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Abstract

In this paper, the Spectral Difference approach using Raviart-Thomas elements (SDRT) is formulated for the
first time on tetrahedral grids. To determine stable formulations, a Fourier analysis is conducted for different
SDRT implementations, i.e. different interior flux points locations. This stability analysis demonstrates that
using interior flux points located at the Shunn-Ham quadrature rule points leads to linearly stable SDRT
schemes up to the third order. For higher orders of accuracy, a significant impact of the position of flux points
located on faces is shown. The Fourier analysis is then extended to the coupled time-space discretization
and stability limits are determined. Additionally, a comparison between the number of interior FP required
for the SDRT scheme and the Flux Reconstruction method is proposed and shows that the two approaches
always differ on the tetrahedron. Unsteady validation test cases include a convergence study using the Euler
equations and the simulation of the Taylor-Green vortex.
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1. Introduction

Numerical schemes using piecewise continuous polynomials approximation are an efficient way to obtain5

high-order accuracy on unstructured grids. Their interest comes from the possibility to handle a high-order
representation of the unknowns using polynomials and a compact stencil, which allows to achieve a good
parallel efficiency. By nature, the solution is sought under the form of a polynomial defined locally, in each
mesh cell. Since continuity is not required at cell interfaces, a Riemann solver is introduced to define the
flux from two different extrapolated quantities. In the case of the most popular high-order discontinuous10

method called the Discontinuous Galerkin (DG) approach, the full system of equations is built using the
weak formulation, as in the standard finite element method. For a solution approximated as a polynomial
of degree p defined on a given basis, test functions are also polynomials of degree p and quadrature rules are
necessary to compute either volume or surface integrals at the appropriate order of accuracy. Depending on
the definition of the solution approximation, different DG implementations are possible. On one hand, the15

DG method is said nodal if the solution approximation is defined by an interpolation from solution values
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at dedicated points (such as Lagrange interpolation). On the other hand, if the solution approximation is
expressed as a linear combination over a basis, the DG method is modal, since coefficients from the linear
combination are simply modes of the solution.

An advantage of standard DG methods (either nodal or modal) is their ability to deal with unstructured20

mesh. The formulation naturally accounts for simplex cells (tetrahedron in 3D), which are the standard ele-
ments for (automatic) mesh generation on complex geometry. The literature on the Discontinuous Galerkin
method on simplex cells is very rich ([1, 2, 3, 4, 5, 6] for example). However, using the integral formulation
leads to a heavy computational cost to obtain a high-order of accuracy since high-order surface and volume
integral evaluations using quadrature rules are required.25

The main objective of the present paper is to draw attention to more recent classes of numerical methods
using piecewise polynomials based on the strong form of equations for tetrahedral grids. Alternative methods
explicitly compute two polynomials, one for the solution and one for the flux. For consistency, the flux
divergence must lie in the same polynomial space as the solution. Today, there are essentially two different
methods based on the strong form.30

The first method is called the Correction Procedure for Reconstruction (CPR) or the Flux Reconstruction
(FR) approach. Following the pioneering work of Huynh [7], the solution and the flux approximations are
first defined with the same polynomial degree from a set of points called solution points. This leads to a
flux polynomial inconsistent with the solution since its divergence loses one degree. In addition, the flux
is defined from the solution and therefore not continuous at cell interfaces. To remedy both problems, a35

correction polynomial is introduced. This correction polynomial is defined from the flux at the cell interfaces
at a degree equal to the one of the solution plus one. Several FR reconstructions can be built depending
on the definition of the correction polynomial, associated with different properties and capabilities. Several
studies investigate the FR implementation on tetrahedral cells. The class of Vincent-Castonguay-Jameson-
Huynh (VCJH) [8] schemes were first extended to tetrahedral elements by Williams and Jameson [9]. The40

effect of the solution point location was studied in [10, 11] to determine their effect on the stability and the
accuracy of FR schemes on tetrahedral grids. Both works indicate that the best choice in terms of stability
and accuracy is to locate the solution points following the Shunn-Ham quadrature rule [12]. The FR method
was then used to simulate turbulent flows on tetrahedral meshes by Bull and Jameson [13].

The second approach is called the Spectral Difference method. Initiated by Kopriva [14] as the staggered-45

grid Chebyshev multi-domain method for structured grids, it was then introduced for triangular elements
together with the naming Spectral Difference (SD) [15]. The standard formulation was found unstable on
triangles for an order of accuracy strictly greater than two by Van Abeele [16]. Researchers essentially
focused attention on unstructured quadrilateral and hexahedral grids, following a tensorial formulation from
the 1D stable discretization. An alternative formulation called the Spectral Difference method using the50

Raviart-Thomas space (SDRT) was introduced for Euler equations in [17] on triangles and proven to be
linearly stable up to the fourth-order under a Fourier stability analysis originally initiated by May and
Schöberl [18]. The SDRT method was then formulated to simulate 2D viscous flows on unstructured hybrid
grids up to the fourth-order by Li et al. [19] and used for the simulation of vortex-induced vibrations using
a sliding-mesh method on hybrid grids by Qiu et al. [20]. Finally, the method was extended to higher orders55

of accuracy in [21] for triangular and 2D hybrid grids. To the author’s knowledge, the literature on the
Spectral Difference is dedicated to quadrilateral, triangular and hexahedral cells.

