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a b s t r a c t 

Planning disassembly operations for a given demand in components is challenging in practice because

the quality of recovered components is very uncertain, and thus the duration of refurbishing operations is

unpredictable. In this paper, we address the capacitated disassembly lot-sizing problems under uncertain

refurbishing durations. More precisely, we consider a two-level disassembly system with a single type

of end-of-life product, a dynamic demand, and stochastic refurbishing lead times for all components.

To deal with the static decision frameworks, this problem is modeled as a two-stage stochastic Mixed-

Integer Linear Program (MILP), where the objective is to minimize the expected total cost. To alleviate

the scalability issues, we propose a reformulation of the inventory constraint that significantly reduces

the number of scenarios. In addition, to solve large scale problems, we couple this reformulation with

Monte–Carlo sampling. We provide a rolling horizon approach to deal with the static decision framework,

where disassembly decisions are updated when new information unfolds. Experimental results show the

effectiveness of the proposed models and the convergence of the resulting Sample Average Approximation

(SAA) estimator.
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. Introduction

Governments around the world are imposing more and more 

nvironmental regulations on manufacturers and suppliers to mini- 

ize waste and recover resources. The directive on waste electrical 

nd electronic equipment (directive 2002/96/EC) is a good exam- 

le of the implementation of an environmental management policy 

 Wang & Huang, 2013 ). Members of the European Union were in- 

ited to set up different systems for returning products at the end 

f their life, reducing waste, and carrying out recovery and recy- 

ling processes. All of these actions aim to reduce electrical equip- 

ent wastes and their negative environmental impacts. According 

o Pini, Neri, & Ferrari (2018) , Europe produces up to 3 billion tons

f waste every year. In this context, recovery processes provide fi- 

ancial opportunities, and they allow manufacturers to engage in 

ustainable practices by extending the life of an end-of-life (EoL) 

roduct. In fact, the refurbishing activity is not only attractive from 

n environmental perspective, it can provide economic benefits by 
∗ Corresponding author.

E-mail address: oussama.ben-ammar@mines-ales.fr (O. Ben-Ammar).
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r

btaining valuable materials for reuse or energy production. Refur- 

ished components, which typically undergo a thorough cleaning 

rocess are equivalent in performance to the new ones, yet they 

ell for only 40% of the original price, moreover the cycle of re- 

ale and refurbishing can be repeated several times ( Pearce John, 

009 ). Currently, in the United States, refurbishing is $50 billion in- 

ustry with direct employment of about 480,0 0 0 in 73,0 0 0 firms’ 

 Gutwski, Sahni, & Boustani, 2011 ). 

The recovery process encompasses all activities related to the 

ollection, disassembly, refurbishing, repair, recycling, disposal, of 

oL products. Once collected, they are disassembled into compo- 

ents, and these components are then cleaned and tested. Based 

n their condition, these components undergo one of the two 

alue recovery activities (refurbishing, or recycling) or are disposed 

f Langella (2007) . As the reverse flow grows, many firms seek op- 

ortunities to reduce EoL product management costs. Among vari- 

us tasks in the recovery process, disassembly and refurbishing are 

he most significant operations in terms of costs. In addition, these 

perations are difficult to manage due to the uncertainty of various 

efurbishing parameters such as quantity, quality, and timing. 

mailto:oussama.ben-ammar@mines-ales.fr
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According to a review proposed by Jaehn (2016),  the EoL prod-

ct recovery process that considers random input is a promising 

rea of research for sustainable operations in production. After dis- 

ssembly, the components undergo several renovation processes 

such as repair, cleaning, etc.) to meet the required quality level, 

nd this renovation process can take several weeks. In a remanu- 

acturing context, these refurbishing lead times (RLT) are difficult 

o predict, because the quality of the components is only known 

nce the EoL item is disassembled. Managing the uncertainty of re- 

urbishing lead times plays an important role in disassembly plan- 

ing and inventory management since bad management can cause 

tock-outs and unnecessary stocks. 

