
HAL Id: hal-03614891
https://hal.science/hal-03614891v1

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A Low-Cost Methodology for EM Fault Emulation on
FPGA

Paolo Maistri, Jia Yun Po

To cite this version:
Paolo Maistri, Jia Yun Po. A Low-Cost Methodology for EM Fault Emulation on FPGA. Design, Au-
tomation and Test in Europe Conference (DATE 2022), Mar 2022, Antwerp, Belgium. �hal-03614891�

https://hal.science/hal-03614891v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

A Low-Cost Methodology
for EM Fault Emulation on FPGA

Paolo Maistri and Jiayun Po
Univ Grenoble Alpes, CNRS, Grenoble INP*, TIMA, 38000 Grenoble, France

paolo.maistri@univ-grenoble-alpes.fr

Abstract—In embedded systems, the presence of a security
layer is now a well-established requirement. In order to
guarantee the suitable level of performance and resistance
against attacks, dedicated hardware implementations are often
proposed to accelerate cryptographic computations in a
controllable environment. On the other hand, these same
implementations may be vulnerable to physical attacks, such as
side channel analysis or fault injections. In this scenario, the
designer must hence be able to assess the robustness of the
implementation (and of the adopted countermeasures) as soon
as possible in the design flow against several different threats.
In this paper, we propose a methodology to characterize the
robustness of a generic hardware design described at RTL
against EM fault injections. Thanks to our framework, we are
able to emulate the EM faults on FPGA platforms, without the
need of expensive equipment or lengthy experimental
campaigns. We present a tool supporting our methodology and
the first validations tests done on several AES designs
confirming the feasibility of the proposed approach.

Keywords—EM fault injection, emulation, clock glitching,
FPGA, RTL

I. INTRODUCTION

Many applications nowadays require confidentiality,
integrity, and authentication, which can be achieved through
the implementation of cryptographic primitives. It is hence
quite common to find these implementations in many
embedded systems, either as software or, if demanded by
requirements in terms of performance or efficiency, as
hardware designs.

Although cryptographic algorithms can be considered
reasonably secure, it is however well known that careless
implementations of the secure primitives can nonetheless
reveal critical information. This kind of attacks directed to the
actual implementation can be passive [1][2], where the
behavior of the system is observed and analyzed, or active [3],
where the regular functioning is altered in order to gather
useful information about the data being processed.

The correct behavior of the device can be altered in several
ways, with the usual goal of injecting some computational
error that will be further analyzed and exploited in order to
break the cryptosystem. Fault injection attacks can be
performed by using a variety of techniques: voltage and clock
glitches, laser or EM illumination, etc. All these techniques
have different properties in terms of precision, required
knowledge, and cost. Glitches, for instance, are quite simple
and cheap to implement but act on global signals of the
integrated circuit (e.g., the clock or the voltage supply), so
they affect the design in its entirety: for this reason, they are

mostly effective against software implementations (running
on CPUs or microcontrollers), where the serial execution of
the code limits the error propagation. On the other hand, their
impact on hardware implementations is much less predictable
or controllable: hence, secure hardware implementations are
usually attacked through laser or, more recently, EM fault
injections (EMFI), which exhibit good spatial locality and
excellent temporal precision. In particular, laser fault injection
(LFI) has excellent controllability even when attacking
reasonably recent technology nodes [4]: on the other hand, the
cost in terms of equipment, preparation, and related expertise
is not affordable for everybody. EMFI attacks, while still
providing good potential from the point of view of the
attacker, are more accessible and are thus becoming an
interesting attack technique in the recent literature.

For these reasons, designers must hence take into
consideration such threats as early as possible, in order to
assess the vulnerability of the architecture against physical
attacks and propose solutions (i.e., countermeasures) at all
levels in order to face these threats. This may constitute a
serious challenge: protecting as early as possible means that
solutions must be proposed at software (if it is the case) or
Register Transfer Level (RTL), when there may be no actual
silicon yet to perform the experiments.

In this work, we want to propose a methodology aimed at
validating the architectural consequences of EM fault
injections. Our framework does not aim at being an alternative
attack technique nor a generic fault injection framework, but
it allows emulating the EM fault on a configurable platform
(an FPGA board) by mimicking the spatial and temporal
characteristics of EM pulses on any digital designs, without
any additional equipment other than a programmable board.
Thanks to our approach, designers can therefore validate
architectural solutions with respect to a fast, inexpensive, and
accurate flow. We have validated the methodology on three
different hardware implementations of the Advanced
Encryption Standard, proving that exploitable faults, issued
from literature models, can be easily injected.

