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Long term dynamics of the subgradient method for Lipschitz path

differentiable functions

Jérôme Bolte, Edouard Pauwels, and Rodolfo Ŕıos-Zertuche

January 24, 2023

Abstract

We consider the long-term dynamics of the vanishing stepsize subgradient method in the case
when the objective function is neither smooth nor convex. We assume that this function is locally
Lipschitz and path differentiable, i.e., admits a chain rule. Our study departs from other works in
the sense that we focus on the behavior of the oscillations, and to do this we use closed measures, a
concept that complements the technique of asymptotic pseudotrajectories developed in this setting
by Benäım–Hofbauer–Sorin. We recover known convergence results, establish new ones, and show
a local principle of oscillation compensation for the velocities. Roughly speaking, the time average
of gradients around one limit point vanishes. Various cases are discussed providing new insight into
the oscillation and the stabilization phenomena.
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1 Introduction

The predominance of huge scale complex nonsmooth nonconvex problems in the development of certain
artificial intelligence methods, has brought back rudimentary, numerically cheap, robust methods, such
as subgradient algorithms, to the forefront of contemporary numerics, see e.g., [6, 13, 27, 36, 37]. We
investigate here some of the properties of the archetypical algorithm within this class, namely, the
vanishing stepsize subgradient method of Shor. Given f : Rn → R locally Lipschitz, it reads

xi+1 ∈ xi − εi∂cf(xi), x0 ∈ Rn,

where ∂cf is the Clarke subgradient, εi → 0, and
∑∞

i=0 εi =∞. This dynamics, illustrated in Figure
1, has its roots in Cauchy’s gradient method and seems to originate in Shor’s thesis [52]. The idea is
natural at first sight: one accumulates small subgradient steps to make good progress on average while
hoping that oscillations will be tempered by the vanishing steps. For the convex case, the theory was
developed by Ermol’ev [29], Poljak [47], Ermol’ev–Shor [30]. It is a quite mature theory, see e.g. [43,
44], which still has a considerable success through the famous mirror descent of Nemirovskii–Yudin [8,
43] and its numerous variants. In the nonconvex case, developments of more sophisticated methods
were made, see e.g. [35, 38, 45], yet little was known for the raw method until recently.

The work of Davis et al. [25], see also [12], revolving around the fundamental paper of Benäım–
Hofbauer–Sorin [9], brought the first breakthroughs. It relies on a classical idea of Euler: small-step
discrete dynamics resemble their continuous counterparts. As established by Ljung [40], this obser-
vation can be made rigorous for large times in the presence of good Lyapunov functions. Benäım–
Hofbauer–Sorin [9] showed further that the transfer of asymptotic properties from continuous differen-
tial inclusions to small-step discrete methods is valid under rather weak compactness and dissipativity
assumptions. This general result, combined with features specific to the subgradient case, allowed
to establish several optimization results such as the convergence to the set of critical points, the
convergence in value, convergence in the long run in the presence of noise [13, 16, 25, 51].

Usual properties expected from an algorithm are diverse: convergence of iterates, convergence in
values, rates, quality of optimality, complexity, or prevalence of minimizers. Although in our setting
some aspects seem hopeless without strong assumptions, most of them remain largely unexplored.
Numerical successes suggest however that the apparently erratic process of subgradient dynamics has
appealing stability properties beyond the already delicate subsequential convergence to critical points.

In order to address some of these issues, this paper avoids the use of the theory of [9] and focuses
on the delicate question of oscillations,1which is illustrated on Figures 1 and 2.

In general, as long as the sequence {xi}i remains bounded and satisfies xi+1 − xi = εivi for some
vectors vi and positive scalars εi satisfying

∑∞
i=0 εi = +∞, we always have∑N

i=0 εivi∑N
i=0 εi

=
xN − x0∑N

i=0 εi
→ 0 as i→ +∞. (1)

This fact, that could be called “global oscillation compensation,” does not prevent the trajectory
to oscillate fast around a limit cycle, as illustrated in [24], and is therefore unsatisfying from the
stabilization perspective of minimization. The phenomenon (1) remains true even when {xi}i is not a
gradient sequence, as in the case of discrete game theoretical dynamical systems [9].

1In Figure 1, we see the sequence descending along a ridge. The jumps xi+1 − xi can be decomposed into two
components, one that is parallel to the “ridge” and another one that is perpendicular to it; we will informally refer
to these components, respectively, as the drift and the bouncing, without attempting to define these concepts formally,
(see however the discussion before Lemma 8). Similarly we shall often use the term oscillations to evoke notable and
persistent variations of the directional term xi+1 − xi/‖xi+1 − xi‖ over time.
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Figure 1: Contour plot of a Lipschitz function with a subgradient sequence. The color reflects the
iteration count. The sequence converges to the unique global minimum, but is constantly oscillating.
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Figure 2: On the left, the contour plot of a convex polyhedral function with three strata, where the
gradient is constant. A subgradient sequence starts at (0.3,−0.7) and converges to the origin with an
apparent erratic behavior. On the right, we discover that the behavior is not completely erratic. The
oscillation compensation phenomenon contributes some structure: the proportions λi of time spent in
each region where the function has constant gradient gi, i = 1, 2, 3, converge so that we have precisely
λ1g1 + λ2g2 + λ3g3 = 0.

In this work, we adapt the theory of closed measures, which was originally developed in the calculus
of variations (see for example [5, 10]), to the study of discrete dynamics. Using it, we establish several
local oscillation compensation results for path differentiable functions. Morally, our results in this
direction say that for limit points x we have

“ lim
δ↘0

N→+∞

∑
06i6N
‖x−xi‖6δ

εivi

∑
06i6N
‖x−xi‖6δ

εi
= 0 ” (2)

See Theorems 4 and 5 for precise statements, and a discussion in Section 3.3.
While this does not imply the convergence of {xi}i, it does mean that the drift emanating from the

average velocity of the sequence vanishes as time elapses. This is made more explicit in the parts of
those theorems that show that, given two distinct limit points x and y of the sequence {xi}i, the time
it takes for the sequence to flow from a small ball around x to a small ball around y must eventually
grow infinitely long, so that the overall average speed of the sequence as it traverses the accumulation

3



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

set becomes extremely slow.
With these types of results, we evidence new phenomena:

— while the sequence may not converge, it will spend most of the time oscillating near the critical
set of the objective function, and it appears that there are persistent accumulation points whose
importance is predominant;

— under weak Sard assumptions, we recover the convergence results of [25] and improve them by
oscillation compensations results,

— oscillation structures itself orthogonally to the limit set, so that the incremental drift along this
set is negligible with respect to the time increment εi.

These results are made possible by the use of closed measures. These measures capture the
accumulation behavior of the sequence {xi}i along with the “velocities” {vi}i. The simple idea of not
throwing away the information of the vectors vi allows one to recover a lot of structure in the limit,
that can be interpreted as a portrait of the long-term behavior of the sequence. The theory that we
develop in Section 4.1 should apply to the analysis of the more general case of small-step algorithms.
Along the way, for example, we are able to establish a new connection between the discrete and
continuous gradient flows (Proposition 18) that complements the point of view of [9].

Notations and organization of the paper. Let n be a positive integer, and Rn denote n-
dimensional Euclidean space. The space Rn×Rn of couples (x, v) is seen as the phase space consisting
of positions x ∈ Rn and velocities v ∈ Rn. For two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we
let u · v =

∑n
i=1 uivi. The norm ‖v‖ =

√
v · v induces the distance dist(x, y) = ‖x− y‖, and similarly

on Rn ×Rn. An open ball of center x and radius r is denoted B(x, r). The Euclidean gradient of f is
denoted by ∇f(x). The set N contains all the nonnegative integers.

In Section 2 we give the definitions necessary to state our results, which we do in Section 3. The
proofs of our results will be given in Section 5. Before we broach those arguments, we need to develop
some preliminaries regarding our main tool, the so-called closed measures; we do this in Section 4.

2 Algorithm and framework

2.1 The vanishing step subgradient method

Consider a locally Lipschitz functions f : Rn → R, denote by Reg f the set of its differentiability
points which is dense by Rademacher’s theorem (see for example [31, Theorem 3.2]). The Clarke
subdifferential of f is defined by

∂cf(x) = conv
{
v ∈ Rn : there is a sequence {yk}k ⊂ Reg f with yk → x and ∇f(yk)→ v

}
where convS denotes the closed convex envelope of a set S ⊂ Rn; see [22]. A point x such that
0 ∈ ∂cf(x), is called critical. The critical set is

crit f = {x ∈ Rn : 0 ∈ ∂cf(x)}.