In this context, the present paper introduces the first linearly stable formulation of the Spectral Difference
method on 3D simplex cells. The paper is organized as follows. In Sec. 2, the SDRT scheme is presented on
tetrahedral cells. The linear stability of the SDRT method based on interior FP located at known quadrature60

rules points is studied using Fourier analysis in Sec. 3. Stable formulations are determined up to the third-
order of accuracy. The influence of flux points located on faces for p = 3 is highlighted. The Fourier analysis
is then extended to the coupled time-space discretization. Unsteady validation test cases are presented in
Sec. 4 and include a convergence study using the Euler equations and the simulation of the Taylor-Green
vortex.65
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2. Spectral Difference Scheme on Tetrahedral Grids

2.1. Reference Domain

Let us consider the following 3D scalar conservation law under its differential form:

∂u(x, t)

∂t
+∇ ⋅ f(u) = 0, in Ω × [0, tf ], (1)

where u is the state variable, f = (f, g, h) is the flux vector where f , g and h are flux densities in the x,
y and z directions respectively and ∇ is the differential operator in the physical domain x = (x, y, z). The
computational domain Ω is discretized into N non-overlapping tetrahedral cells and the i-th element is
denoted Ωi:

Ω =
N

⋃
i=1

Ωi. (2)

For implementation simplicity, Eq. (1) is solved in the reference domain. Each cell Ωi of the domain Ω
is transformed into a reference tetrahedron Te ∶= {(ξ, η, ζ) ∶ 0 ≤ ξ, η, ζ ≤ 1, ξ + η + ζ ≤ 1}. The transformation
can be written as:

⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
=

Np

∑
i=1
Mi(ξ, η, ζ)

⎛
⎜
⎝

xi
yi
zi

⎞
⎟
⎠
, (3)

where (xi, yi, zi) are the Cartesian coordinates of the Np vertices of the cells and Mi(ξ, η, ζ) are the shape
functions. The Jacobian matrix of the transformation given by Eq. (3) from the physical (x, y, z) to the
reference domain (ξ, η, ζ) takes the following form:

J =
∂(x, y, z)

∂(ξ, η, ζ)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

xξ xη xζ
yξ yη yζ
zξ zη zζ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (4)

For a non-singular transformation, the inverse transformation is related to the Jacobian matrix according
to:

∂(ξ, η, ζ)

∂(x, y, z)
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= J−1. (5)

In the reference domain, Eq. (1) becomes:

∂û(ξ, t)

∂t
+ ∇̂ ⋅ f̂ = 0, (6)

where ∇̂ is the differential operator in the reference domain, ξ = (ξ, η, ζ) are the coordinates in the reference

domain and û, f̂ are the solution and the flux in the reference domain defined by:

û = ∣J ∣u, (7)

and
f̂ = ∣J ∣J−1f . (8)

2.2. SDRT scheme on tetrahedra

The SDRT scheme introduced in [22, 17] for triangles is here extended to 3D simplex cells, i.e. tetrahedra.
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2.2.1. Solution polynomial70

The solution û is approximated on the reference tetrahedron Te by a polynomial of degree p, ûh(ξ) ∈ Pp,
through a set of distinct Solution Points (SP) ξj , j ∈ J1,NSP K where

NSP =
(p + 1)(p + 2)(p + 3)

6
, (9)

and
Pp = span{ξiηjζk,0 ≤ i,0 ≤ j,0 ≤ k and i + j + k ≤ p}. (10)

The polynomial ûh(ξ) is expanded using a modal representation:

ûh(ξ) =
NSP

∑
m=1

ūm Φm(ξ), (11)

where Φm(ξ) ∈ Pp is a complete polynomial basis and ūm are the modal basis coefficients. Coefficients ūm
are determined by performing a collocation projection at the points ξj :

ûh(ξj) = ûj =
NSP

∑
m=1

ūm Φm(ξj), (12)

ūm =
NSP

∑
m=1

ûj (Φm(ξj))
−1
. (13)

The basis Φ is chosen as the orthonormal Proriol-Koornwinder-Dubiner (PKD) [23, 24, 25] basis, given on
the tetrahedron for a polynomial approximation of degree p as:

Φi,j,k =
√

(i + 1/2)(i + j + 1)(i + j + k + 3/2) P 0,0
i (ξ) (

1 − η

2
)

i

P 2i+1,0
j (η) (

1 − ζ

2
)

i+j
P

2(i+j+1),0
k (ζ),

i + j + k ≤ p, (14)

where Pα,βn are the corresponding n-th order Jacobi polynomials on the interval [−1,1] which, under the
Jacobi weight (1 − x)α(1 + x)β are orthogonal polynomials. For simplicity, the subscript (i, j, k) can be
replaced by the single index m, m ∈ J1,NSP K with any arbitrary bijection m ≡ m(i, j, k). The polynomial
approximation ûh of the solution û is thus defined in the reference space by:

ûh(ξ) =
NSP

∑
m=1

ûj (Φm(ξj))
−1

Φm(ξ). (15)

2.2.2. Solution computation at flux points

To compute the flux values at flux points (FP), we first have to determine the solution values at those
points. With the polynomial distribution given by Eq. (15), the solution at the FP (denoted ξk) can be
computed as:

ûh(ξk) =
NSP

∑
m=1

ûj (Φm(ξj))
−1

Φm(ξk) =
NSP

∑
m=1

ûj (Vj,m)
−1 Φm(ξk), (16)

where V is the generalized Vandermonde matrix. Numerically, the extrapolation step is represented by the
transfer matrix Tkj = [(Vj,m)−1 Φm(ξk)].
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2.2.3. Definition of the flux polynomial from the set of fluxes at flux points

The flux function in the reference domain is approximated by f̂h in the Raviart-Thomas (RT ) space (see
Appendix A for details) as:

f̂h(ξ) =
NFP

∑
k=1

f̂kψk(ξ), (17)

where NFP is the number of degrees of freedom needed to represent a vector-valued function in the RTp
space:

NFP =
1

2
(p + 1)(p + 2)(p + 4), (18)

and ψk are interpolation functions which form a basis in the RT space with the property:

ψj(ξk) ⋅ n̂k = δjk, (19)

where δ is the Kronecker symbol and n̂k are the unit normal vectors defined at FP. As for the SDRT for-75

mulation on triangles, for interior FP, one physical point is associated with d degrees of freedom, where d
is the dimension, through the definition of unit vectors in different directions. In 3D, the unit vectors for
interior FPs are n̂ = (1,0,0)⊺, n̂ = (0,1,0)⊺ and n̂ = (0,0,1)⊺ in the reference element.

Scalar flux values f̂k at FP on which the polynomial approximation given by Eq. (17) relies on are
determined in the same manner as for 2D simplex cells. For a first-order partial differential equation, they
are given as:

f̂k =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

f̂k ⋅ n̂k = ∣J ∣J−1fk(uh(ξk)) ⋅ n̂k, ξk ∈ Te ∖ ∂Te,

(f̂k ⋅ n̂k)
∗
= (fk ⋅ ∣J ∣(J

−1)⊺n̂k)
∗
, ξk ∈ ∂Te.