This paper is organized as follows. In the next section, we
resume the existing state of the art, which constitute also the
motivation behind this work: we briefly describe the
experimental platforms for EMFI, and the main abstractions
that have been proposed to model the interaction between the
EM pulse and the silicon. Section III describes our
methodology more in detail, highlighting the different steps of
our approach. First preliminary results are elaborated in
Section IV, along with some perspectives on future research
directions. Finally, Section V concludes the paper.

*Institute of Engineering Univ. Grenoble Alpes

II. MOTIVATION

Electromagnetic Fault Injection (EMFI) has been gaining
in popularity in the recent years. EMFI does not require
special preparation of the integrated circuit (i.e., no backside
access for illumination, no lapping in order to expose the
silicon layers) and the experimental setup is of lower
complexity: a pulse generator, an injection probe, and a
control machine are the main components of the platform
(with the target as well). After a first period when
experimental platforms were mostly built using commercial or
home-made parts, a few complete platforms have recently
made their appearance on the market [5]. Nonetheless, these
setups still constitute an important investment [6]. Some
studies have explored alternative solution to improve the
interaction between the probe and the circuit, but are mostly
oriented to passive analysis [7].

For these reasons, it is important to understand the
mechanisms of error injections due to EMFI. Several studies
have appeared in the latest years, aiming at modelling at
different levels the effects in both hardware and software
implementation of cryptographic algorithms. In [8], AES was
attacked by EMFI both in software, running on an 8-bit
microcontroller, and on a hardware iterative design
implemented on FPGA. Although the fault model of the two
campaigns was not directly comparable, the authors were
nonetheless able to propose and validate some initial guess
about the error injection mechanism: according to their
conclusion, the most likely fault model was due to localized
timing violations. The authors did not prove the assumption
from a formal point of view, but their experimental validation
of a timing countermeasure seemed to confirm their
assumptions. This similarity was also confirmed in later
works, such as [9].

Nonetheless, the understanding of the actual mechanisms
occurring during EMFI is not as simple as that. Several other
studies have shown that timing faults are only part of the
global picture, as the EM pulse can disrupt the set/reset
mechanism of flip-flops in a subtler way [10]. This
mechanism has been later detailed as a double interaction with
the power grid [11], as the EMFI creates two opposite pulses
within the circuit. While the first lowers temporarily the
supply voltage (thus creating timing violations), the second
restores it and possibly interferes with the DFF sampling. This
is confirmed by the fact that the experiments heavily depend
not only on physical location of the injection, but on its exact
timing as well [12].

Despite the complexity of the actual interaction between
the EM pulse and the gates, it is generally accepted that EM
faults can be approximated by timing faults in a first instance
[13]. This assumption was thus adopted in [14], where the

authors have shown the feasibility of using internal primitives
of an FPGA to create clock glitch at a local level. However,
their approach was limited to just evaluate the impact of the
modification on resource usage and on performance, without
any actual analysis of the faults that could be injected.
Additionally, their methodology was applied manually on a
specific design (namely, a lightweight ASCON architecture)
and in a specific location.

In this paper, we want to show that an automated approach
can be generalized on any design and that exploitable faults
can be injected. We describe our methodology in the next
section.

III. METHODOLOGY

A. Basic Principles

Our goal is to control timing violation faults in any part of
the design. This fault model is quite specific to EM fault
injection, as highlighted in the previous section: other fault
attacks (or general reliability assessments) may be based on
different fault models, such as bit-flip or bit set/reset. In order
to accomplish this result, we instrument the design in order to
create a clock glitch only in the specific part that has been
defined as the target of the injection: as a consequence, we can
emulate the sampling faults that would occur in the gates when
targeted by EM injections. This approach first requires a clock
glitch to be generated internally in the design and routed to the
target. The second constraint is time-related: the glitch must
occur only when needed, and nominal conditions (i.e., the
regular clock) should be in general restored immediately after
the glitch. The triggering condition can be set by the designer,
but it is usually based on a custom delay with respect to a
specific event (e.g., the start of the encryption).

Although these two conditions seem easy to satisfy, there
are some details that require attention from the designer. First,
the spatial granularity of the fault injection: in principle, the
target can be from a single flip-flop up to an entire module. In
practice, if we aim at emulating local faults, smaller
granularities should be used (such as a few FFDs or a specific
register), as our goal is not to emulate global clock glitches.
More advanced methods can be envisioned, as suggested in
Section IV. Secondly, the glitch may occur either on the rising
or the falling edge of the clock signal, or even both: different
policies may cause different behaviors, depending on the
actual design under attack, and should be taken all into
consideration. In order to minimize the modifications to the
original design, all the additional blocks (glitch generator,
trigger, etc) can be defined separately in a larger wrapper
module, containing the target as well, as schematically shown
in Fig. 1.

