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Abstract—In embedded systems, the presence of a security 
layer is now a well-established requirement. In order to 
guarantee the suitable level of performance and resistance 
against attacks, dedicated hardware implementations are often 
proposed to accelerate cryptographic computations in a 
controllable environment. On the other hand, these same 
implementations may be vulnerable to physical attacks, such as 
side channel analysis or fault injections. In this scenario, the 
designer must hence be able to assess the robustness of the 
implementation (and of the adopted countermeasures) as soon 
as possible in the design flow against several different threats. 
In this paper, we propose a methodology to characterize the 
robustness of a generic hardware design described at RTL 
against EM fault injections. Thanks to our framework, we are 
able to emulate the EM faults on FPGA platforms, without the 
need of expensive equipment or lengthy experimental 
campaigns. We present a tool supporting our methodology and 
the first validations tests done on several AES designs 
confirming the feasibility of the proposed approach. 

Keywords—EM fault injection, emulation, clock glitching, 
FPGA, RTL 

I. INTRODUCTION 

Many applications nowadays require confidentiality, 
integrity, and authentication, which can be achieved through 
the implementation of cryptographic primitives. It is hence 
quite common to find these implementations in many 
embedded systems, either as software or, if demanded by 
requirements in terms of performance or efficiency, as 
hardware designs. 

Although cryptographic algorithms can be considered 
reasonably secure, it is however well known that careless 
implementations of the secure primitives can nonetheless 
reveal critical information. This kind of attacks directed to the 
actual implementation can be passive [1][2], where the 
behavior of the system is observed and analyzed, or active [3], 
where the regular functioning is altered in order to gather 
useful information about the data being processed. 

The correct behavior of the device can be altered in several 
ways, with the usual goal of injecting some computational 
error that will be further analyzed and exploited in order to 
break the cryptosystem. Fault injection attacks can be 
performed by using a variety of techniques: voltage and clock 
glitches, laser or EM illumination, etc. All these techniques 
have different properties in terms of precision, required 
knowledge, and cost. Glitches, for instance, are quite simple 
and cheap to implement but act on global signals of the 
integrated circuit (e.g., the clock or the voltage supply), so 
they affect the design in its entirety: for this reason, they are 

mostly effective against software implementations (running 
on CPUs or microcontrollers), where the serial execution of 
the code limits the error propagation. On the other hand, their 
impact on hardware implementations is much less predictable 
or controllable: hence, secure hardware implementations are 
usually attacked through laser or, more recently, EM fault 
injections (EMFI), which exhibit good spatial locality and 
excellent temporal precision. In particular, laser fault injection 
(LFI) has excellent controllability even when attacking 
reasonably recent technology nodes [4]: on the other hand, the 
cost in terms of equipment, preparation, and related expertise 
is not affordable for everybody. EMFI attacks, while still 
providing good potential from the point of view of the 
attacker, are more accessible and are thus becoming an 
interesting attack technique in the recent literature. 

For these reasons, designers must hence take into 
consideration such threats as early as possible, in order to 
assess the vulnerability of the architecture against physical 
attacks and propose solutions (i.e., countermeasures) at all 
levels in order to face these threats. This may constitute a 
serious challenge: protecting as early as possible means that 
solutions must be proposed at software (if it is the case) or 
Register Transfer Level (RTL), when there may be no actual 
silicon yet to perform the experiments.  

In this work, we want to propose a methodology aimed at 
validating the architectural consequences of EM fault 
injections. Our framework does not aim at being an alternative 
attack technique nor a generic fault injection framework, but 
it allows emulating the EM fault on a configurable platform 
(an FPGA board) by mimicking the spatial and temporal 
characteristics of EM pulses on any digital designs, without 
any additional equipment other than a programmable board. 
Thanks to our approach, designers can therefore validate 
architectural solutions with respect to a fast, inexpensive, and 
accurate flow. We have validated the methodology on three 
different hardware implementations of the Advanced 
Encryption Standard, proving that exploitable faults, issued 
from literature models, can be easily injected. 