It contains local minima and maxima. The algorithm of interest in this work is:

Definition 1 (Small step subgradient method). Let f : Rn → R be locally Lipschitz and {εi}i∈N be
a sequence of positive step sizes such that

∞∑
i=0

εi = +∞ and εi ↘ 0. (3)

4



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Given x0 ∈ Rn, consider the recursion, for i > 0,

xi+1 = xi − εivi, vi ∈ ∂cf(xi).

Here, vi is chosen freely among ∂cf(xi). The sequence {xi}i∈N is called a subgradient sequence.

In what follows the sequence εi is interpreted as a sequence of time increments, and it naturally
defines a time counter through the formula:

ti =

i∑
j=0

εj

so that ti →∞ as i→∞. Given a sequence {xi}i and a subset U ⊆ Rn, we set

ti(U) =
∑

xj∈U, j6i
εj ,

which corresponds to the time spent by the sequence in U between times 0 and ti.

When f has a locally Lipschitz continuous gradient, bounded sequences are eventually descent
sequences, i.e. f(xi) is nonincreasing and they approach the critical set, see e.g. [1] and references
therein. When f is nonsmooth, the descent property does not hold anymore and oscillations appear
both in values f(xi) and in space xi. The objective of this article is precisely to study these oscillations.

Recall that the accumulation set acc{xi}i of the sequence {xi}i is the set of points x ∈ Rn such
that, for every neighborhood U of x, the intersection U ∩ {xi}i is an infinite set. Its elements are
known as limit points.

If the sequence {xi}i is bounded and comes from the subgradient method as in Definition 1, then
‖xi − xi+1‖ → 0 because εi → 0 and ∂cf is locally bounded by local Lipschitz continuity of f , so
acc{xi}i is compact and connected, see e.g., [17].

Accumulation points are the manifestation of recurrent behaviors of the sequence but the frequency
of the recurrence is ignored. In the presence of a time counter, here {ti}i, this persistence phenomenon
may be measured through presence duration in the neighborhood of a recurrent point. This idea is
formalized in the following definition:

Definition 2 (Essential accumulation set). Given a step size sequence {εi}i ⊂ R>0 and a subgradient
sequence {xi}i ⊂ Rn as in Definition 1, the essential accumulation set ess acc{xi}i is the set of points
x ∈ Rn such that, for every neighborhood U ⊆ Rn of x,

lim sup
N→+∞

∑
16i6N
xi∈U

εi

∑
16i6N

εi
> 0, that is, lim sup

N→+∞

tN (U)

tN
> 0.

Analogously, considering the increments {vi}i ⊂ Rn, we say that the point (x,w) is in the essential
accumulation set ess acc{(xi, vi)}i if for every neighborhood U ⊂ Rn × Rn of (x,w) satisfies

lim sup
N→+∞

∑
16i6N

(xi,vi)∈U

εi

∑
16i6N

εi
> 0.

5
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As explained previously, the set ess acc{xi}i encodes significantly recurrent behavior; it ignores
sporadic escapades of the sequence {xi}i. Essential accumulation points are accumulation points but
the converse is not true. If the sequence {xi}i is bounded, ess acc{xi}i is nonempty and compact, but
not necessarily connected.

2.2 Regularity assumptions on the objective function

Lipchitz continuity and pathologies. Recall that, given a locally Lipschitz function f : Rn → R,
a subgradient curve is an absolutely continuous curve satisfying,

γ′(t) ∈ −∂cf(γ(t)), a.e. on (0,+∞) and γ(0) = x0.

By general results these curves exist, see e.g., [9] and references therein. In our context they embody
the ideal behavior we could hope from subgradient sequences.

First let us recall that pathological Lipschitz functions are generic in the Baire sense, as established
in [19, 56]. In particular, generic 1-Lipschitz functions f : R→ R satisfy ∂cf ≡ [−1, 1] everywhere on
R. This means that any absolutely continuous curve γ : R→ R with ‖γ′‖ 6 1 is a subgradient curve
of these functions, regardless of their specifics. Note that this implies that a curve may constantly
remain away from the critical set.

The examples by Danillidis–Drusvyatskiy [24] make this erratic behaviour even more concrete. For
instance, they provide a Lipschitz function f : R2 → R and a bounded subgradient curve γ having the
“absurd” roller coaster property

(f ◦ γ)(t) = sin t, t ∈ R.

Although not directly matching our framework, these examples show that we cannot hope for satisfying
convergence results under the spineless general assumption of Lipschitz continuity.

Path differentiability. We are thus led to consider functions avoiding pathologies. We choose to
pertain to the fonctions saines2 of Valadier [55] (1989), rediscovered in several works, see e.g. [16, 18,
25]. We use the terminology of [16]; note however that the equivalent definition proposed in [16] (see
[16, Corollary 2]) is not limited to chain rules involving the Clarke subgradient.

Definition 3 (Path differentiable functions). A locally Lipschitz function f : Rn → R is path dif-
ferentiable if, for each Lipschitz curve γ : R → Rn, for almost every t ∈ R, the composition f ◦ γ is
differentiable at t and the derivative is given by

(f ◦ γ)′(t) = v · γ′(t) for all v ∈ ∂cf(γ(t)).

In other words, all vectors in ∂cf(γ(t)) share the same projection onto the subspace generated by
γ′(t).

Note that the definition of path differentiable functions proposed in [16] is slightly different but
turns out to be equivalent. There, the condition in the definition is required to be satisfied by all
absolutely continuous curves γ; here, instead, we restrict to Lipschitz curves γ. The equivalence
follows from the fact that absolutely continuous curves can be parameterized by arc-length —hence
becoming Lipschitz curves— without affecting their role in the definition.

The class of path differentiable functions is very large and includes many cases of interest functions
that are semi-algebraic, tame (definable in an o-minimal structure, see [25] and references therein.
Tame functions encompass most models and loss functions used in machine learning, such as, for
example, those occurring in neural network training with all the activation functions that have been

2Literally from the French, “healthy functions”, as opposed to pathological.
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considered in the literature, see e.g., [21, 25]. Note that convex, concave, or semi-convex functions
(such as lower or upper Ck functions) are path differentiable; adapt the proof of [20, Lemme 3.3] or
see [25].

3 Main results: accumulation, convergence, oscillation compensa-
tion

We present our main results: first we only assume path differentiability (Section 3.1)), in a second
time this assumption is reinforced by a Sard’s like property (Section 3.2). Our results complement
those of [25] and [9].

The significance of the results is discussed in Section 3.3. The proofs are presented in Section 5.

3.1 The vanishing subgradient method for path differentiable functions

Theorem 4 (Large-time regime for path differentiable functions). Assume that f : Rn → R is locally
Lipschitz path differentiable, and that {xi}i is a bounded subgradient sequence. Then we have:

i. (Slow evolution regime) Let x and y be two distinct points in acc{xi}i such that f(x) 6 f(y).
Let {xik}k be a subsequence such that xik → x as k → +∞, and for each k choose i′k > ik such
that xi′k → y. Then

T̄k =

i′k∑
p=ik

εp → +∞.

ii. (Oscillation compensation) Let ψ : Rn → [0, 1] be a continuous function. Then, for every integer
sequence Nj → +∞,

lim inf
j→+∞

Nj∑
i=0

εiψ(xi)

Nj∑
i=0

εi

> 0 =⇒ lim
j→+∞

Nj∑
i=0

εiviψ(xi)

Nj∑
i=0

εiψ(xi)

= 0.

iii. (Criticality). Each essential accumulation point is critical, ess acc{xi}i∈N ⊆ crit f .

3.2 The vanishing subgradient method for path differentiable functions with a
weak Sard property

We now assume in addition that f is constant on the connected components of its critical set. A Sard-
type property which is automatically valid for some important cases, as for instance, semialgebraic or
tame functions [15] or lower or upper-Ck functions [7] (for k sufficiently large).

Theorem 5 (Large-time regime for path differentiable functions: weak Sard case). In the setting of
Theorem 4, and if additionally f is constant on the connected components of its critical set, then:

i. (Slow evolution regime 2) Let x and y be two distinct points in acc{xi}i, x 6= y, and take δ > 0
small enough that the balls Bδ(x) and Bδ(y) are at a positive distance from each other, that is,

7



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

‖x−y‖ > 2δ. Consider the successive time duration the sequence needs to go from the ball Bδ(x)
to the ball Bδ(y), namely,

Tj = inf{
∑`

p=i εp : j 6 i < `, xi ∈ Bδ(x), x` ∈ Bδ(y)}.

Then Tj → +∞ as j → +∞.

ii. (Long intervals) Let U, V be open neighborhoods of some accumulation point of {xi}i, such that
U ⊂ V . Consider the sequences of indices {ik}k ⊂ N and {jk}k ⊂ N ∪ {+∞} such that (refer to
Figure 3):

• ik < jk < ik+1,

• xi ∈ V for i ∈ Ik := [ik, jk] ∩ N,

• xik−1 and xjk+1 are not in V , and

• there is some j ∈ Ik such that xj ∈ U .