The glitch can be generated and controlled by using two
synchronous clocks in the designs: the regular and the
faultable clocks. The latter clock will be used to drive only the
cells within the target (i.e., the flip-flops where the fault has to
be injected), while the former will be used by the rest of the
design. The two clock signals can be created through the
FPGA Digital Clock Manager (DCM), and managed by the
Fault Injector module. When the trigger is off no glitch is
injected, meaning that the two clocks are identical; during the
injection, the faultable clock (and only this clock) is
perturbated with the glitch, and the sampling in the
corresponding targets is corrupted. After the glitch, the two
clocks are again identical, which allows resuming the

Fig. 1. Clock signals in the design, and how they are generated. Red

color shows new or modified elements of the design.

computation process without any further error. The faulty
output can then be recovered for cryptanalysis.

B. Tools and Implementation

Our proposed methodology is largely based on existing
FPGA design flows. This is justified by the fact that our goal
is to emulate EM injections to evaluate architectures and
countermeasures at RTL or higher level: FPGA platforms are
therefore perfectly suited, thanks to their configurability and
large spectrum of devices. We have used Xilinx devices, but
any other programmable board can be used if the main
requirements are met.

In order to generate the glitch internally, we rely on the
BUFGCTRL primitive available on Xilinx FPGAs [15].
These components are well known clocking resources that can
be used to switch between two input clocks without any glitch
when properly configured. It is important to highlight that in
our case, the glitch-free property of the primitive ensures that
we can finely control the clock output: if a glitch occurs, it is
deterministically due to our trigger and not to undefined
behavior of the logic itself. This behavior can be achieved by
configuring the additional inputs, namely the Ignore, Enable,
and Selection input pins, to specific values.

The clock switching is controlled by a decrementing
counter, When the counter reaches the activation value,
BUFGCTRL is triggered and changes to the secondary input
clock. In order to preserve the global synchronization of the
computation process, the regular clock is then restored. To
simplify this step, the clock switch occurs when the counter
reaches 1, and restores the normal clock at 0.

The generic setup for glitch generation is shown in Fig. 2.
The main clock is the nominal clock of the system; the
auxiliary clock is used for glitch generation, and it is selected
by the BUFGCTRL primitive when the trigger is activated. Its
actual shape can be chosen to create a glitch with a specific
pattern: in our experiments we set it to the same frequency of
the main clock, a duty cycle of 25%, and a phase shift that
depends on the design under test (270° in our case), but the
actual configuration may be tailored to the specific
experiment. The trigger is updated on the main clock, but its
edge sensitivity depends on the type of glitch (rising, falling,
or both edges) that has to be injected.

A tool has been implemented in Python to automate the
instrumentation process. It has been designed to accept any
netlist in Verilog, which allows to easily process any
synthesizable design. The tool identifies all possible targets by
scanning the netlist and looking for keywords defining the
sequential logic. Hierarchical or flattened designs are equally
supported, while the list of keywords can be configured to
adapt to different technology targets. The user is then allowed
to choose a subset of targets, or the tool can be instructed to

go through the list element by element for an extensive
emulation campaign. The auxiliary clock, the triggering
blocks, and the proper clock connections are handled directly
by the tool in a transparent way for the user. The instrumented
design can thus be used to replace the original one on the
programmable board for the accelerated emulation
experiment. In the perspective of comparing the results from
this methodology against actual EMFI, the tool can optionally
define a separate partition for the target in an automatic way,
while the rest of the design is placed far from the target. This
will allow easier placement of the EM probe during the attacks
and the results will be more representative of the actual
sensitivity of the selected target (and not of other glue logic).

C. Validation

The methodology was validated on three different
hardware implementations of the Advanced Encryption
Standard [16]: a trivial iterative design, an architecture
protected by an Error Detecting Code (EDC) [17], and a
design protected by hybrid temporal redundancy [18]. At this
stage, no extensive campaign was performed to evaluate the
countermeasures, as the main goal was rather to confirm the
feasibility of the approach on designs having disparate
constraints. All the designs were implemented on a Nexys A7-
100T board, which is equipped with a Xilinx Artix-7
programmable chip. This board was chosen because of its
large availability of clocking resources, and because the
FPGA circuit is not protected by any heat spreader, making
thus easier to plan later EM fault injection campaigns.