(20)

where (f̂k ⋅ n̂k)
∗

is the standard numerical flux in the reference element and uh(ξk) = 1
∣J ∣ ûh(ξk) is the80

approximated solution in the physical domain.

2.2.4. Differentiation of the flux polynomial in the set of solution points

Once the flux vector is approximated on the reference element by Eq. (17), it can be differentiated at
SP:

∇̂ ⋅ f̂(u) = (∇̂ ⋅ f̂h) (ξj)

=
NFP

∑
k=1

f̂k (∇̂ ⋅ψk) (ξj).
(21)

Numerically, the differentiation step is represented by the differentiation matrix Djk = [(∇̂ ⋅ψk) (ξj)].

The term (∇̂ ⋅ψk) (ξj) in Eq. (21) is fully defined through the determination of the vector-valued interpo-
lation basis functions ψk and their derivatives detailed in [21].85

The final form of the SDRT scheme can be written for each degree of freedom of the solution function
in each cell i as:

dû
(i)
j

dt
+
NFP

∑
k=1

f̂
(i)
k (∇̂ ⋅ψk) (ξj) = 0, j ∈ J1,NSP K, i ∈ J1,NK. (22)

and the solution can be time-integrated using any standard time integration scheme (Runge-Kutta scheme
for instance).

3. Linear Stability Analysis of the SDRT Formulation

The SDRT formulation on tetrahedral elements was introduced but the position of the flux points is
still an open question. In this section, the position of the flux points is described and the stability of the90

formulation is justified by a Fourier analysis.
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3.1. Choice of Solution Points and Flux Points Location

The location of SP and FP needs to be chosen for the reference tetrahedron. The number of SP and FP
are respectively given by:

NSP =
1

6
(p + 1)(p + 2)(p + 3), (23)

NFP =
1

2
(p + 1)(p + 2)(p + 4). (24)

Remark: In this article, the FP location is constrained so that there are no points located at vertices and
on edges of the tetrahedron. Actually, if such points were used, FP could be shared by more than two cells
and a multi-dimensional Riemann solver should be used. If the interface FP are located on the face (and95

not on edges), such a configuration will never appear.

Applying this requirement, the number of FP located on each face is equal to (p + 1)(p + 2)/2, which
corresponds to the number of SP on a triangle. By choosing their location to be the same as the SP on a
triangle, we ensure that a tetrahedral and a prismatic element will share the same FP on faces, avoiding the
need to apply mortar techniques. For p ∈ J1,2K, the face FP are thus located following the Williams-Shunn-
Jameson quadrature rule [26]. The number of interior FP is then given by:

Ni =
1

2
p(p + 1)(p + 2). (25)

Since each physical FP is counted as three separated DoF, the number of interior physical FP for which the
position has to be settled is Npi =

1
6
p(p+1)(p+2). The number of SP and physical interior FP is summarized

in Table 1. It can be noted that the number of physical interior FP for a SDRTp scheme corresponds to the100

number of SP for a SDRTp−1 scheme.

p NSP Npi
1 4 1
2 10 4
3 20 10
4 35 20
5 56 35
6 84 56

Table 1: Number of SP and physical interior FP for SDRT scheme on tetrahedral elements

To set the SP and physical interior FP locations on tetrahedral elements, quadrature rules available in
the literature are studied. To be suitable for the SDRT implementation, the quadrature rules should not
have points located on corner, edge or face. Among the possible quadratures, three quadrature rules are
found to lead to the appropriate number of points for each degree p while fulfilling this requirement: the105

Newton-Cotes Open (NCO) [27], the Vioreanu-Rokhlin [28] and the Shunn-Ham [12] quadrature rules. Since
those quadrature rules are suitable for each degree p, they can be used for both the SP and the physical
interior FP by choosing the adequate quadrature order. Other quadrature rules can lead to the proper
number of points for a given degree p and will be given below. The SP are chosen to be located at the
Shunn-Ham quadrature points. For the physical interior FP:110

• For p = 1, all the studied quadrature rules led to the same physical interior point located at (x, y, z) =
(0.25,0.25,0.25) in the reference domain.

• For p = 2, it is noted that several quadrature rules lead to the very same set of points (Keast [29],
Vioreanu-Rokhlin [28], Shunn-Ham [12], Witherden-Vincent [30], Yu [31], Hammer-Marlowe-Stroud
[32], Liu-Vinokur [33]). This set of point will be referred here as the Shunn-Ham quadrature rule.115

Three other quadrature rules containing four points will be studied: the Jakowiec-Sukumar [34], the
Xiao-Gimbutas [35] and the NCO [27].
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• For p > 2, the studied quadrature rules are Shunn-Ham, Vioreanu-Rokhlin and NCO, which contain
the appropriate number of points for each p.

3.2. Matrix Form120

We consider the 3D linear advection equation:

∂u(x, t)

∂t
+∇ ⋅ f = 0, in Ω × [0, tf ] (26)

within a domain Ω = [0, L]3 with periodic boundary conditions, where u is a conserved scalar quantity and
f = c ⋅ u is the flux. The velocity vector is c = (sin θ2 cos θ1, sin θ2 sin θ1, cos θ2)

⊺ where (θ1, θ2) ∈ [0, π/4].
The domain Ω is meshed as a Cartesian mesh composed of Nx × Ny × Nz hexahedral elements of size
∆x × ∆y × ∆z, with ∆x = ∆y = ∆z. Each hexahedral cell is then divided into tetrahedron. A hex-
ahedron can be decomposed into a minimum of five tetrahedral elements, but to ensure the periodic-125

ity, six tetrahedrons are required. The six tetrahedrons of the hexahedral cell (i1, i2, i3) are denoted
T i1,i2,i3,1, T i1,i2,i3,2, T i1,i2,i3,3, T i1,i2,i3,4, T i1,i2,i3,5, T i1,i2,i3,6 and are represented in Fig. 1.