This paper is organized as follows. In the next section, we 
resume the existing state of the art, which constitute also the 
motivation behind this work: we briefly describe the 
experimental platforms for EMFI, and the main abstractions 
that have been proposed to model the interaction between the 
EM pulse and the silicon. Section III describes our 
methodology more in detail, highlighting the different steps of 
our approach. First preliminary results are elaborated in 
Section IV, along with some perspectives on future research 
directions. Finally, Section V concludes the paper. 
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II. MOTIVATION 

Electromagnetic Fault Injection (EMFI) has been gaining 
in popularity in the recent years. EMFI does not require 
special preparation of the integrated circuit (i.e., no backside 
access for illumination, no lapping in order to expose the 
silicon layers) and the experimental setup is of lower 
complexity: a pulse generator, an injection probe, and a 
control machine are the main components of the platform 
(with the target as well). After a first period when 
experimental platforms were mostly built using commercial or 
home-made parts, a few complete platforms have recently 
made their appearance on the market [5]. Nonetheless, these 
setups still constitute an important investment [6]. Some 
studies have explored alternative solution to improve the 
interaction between the probe and the circuit, but are mostly 
oriented to passive analysis [7].  

For these reasons, it is important to understand the 
mechanisms of error injections due to EMFI. Several studies 
have appeared in the latest years, aiming at modelling at 
different levels the effects in both hardware and software 
implementation of cryptographic algorithms. In [8], AES was 
attacked by EMFI both in software, running on an 8-bit 
microcontroller, and on a hardware iterative design 
implemented on FPGA. Although the fault model of the two 
campaigns was not directly comparable, the authors were 
nonetheless able to propose and validate some initial guess 
about the error injection mechanism: according to their 
conclusion, the most likely fault model was due to localized 
timing violations. The authors did not prove the assumption 
from a formal point of view, but their experimental validation 
of a timing countermeasure seemed to confirm their 
assumptions. This similarity was also confirmed in later 
works, such as [9].  

Nonetheless, the understanding of the actual mechanisms 
occurring during EMFI is not as simple as that. Several other 
studies have shown that timing faults are only part of the 
global picture, as the EM pulse can disrupt the set/reset 
mechanism of flip-flops in a subtler way [10]. This 
mechanism has been later detailed as a double interaction with 
the power grid [11], as the EMFI creates two opposite pulses 
within the circuit. While the first lowers temporarily the 
supply voltage (thus creating timing violations), the second 
restores it and possibly interferes with the DFF sampling. This 
is confirmed by the fact that the experiments heavily depend 
not only on physical location of the injection, but on its exact 
timing as well [12]. 

Despite the complexity of the actual interaction between 
the EM pulse and the gates, it is generally accepted that EM 
faults can be approximated by timing faults in a first instance 
[13]. This assumption was thus adopted in [14], where the 

authors have shown the feasibility of using internal primitives 
of an FPGA to create clock glitch at a local level. However, 
their approach was limited to just evaluate the impact of the 
modification on resource usage and on performance, without 
any actual analysis of the faults that could be injected. 
Additionally, their methodology was applied manually on a 
specific design (namely, a lightweight ASCON architecture) 
and in a specific location.  

In this paper, we want to show that an automated approach 
can be generalized on any design and that exploitable faults 
can be injected. We describe our methodology in the next 
section. 

III. METHODOLOGY 

A. Basic Principles 

Our goal is to control timing violation faults in any part of 
the design. This fault model is quite specific to EM fault 
injection, as highlighted in the previous section: other fault 
attacks (or general reliability assessments) may be based on 
different fault models, such as bit-flip or bit set/reset. In order 
to accomplish this result, we instrument the design in order to 
create a clock glitch only in the specific part that has been 
defined as the target of the injection: as a consequence, we can 
emulate the sampling faults that would occur in the gates when 
targeted by EM injections. This approach first requires a clock 
glitch to be generated internally in the design and routed to the 
target. The second constraint is time-related: the glitch must 
occur only when needed, and nominal conditions (i.e., the 
regular clock) should be in general restored immediately after 
the glitch. The triggering condition can be set by the designer, 
but it is usually based on a custom delay with respect to a 
specific event (e.g., the start of the encryption). 

Although these two conditions seem easy to satisfy, there 
are some details that require attention from the designer. First, 
the spatial granularity of the fault injection: in principle, the 
target can be from a single flip-flop up to an entire module. In 
practice, if we aim at emulating local faults, smaller 
granularities should be used (such as a few FFDs or a specific 
register), as our goal is not to emulate global clock glitches. 
More advanced methods can be envisioned, as suggested in 
Section IV. Secondly, the glitch may occur either on the rising 
or the falling edge of the clock signal, or even both: different 
policies may cause different behaviors, depending on the 
actual design under attack, and should be taken all into 
consideration. In order to minimize the modifications to the 
original design, all the additional blocks (glitch generator, 
trigger, etc) can be defined separately in a larger wrapper 
module, containing the target as well, as schematically shown 
in Fig. 1. 