Then either there is some k for which jk = +∞, i.e., Ik is unbounded, or

lim
k→+∞

|Ik| = lim
k→+∞

∑
i∈Ik

εi = +∞.

Figure 3: The intervals Ik in the statement of item (ii) correspond to fragments of the sequence
contained in V and meeting U displayed here in blue.

iii. (Oscillation compensation version 2) Let U ⊂ V be two open sets as in item (ii), and A =
⋃
i Ii

be the corresponding union of maximal intervals. Then

lim
N→+∞

∑
06i6N
i∈A

εivi

∑
06i6N
i∈A

εi
= 0.

iv. (Criticality) Each accumulation point is critical, acc{xi}i ⊆ crit f .

v. (Convergence of the values) The values sequence f(xi) converge to a Clarke critical value as
i→ +∞.

8
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Remark 6. Items (iv) and (v) of Theorem 5 can also be deduced from [9, Proposition 3.27] using a
different approach. The Sard-like assumption on f in [9] is that f(crit f) has empty interior, which is
equivalent, once f is locally Lipschitz, to f being constant on the connected components of crit f ; see
the proof of Lemma 23.

Up to our knowledge, items (i)–(iii) of Theorem 5 as well as Theorem 4 do not have counterparts
in the optimization literature.

Remark 7 (Oscillations and V -shaped valleys). Consider a path differentiable function f : Rn → R
that is C∞ both when restricted to a smooth submanifold S ⊂ Rn with dimS < n and when restricted
to its complement Rn \ S, and assume the gradient of f is bounded away from zero on Rn \ S.

Thus, near S, f forms a V-shaped valley. In this case, we can provide more insight into the
oscillation compensation phenomenon: roughly speaking, the “bouncing” (jumps between to strata
adjacent to S) of {xi}i gets more and more orthogonal to S around x, suggesting that the drift of the
whole sequence should be parallel to S.

Lemma 8 (Normal bouncing in a V -shaped valley). Consider a function f : Rn → R as in the previous
paragraph, and a bounded subgradient sequence {xi}i. Assume that there is a subsequence xij → x
with

lim sup
j→+∞

‖vij‖ > 0 (actual bouncing).

Then x is a critical point contained in the submanifold S with

acc{vij}j ⊂ NS(x) (normal bouncing)

where NS(x) = T⊥S (x) is the normal set to S.

Proof. Let K be a compact set that contains {xi}i in its interior. By the Morse–Sard theorem applied
independently on the submanifold S, f(crit f) is a compact set of measure zero. Thus, it must be a
totally-separated subset of R. It follows that f is constant on each connected component of crit f .
In other words, we are in the setting of Theorem 5. From item (iv) of Theorem 5 we know that
x ∈ acc{xi}i ⊂ crit f , and the additional condition we have on x tells us that ∂cf(x) 6= {0}, so x
cannot be a smooth point of f , whence x ∈ S. Let (x, v) = limj→+∞(xij , vij ) be an accumulation
point of the sequence (xi, vi), and let α : R → Rn be a smooth curve with α(0) = x, α(t) ∈ S for all
t, and α′(0) = w. The path differentiability of f means that the choice of element of ∂cf(α(0)) is
immaterial when we compute (f ◦ α)′(0). So we have

lim
j→+∞

w · vij = v · w = v · α′(0) = (f ◦ α)′(0) = 0.

This geometrical setting is reminiscent of the partial smoothness assumptions of Lewis [39] (a
smooth manifold lies in between the slopes of a sharp valley). While proximal-like methods end up in
a finite time on the smooth locus [34, Theorem 4.1], our result suggests that the explicit subgradient
method keeps on bouncing, approaching the smooth part without actually attaining it. This confirms
the intuition that finite identification does not occur, although oscillations eventually provide some
information on active sets by delineating progressively their normal sets. The observation above can
be extended to the semialgebraic or definable setting using Whitney stratifications.

3.3 Further discussion

Theorems 4 and 5 describe the long-term dynamics of the algorithm. While Theorem 4 only describes
what happens close to ess acc{xi}i focusing on persistent behavior, Theorem 5 covers all of acc{xi}i
that is all recurrent behaviors.

9
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The paper [49] explores the ways in which the results presented above are sharp in the context of
the class of locally-Lipschitz, path-differentiable objective functions f . The paper gives examples of
functions f with corresponding non-converging subgradient sequences {xi}i, also with non-convergent
{f(xi)}i, lack of oscillation compensation outside of ess acc{xi}i, and other interesting properties.

Oscillation compensation. While the high-frequency oscillations will, in many cases, be consid-
erable, they almost cancel out. This is what we refer to as oscillation compensation. The intuitive
picture the reader should have in mind is a statement that the oscillations cancel out locally, as in
(2). Yet, because of small technical minutia, we do not have exactly (2) and obtain instead very good
approximations. Let us provide some explanations.

Letting, in item (ii) of Theorem 4, ψ = ψδ,η : Rn → [0, 1] be a continuous cutoff function equal to
1 on a ball Bη(x) of radius η > 0 around a point x ∈ ess acc{xi}i and vanishing outside the ball Bδ(x)
for δ > η, then we get, for appropriate subsequences {Nj}j ⊂ N,

lim
δ↘0

lim
η↗δ

lim
j→+∞

Nj∑
i=0

εiviψδ,η(xi)

Nj∑
i=0

εiψδ,η(xi)

= 0,

which is indeed a very good approximation of (2).
Similarly, setting, in item (iii) of Theorem 5, U = Bη(x) and V = Bδ(x) the balls centered at x

with radius 0 < η < δ, we obtain this local version of the oscillation cancellation phenomenon: in the
setting of Theorem 5 if x ∈ acc{xi}i and if Aη,δ ⊂ N is the union of maximal intervals I ⊂ N such
that {xi}i∈I ∈ Bδ(x) and {xi}i∈I ∩Bη(x) 6= ∅, then

lim
δ↘0

lim
η↗δ

lim
N→+∞

∑
06i6N
i∈Aη,δ

εivi

∑
06i6N
i∈Aη,δ

εi
= 0.

Note that as we take the limit η ↗ δ, we cover almost all xi in the ball Bδ(x), so we again get a
statement very close to (2).

Convergence. While Theorem 5 tells us that f(xi) converges, we conjecture that this is no longer
true in the context of Theorem 4, which is a matter for future research. Similarly, in the setting of path
differentiable functions, the question of determining whether all limit points of bounded sequences are
critical remains open.

In all cases, including the smooth case, the sequence {xi}i may not converge. A well-known
example of such a situation was provided for the case of smooth f by Palis–de Melo [46].

However, our results show that the drift that causes the divergence of {xi}i is very slow in com-
parison with the local oscillations. This slowness can be immediately appreciated in the statement of
item (i) of Theorem 4 and items (i) and (ii) of Theorem 5. In substance, these results express that
even if the sequence diverges, it takes longer and longer to connect disjoint neighborhoods of different
limit points.

10
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4 A closed measure theoretical approach

Given a nonempty open subset of U of Rn, denote by C0(U) the set of continuous real-valued functions
on U while Cp(U) is the set of p ∈ [1,∞] continuously differentiable real-valued functions on U . The
set LipCurv(U) denotes the space of Lipschitz curves γ : R → U . When U is bounded, LipCurv(U) is
endowed with the supremum norm ‖γ‖∞ = supt∈R ‖γ(t)‖.

4.1 A compendium on closed measures

Elementary facts and density. Given a measure ξ on some set X 6= ∅ and a measurable map
g : X → Y , where Y 6= ∅ is another set, the pushfoward g∗ξ is defined to be the measure on Y such
that, for A ⊂ Y measurable, g∗ξ(A) = ξ(g−1(A)).

Recall that the support suppµ of a positive Radon measure µ on Rm, m > 0, is the set of points
x ∈ Rm such that µ(U) > 0 for every neighborhood U of x. It is a closed set.

The origin of the concept of closed measures, sometimes also called holonomic measures or Young
measures, can be traced back to the work of L.C. Young [57, 58] in the context of the calculus of
variations. It has developed in parallel to the closely related normal currents [32, 33] and varifolds [2,
3], and has found applications in several areas of mathematics, especially Lagrangian and Hamiltonian
dynamics [23, 41, 42, 54], the calculus of variations [4, Section 4.3] and also optimal transport [10, 11].