ξ0.0
0.5

1.0

η 0.0
0.5

1.0

ζ

0.0

0.5

1.0

(a) T1

ξ0.0
0.5

1.0

η 0.0
0.5

1.0

ζ

0.0

0.5

1.0

(b) T2

ξ0.0
0.5

1.0

η 0.0
0.5

1.0

ζ

0.0

0.5

1.0

(c) T3

ξ0.0
0.5

1.0

η 0.0
0.5

1.0

ζ

0.0

0.5

1.0

(d) T4

ξ0.0
0.5

1.0

η 0.0
0.5

1.0

ζ

0.0

0.5

1.0

(e) T5

ξ0.0
0.5

1.0

η 0.0
0.5

1.0

ζ

0.0

0.5

1.0

(f) T6

Figure 1: Computational domain for the Fourier stability analysis on tetrahedral elements

Defining:

Ûi1,i2,i3
j = [Ûi1,i2,i3,1

j , Ûi1,i2,i3,2
j , Ûi1,i2,i3,3

j , Ûi1,i2,i3,4
j , Ûi1,i2,i3,5

j , Ûi1,i2,i3,6
j ]

⊺, (27)
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as the vector collecting the solution in the reference domain on the six tetrahedrons for each SP j ∈ J1,NSP K
on cell (i1, i2, i3), the SDRT spatial discretization using an upwind flux on this mesh takes the form:

dÛi1,i2,i3
j

dt
= −

∣∣c∣∣

∆x
[M0,0,0 Ûi1,i2,i3

j +M−1,0,0 Ûi1−1,i2,i3
j

+M+1,0,0 Ûi1+1,i2,i3
j

+M0,−1,0 Ûi1,i2−1,i3
j

+M0,+1,0 Ûi1,i2+1,i3
j

+M0,0,−1 Ûi1,i2,i3−1
j

+M0,0,+1 Ûi1,i2,i3+1
j ].

(28)

In Eq. (28), M0,0,0, M−1,0,0, M+1,0,0, M0,−1,0, M0,+1,0, M0,0,−1 and M0,0,+1 are matrices of size [6NSP ,6NSP ]

containing the three steps of the spatial discretization (extrapolation, flux computation and differentiation),130

which depend on the advection angles as well as on the SP and FP locations. The exact formulation of
those matrices is given in Appendix B.

3.3. Fourier Stability Analysis

To perform the Fourier stability analysis on tetrahedral elements, the discretized numerical solution is
assumed under the form of a planar harmonic wave:

Ûi1,i2,i3 = Ũ exp (Ik (i1x + i2y + i3z) ), (29)

where

(x,y,z) =
⎛
⎜
⎝

⎛
⎜
⎝

∆x
0
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
∆x
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0

∆x

⎞
⎟
⎠

⎞
⎟
⎠

(30)

are the vectors defining the mesh, Ũ is a complex vector of dimension 6NSP , independent of i1, i2 and i3,
and

k = k
⎛
⎜
⎝

cosϑ1 sinϑ2

sinϑ1 sinϑ2

cosϑ2

⎞
⎟
⎠
, (31)

k being the wave number of the harmonic wave and (ϑ1, ϑ2) its orientation angles. Using non-dimensional
quantities, Eq. (29) becomes:

Ûi1,i2,i3 = Ũ exp (Iκ (i1 cosϑ1 sinϑ2 + i2 sinϑ1 sinϑ2 + i3 cosϑ2) ), (32)

κ = k∆x being the grid frequency. Injecting Eq. (32) into Eq. (28), one gets:

dŨ

dt
= −

∣∣c∣∣

∆x
[M0,0,0

+M−1,0,0 exp(−Iκ cosϑ1 sinϑ2)

+M+1,0,0 exp(Iκ cosϑ1 sinϑ2)

+M0,−1,0 exp(−Iκ sinϑ1 sinϑ2)

+M0,+1,0 exp(Iκ sinϑ1 sinϑ2)

+M0,0,−1 exp(−Iκ cosϑ2)

+M0,0,+1 exp(Iκ cosϑ2)] Ũ

=
∣∣c∣∣

∆x
Mz Ũ.

(33)
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Using the eigenvalue analysis, the SDRT spatial discretization is stable under a Fourier stability analysis
if the real part of all eigenvalues of the matrix Mz are non-positive, i.e. if Re(λMz) ≤ 0. The complete135

spectrum of the SDRT spatial operator λMz is obtained by computing the eigenvalues of Mz over the grid
frequency κ ∈ [−π,π] considering (ϑ1, ϑ2) ∈ [0,2π]. For p = 1, the spectrum of Mz is plotted in Fig. 2a for
(θ1, θ2) ∈ (0, π/8, π/4)2. A closer view on the spectrum allows to see the non-positivity of Re(λMz) and to
establish the stability of the spatial discretization.

140

For p = 2, there are 4 interior physical FP. In Fig. 2b, the spectrum of the SDRT2 discretization using
the Shunn-Ham rule for interior FP is plotted for (θ1, θ2) ∈ (0, π/8, π/4)2. A closer view on the spectrum
allows to see the non-positivity of Re(λMz), indicating a stable SDRT scheme.

(a) SDRT1 (b) SDRT2, Shunn-Ham rule

Figure 2: Spectrum of matrix Mz for stable SDRT schemes on tetrahedral elements, (θ1, θ2) ∈ (0, π/8, π/4)
2

In Fig. 3, the spectrum is plotted for the particular case (θ1, θ2) = (0,0) for the three other quadrature
rules: the Jakowiec-Sukumar (Fig. 3a), the Xiao-Gimbutas (Fig. 3b) and the NCO (Fig. 3c). The SDRT145

scheme using those three quadrature rules is found unstable with max(Re(λMz)) ∼ 3 ⋅ 10−4 for Jakowiec-
Sukumar, max(Re(λMz)) ∼ 3 ⋅ 10−2 for Xiao-Gimbutas and max(Re(λMz)) ∼ 4 ⋅ 10−3 for NCO. Using the
NCO instead of the Shunn-Ham rule for the SP location did not influence the stability.