In this paper, we provide a methodology for disassembly plan- 

ing of EoL products under stochastic refurbishing time for com- 

onents, known component demand, and when the capacity of the 

isassembly line is limited. The goal is to decide the size of the lots

o disassemble and to plan the amount of overtime required on 

he disassembly line. According to the classification proposed by 

i, Zhang, Huang, & Li (2016),  the studied problem enters into the

ategory of a Capacitated Disassembly Lot Sizing (CDLS) problem 

hat considers the best use of disassembly resources to satisfy the 

emand on components over a given planning horizon. Note that 

e assume the disassembly duration is known, and it is shorter 

han a period, whereas the refurbishing duration may last several 

eeks and is unknown. In this setting, the disassembly duration 

orresponds to process duration, and it consumes the production 

apacity. In the production planning literature, the time difference 

etween the start of processing of an operation and the availability 

f the resulting parts is called lead time. Therefore, the considered 

roblem is a CDLS under uncertain refurbishing lead times. 

As we aim to extend the current knowledge about DLS prob- 

em resolution by integrating the uncertainty of refurbishing lead 

imes, we consider a single type of EoL product, a two-level disas- 

embly system, and a multi-period planning. In addition, the cus- 

omer’s demand and the disassembly duration are known, whereas 

he refurbishing lead times are discrete random variables that fol- 

ow known probability distributions. This tactical problem aims to 

etermine the optimal quantity of EoL products to disassemble in 

ach period over a given planning horizon which guarantees the 

est trade-off between costs related to disassembly operations and 

he sum of expected inventory and backlog costs. The contributions 

nd innovations in this study are the following: 

1. We formulate the considered problem as a stochastic mathe- 

matical program. The resulting MILP accounts for a set of pos- 

sible scenarios that represent possible refurbishing lead times

for components obtained by disassembly. The proposed model

is flexible enough to account for the case where different dis- 

assembly lots cross in time due to the uncertain refurbishing

lead times. In this situation, if the disassembly of a lot A oc- 

curs before the disassembly of a lot B , the components result- 

ing from B may be received before the components of A . This

is an important contribution since a large part of the literature

on classical planning under lead time uncertainty requires the

restrictive assumption that orders do not cross in time. To the

best of our knowledge, we are the first to propose a method

able to account for order crossover in the DLS problem.

2. Our experiments show that CPLEX cannot solve instances

with more than 30 components and 10 periods in less than

3600 seconds of computation, because the number of scenar- 

ios becomes too large. To get around this obstacle, we devel- 

oped a scenario aggregation technique. More precisely, we pro- 

pose a new formulation of the inventory constraint that signif- 

icantly reduces the number of scenarios. The resulting model

significantly improves the scalability of the approach, and it can

solve instances with a large number of components and peri- 
ods when order crossover is forbidden, or if the refurbishing 

lead time range (i.e., the difference between the maximum and 

the minimum refurbishing lead time value for a component) is 

lower than 6 periods when order crossovers can occur. 

3. Even though the scenario aggregation (SA) approach reduces

the number of scenarios drastically, this number remains expo- 

nential in the refurbishing lead times range. As a consequence,

the resulting method cannot solve instances with a large range

of refurbishing lead times. To solve these large-scale problems,

we couple the scenario aggregation technique with Monte–

Carlo (MC) sampling.

4. To deal with the dynamic decision frameworks, where the dis- 

assembly plan is updated when new information unfolds, we

employ a rolling horizon strategy.

5. Extensive computational experiments assess the effectiveness of

the proposed approaches. In particular, the resulting sampling

method provides a good approximation, with an average per- 

centage deviation from the optimal solutions of less than 0.5%.

In addition, our tests show the convergence of the Sample Av- 

erage Approximation (SAA) estimator.

This paper is divided into six sections. Section 2 provides a brief 

verview of the literature review. Section 3 gives the problem de- 

cription and formulation. The proposed approaches are described 

n Section 4 . Section 5 gives numerical results. Finally, conclusions 

nd some perspectives for future work are drawn in Section 6 . 