The definition of closed measures is inspired from the following observations. Given a Lipschitz
curve γ : [a, b]→ Rn, its position-velocity information can be encoded by a measure µγ on Rn×Rn that
is the pushforward of the Lebesgue measure on the interval [a, b] into Rn × Rn through the mapping
t 7→ (γ(t), γ′(t)), that is,

µγ =
1

b− a
(γ, γ′)∗Leb[a,b].

This notation extends readily to the case of curves defined on an arbitrary measurable set J in the
domain of γ:

µγ|J =
1

|J |
(γ, γ′)∗LebJ .

If φ : Rn × Rn → R is a measurable function, then the integral with respect to µγ is given by∫
Rn×Rn

φ(x, v) dµγ(x, v) =
1

b− a

∫ b

a
φ(γ(t), γ′(t)) dt.

With this definition of µγ , it follows that γ is a closed loop, that is, γ(a) = γ(b) if, and only if, for all
smooth g : Rn → R, we have∫

Rn×Rn
∇g(x) · v dµγ(x, v) =

1

b− a

∫ b

a
∇g(γ(t)) · γ′(t) dt

=
1

b− a

∫ b

a
(g ◦ γ)′(t)dt =

g ◦ γ(b)− g ◦ γ(a)

b− a
= 0.

In other words, the integral of ∇g(x) · v with respect to µγ is the circulation of the gradient vector
field ∇f along the curve γ, and so it vanishes when γ is a closed loop. This generalizes into:

Definition 9 (Closed measure). A compactly-supported, positive, Radon measure µ on Rn × Rn is
closed if, for all functions g ∈ C∞(Rn),∫

Rn×Rn
∇g(x) · v dµ(x, v) = 0.

11
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Let π : Rn×Rn → Rn be the projection π(x, v) = x. To a measure µ on Rn×Rn we can associate
its projected measure π∗µ. As an immediate consequence we have that suppπ∗µ = π(suppµ) ⊆ Rn.

The disintegration theorem [26] implies that there are probability measures µx, x ∈ Rn, on Rn
such that, if φ : Rn × Rn → R is measurable, we have∫

Rn×Rn
φdµ =

∫
Rn

[∫
Rn
φ(x, v) dµx(v)

]
d(π∗µ)(x). (4)

We shall refer to the couple (π∗µ, πx) as to the desintegration of µ. Thus

µ =

∫
Rn
µx d(π∗µ)(x).

Definition 10 (Centroid field). Let µ be a positive, compactly-supported, Radon measure on Rn×Rn
desintegrated according to (4). The centroid field v̄x of µ is

v̄x =

∫
Rn
v dµx(v), x ∈ Rn.

The centroid field gives an average velocity at each point; it plays a significant role in our work.
As a consequence of the disintegration theorem [26], x 7→ v̄x is measurable, and for every measurable
φ : Rn × Rn 7→ R linear in the second variable, we have∫

Rn×Rn
φ(x, v) dµ(x, v) =

∫
Rn
φ(x, v̄x) d(π∗µ)(x). (5)

Given the measure µ with centroid field v̄x, we may define its centroidal measure µ̂ on R×R given by∫
R×R

φdµ̂ =

∫
R
φ(x, v̄x) dπ∗µ(x),

for measurable functions φ : Rn ×Rn → R. With this definition, µ is closed if, and only if µ̂ is closed.
Thus the closedness property only depends on the centroid field rather than on the whole constellation
of velocities in the support of µ. Observe that, if a positive Radon measure µ has a centroid field v̄x
that vanishes π∗µ-almost everywhere, then µ is closed because µ̂ is obviously closed.

Young superposition principle. The following result, known as the Young superposition principle
[10, 58] or as the Smirnov solenoidal representation [5, 53], see also [50, Example 6]. What this result
tells us is basically that, not only can closed measures be approximated by measures induced by curves,
but actually the centroidal measure µ̂ can be decomposed into a combination of measures induced by
Lipschitz curves. This decomposition is very useful theoretically, as there are no limits involved.

Let U be a nonempty bounded open subset of Rn and set LipCurv(U) = LipCurv. For t ∈ R, let
τt : LipCurv→ LipCurv be the time-translation τt(γ)(s) = γ(s+ t).

Theorem 11 (Young superposition principle or Smirnov solenoidal representation). For every closed
probability measure µ supported in U × Rn with centroid field v̄x, there is a Borel probability measure
ν on the space LipCurv that is invariant under τt for all t ∈ R and such that∫

Rn
φ(x, v̄x) d(π∗µ)(x) =

∫
LipCurv

φ(γ(0), γ′(0)) dν(γ) (6)

for any measurable φ : Rn × Rn → R.

12
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For details on how to obtain Theorem 11 from [10], please see [14].
Curves lying in supp ν have an appealing property:

Corollary 12 (Centroidal representation of supp ν). With the notation of the previous theorem, we
have for ν almost all γ in LipCurv:

γ′(t) = v̄γ(t)

for almost all t ∈ R.

Proof. Take indeed φ > 0 vanishing only on the measurable set consisting of points of the form (x, v̄x),
x ∈ Rn. Then both sides of (6) must vanish, which means that for ν-almost all γ, the point (γ(0), γ′(0))
must be of the form (x, v̄x). The conclusion follows from the τt-invariance of the measure ν.

As an example, take the case in which µ is the closed measure

µ =
1

2π
(β, β′)∗Leb[0,2π)

on R2 × R2 for
β(t) = (cos t, sin t).

In this simple example, the centroid coincides with the derivative, v̄β(t) = β′(t). Each time-translate
τt(β) is still a parameterization of the circle, and the probability measure ν we obtain in Theorem 11
is

ν =
1

2π

∫ 2π

0
δτt(β)dt,

where δγ is the Dirac delta function whose mass is concentrated at the curve γ in the space LipCurv.

As a general fact, the measure ν in Theorem 11 can be understood as a decomposition of the
closed measure µ into a convex superposition of measures induced by Lipschitz curves. Although at
first sight each γ on the right-hand side of (6) only participates at t = 0, the τt-invariance of ν means
that in fact the entire curve γ is involved in the integral through its time translates τtγ. Observe
that another consequence of the τt-invariance is that the integral in the right-hand side of (6) actually
writes, for all t ∈ R,∫

LipCurv
φ(γ(0), γ′(0)) dν(γ) =

∫
LipCurv

φ(γ(t), γ′(t)) dν(γ)

=
1

|I|

∫
I

∫
LipCurv

φ(γ(t), γ′(t)) dν(γ) dt (7)

=
1

|I|

∫
LipCurv

∫
I
φ(γ(t), γ′(t)) dt dν(γ).

where I is any nontrivial, bounded interval . Thus (6) has the more explicit lamination or superposition
form : ∫

Rn
φ(x, v̄x) d(π∗µ)(x) =

1

|I|

∫
LipCurv

∫
I
φ(γ(t), γ′(t)) dt dν(γ) (8)

=

∫
LipCurv

∫
Rn×Rn

φ(x, v) dµγ|I (x, v) dν(γ) (9)

for any bounded interval I with nonempty interior.

13
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Although the left-hand side of (6) does not involve the full measure µ, it will turn out to be similar
enough: if the integrand φ : Rn ×Rn → R is linear in the second variable v, we still have (5) and this
will be enough for the applications we have in mind.

We remark that the measure ν in Theorem 11 is not unique in general. For example, if γ is a
closed curve intersecting itself once so as to form the figure 8, then, just as the figure 8 can be drawn
in several ways —on a single stroke without lifting the pencil from the paper, or by drawing two circles
separately—, so also the possibilities of different measures ν decomposing µ = µγ reflect this diversity;
ν can be taken to be supported on all the τt-translates of γ itself, or it could be taken to be supported
on the curves traversing each of the loops of the 8.

4.2 Preliminaries on set-valued vector fields and circulation for a subdifferential
field

In the following, we consider set-valued maps Z : Rn ⇒ Rn with the following standing assumption:

Assumption 13. For every x ∈ Rn, the set Z(x) ⊆ Rn is nonempty, convex and locally bounded
(meaning that for every compact subset K ⊆ Rn there is a constant N > 0 such that ‖y‖ 6 N for all
y ∈ Z(x) and all x ∈ K), and such that the graph of Z, defined by

graphZ = {(x, p) ∈ Rn × Rn : p ∈ Z(x)},

is a closed subset of Rn × Rn.