(a) Jakowiec-Sukumar rule (b) Xiao-Gimbutas rule (c) NCO rule

Figure 3: Spectrum of matrix Mz for unstable SDRT2 schemes on tetrahedral elements, (θ1, θ2) = (0,0)

For p > 2, the SDRT stability has been studied using the position of physical interior FP as Shunn-150

Ham, NCO and Vioreanu-Rokhlin quadrature rules while using the Williams-Shunn-Jameson quadrature
rule points as the face FP. None of these rules have been able to lead to stable formulations, with a
max(Re(λMz)) of ∼ 80,400 and 5000 for p = 3,4 and 5 (respectively).
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The SDRT scheme on tetrahedral elements is demonstrated as linearly stable under a Fourier analysis up155

to the third-order of accuracy, provided that the interior FP location is defined according to the Shunn-Ham
quadrature rule.

3.4. Influence of Flux Points Located on Faces

It has been mentioned in the previous section that using different SP locations (either the NCO or the
Shunn-Ham rule) did not influence the stability. Actually, it led to the exact same value of max (Re(λMz

)).160

This result extends the statement that the SP location has no impact on the stability to tetrahedra. How-
ever, the influence of FP located on faces has not been studied yet. To do so, the SP location is fixed at the
Shunn-Ham rule [12] whereas different locations of interior FP and FP located on faces are studied.

For p = 3, there are 10 FP located on each face (denoted Face FP). Several location are studied: the165

10-points quadrature rules on a triangle from Williams-Shunn-Jameson (WSJ) [26] and Vioreanu-Rokhlin
(VR) [28]) and the set of 10-points determined using the optimization process in [21], denoted OPT. For
interior FP, the three quadrature rules on a tetrahedron introduced in Sec. 3.3 are considered: the Shunn-
Ham [12], the Vioreanu-Rokhlin (VR) [28] and the Newton-Cotes Open (NCO) [27] quadrature rules.

170

Table 2 shows values of max(Re(λMz)) for all the possible combinations of FP locations. They were
obtained using (θ1, θ2, ϑ1, ϑ2) = (0,0,0,0) and κ ∈ [0, π],∆κ = π/32. From this table, the impact of the
position of the FP located on faces is clearly highlighted. The impact of the Face FP is even more important
than the impact of interior FP: the interval of values obtained by changing the Face FP location is larger
than by changing the interior FP location.175

Interior FP

Face FP
WSJ [26] VR [28] OPT

Shunn-Ham [12] 78.41 156.04 70.53
VR [28] 79.17 153.82 72.59
NCO [27] 68.74 110.68 95.92

Table 2: Impact of the FP located on faces: values of max(Re(λMz)) for SDRT3, (θ1, θ2, ϑ1, ϑ2) = (0,0,0,0)

3.5. Fourier Analysis of the Coupled Time-Space Discretization

To investigate the linear stability of the coupled time-space discretization, the semi-discretized form
needs to be integrated in time. A general m-stage Runge-Kutta (RK) method for a differential equation can
be written as in [36]:

u(n+1)
= un +

m

∑
j=1

γj ∆tj
∂jun

∂tj
. (34)

In this paper, the time-integration scheme used is the RKo6s, which is part of the low storage RK schemes
optimized to ensure low dissipation and low dispersion properties given by Bogey and Bailly in [36].

The semi-discretized matrix form containing the planar harmonic wave given by Eq. (33) integrated in
time using Eq. (34) is:

Ũ(n+1)
=
⎛

⎝
I +

m

∑
j=1

γjν
jMj

z

⎞

⎠
Ũ(n)

⇔ Ũ(n+1)
= GŨ(n).

(35)

where ν is the CFL number defined by:

ν =
∣∣c∣∣∆t

∆x
. (36)
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The stability condition on the coupled time-space discretization is thus obtained by requiring that the
amplitude of any harmonic does not grow in time, i.e.:

∣G∣ = ∣
Ũ(n+1)

Ũ(n)
∣ ≤ 1. (37)

In other words, to ensure a stable discretization, the spectral radius of the matrix G, denoted ρG should be
lower than 1, meaning that all the eigenvalues λG should be in the unit circle of the complex plane. The180

transfer matrix G between time steps n and n + 1 is the amplification factor (or the Fourier symbol) of the
full discretization.

The Fourier analysis of the coupled time-space discretization is conducted on tetrahedral elements for
SDRT1 and SDRT2. The interior FP locations are in both cases taken as following the Shunn-Ham quadra-185

ture rule. Additionally to the SP and FP locations, the matrix Mz depends on the advection velocity defined
by (θ1, θ2), the grid frequency κ and the harmonic wave orientation angles (ϑ1, ϑ2). These parameters are
taken as:

• θ1 ∈ [0,2π],∆θ1 = π/8,

• θ2 ∈ [0,2π],∆θ2 = π/8,190

• κ ∈ [0, π],∆κ = π/8,

• ϑ1 ∈ [0,2π],∆ϑ1 = π/8,

• ϑ2 ∈ [0,2π],∆ϑ2 = π/8.

The CFL stability limits are given for those parameters in Table 3. To the authors’ knowledge, there
is no consensus on the definition on an equivalent CFL number for high-order discontinuous methods on195

simplex cells. The classical CFL definition given by Eq. (36) is thus preferred here.

(θ1, θ2) (0,0) (π/8, π/8) (π/4, π/4) [0,2π]2

SDRT1 0.458 0.394 0.382 0.380
SDRT2 0.275 0.243 0.235 0.235

Table 3: CFL stability limits ν for SDRT schemes on tetrahedra coupled with the RKo6s temporal schemes

4. Numerical Experiments

4.1. Euler Equations

We consider the three-dimensional Euler equations:

∂u

∂t
+
∂f

∂x
+
∂g

∂y
+
∂h

∂z
= 0, in Ω × [0, tf ], (38)

where u, f , g and h are given by:

u =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ρ
ρU
ρV
ρW
E

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, f =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ρU
ρU2 + P
ρUV
ρUW

U(E + P )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, g =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ρV
ρV U

ρV 2 + P
ρVW

V (E + P )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, h =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ρW
ρWU
ρWV

ρW 2 + P
W (E + P )

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (39)
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In Eq. (39), ρ is the density, U (respectively V , W ) is the velocity component in the x (respectively y, z)
direction, E is the total energy and P is the pressure determined from the following equation of state:

P = (γ − 1) (E −
1

2
ρ(U2

+ V 2
+W 2

)) , (40)

where the constant ratio of specific heats γ is equal to 1.4 for air.
200

To validate the SDRT scheme implementation on tetrahedral elements, a 3D period Euler test case from
[37, 38] is considered. The 3D Euler equations are solved on a cubic computational domain Ω = [0, L]3 where
L = 2 m with periodic boundary conditions. The initial solution is:

ρ = 1 + 0.2 sin(π(x + y + z)), (U,V,W,P ) = (1,1,1,1). (41)

The density initial condition is displayed on Fig. 4 for a regular 10 × 10 × 10 tetrahedral grid using p = 2.