. Literature review

Since the seminal work of Gupta & Taleb (1994) , the DLS prob- 

ems have attracted a lot of attention, and recent reviews are pre- 

ented in Kim, Lee, & Xirouchakis (2007) and Slama, Ben-Ammar, 

asmoudi, & Dolgui (2019a) . Gupta & Lambert (2016) highlighted 

he importance of disassembly lot sizing problems. Compared to 

he assembly process, the disassembly process is characterized 

y more complex operational and physical properties ( Gungor & 

upta, 1999; Slama, Ben-Ammar, Dolgui, & Masmoudi, 2020a ). The 

ost important difference is the number of demand sources. In 

n assembly system, the parts tend to converge to a single de- 

and source related to the final product. Under a disassembly sys- 

em, parts tend to diverge to multiple demand sources correspond- 

ng to each disassembled component. For more details on these 

ivergences, the interested reader is referred to Gungor & Gupta 

1999) and Kim et al. (2007) . 

Different variants of the DLS problem exist, and they differ ac- 

ording to the product structure (single or multi EoL products, 

wo or multi-echelon bill of materials (BOM), with or without 

arts commonalities) and by the consideration of disassembly pro- 

ess resources (capacitated or uncapacited). Most of the literature 

n disassembly systems concerns the deterministic uncapacitated 

roblem (e.g., Godichaud & Amodeo, 2018; 2019; Gupta & Lam- 

ert, 2016; Kang, Doh, Park, & Lee, 2016; Kim, Doh, & Lee, 2018a; 

im, Lee, & Xirouchakis, 2006b; Kim, Lee, Xirouchakis, & Kwon, 

0 09; Langella, 20 07; Lee & Xirouchakis, 2004; Neuendorf, Lee, 

iritsis, & Xirouchakis, 2001; Pour-Massahian-Tafti, Godichaud, & 

modeo, 2019a; 2019b; 2019c; 2020a; 2020b; Prakash, Ceglarek, & 

iwari, 2012; Taleb, Gupta, & Brennan, 1997 ), while a small num- 

er of studies focus on the deterministic capacitated version (e.g., 

i et al., 2016; Kim, Lee, & Xirouchakis, 2006a; Kim, Jeon, Kim, Lee, 

 Xirouchakis, 2005; Lee, Xirouchakis, & Zust, 2002; Slama et al., 

020a; Ullerich & Buscher, 2013 ). Table 1 summarizes the litera- 

ure on the DLS problem, and indicates the resolution approach, 

he BOM structure, whether capacity is considered, and the type 

f uncertainties. 

In practice, the product recovery process is sensitive to vari- 

us sources of uncertainty, such as uncertain demand from cus- 



Table 1

Summary of relevant literature.

