered to obtain visible

contrast after rotation,” in ICCV 2017 Workshops, (2017), pp. 159–165.

30. T. Pereira, C. L. A. P. Leme, S. Marschner, and S. Rusinkiewicz, “Print-

ing anisotropic appearance with magnetic flakes,” ACM Trans. Graph.

36, 123:1–123:10 (2017).

31. T. Weyrich, P. Peers, W. Matusik, and S. Rusinkiewicz, “Fabricating

microgeometry for custom surface reflectance,” ACM Trans. Graph. 28,

32:1–32:6 (2009).

32. M. Papas, W. Jarosz, W. Jakob, S. Rusinkiewicz, W. Matusik, and

T. Weyrich, “Goal-based caustics,” Comput. Graph. Forum (Proc. Euro-

graphics) 30 (2011).

33. Y. Schwartzburg, R. Testuz, A. Tagliasacchi, and M. Pauly, “High-

contrast computational caustic design,” ACM Trans. Graph. 33, 74:1–

74:11 (2014).

34. B. K. P. Horn, “Shape from shading: a method for obtaining the shape

of a smooth opaque object from one view,” Tech. rep., Cambridge, MA,

USA (1970).

35. W. Xie, Y. Zhang, C. C. L. Wang, and R. C. k. Chung, “Surface-from-

gradients: An approach based on discrete geometry processing,” in

2014 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2014, Columbus, OH, USA, June 23-28, 2014, (2014), pp. 2203–

2210.

36. A. Agrawal, R. Raskar, and R. Chellappa, “What is the range of surface

reconstructions from a gradient field?” in Proceedings of the 9th Euro-

pean Conference on Computer Vision - Volume Part I, (Springer-Verlag,

Berlin, Heidelberg, 2006), ECCV’06, pp. 578–591.

37. R. T. Frankot and R. Chellappa, “A method for enforcing integrability in

shape from shading algorithms,” IEEE Trans. Pattern Anal. Mach. Intell.

10, 439–451 (1988).

38. B. Beckers and P. Beckers, “A general rule for disk and hemisphere

partition into equal-area cells,” Comput. Geom. 45, 275 – 283 (2012).

39. B. Cabral, N. Max, and R. Springmeyer, “Bidirectional reflection func-

tions from surface bump maps,” SIGGRAPH Comput. Graph. 21, 273–

281 (1987).

40. S. H. Westin, J. R. Arvo, and K. E. Torrance, “Predicting reflectance

functions from complex surfaces,” SIGGRAPH Comput. Graph. 26,

255–264 (1992).

41. O. Moreau and T. R. Leroux, “Fast and accurate measurement of

liquid crystal tilt bias angle with the ELDIM EZContrast system,” in

Polarization and Color Techniques in Industrial Inspection, vol. 3826

E. A. Marszalec and E. Trucco, eds., International Society for Optics

and Photonics (SPIE, 1999), pp. 236 – 241.

42. G. Obein, O. Shiraz, and G. Ged, “Evaluation of the shape of the

specular peak for high glossy surfaces,” Proc. SPIE - The Int. Soc. for

Opt. Eng. 9018 (2014).


	Introduction
	Background and overview
	Microsurface construction
	Light scattering Simulation and analysis
	Virtual Goniophotometer
	Comparisons with existing approaches
	Case study and analysis

	Conclusion