The glitch can be generated and controlled by using two 
synchronous clocks in the designs: the regular and the 
faultable clocks. The latter clock will be used to drive only the 
cells within the target (i.e., the flip-flops where the fault has to 
be injected), while the former will be used by the rest of the 
design. The two clock signals can be created through the 
FPGA Digital Clock Manager (DCM), and managed by the 
Fault Injector module. When the trigger is off no glitch is 
injected, meaning that the two clocks are identical; during the 
injection, the faultable clock (and only this clock) is 
perturbated with the glitch, and the sampling in the 
corresponding targets is corrupted. After the glitch, the two 
clocks are again identical, which allows resuming the 

  
Fig. 1. Clock signals in the design, and how they are generated. Red 

color shows new or modified elements of the design. 



computation process without any further error. The faulty 
output can then be recovered for cryptanalysis. 

B. Tools and Implementation 

Our proposed methodology is largely based on existing 
FPGA design flows. This is justified by the fact that our goal 
is to emulate EM injections to evaluate architectures and 
countermeasures at RTL or higher level: FPGA platforms are 
therefore perfectly suited, thanks to their configurability and 
large spectrum of devices. We have used Xilinx devices, but 
any other programmable board can be used if the main 
requirements are met. 

In order to generate the glitch internally, we rely on the 
BUFGCTRL primitive available on Xilinx FPGAs [15]. 
These components are well known clocking resources that can 
be used to switch between two input clocks without any glitch 
when properly configured. It is important to highlight that in 
our case, the glitch-free property of the primitive ensures that 
we can finely control the clock output: if a glitch occurs, it is 
deterministically due to our trigger and not to undefined 
behavior of the logic itself. This behavior can be achieved by 
configuring the additional inputs, namely the Ignore, Enable, 
and Selection input pins, to specific values. 

The clock switching is controlled by a decrementing 
counter, When the counter reaches the activation value, 
BUFGCTRL is triggered and changes to the secondary input 
clock. In order to preserve the global synchronization of the 
computation process, the regular clock is then restored. To 
simplify this step, the clock switch occurs when the counter 
reaches 1, and restores the normal clock at 0. 

The generic setup for glitch generation is shown in Fig. 2. 
The main clock is the nominal clock of the system; the 
auxiliary clock is used for glitch generation, and it is selected 
by the BUFGCTRL primitive when the trigger is activated. Its 
actual shape can be chosen to create a glitch with a specific 
pattern: in our experiments we set it to the same frequency of 
the main clock, a duty cycle of 25%, and a phase shift that 
depends on the design under test (270° in our case), but the 
actual configuration may be tailored to the specific 
experiment. The trigger is updated on the main clock, but its 
edge sensitivity depends on the type of glitch (rising, falling, 
or both edges) that has to be injected. 

A tool has been implemented in Python to automate the 
instrumentation process. It has been designed to accept any 
netlist in Verilog, which allows to easily process any 
synthesizable design. The tool identifies all possible targets by 
scanning the netlist and looking for keywords defining the 
sequential logic. Hierarchical or flattened designs are equally 
supported, while the list of keywords can be configured to 
adapt to different technology targets. The user is then allowed 
to choose a subset of targets, or the tool can be instructed to 

go through the list element by element for an extensive 
emulation campaign. The auxiliary clock, the triggering 
blocks, and the proper clock connections are handled directly 
by the tool in a transparent way for the user. The instrumented 
design can thus be used to replace the original one on the 
programmable board for the accelerated emulation 
experiment. In the perspective of comparing the results from 
this methodology against actual EMFI, the tool can optionally 
define a separate partition for the target in an automatic way, 
while the rest of the design is placed far from the target. This 
will allow easier placement of the EM probe during the attacks 
and the results will be more representative of the actual 
sensitivity of the selected target (and not of other glue logic). 

C. Validation 

The methodology was validated on three different 
hardware implementations of the Advanced Encryption 
Standard [16]: a trivial iterative design, an architecture 
protected by an Error Detecting Code (EDC) [17], and a 
design protected by hybrid temporal redundancy [18]. At this 
stage, no extensive campaign was performed to evaluate the 
countermeasures, as the main goal was rather to confirm the 
feasibility of the approach on designs having disparate 
constraints. All the designs were implemented on a Nexys A7-
100T board, which is equipped with a Xilinx Artix-7 
programmable chip. This board was chosen because of its 
large availability of clocking resources, and because the 
FPGA circuit is not protected by any heat spreader, making 
thus easier to plan later EM fault injection campaigns.  