Figure 4: Initial density condition on a 10 × 10 × 10 regular tetrahedral grid using p = 2

The solution is advanced in time using the RKo6s temporal scheme and the simulation is carried out
until tf = 1 s. The time step is chosen sufficiently small so that the error from the time discretization is
negligible compared to the spatial discretization error by setting the CFL number to 10−2. The analytical
solution of the density at any time t [38] is:

ρa = 1 + 0.2 sin(π(x + y + z − t(U + V +W ))), (42)

whereas velocity and pressure remain constant in time.

The convergence study was conducted on two types of grids (regular and irregular). Each mesh is refined
several times and the order of accuracy is verified by computing the density L2 error using the 84 points205

quadrature rule from [26]. Table 4 shows the L2 errors and orders of accuracy for the two different types
of grids (regular and irregular). For both second- and third-order schemes, a p + 1 order of accuracy is
recovered.
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Regular mesh Irregular mesh

p DoF L2 error Order of DoF L2 error Order of
number accuracy number accuracy

3000 2.183E-02 - 2132 7.713E-02 -
24000 5.754E-03 1.92 11792 2.988E-02 1.66

1 81000 2.582E-03 1.98 36460 1.437E-02 1.95
192000 1.458E-03 1.99 82164 8.349E-03 2.00
375000 9.345E-04 1.99 151448 5.448E-03 2.09
7500 1.366E-03 - 5330 2.156E-02 -
60000 1.508E-04 3.18 29480 3.277E-03 3.30

2 202500 4.343E-05 3.07 91150 9.946E-04 3.17
480000 1.813E-05 3.04 205410 4.148E-04 3.23
937500 9.233E-06 3.02 378620 2.173E-04 3.17

Table 4: L2 error and order of accuracy values for regular and irregular tetrahedral grids

4.2. Taylor-Green Vortex

To validate the implementation of the SDRT method for the Navier-Stokes equations using tetrahedral
grids, the Direct Numerical Simulation of the Taylor-Green Vortex (TGV) at Re = ρ∞U∞L/µd∞ = 1600 is
considered. The TGV test case was proposed in the International Workshop on High-Order CFD Meth-
ods [39] to test the accuracy and performance of high-order methods. A three-dimensional periodic and
transitional flow is considered and defined by:

U = U∞ sin(
x

L
) cos(

y

L
) cos(

z

L
), (43)

V = −U∞ cos(
x

L
) sin(

y

L
) cos(

z

L
), (44)

W = 0, (45)

P = P∞ +
ρ∞U2

∞
16

(cos(
2x

L
) + cos(

2y

L
))(cos(

2z

L
) + 2) . (46)

The flow is governed by the 3D compressible Navier-Stokes equations with constant physical properties210

and at low Mach number so that the obtained solutions are close to incompressible solutions. The test case
conditions are summed up in Table 5.
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Variable Notation Value Unit
Reynolds number Re 1600 -
Temperature T∞ 300 K
Dynamic viscosity µd∞ 1.846 ⋅ 10−5 kg/m/s
Mach number M∞ 0.1 -
Gas constant Rgas 287.058 J/kg/K
Density ρ∞ 8.506 ⋅ 10−4 kg/m3

Pressure P∞ 73.254 Pa
Ratio of specific heat γ 1.4 -
Prandtl number Pr 0.71 -
Reference length L 1.0 m

Table 5: Flow conditions for the TGV test case

The computational domain is a cube defined by Ω = [−πL,πL]3 and periodic boundary conditions are
imposed in the three directions. The SDRT implementation for interior FP is based on the Shunn-Ham
quadrature rule. Diffusive flux are computed following the very same procedure given for triangular cells in215

[19, 21] using a centered formulation [40]. Solutions are time-integrated using the RKo6s temporal scheme
and the time step ∆t is imposed. Roe’s Riemann solver is used to compute flux at cell interfaces. Compu-
tations are carried out on 600 processors. Three different regular grids (M1, M2 and M3) are considered.
Their number of elements and associated time steps are given in Table 6.

Scheme Mesh Number of Elements DOF Number ∆t (sec)

SDRT1

M1 663,552 2,654,208 7.5 ⋅ 10−5

M2 1,572,864 6,291,456 5.5 ⋅ 10−5

M3 3,072,000 12,288,000 4.5 ⋅ 10−5

SDRT2

M1 663,552 6,635,520 4.5 ⋅ 10−5

M2 1,572,864 15,728,640 3.5 ⋅ 10−5

M3 3,072,000 30,720,000 3.0 ⋅ 10−5

Table 6: Computational conditions for the TGV test case

The physical duration of the computation is based on the characteristic convective time tc = L/U∞
and is set to tf = 20tc. The kinetic energy dissipation rate ε is computed for t ∈ [0, tf ] and compared
to a reference incompressible flow solution obtained using a dealiased pseudo-spectral code (developed at
Universit Catholique de Louvain, UCL) on a 5123 mesh and provided by the International Workshop on
High-Order CFD Methods [39]. The reference data is denoted ’Spectral-5123’. To compute the kinetic
energy dissipation rate, one first needs to compute the kinetic energy Ek, defined by:

Ek(t) = ∫
Ω

1

2
ρ(U2

+ V 2
+W 2

)dΩ. (47)

The kinetic energy is computed at each time t as:

Ek(t) =
N

∑
i=1

Nq

∑
j=1

ωj ∣J
(i,j)

∣E
(i)
k (ξj), (48)

where ∣J(i,j)∣ is the Jacobian determinant at the j-th integration point of the i-th cell and Nq is the number
of quadrature points. The quadrature points are located at ξj and associated with the weight ωj . The
integration is performed using the 84 points quadrature rule from [26]. The kinetic energy dissipation rate
is defined by:

ε(t) = −
dEk
dt

(t), (49)
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and is computed using a first-order upwind scheme. The kinetic energy dissipation rate is rendered dimen-220

sionless by εc = Ek(t = 0)/tc. Results obtained with the second and third-order SDRT schemes are compared
with reference data in Fig. 5. Using the second-order SDRT scheme (Fig. 5a), the dimensionless kinetic
energy dissipation rate ε/εc evolution is first quite accurate (t/tc ∈ [0,3]) but grows too fast from t/tc > 3
for all grid resolutions. The maximal peak value is underestimated (of 4% for M1 and 7% for M2 and M3)
and shifted (of 8% for M1 and M2 and 5% for M3). However, results get closer to the reference data as225

the number of DOF increases. Using the second-order SDRT scheme leads to better results (Fig. 5b). For
t/tc ∈ [0,9], results obtained using the M1 mesh slightly overestimate ε/εc whereas results on M2 and M3

grids show an excellent agreement with the reference data. The improvement of the solution accuracy when
the number of DOF increases can be clearly seen at t/tc = 9. Compared to the reference data, the peak
value is particularly well predicted on the M3 mesh (underestimation of 0.7%). For t/tc ∈ [12,17], ε/εc is a230

little overestimated but the final value at t/tc = 20 matches the reference.

(a) SDRT1 (b) SDRT2

Figure 5: Dimensionless kinetic energy dissipation rate obtained with second and third-order SDRT schemes compared to
reference data

5. Conclusion

Tetrahedrons are the reference elements for automatic mesh generation on complex geometries and they
are widely used in the case of mesh adaptation. Accounting for tetrahedral cells is today essential for a
numerical scheme to be usable on unstructured grids.235

When using the weak formulation associated with the Discontinuous Galerkin formulation, stability is en-
sured. When one studies formulations based on the strong form of the equations, stability was demonstrated
for tetrahedral cells considering the Flux Reconstruction (FR) or the Correction Procedure for Reconstruc-
tion (CPR). In this context, the present paper introduces a new formulation usable on tetrahedrons, following
the Spectral Difference method. The idea is to define the flux vector in the Raviart-Thomas space, rather240

than the flux components in the Lagrange space. Such a procedure changes essentially the definition of the
flux polynomial approximation: the procedure is vector-based and not component-based. A simple analysis
of the number of interior flux points shows that the proposed scheme and the Flux Reconstruction method
will always differ.

The key point remains the position of the flux points since this position significantly influences the scheme245

stability. It was demonstrated in the paper that using Shunn-Ham quadrature rule points as interior flux
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points and Williams-Shunn-Jameson quadrature rule points as face flux points leads to a stable formulation
for polynomial degrees of p = 1 and p = 2, leading to an order of accuracy of 2 and 3.

For p > 2, several quadrature rule sets of points were tested as interior flux points while keeping the
Williams-Shunn-Jameson points as face flux points but none of them lead to a stable formulation. Such a250

result does not mean that a stable formulation does not exist but states the fact that additional research
is required. In particular, the influence of the flux points located on faces was highlighted in this paper
and their location should be taken into account to determine stable formulations. Changing their location
will not imply the use of mortar techniques between a tetrahedral and a prismatic element as long as the
solution points location of a triangle is chosen to be the same as the flux points on a tetrahedral face. Since255

the solution points do not influence the stability, this requirement can easily be fulfilled.
Finally, the procedure was validated for Euler and Navier-Stokes equations on academic cases. Future

efforts concern an extensive validation on more complex configurations up to the third-order of accuracy
and research of stable formulations for p > 2.

Appendix A. Definition of the Raviart-Thomas (RT ) space260

The Raviart-Thomas (RT ) finite element spaces were originally introduced by Raviart and Thomas [41]
to approximate the Sobolev space H(div) defined by:

H(div) = {u ∈ (L2
(K))

d
, ∇ ⋅ u ∈ L2

(K)}, (A.1)

where d is the dimension, K is a bounded open subset of Rd with a Lipshitz continuous boundary, L2(K) is
the Hilbert space of square-integrable function defined on K. The extension to the three-dimensional case
considering K as a tetrahedron or a cube was proposed by Nedelec [42]. The space RTp spanned by the
Raviart-Thomas basis functions of degree p is the smallest polynomial space such that the divergence maps
RTp onto Pp, the space of piecewise polynomials of degree ≤ p. Considering the reference tetrahedron Te,
the RT space of order p is defined in 3D by:

RTp = (Pp)3
+
⎛
⎜
⎝

x
y
z

⎞
⎟
⎠
P̄p, (A.2)

where Pp is the space of polynomials of degree at most p:

Pp(x, y, z) = span{xiyjzk, i, j, k ≥ 0, i + j + k ≤ p}, (A.3)

P̄p is the space of polynomials of degree p:

P̄p(x, y, z) = span{xiyjzk, i, j, k ≥ 0, i + j + k = p}, (A.4)

and (Pp)3 = (Pp,Pp,Pp)⊺ is the three dimensional vector space for which each component is a polynomial

of degree at most p. The dimension of each space is dim Pp =
(p+1)(p+2)(p+3)

6
, dim P3

p =
(p+1)(p+2)(p+3)

2
,

dim P̄p = (p+1)(p+2)
2

and thus dim RTp =
(p+1)(p+2)(p+4)

2
. We denote φn, n ∈ J1,NFP K the monomials which

form a basis in the RTp space where

NFP =
(p + 1)(p + 2)(p + 4)

2
. (A.5)

Determination of φn for RT1, NFP = 15

φ = {φ1,⋯, φ15} =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

1
0
0

⎞
⎟
⎠
,
⎛
⎜
⎝

x
0
0

⎞
⎟
⎠
,
⎛
⎜
⎝

y
0
0

⎞
⎟
⎠
,
⎛
⎜
⎝

z
0
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
1
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
x
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
y
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
z
0

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
x

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
y

⎞
⎟
⎠
,
⎛
⎜
⎝

0
0
z

⎞
⎟
⎠
,
⎛
⎜
⎝

x2

xy
xz

⎞
⎟
⎠
,
⎛
⎜
⎝

yx
y2

yz

⎞
⎟
⎠
,
⎛
⎜
⎝

zx
zy
z2

⎞
⎟
⎠

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

(A.6)
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Appendix B. Matrices Formulation for the Fourier Analysis