Several experiments were done in order to find the most
suitable value for configuring the parameters of the glitch
generation, in particular the frequency, phase, and duty cycle
of the auxiliary clock, as well as different techniques to create
effective glitches. More importantly, several tests were run on
all designs to inject errors on different elements of the designs
(e.g., all the state bytes) and at different times (i.e., different
encryption cycles). Our experiments have shown that faults at
byte level can be successfully injected anywhere and anytime
in the design, by controlling the clock glitches at local level.
As an example, we report the output of an encryption
experiment in Fig. 3, where a standard pair of plain text and
key from the NIST specifications were used for correct and a
faulty encryption on the EDC-protected design. In this
experiment, a clock glitch was injected on the output of the
SubBytes operation on the least significant byte of the state
during the 8th round. The figure highlights how the output of
the faulty encryption is fully corrupted as expected, and the
cryptanalysis by reverse computation of the result correctly
identifies the error as occurring on the targeted byte and round,
thus confirming the successful injection. Moreover, the
injected error value can be guessed as well.

IV. DISCUSSION

This methodology has been proposed to emulate EM fault
injection on an FPGA without recurring to an actual
experimental EM platform. The designer can then apply

Fig. 2. Clock signals in the design, and how they are generated

Input msg: 00112233 44556677 8899aabb ccddeeff
Secret key: 00010203 04050607 08090a0b 0c0d0e0f

Expected output: 69c4e0d8 6a7b0430 d8cdb780 70b4c55a
Faulty output: 9338a658 c8de3d85 edfc907e 64cbb5a1
Output error: fafc4680 a2a539b5 353127fe 147f70fb

8th SubBytes error: 00000000 00000000 00000000 000000ca

Fig. 3. Experimental results with NIST test values and fault injection
on least significant byte of the state (8th round, after SubBytes).

classical fault analysis on the experimental results in order to
assess the exploitability of the faults.

The short-term objectives are comparing the results with
actual EM injected faults, and evaluate architectural
countermeasures against fault attacks. Although only
dedicated designs were presented in this work, the
methodology can be easily applied to any synthesizable
description of any architecture: for instance, it may be used to
analyze the error propagation within the architecture of a
general-purpose processor. The main requirement is that the
netlist description has to be available and modifiable to allow
clock instrumentation, such as in RISC-V architectures. If the
netlist is encrypted, our approach cannot be used.

The parameter exploration is currently delegated to the
designer, who needs to tune the fault injector module in order
to fit the target constraints and find the best configuration.
This may be a tedious process, which could be sped up with
proper assistance from the tool if the longest path delay would
be known for the given target. Functional relationship analysis
might be exploited as well in order to identify sets of targets
and estimate spatial locality at RTL as in [20]. This
methodology, originally proposed to create a laser-based fault
model at RTL, could be effectively applied also to EM faults
as well, thanks to similar spatial properties of the two attack
techniques.

So far, only single glitches have been taken into
consideration. On the other hand, current FPGAs have several
clocking resources available on chip, which would allow for
multiple glitch domains at the same time. The device used in
our experiments, for instance, has 6 clock management tiles,
which can be used to create independent glitches in parallel.
Triggering conditions may be further explored as well. In
simple attacks, only one glitch is injected at a specific time,
but a more advanced controller could be programmed to
schedule more than one glitch for each execution. When
combined with independent parallel glitching, cited above,
this would allow emulating complex higher-order attacks,
with spatial and temporal multiplicity higher than one.

V. CONCLUSION

Physical attacks are a well-known threat to embedded
secure systems, and electromagnetic injections are an
effective way to carry out fault attacks. Designers must
therefore assess the vulnerability of implementations as early
as possible in the design flow. In this paper, we present a
methodology that can emulate EM faults by exploiting local
timing violations. The proposed approach can help the
designer to validate architectural countermeasures at Register
Transfer Level against a realistic fault model on an actual
prototype implemented on FPGA, without the need of an
expensive EMFI platform.

The methodology has been fully implemented and the
developed tool is being published and made accessible to the
community. Exploitable faults have been injected into several
designs. In the short term, the injected faults will be compared
to those obtained by an actual EMFI platform, and error
detecting countermeasures will be evaluated with the
proposed approach.

ACKNOWLEDGMENT

This work has been partially supported by the French
National Research Agency in the framework of the
"Investissements d’avenir” program (ANR-15-IDEX-02).

REFERENCES
[1] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems. CRYPTO 1996: 104-113.