Authors Optimisation approach #levels Cap. PC Uncertainty

Gupta & Taleb (1994) RMRP Multi

Taleb et al. (1997) RMRP Multi –

Lee & Xirouchakis (2004) Heuristic Multi
√ 

–

Inderfurth & Langella (2006) Heuristic Two Yield

Kim et al. (2006b) Heuristic Multi
√ 

–

Kim et al. (2006a) LH Multi
√ 

–

Kim, Lee, & Xirouchakis (2008) DP Two –

Kim et al. (2009) Branch and bound Multi
√ 

–

Kim & Xirouchakis (2010) LH Two
√ 

Demand

Kim & Lee (2011) Heuristic Multi –

Prakash et al. (2012) CBSA Multi
√ 

–

Ji et al. (2016) LH Two
√ 

–

Godichaud, Amodeo, & Hrouga (2015) GA Multi
√ 

–

Fang et al. (2017) LH Two Demand

Kim et al. (2018a) Heuristic Multi –

Godichaud & Amodeo (2018) EOQ model Two –

Liu & Zhang (2018) Outer-approximation Two Demand, yield

Tian & Zhang (2019) PSO Two –

Slama et al. (2019b) S-MIP Two DLT

Piewthongngam, Chatavithee, & Apichottanakul (2019) MILP Two
√ 

–

Godichaud & Amodeo (2019) EOQ model Multi –

Pour-Massahian-Tafti et al. (2019a) AF, DF Two –

Pour-Massahian-Tafti, Godichaud, & Amodeo (2019b) Heuristics Two –

Pour-Massahian-Tafti, Godichaud, & Amodeo (2019c) Heuristics Two –

Slama et al. (2020a) MIP Multi
√ √ 

–

Pour-Massahian-Tafti, Godichaud, & Amodeo (2020a) EOQ model Two –

Pour-Massahian-Tafti et al. (2020b) Heuristics Two
√ 

–

Slama et al. (2020c) SAA Two
√ 

DLT

Slama et al. (2021b) GA Two
√ 

DLT

Slama, Ben-Ammar, & Dolgui (2021a) Analytical model, recursive formula Multi DLT

Current paper SA-MILP Two
√ 

RLT

Cap., Capacity; PC, Parts Commonalities; NP, Number of Disassembled products; RMRP, Reverse Material Requirements Planning; LP, Linear Pro- 

gramming; DP, Dynamic Programming; LS-RMRP, Lot-Sizing-RMRP; CBSA, Constraint-Based Simulated Annealing; LH, Lagrangian Heuristics; EOQ,

Economic Order Quantity; AF, Aggregate Formulation; DF, Disaggregate Formulation; GA, Genetic Algorithm; SA-MILP, Scenario Aggregation-Mixed

Integer Linear Programming.
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omers, recovery rates, disassembly lead times, etc. Guide & Srivas- 

ava (1997) . As in supply planning for assembly systems, these un- 

ertainties create disruptions in the disassembly plan, and leads to 

nmet customer demand. Many researchers have applied stochas- 

ic algorithms to the DLS problem (e.g., Tarim, Dogru, Özen, & 

ossi, 2011; Tarim & Smith, 2008; Vargas, 2009 ), and they focus on 

emand, disassembly yield, and disassembly lead time (DLT) un- 

ertainty ( Suzanne, Absi, & Borodin, 2020 ). Therefore, to position 

ur research in the existing literature, we successively review the 

orkson stochastic DLS problems under demand, yield, and disas- 

embly lead time uncertainty. 

Demand uncertainty: Barba-Gutiérrez & Adenso-Díaz (2009) pro- 

ose a fuzzy logic approach for the single EoL item, multi-period, 

ulti-echelon DLS problem under stochastic demand. In this work, 

very unsatisfied demand in each period is back-ordered and post- 

oned for future periods. Kim & Xirouchakis (2010) consider the 

apacitated multi-item DLS problem where each product has a 

wo-echelon BOM structure. To solve the problem, the authors 

evelop a stochastic inventory model, and they propose a La- 

rangian relaxation-based heuristic that optimizes the sum of ex- 

ected inventory holding, setup, and penalty costs. Fang et al. 

2017) ; Quezada, Gicquel, Kedad-Sidhoum, & Vu (2020) ; Wang & 

uang (2013) consider the multi-level, multi-product, multi-period 

tochastic lot-sizing problem in remanufacturing systems. Wang & 

uang (2013) propose a two-stage stochastic programming model 

o find a compromise between the solution robustness and the ex- 

ected cost. Fang et al. (2017) formulate a multi-stage stochastic 

rogramming approach, and they propose a Lagrangian relaxation 

lgorithm to solve the problem. Recently, Quezada et al. (2020) fo- 

used on a multi-echelon system with disassembly, refurbishing, 

nd reassembly operations. Quezada et al. (2020) extend the multi- 
tage stochastic programming approach proposed by Fang et al. 

2017) by considering the uncertainties related to the quantity and 

uality of returned products, the customer demand, and the pro- 

uction costs. To solve the problem, the authors develop an exact 

olution approach based on a branch-and-cut algorithm. 