Note that if µ is a closed measure with desintegration (π∗µ, µx) and centroid field v̄x, we obviously
have

a ∈ R, x ∈ Rn and a suppµx ⊂ Z(x)⇒ av̄x ∈ Z(x). (10)

A major example of a set-valued mapping satisfying the above assumption is given by the Clarke
subgradient ∂cf of a locally Lipschitz continuous mapping as defined in Section 2.1. Path-differen-
tiability of a function ensures that the circulation of its subdifferential along any loop vanishes. This
generalizes into:

Proposition 14 (Circulation of subdifferential for path differentiable functions). If g : Rn → R is a
path differentiable function and µ is a closed probability measure, then for each open set U ⊂ Rn and
each measurable function σ : U → Rn with σ(x) ∈ ∂cg(x) for x ∈ U , the integral∫

U×Rn
σ(x) · v dµ(x, v)

is well defined, and its value is independent of the choice of σ. We define the symbol∫
U×Rn

∂cg(x) · v dµ(x, v)

to be equal to this value. If π(suppµ) ⊂ U ,∫
U×Rn

∂cg(x) · v dµ(x, v) = 0.

Proof. Denote by χU : Rn → {0, 1} the indicator function for the open set U ⊂ Rn that is equal to
χU (x) = 1 for x ∈ U and vanishes elsewhere. Let σ1, σ2 : Rn → Rn be two measurable functions such

14
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that σi(x) ∈ ∂cg(x) for each x ∈ U , i = 1, 2. From Theorem 11 we get a τt-invariant, Borel probability
measure ν on the space LipCurv of Lipschitz curves. Then, using (8) for any interval I ⊂ R,∫

U×Rn
σ1(x) · v dµ(x, v)−

∫
U×Rn

σ2(x) · v dµ(x, v)

=

∫
Rn×Rn

χU (x)(σ1(x)− σ2(x)) · v dµ(x, v)

=

∫
LipCurv

1

|I|

∫
I
χU (γ(t))(σ1(γ(t))− σ2(γ(t))) · γ′(t) dt dν(γ).

Since g is path differentiable, for each γ ∈ LipCurv and for almost every t ∈ R with γ(t) ∈ U ,

σ1(γ(t)) · γ′(t) = σ2(γ(t)) · γ′(t).

From the τt-invariance of ν it follows then that the integrand above vanishes ν-almost everywhere.
Let us now analyze the case when π(suppµ) ⊂ U . Let ψ : Rn → R be a mollifier, that is, a

compactly-supported, nonnegative, rotationally-invariant, C∞ function such that
∫
Rn ψ = 1, and let

ψr(x) = r−nψ(x/r) for r > 0, so that ψr tends to the Dirac delta at 0 as r → 0. Denote by ψr ∗ g the
convolution of ψr and g. Observe that if β ∈ LipCurv and a < b, then∫ b

a
(g ◦ β)′(t) dt = g ◦ β(b)− g ◦ β(a)

= lim
r↘0

[(ψr ∗ g) ◦ β(b)− (ψr ∗ g) ◦ β(a)] = lim
r↘0

∫ b

a
((ψr ∗ g) ◦ β)′(t) dt.

This observation, together with (8), justifies the following calculation: for any bounded interval I ⊂ R,∫
Rn×Rn

∂cg(x).v dµ(x, v) =

∫
LipCurv

1

|I|

∫
I
(g ◦ β)′(t) dt dν(β) =

= lim
r↘0

∫
LipCurv

1

|I|

∫
I
((ψr ∗ g) ◦ β)′(t) dt dν(β)

= lim
r↘0

∫
LipCurv

1

|I|

∫
I
∇(ψr ∗ g)(β(t)) · β′(t) dt dν(β)

= lim
r↘0

∫
Rn×Rn

∇(ψr ∗ g)(x) · v dµ(x, v),

which vanishes because µ is closed and ψr ∗ g is C∞.

4.3 Interpolant curves and their limit measures

Given a set-valued map Z satisfying Assumption 13, we shall consider sequences {xi}i satisfying

xi+1 − xi ∈ εiZ(xi). (11)

Thus, for example, if Z = ∂cf , the sequence {xi}i is a subgradient sequence (Definition 1).

In order to analyze the asymptotics of sequences generated by dynamical systems of the form (11),
we shall use the following definition.

Definition 15 (Interpolant curves). Given a sequence {xi}i∈N ⊆ Rn satisfying xi+1 = xi−εivi for some
uniformly bounded vectors vi ∈ Rn and some scalars εi > 0 that satisfy

∑
i εi = +∞, its interpolating

curve is the continuous piecewise affine curve γ : R>0 → Rn with γ(ti) = xi for ti =
∑i

j=0 εi and
γ′(t) = vi for ti < t < ti+1.

15
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Interpolant curves correspond to continuous-time piecewise-affine interpolation of sequences {xi}i,
as the ones produced by the dynamical system (11). They are extremely useful to study the asymptotic
behavior of these sequences.

For a bounded measurable set B ⊂ R>0, we define a measure on Rn × Rn by

µγ|B =
1

|B|
(γ, γ′)∗LebB,

where |B| =
∫
B 1 dt is the length of B, and LebB is the Lebesgue measure on B. If φ : Rn × Rn → R

is measurable, then ∫
Rn×Rn

φdµγ|B =
1

|B|

∫
B
φ(γ(t), γ′(t)) dt.

Lemma 16 (Limiting closed measures associated to bounded sequences). Let γ be the interpolating
curve of a bounded sequence {xi}i as in Definition 15. Let A = {Ii}i∈N be a collection of intervals
Ii ⊂ R, with disjoint interior, such that |Ii| → +∞ as i → +∞. Set BN = ∪Ni=0Ii. Then the set
of weak* limit points of the sequence {µγ|BN }N is nonempty, and its elements are closed probability
measures.

Proof. Let φ ∈ C0(Rn × Rn). For i ∈ N, write Ii = [ti1, t
i
2] and di = ‖γ(ti1) − γ(ti2)‖, and let

αi : [0, di]→ Rn be the segment joining γ(ti2) to γ(ti1) with unit speed. Also, let

νi = (αi, α
′
i)∗Leb[0,di]

be the measure on Rn × Rn encoding αi. Let K ⊂ Rn × Rn be a convex, compact set that contains
the image of (γ, γ′) and (αi, α

′
i) for all i, so that di 6 diamK. Estimate∣∣∣∣∣

∑N
i=0

∫
Rn×Rn φdνi

|BN |

∣∣∣∣∣ =

∣∣∣∣∣
∑N

i=0

∫ di
0 φ(αi(t), α

′
i(t)) dt∑N

i=0 |Ii|

∣∣∣∣∣
6
N(diamK) sup(x,v)∈K |φ(x, v)|∑N

i=0 |Ii|
→ 0

since |Ii| → +∞. Thus the measures in the accumulation sets of the sequences {µγ|BN }N and{
µγ|BN

+

∑N
i=0 νi
|BN |

}
N

(12)

coincide. The measures in the latter sequence are all closed since, for all ϕ ∈ C∞(Rn), we have, by
the fundamental theorem of calculus,∫ ti2

ti1

∇ϕ(γ(t))·γ′(t) dt+

∫ di

0
∇ϕ(α(t)) · α′(t) dt

=

∫ ti2

ti1

(ϕ ◦ γ)′(t) dt+

∫ di

0
(ϕ ◦ α)′(t) dt

= [ϕ(γ(ti2))− ϕ(γ(ti1))] + [ϕ(α(di))− ϕ(αi(0))]

= [ϕ(γ(ti2))− ϕ(γ(ti1))] + [ϕ(γ(ti1))− ϕ(γ(ti2))] = 0,

and the measures in the sequence (12) are sums of multiples of these.
By Prokhorov’s theorem [48], the set of probability measures on K is compact, so the set of limit

points is nonempty. The set of closed measures is itself closed, as it is defined by a weak* closed
condition.

Thus the limit points must also be closed measures.
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Note that two bounded sequences {xi}i and {yi}i having similar asymptotic behavior may give
rise to the same set of limiting closed measures through their interpolanting curves; this is the case
for example when we start the subgradient method (Definition 1) for the function f(x) = |x|, x ∈ R,
at two different initial positions x0 6= y0, as in this case the only possible limiting measures are δ(0,0)
and 1

2δ(0,−1) + 1
2δ(0,1). The coincidence of limiting measures is a manifestation of the concentration

phenomenon discussed in [4, Section 4.3].

Lemma 17 (Limit points and limiting measure supports). Let γ be the interpolating curve as in
Definition 15. Consider the set acc{µγ|[0,N ]

}N of limit points of the sequence {µγ|[0,N ]
}N in the weak*

topology. We have ⋃{
π(suppµ) : µ ∈ acc{µγ|[0,N ]

}}N
}

= ess acc{xi}i.