[2] P. C. Kocher, J. Jaffe, B. Jun. Differential Power Analysis. CRYPTO
1999: 388-397.

[3] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, C. Whelan. The
Sorcerer's Apprentice Guide to Fault Attacks. Proceedings of the IEEE
94(2): 370-382 (2006).

[4] J. -M. Dutertre et al., "Sensitivity to Laser Fault Injection: CMOS FD-
SOI vs. CMOS Bulk," in IEEE Transactions on Device and Materials
Reliability, vol. 19, no. 1, pp. 6-15, March 2019, doi:
10.1109/TDMR.2018.2886463.

[5] Toulemont, J. et al. “A Simple Protocol to Compare EMFI Platforms.”
IACR Cryptol. ePrint Arch. 2020 (2020): 1277.

[6] NewAE Technology Inc, “ChipShouter User Manual”, available at
https://media.newae.com/manuals/ChipSHOUTER_PRESS_1.1.pdf,
2019.

[7] J. Toulemont, F. Mailly, P. Maurine and P. Nouet, "Exploring flexible
and 3D printing technologies for the design of high spatial resolution
EM probes," 2021 19th IEEE International New Circuits and Systems
Conference (NEWCAS), 2021, pp. 1-4, doi:
10.1109/NEWCAS50681.2021.9462763.

[8] A. Dehbaoui, J. Dutertre, B. Robisson and A. Tria, "Electromagnetic
Transient Faults Injection on a Hardware and a Software
Implementations of AES," 2012 Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2012, pp. 7-15, doi:
10.1109/FDTC.2012.15.

[9] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal
verification of a software countermeasure against instruction skip
attacks,” Journal of Cryptographic Engineering, vol. 4, no. 3, pp. 145–
156, 2014.

[10] S. Ordas, L. Guillaume-Sage, and P. Maurine, “Electromagnetic fault
injection: the curse of flip-flops,” Journal of Cryptographic
Engineering, vol. 7, no. 3, pp. 183–197, 2017.

[11] M. Dumont, M. Lisart and P. Maurine, "Modeling and Simulating
Electromagnetic Fault Injection," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 40, no. 4, pp.
680-693, April 2021, doi: 10.1109/TCAD.2020.3003287.

[12] A. Menu, J. Dutertre, O. Potin, J. Rigaud and J. Danger, "Experimental
Analysis of the Electromagnetic Instruction Skip Fault Model," 2020
15th Design & Technology of Integrated Systems in Nanoscale Era
(DTIS), 2020, pp. 1-7, doi: 10.1109/DTIS48698.2020.9081261.

[13] M. Ghodrati, B. Yuce, S. Gujar, C. Deshpande, L. Nazhandali and P.
Schaumont, "Inducing Local Timing Fault Through EM Injection,"
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
2018, pp. 1-6, doi: 10.1109/DAC.2018.8465836.

[14] G. Surya, P. Maistri and S. Sankaran, “Local Clock Glitching Fault
Injection with Application to the ASCON Cipher.” 2020 IEEE
International Symposium on Smart Electronic Systems (iSES)
(Formerly iNiS) (2020): 271-276.

[15] Xilinx Inc, “7 Series FPGAs Clocking Resources. User Guide,”
UG472, v1.14, available at www.xilinx.com/support/documentation/-
user_guides/ug472_7Series_Clocking.pdf, 2018.

[16] National Institute of Standards and Technology (NIST), “FIPS-197:
Advanced Encryption Standard,” Nov. 2001.

[17] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri and V. Piuri, "Error
analysis and detection procedures for a hardware implementation of the
advanced encryption standard," in IEEE Transactions on Computers,
vol. 52, no. 4, pp. 492-505, April 2003, doi:
10.1109/TC.2003.1190590.

[18] P. Maistri and R. Leveugle, "Double-Data-Rate Computation as a
Countermeasure against Fault Analysis," in IEEE Transactions on
Computers, vol. 57, no. 11, pp. 1528-1539, Nov. 2008, doi:
10.1109/TC.2008.149.

[19] Digilent Inc, “Nexys A7™ FPGA Board Reference Manual”, available
at https://digilent.com/reference/_media/reference/programmable-
logic/nexys-a7/nexys-a7_rm.pdf, 2019.

[20] A. Papadimitriou, D. Hély, V. Beroulle, P. Maistri and R. Leveugle, "A
multiple fault injection methodology based on cone partitioning
towards RTL modeling of laser attacks," 2014 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2014, pp. 1-4, doi:
10.7873/DATE.2014.219.