Several experiments were done in order to find the most 
suitable value for configuring the parameters of the glitch 
generation, in particular the frequency, phase, and duty cycle 
of the auxiliary clock, as well as different techniques to create 
effective glitches. More importantly, several tests were run on 
all designs to inject errors on different elements of the designs 
(e.g., all the state bytes) and at different times (i.e., different 
encryption cycles). Our experiments have shown that faults at 
byte level can be successfully injected anywhere and anytime 
in the design, by controlling the clock glitches at local level. 
As an example, we report the output of an encryption 
experiment in Fig. 3, where a standard pair of plain text and 
key from the NIST specifications were used for correct and a 
faulty encryption on the EDC-protected design. In this 
experiment, a clock glitch was injected on the output of the 
SubBytes operation on the least significant byte of the state 
during the 8th round. The figure highlights how the output of 
the faulty encryption is fully corrupted as expected, and the 
cryptanalysis by reverse computation of the result correctly 
identifies the error as occurring on the targeted byte and round, 
thus confirming the successful injection. Moreover, the 
injected error value can be guessed as well. 

IV. DISCUSSION 

This methodology has been proposed to emulate EM fault 
injection on an FPGA without recurring to an actual 
experimental EM platform. The designer can then apply 

 
Fig. 2. Clock signals in the design, and how they are generated 

Input msg:  00112233 44556677 8899aabb ccddeeff 
Secret key:  00010203 04050607 08090a0b 0c0d0e0f 

Expected output:  69c4e0d8 6a7b0430 d8cdb780 70b4c55a 
Faulty output:  9338a658 c8de3d85 edfc907e 64cbb5a1 
Output error:  fafc4680 a2a539b5 353127fe 147f70fb 

8th SubBytes error:  00000000 00000000 00000000 000000ca 

Fig. 3. Experimental results with NIST test values and fault injection 
on least significant byte of the state (8th round, after SubBytes). 



classical fault analysis on the experimental results in order to 
assess the exploitability of the faults. 

The short-term objectives are comparing the results with 
actual EM injected faults, and evaluate architectural 
countermeasures against fault attacks. Although only 
dedicated designs were presented in this work, the 
methodology can be easily applied to any synthesizable 
description of any architecture: for instance, it may be used to 
analyze the error propagation within the architecture of a 
general-purpose processor. The main requirement is that the 
netlist description has to be available and modifiable to allow 
clock instrumentation, such as in RISC-V architectures. If the 
netlist is encrypted, our approach cannot be used. 

The parameter exploration is currently delegated to the 
designer, who needs to tune the fault injector module in order 
to fit the target constraints and find the best configuration. 
This may be a tedious process, which could be sped up with 
proper assistance from the tool if the longest path delay would 
be known for the given target. Functional relationship analysis 
might be exploited as well in order to identify sets of targets 
and estimate spatial locality at RTL as in [20]. This 
methodology, originally proposed to create a laser-based fault 
model at RTL, could be effectively applied also to EM faults 
as well, thanks to similar spatial properties of the two attack 
techniques. 

So far, only single glitches have been taken into 
consideration. On the other hand, current FPGAs have several 
clocking resources available on chip, which would allow for 
multiple glitch domains at the same time. The device used in 
our experiments, for instance, has 6 clock management tiles, 
which can be used to create independent glitches in parallel. 
Triggering conditions may be further explored as well. In 
simple attacks, only one glitch is injected at a specific time, 
but a more advanced controller could be programmed to 
schedule more than one glitch for each execution. When 
combined with independent parallel glitching, cited above, 
this would allow emulating complex higher-order attacks, 
with spatial and temporal multiplicity higher than one. 

V. CONCLUSION 

Physical attacks are a well-known threat to embedded 
secure systems, and electromagnetic injections are an 
effective way to carry out fault attacks. Designers must 
therefore assess the vulnerability of implementations as early 
as possible in the design flow. In this paper, we present a 
methodology that can emulate EM faults by exploiting local 
timing violations. The proposed approach can help the 
designer to validate architectural countermeasures at Register 
Transfer Level against a realistic fault model on an actual 
prototype implemented on FPGA, without the need of an 
expensive EMFI platform.  

The methodology has been fully implemented and the 
developed tool is being published and made accessible to the 
community. Exploitable faults have been injected into several 
designs. In the short term, the injected faults will be compared 
to those obtained by an actual EMFI platform, and error 
detecting countermeasures will be evaluated with the 
proposed approach. 
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