Proof. Assume x ∈ ess acc{xi}i and let B ⊂ Rn be a closed ball whose interior contains x. Let
C > 0 be a uniform bound of ‖vi‖ = ‖xi+1 − xi‖/εi 6 C, i ∈ N, which exists by Definition 15. Let
ψ : Rn → R>0 be a continuous function with suppψ ⊆ B. Since ψ is uniformly continuous on B, given
ε > 0, there is n0 > 0 such that i > n0, x, y ∈ B, and ‖x − y‖ 6 εiC imply |ψ(x) − ψ(y)| 6 ε. We
hence have |ψ(xi)− ψ(γ(t))| 6 ε for ti 6 t 6 ti+1 and i > n0. Thus, for S > n0,∣∣∣∣∣

S∑
i=n0

εiψ(xi)−
∫ tS

tn0

ψ(γ(t)) dt

∣∣∣∣∣ 6 ε(tS − tn0).

Since x ∈ ess acc{xi}i ⊂ B, there is δ > 0, such that for all n1 > n0 there is S > n1 with∑
16i6S εiψ(xi)∑S

i=0 εi
> δ.

Then, taking ε = δ/2, ∫
Rn×Rn

ψ(x) dµγ|[0,tS ]
(x, v) >

1

tS

∫ tS

tn0

ψ(γ(t)) dt

>

∑S
i=n0

εiψ(xi)∑S
i=0 εi

− εtS − tn0

tS

> δ − ε = δ/2 > 0.

It follows that there is an infinite number of integers S satisfying the previous inequality so that there
is some µ ∈ acc{µγ|[0,N ]

}N with π(suppµ) ∩ suppψ 6= ∅.
Observe that we can take the support of ψ to be contained inside any neighborhood of x, so the

argument above proves that there are measures in acc{µγ|[0,N ]
}N whose supports are arbitrarily close

to x. This proves the first inclusion.
Conversely, assume that x ∈

⋃
µ∈acc{µγ|[0,N ]

}N π(suppµ). For a nonnegative continuous function ψ

with x ∈ suppψ, there is µ ∈ acc{µγ|[0,N ]
}N with

∫
ψ dµ > 0. There is a subsequence of {µγ|[0,N ]

}N
converging to µ, hence such that

∑
16i6S εiψ(xi)/

∑S
i=0 εi converges to a positive quantity, so that

x ∈ ess acc{xi}i, and we obtain the opposite inclusion.

The following proposition gives some connection between the discrete and the continuous dynamics
of the differential inclusion associated to the map −Z.
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Proposition 18 (Limiting dynamics). Take Z a field satisfying Assumption 13 together with a se-
quence {xi}i as in (11). Let {Ii}i be a sequence of disjoint, bounded intervals in R with limi→+∞ |Ii| =
+∞ and write Gk = I1 ∪ I2 ∪ · · · ∪ Ik.
Suppose that for some sequence {ki}i ⊂ N, the limit

lim
i→+∞

µγ|Gki

exists, so that, by Lemma 16, it is a closed probability measure µ. Let then ν be a Borel probability
measure on the space LipCurv of Lipschitz curves that is invariant under the time-translation τt and
satisfies (6).
Then ν-almost every curve β satisfies

−β′(t) ∈ Z(β(t))

for almost every t ∈ R. Moreover µ(graph[−Z]) = 1 and the centroid field v̄x satisfies −v̄x ∈ Z(x) for
π∗µ-almost every x ∈ Rn, that is µ̂(graph[−Z]) = 1.

Proof. The existence of ν follows from Theorem 11. By Corollary 12, we know that ν-almost every
curve β ∈ LipCurv satisfies, β′(t) = v̄β(t) for almost every t. So we just need to prove that −v̄x ∈ Z(x)
for π∗µ-almost every x ∈ Rn.

Recall that graph[−Z] = {(x, v) ∈ Rn × Rn : −v ∈ Z(x)}. Let K ⊂ Rn be a closed ball that
contains the sequence {xi}i as well as π(suppµ), and let N > 0 be such that, for all x ∈ K and
v ∈ Z(x), ‖v‖ 6 N . Let ti 6 t < ti+1, using the triangle inequality,

the fact that −γ′(t) is constant equal to vi in the interval t ∈ [ti, ti+1] and belongs to Z(γ(ti)), we
have

dist((γ(t), γ′(t)), graph[−Z])

6 ‖(γ(t), γ′(t))− (γ(ti),−vi)‖+ dist((γ(ti),−vi), graph[−Z])

= ‖(γ(t),−vi)− (γ(ti),−vi)‖+ 0

= ‖γ(t)− γ(ti)‖
6 Lip(γ)εi

6 Nεi.

Now ∫
Rn×Rn

dist((x, v), graph[−Z]) dµγ|Gki
(x, v)

=
1∑ki

j=1 |Ij |

ki∑
j=1

∫
Ij

dist
(
(γ(t), γ′(t)), graph[−Z]

)
dt

6
N
∑ki

j=1 |Ij |maxt`∈Ij ε`∑ki
j=1 |Ij |

.

This implies that

lim
i→+∞

∫
Rn×Rn

dist((x, v), graph[−Z]) dµγ|Gki
(x, v) = 0

by the Stolz-Cesàro theorem using the fact that, for k large enough,
∑k

j=1 |Ij | > ck for a positive
constant c, and the fact that εi converges to 0 as i→ +∞. This, in turn, implies that∫

Rn×Rn
dist((x, v), graph[−Z]) dµ(x, v) = 0

18
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because the convergence of measures occurs in the weak* topology and the integrand is continuous.
Since graph[−Z] is a closed set, the support of µ must be contained in it. From 10 with a = −1, we
know that −v̄x ∈ Z(x), which is what we wanted to prove.

Theorem 19 (Subgradient-like closed measures are trivial). Assume that g : Rn → R is a path dif-
ferentiable function. Let µ be a closed probability measure on Rn ×Rn such that µ(graph[−∂cg]) = 1.
Then the centroid field v̄x of µ vanishes for π∗µ-almost every x.

Proof. The condition on µ implies, by Remark 10 with a = −1, that −v̄x ∈ ∂cg(x) for π∗µ-almost
every x. By Proposition 14 we may choose σ(x) = −v̄x to compute∫

Rn×Rn
∂cg(x).v dµ(x, v) =

∫
Rn×Rn

σ(x) · v dµ(x, v) =

∫
Rn
σ(x) ·

[∫
Rn
v dµx

]
d(π∗µ)(x)

=

∫
Rn
σ(x) · v̄x d(π∗µ)(x) = −

∫
Rn
v̄x · v̄x d(π∗µ)(x).

Proposition 14 also implies that the left-hand side vanishes because µ is closed.

In our proofs below, Theorem 19 will be applied in conjunction with Proposition 18 with Z = ∂cf .
Observe that Theorem 19 could as well have been presented just after Proposition 14, as not much
more is needed for its proof.

5 Proofs of main results

Our proofs use two basic techniques: sometimes we use Theorem 19 to deal with long subsequences of
{xi}i, and sometimes we use shorter subsequences and instead use Lemmas 21 and 22, which exploit
the Arzelà-Ascoli theorem to obtain curves that describe the asymptotic flow.

The structure of the proofs is described in Figure 4. In contrast, in the paper [9], item (v) of
Theorem 5 is proven first, and item (iv) is deduced from it.

Lemma 21 Lemma 22

Theorem 19

Theorem 4

(i)
(ii)
(iii)

(iv)

Proposition 18

Theorem 5

(i)
(ii)
(iii)

(v)

Lemma 16

Lemma 23

Lemma 17

Proposition 14Theorem 11

Figure 4: Arrows indicate results that are used in the proofs of the statements they point to.

Remark 20. An alternative route to the proof of items (iv) and (v) of Theorem 5, closer to the one
already given in [9], is to use Lemma 23 to prove (v) and deduce (iv). Item (v) also follows from [9,
Proposition 3.27].
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5.1 Lemmas on the convergence of curve segments for general multivalued dy-
namics

In this section, we consider a set-valued map Z : Rn ⇒ Rn satisfying Assumption 13 and xi a
corresponding sequence as in (11).

Lemma 21 (Approximate solutions of differential inclusions). For each i ∈ N, let Ti > 0 and assume
that Ti → T for some T > 0. Let, for each i ∈ N, γi : [0, Ti]→ Rn be a Lipschitz curve. Assume that
the sequence {γi}i converges to some bounded, Lipschitz curve γ : [0, T ] → R, γi → γ, in the sense
that supt∈[0,min(Ti,T )] ‖γ(t)− γi(t)‖ → 0 and

lim
i→+∞

∫ Ti

0
dist((γi(t), γ

′
i(t)), graph[−Z]) dt = 0. (13)

Then −γ′(t) ∈ Z(γ(t)) for almost all t ∈ [0, T ].