The matrices M0,0,0, M−1,0,0, M+1,0,0, M0,−1,0, M0,+1,0, M0,0,−1 and M0,0,+1 involved in the SDRT
spatial discretization for the Fourier analysis on tetrahedral elements (Eq. (28)) are detailed in this appendix.
Those matrices are given as:

M0,0,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Djk ⋯ ONSP ,NFP

⋮ ⋱ ⋮

ONSP ,NFP
⋯ Djk

⎤
⎥
⎥
⎥
⎥
⎥
⎦

C0,0,0

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Tkj ⋯ ONFP ,NSP

⋮ ⋱ ⋮

ONFP ,NSP
⋯ Tkj

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (B.1)

where Om,n is the zero matrix of size m × n. The same goes for M−1,0,0, M+1,0,0, M0,−1,0, M0,+1,0, M0,0,−1

and M0,0,+1, associated respectively to the velocity matrices C−1,0,0, C+1,0,0, C0,−1,0, C0,+1,0, C0,0,−1 and
C0,0,+1. The transfer matrix is given by Eq. (16):

Tkj =

Ntet
SP

∑
m=1

(Φm(ξj))
−1

Φm(ξk), (B.2)

and the differentiation matrix by Eq. (21):

Djk =

Ntet
FP

∑
n=1

(φn(ξk) ⋅ n̂k)
−1

∇̂ ⋅φn(ξj). (B.3)

The velocity matrices are given as:

C0,0,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

CL CT1,T2 ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
CT1,T6

CT2,T1 CL CT2,T3 ONFP ,NFP
ONFP ,NFP

ONFP ,NFP

ONFP ,NFP
CT3,T2 CL CT3,T4 ONFP ,NFP

ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

CT4,T3 CL CT4,T5 ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
CT5,T4 CL CT5,T6

CT6,T1 ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
CT6,T5 CL

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.4)

C−1,0,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

CT1,T5 ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
CT2,T4 ONFP ,NFP

ONFP ,NFP

[O4NFP ,6NFP
]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (B.5)

C+1,0,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[O3NFP ,6NFP
]

ONFP ,NFP
CT4,T2 ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP

CT5,T1 ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP

[ONFP ,6NFP
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.6)

C0,−1,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[O2NFP ,6NFP
]

CT3,T1 ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
CT4,T6

[O2NFP ,6NFP
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.7)

C0,+1,0
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ONFP ,NFP
ONFP ,NFP

CT1,T3 ONFP ,NFP
ONFP ,NFP

ONFP ,NFP

[O4NFP ,6NFP
]

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
CT6,T4 ONFP ,NFP

ONFP ,NFP

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (B.8)

C0,0,−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[ONFP ,6NFP
]

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
CT2,T6

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

CT3,T5 ONFP ,NFP

[O3NFP ,6NFP
]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.9)
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C0,0,+1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

[O4NFP ,6NFP
]

ONFP ,NFP
ONFP ,NFP

CT5,T3 ONFP ,NFP
ONFP ,NFP

ONFP ,NFP

ONFP ,NFP
CT6,T2 ONFP ,NFP

ONFP ,NFP
ONFP ,NFP

ONFP ,NFP

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (B.10)

where CL is defined by:

CL
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(c ⋅ n)
1+sign(c⋅n)

2
⋯ 0

⋮ ⋱ ⋮

0 ⋯ (c ⋅ n)
1+sign(c⋅n)

2

⎤
⎥
⎥
⎥
⎥
⎥
⎦4Nf ,4Nf

O4Nf ,Ni

ONi,4Nf

⎡
⎢
⎢
⎢
⎢
⎢
⎣

∣J ∣J−1(c ⋅ n̂) ⋯ 0
⋮ ⋱ ⋮

0 ⋯ ∣J ∣J−1(c ⋅ n̂)

⎤
⎥
⎥
⎥
⎥
⎥
⎦Ni,Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.11)

The matrix CTi,Tj links the FP between the triangular faces of Ti and Tj . Its expression will depend on
the local connectivity, i.e. the number and the orientation of the two faces in their respective element. The
face number gives the local FP numbering whereas the orientation (how the two faces are facing each other)
gives the FP order. An example of its determination is provided below for two arbitrary tetrahedral elements.265

Determination of the Matrix CTi,Tj - Example for p = 1 Let us consider two tetrahedron T1 and
T2 defined by their four nodes:

T1 ∶ N1,N2,N3,N4 = A,B,C,D, (B.12)

T2 ∶ N1,N2,N3,N4 = A,C,E,D. (B.13)

Following the CGNS notations, their faces are defined by:

• T1, Face 1: A, C, B,

• T1, Face 2: A, B, D,

• T1, Face 3: B, C, D,

• T1, Face 4: C, A, D,

• T2, Face 1: A, E, C,

• T2, Face 2: A, C, D,

• T2, Face 3: C, E, D,

• T2, Face 4: E, A, D.
270

They are sharing a face corresponding to Face 4 in T1 and Face 2 in T2. In the case of p = 1, this in-
dicates that the FP numbers on (T1, Face 4) are [10,12] whereas the FP number (Face 2, T2) are [4,6].
Then, the orientation between the faces needs to be determined to know in which order the FP are facing
each other. For two arbitrary faces A and B defined respectively by nodes (A1,A2,A3) and (B1,B2,B3),275

three cases are possible:

• A1 = B3, A2 = B2, A3 = B1,

• A1 = B2, A2 = B1, A3 = B3,

• A1 = B1, A2 = B3, A3 = B2.

Our example is illustrated in Fig. 6 and corresponds to the second case.280
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Figure 6: Illustration of the orientation determination: T1 (on the left) and T2 (on the right)

In this example, the matrix CT1,T2 will take the following expression:

CT1,T2 = (c ⋅ n)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O3Nf ,NFP
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ONf ,Nf

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1+sign(c⋅n)
2

0

0 0 1+sign(c⋅n)
2

1+sign(c⋅n)
2

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ONf ,2∗Nf+Ni

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ONi,NFP

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (B.14)
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