Proof. We follow classical arguments; see for example [9, Theorem 4.2]. Let 0 < T ′ < T . For i large
enough, Ti > T ′ because Ti → T . In particular, we eventually have uniform convergence of γi on [0, T ′]
to the restriction of γ to [0, T ′]. For each i, the derivative γ′i is an element of L∞ = L∞([0, T ′];Rd),
and being uniformly bounded with compact domain, belong to L2 = L2([0, T ′];Rd) as well. Recall
that, since L2 is reflexive, the weak and weak* topologies coincide in L2. So by the Banach–Alaoglu
compactness theorem, by passing to a subsequence we may assume that γ′j converge weakly in L2 and

weak* in L∞ to some u ∈ L2 ∩ L∞.
Since γj converges to γ uniformly, γj → γ also in L2. Hence γ′j tends to γ′ in the sense of

distributions on [0, T ′]; indeed, for all C∞ functions g : [0, T ′] → R with compact support in (0, T ′),
we have ∫ T ′

0
γ′j(t)g(t) dt = −

∫ T ′

0
γj(t)g

′(t) dt→ −
∫ T ′

0
γ(t)g′(t) dt =

∫ T ′

0
γ′(t)g(t) dt

since we have convergence in L2. By uniqueness of the limit, u = γ′ almost everywhere on [0, T ′].
It follows from Mazur’s lemma [28, p. 6] that there is a function N : N→ N and, for each p 6 k 6

N(p), a number a(p, k) > 0 such that
∑N(p)

k=p a(p, k) = 1, and such that the convex combinations

N(p)∑
k=p

a(p, k)γ′k → γ′ (14)

strongly in L2 as p→ +∞ (and also in the weak* sense in L∞).
Since the set Z(x) is convex at each x, the function

g(x, v) = dist(−v, Z(x))

is convex in its second argument for fixed x ∈ Rn. Using the fact that the convergence (14) happens
pointwise almost everywhere, we have, by continuity of g and by the fact that countable union of zero
measure sets has zero measure, for almost all t ∈ [0, T ′]

g(γ(t), γ′(t)) = g(γ(t), lim
p→+∞

∑N(p)
k=p a(p, k)γ′k(t))

= lim
p→+∞

g(γ(t),
∑N(p)

k=p a(p, k)γ′k(t))

6 lim inf
p→+∞

N(p)∑
k=p

a(p, k)g(γ(t), γ′k(t)),
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where the last step follows from Jensen’s inequality and convexity of g in its second argument. Since
g is non negative, integrating on [0, T ′], we have using Fatou’s Lemma,

0 6
∫ T ′

0
g(γ(t), γ′(t)) dt

6 lim inf
p→+∞

∫ T ′

0

N(p)∑
k=p

a(p, k)g(γ(t), γ′k(t)) dt

6 lim inf
p→+∞

∫ T ′

0

N(p)∑
k=p

a(p, k)[dist((γ(t), γ′k(t)), (γk(t), γ
′
k(t)))

+ g(γk(t), γ
′
k(t))] dt

= lim inf
p→+∞

∫ T ′

0

N(p)∑
k=p

a(p, k)[dist(γ(t), γk(t)) + g(γk(t), γ
′
k(t))] dt

where we have used the triangle inequality. Now, using a uniform bound on the integral, we have

0 6
∫ T ′

0
g(γ(t), γ′(t)) dt

6 lim inf
p→+∞

N(p)∑
k=p

a(p, k)

(
T ′ sup

t∈[0,T ′]
[dist(γ(t), γk(t))] +

∫ T ′

0
g(γk(t), γ

′
k(t))

)

6 lim inf
p→+∞

sup
p6k6N(p)

(
T ′ sup

t∈[0,T ′]
[dist(γ(t), γk(t))] +

∫ T ′

0
g(γk(t), γ

′
k(t))

)

6 lim sup
k→+∞

(
T ′ sup

t∈[0,T ′]
[dist(γ(t), γk(t))] +

∫ T ′

0
g(γk(t), γ

′
k(t))

)
= 0,

where we used the fact that
∑N(p)

k=p a(p, k) = 1, the fact that γk → γ uniformly and the hypothesis in
(13). Hence we have −γ′(t) ∈ Z(γ(t)) for almost all t ∈ [0, T ′], and this proves the lemma since T ′

was taken arbitrary in (0, T ).

Lemma 22 (Limiting dynamics for discrete sequences). Let γ be the interpolant curve of the bounded
sequence {xi}i, and {Ij}j a collection of pairwise-disjoint intervals of R>0 of length 1/C 6 |Ij | 6 C
for some C > 1. Then, there is a subsequence {jk}k ⊂ N such that the restrictions γ|Ijk converge
uniformly to a Lipschitz curve γ̄ : [a, b]→ R that satisfies −γ̄′(t) ∈ Z(γ(t)) for almost every t ∈ [a, b].

If we additionally assume that the sequence {xi}i is generated by the subgradient method, so that
−vi ∈ ∂cf(xi) for some locally Lipschitz, path differentiable function f , then the curve γ̄ satisfies

−
∫ b

a
‖γ̄′(t)‖2dt = f ◦ γ̄(b)− f ◦ γ̄(a).

Proof. By passing to a subsequence, we may assume that the lengths |Ij | converge to a positive
number. By the Lipschitz version of the Arzelà–Ascoli theorem, we may pass to a subsequence such
that γ|Ijk converges uniformly to a curve γ̄ on an interval [a, b] of length limj→+∞ |Ij | > 0. Condition

(13) holds if we let γi be the appropriate translate of γ|Ii , so by Lemma 21, −γ̄′(t) ∈ Z(γ(t)) for
almost every t ∈ [a, b].
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Let us now prove the second statement, so that Z = ∂cf . By the path differentiability of f , we
have

−
∫ b

a
‖γ̄′(t)‖2dt =

∫ b

a
∂cf(γ̄(t)) · γ̄′(t)dt =

∫ b

a
(f ◦ γ̄)′(t) dt = f ◦ γ̄(b)− f ◦ γ̄(a).

5.2 Proof of Theorem 4

5.2.1 Item (i)

Let γ be the interpolant curve of the sequence {xi}i, and consider the intervals Ik = [tik , ti′k ], so
that the endpoints of the restriction γ|Ik are precisely γ(tik) = xik and γ(ti′k) = xi′k . Aiming for a

contradiction, assume that the numbers T̄k = ti′k − tik remain bounded. Apply Lemma 22 to obtain a
curve γ̄ : [a, b]→ Rn joining γ̄(a) = limk xik = x and γ̄(b) = limk xi′k = y. We have that the arc length
of γ̄ must be positive because x 6= y, while γ̄ also satisfies, as part of the conclusion of Lemma 22,

0 > −
∫ b

a
‖γ̄′(t)‖2dt = f ◦ γ̄(b)− f ◦ γ̄(a) = f(y)− f(x) > 0.

Whence we get the contradiction we were aiming at.

5.2.2 Item (ii)

Let B ⊂ Rn be a closed ball containing the sequence {xi}i. By convexity, B contains also the image
of the interpolating curve γ.

Fix ε > 0. By uniform continuity of ψ over B, there exists n0 > 0 such that i > n0, x, y ∈ B
and |x− y| 6 εi Lip(f) imply |ψ(x)− ψ(y)| 6 ε and εi 6 1. We hence have |ψ(xi)− ψ(γ(t))| 6 ε for
ti 6 t 6 ti+1 and i > n0. Thus∣∣∣∣∣∣

Nj∑
i=n0

εiviψ(xi)−
∫ tNj

tn0

γ′(t)ψ(γ(t))dt

∣∣∣∣∣∣ 6 εLip(f)(tNj − tn0)

and

1∑Nj
i=0 εi

∣∣∣∣∣∣
Nj∑
i=0

εiviψ(xi)−
∫ tNj

0
γ′(t)ψ(γ(t))dt

∣∣∣∣∣∣
6

1∑Nj
i=0 εi

[∣∣∣∣∣
n0−1∑
i=0

εiviψ(xi)−
∫ tn0

0
γ′(t)ψ(γ(t))dt

∣∣∣∣∣+ εLip(f)(tNj − tn0)

]
.

Since
∑∞

i=0 εi = +∞ and ε > 0 was arbitrary, it follows that the latter becomes arbitrarily small as
Nj grows.

Whence the quotient in the limit in the statement of item (ii) is very close, for large j, to∑Nj
i=0 εi∑Nj

i=0 εiψ(xi)

∫
Rn×Rn

vψ(x)dµγ|[0,tNj+1]
(x, v).

We now prove that the above quantity converges to 0 as j → +∞. Taking a subsequence so that
µγ|[0,tNj+1]

converges to some probability measure µ, the quotient on the left converges to

1

/∫
ψ(x) dπ∗µ(x),
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and our hypothesis on the subsequence {Nj}j thus guarantees that
∫
ψ(x) dπ∗µ(x) > 0.

Thus, it suffices to show that, for every limit point µ of the sequence {µγ|[0,tN+1]
}N satisfying∫

ψ(x) dπ∗µ(x) > 0,

we have ∫
Rn×Rn

v ψ(x) dµ(x, v) =

∫
Rn
v̄xψ(x) d(π∗µ)(x) = 0, (15)

where v̄x is the centroid field of µ. By Lemma 16 we know that µ is closed so that Proposition 18 and
Theorem 19 apply and give v̄x = 0 for π∗µ-almost every x. This immediately implies (15).

5.2.3 Item (iii)

To prove item (iii), consider the interpolation curve constructed in Section 4.3. Consider a limit point
µ of the sequence {µγ|[0,N ]

}N . By Lemma 16, µ is closed. By Proposition 18 and Theorem 19, the

centroid field v̄x of µ vanishes for π∗µ-almost every x, so from (10) we know that 0 = −v̄x ∈ ∂cf(x),
and hence x ∈ crit f for a dense subset of π(suppµ). Since this is true for all limit points µ, by Lemma
17 we know that it is true throughout ess acc{xi}i.

5.3 Proof of Theorem 5

5.3.1 The function is constant on the accumulation set

Lemma 23 (f is constant on its limit set). Assume that the path differentiable function f : Rn → R is
constant on each connected component of its critical set, and let {xi}i be a bounded sequence produced
by the subgradient method. Then f is constant on the set acc{xi}i of limit points of {xi}i.

Proof. Assume instead that f takes two values J1 < J2 within acc{xi}i.
Let K be a compact set that contains the closure {xi}i in its interior. Since f is constant on

the connected components of crit f and since f is Lipschitz, the set f(K ∩ crit f) has measure zero
because, given ε > 0, the connected components Ci of K ∩ crit f of positive measure |Ci| > 0 —of
which there are only countably many— can be covered with open sets

f−1((f(Ci)− ε/2i+1, f(Ci) + ε/2i+1))

with image under f of length ε/2i; the rest of K ∩ crit J has measure zero, so it is mapped to another
set of measure zero. The set f(K ∩ crit f) is also compact, so we conclude that it is not dense on any
open interval of R.

We may thus assume, without loss of generality, that the values J1 and J2 are such that there are
no critical values of f |K between them.

Pick c1, c2 ∈ R such that
J1 < c1 < c2 < J2.

Let W1 = f−1(−∞, c1) and W2 = f−1(c2,+∞). Clearly Wj ∩ acc{xi}i 6= ∅ because the value Jj is
attained in acc{xi}i, j = 1, 2.

Consider the curve γ : R>0 → K ⊂ Rn interpolating the sequence {xi}i. Let A be the set of
intervals

A = {[t1, t2] ⊂ R : t1 < t2, γ(t1) ∈ ∂W1, γ(t2) ∈ ∂W2, γ(t) /∈W1 ∪W2 for t ∈ (t1, t2)}
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Write A = {Ij}j∈N for maximal, disjoint intervals Ij . Observe that if Ij = [tj1, t
j
2], then we have, by

the path differentiability of f , that∫ tj2

tj1

∂cf(γ(t)) · γ′(t) dt =

∫ tj2

tj1

(f ◦ γ)′(t) dt = f ◦ γ(tj2)− f ◦ γ(tj1) = c2 − c1. (16)

Let µ be a probability measure that is a limit point of the sequence {µγ|∪N
i=0

Ii

}N .

Now, since f is Lipschitz and W 1 and W 2 are compact, |Ii| is bounded from below, let us say

|Ii| > α.

It is also bounded from above, because if not then there is a subset {Iij}j of A consisting of intervals
with length |Iij | → +∞, and we can apply Lemma 16, Proposition 18, and Theorem 19 to get closed
measures µ̃ with suppπ∗µ̃ ⊂ crit f . Since the support of each such π∗µ̃ is contained in K \ (W1 ∪W2),
this would mean the existence of a critical value between c1 and c2, which contradicts our choice of
J1 and J2. We conclude that the size of the intervals in A is also bounded from above, say,

|Ii| < β.

Apply the first part of Lemma 22 to obtain a subsequence {jk}k such that {γ|Ijk}k converges uniformly

to a Lipschitz curve γ̄ : [a, b]→ Rn joining γ̄(a) ∈W 1 with γ̄(b) ∈W 2. By (16), we have∫ b

a
∂cf(γ̄(t)) · γ̄′(t) dt = lim

k→+∞

∫ t
jk
2

t
jk
1

∂cf(γ(t)) · γ′(t) dt > c2 − c1 > 0.

We also know that γ interpolates a gradient sequence, so we may use the path differentiability of f
and the second part of Lemma 22 to see that this integral must be nonpositive, a contradiction that
proves that statement of the lemma.

5.3.2 Proof of item (i)

For j ∈ N, let Ij = [tij , tij+1 ] ⊂ R be the interval closest to 0 with tj 6 tij < tij+1 , γ(tij ) ∈ Bδ(x),
and γ(tij+1) ∈ Bδ(y), so that Tj = tij+1 − tij . Let γ|Ij be the restriction of the interpolant curve γ.
Since the two balls Bδ(x) and Bδ(y) are at positive distance from each other, and since the velocity is
bounded uniformly ‖γ′‖ 6 Lip(f), we know that the numbers Tj = |Ij | are uniformly bounded from
below by a positive number.

Assume, looking for a contradiction, that there is a subsequence of {Tj}j that remains bounded
from above. Apply Lemma 22 to obtain a curve γ̄ : [a, b]→ R such that γ̄(a) ∈ Bδ(x) ∩ acc{xi}i and
γ̄(b) ∈ Bδ(y) ∩ acc{xi}i, while also satisfying

−
∫ b

a
‖γ̄′(t)‖2dt = f ◦ γ̄(b)− f ◦ γ̄(a) = 0 (17)

by Lemma 23. This contradicts the fact that the distance between the balls Bδ(x) and Bδ(y) —and
hence also the arc length of γ̄— is positive.

5.3.3 Proof of item (ii)

Aiming at a contradiction, we assume instead that there is some x ∈ U∩acc{xi}i and some subsequence
{ij}j such that dist(x, γ(Iij ))→ 0 and |Iij | 6 C for some C > 0 and all j ∈ N.

We may thus apply Lemma 22 to get a curve γ̄ : [a, b] → Rn whose endpoints γ̄(a) and γ̄(b) are
contained in acc{xi}i \V , and γ̄ passes through x ∈ U , so it has positive arc length. However, it is also
a conclusion of Lemma 22, together with Lemma 23, that γ̄ satisfies (17), which makes it impossible
for its arc length to be positive, so we have arrived at the contradiction we were looking for.

24



01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

5.3.4 Proof of item (iii)

Let U , V , and A be as in the statement of item (iii). Let B =
⋃
i∈A[ti, ti+1). The statement of item

(iii) is equivalent to the statement that

lim
N→+∞

∫
v dµγ|B∩[0,N ]

= 0. (18)

It follows from item (ii) that the maximal intervals Ii ⊂ N comprising A =
⋃
i Ii satisfy |Ii| → +∞ as

do the lengths
∑

j∈Ii εj of the intervals
⋃
j∈Ii [tj , tj+1) ⊂ B. Hence, from Lemma 16 we know that any

limit point µ of the sequence {µγ|B∩[0,N ]
}N is closed. This implies (18) because each coordinate vk of

the integrand v = (v1, . . . , vn) is a gradient: vk = ∇pk · v for pk(x) = xk, so each entry of the integral
(18) vanishes.

5.3.5 Proof of item (iv)

Let x ∈ acc{xi}i. For any neighborhood U of x, we can take a slightly larger neighborhood V and
repeat the construction described in the proof of item (iii) (Section 5.3.4) of a closed measure µ whose
support intersects U , and whose centroid field vanishes π∗µ-almost everywhere. By Remark 10 we
know that the centroid field satisfies −v̄x ∈ ∂cf(x). In sum, we have that in every neighborhood U of
x, there is a point y ∈ U with 0 ∈ ∂cf(y), which implies that 0 ∈ ∂cf(x) because the graph of ∂cf is
closed in Rn × Rn.

5.3.6 Proof of item (v)

Recall that acc{xi}i is connected. We know from item (iv) that acc{xi}i ⊆ crit f . So it is contained in
a single connected component of crit f . Hence f must be constant on acc{xi}i, and {f(xi)}i converges.
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[50] Rodolfo Ŕıos-Zertuche. “Characterization of minimizable Lagrangian action functionals and a
dual Mather theorem”. In: Discrete & Continuous Dynamical Systems – A 40.5 (2020), pp. 2615–
2639.

[51] Adil Salim. “Random monotone operators and application to stochastic optimization”. PhD
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