The yield uncertainty occurs when the number of compo- 

ents obtained by disassembling a unit of product is uncertain 

 Inderfurth, Vogelgesang, & Langella, 2015 ). To the best of our 

nowledge, only two papers consider the DLS problem under yield 

ncertainty. These two papers are restricted to the multi-products 

ase with two-echelon BOMs in a one-period disassembly to-order 

DTO) environment. Inderfurth & Langella (2006) give a heuristic to 

educe the expected disposal, purchasing, and disassembly opera- 

ion costs, whereas Inderfurth et al. (2015) propose a mathematical 

odel for the specific case with three end-components and two 

ub-assemblies. The authors study the impact of process specifica- 

ion on the solution of the DTO problem. Finally, a statistical anal- 

sis shows that the yield uncertainty has a large impact in engine 

emanufacturing. 

Uncertainty of demand and yield: to the best of our knowledge, 

iu & Zhang (2018) is the only publication investigating simulta- 

eously the uncertainty of component demand and disassembly 

ield. The yield uncertainty is modeled with a uniform distribu- 

ion, whereas the demand follows a normal distribution. The au- 

hors provide a mixed integer nonlinear programming (MINLP) for 

he multi-period and two echelon disassembly system, and they 

olve it with an outer approximation-based solution algorithm. 

Uncertainty of disassembly lead time (DLT) : while yield and de- 

and uncertainties impact the disassembly operation planning, 

emanufacturing facilities also face uncertain disassembly lead 

imes. In fact, Guide (20 0 0) indicates that the average time to re- 



m

a

c

s

A

f

s

(

m

s

a

a

b

p

m

i

e

B

r

B

u

i

r

e

 

v

c

t

a

u

f

t

f

(

b

t

p

B

d

i

o

b

B

p

p

A

f

L

a

n

o

G

o

t

t

(

i

n

n

K

w

g

s

Fig. 1. Two level disassembly system.
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anufacture and disassemble a recycled EoL product varies from 

 low level of 5.54 hours to a high level of 300 hours, with 

oefficients of variation as high as 5.0. The literature on disas- 

embly planning plan under random DLT is scarce. Slama, Ben- 

mmar, Masmoudi, & Dolgui (2019b) propose a stochastic model 

or the multi-period, single product type, and two-level disas- 

embly system. Recently, Slama, Ben-Ammar, Dolgui, & Masmoudi 

2020b) proposed a generalization of the discrete Newsboy for- 

ulae to find the optimal release date when the time of disas- 

embling the EoL product is a random variable. In this paper, the 

uthors investigated the effect of uncertainty of DLT on the dis- 

ssembly planning problem. Their analyses show that disassem- 

ly lead time variability has a significant effect on the system 

erformance. The limitation of this work is that it considers a 

ono-period disassembly planning problem with unlimited capac- 

ty. Slama, Ben-Ammar, Dolgui, & Masmoudi (2020c) extends Slama 

t al. (2019b) by considering the capacitated case. Recently, Slama, 

en-Ammar, Dolgui, & Masmoudi (2021b) proposed a genetic algo- 

ithm to solve the multi-period, single EoL product, and two-level 

OM. However, the authors assume the disassembly lead time is 

ncertain, where all the components of an end-item are received 

n the same period. On the contrary, the present work considers 

efurbishing lead time uncertainty, where the uncertainty affects 

ach component independently. 

As discussed in Kim et al. (2007),  the disassembly process is

ery sensitive to the uncertainty of refurbishing lead time of each 

omponent. Guide (20 0 0) states that this uncertainty can interrupt 

he delivery of disassembled parts, and it increases the inventory 

nd backlog costs. Nevertheless, to the best of our knowledge, the 

ncertainty of the refurbishing lead time (i.e., the time required 

or component recovery) has not yet been investigated. In fact, af- 

er each disassembly operation, the part must be refurbished be- 

ore being shipped to the customer. As the refurbishing lead time 

RLT) depends on the quality of the disassembled items, it cannot 

e estimated accurately. 

To fill this gap in the literature, the present paper investigates 

he DLS problem under component RLT uncertainty for the multi- 

eriod planning, single EoL item, with a two-echelon disassembly 

OM. Here, the demand is considered dynamic and we consider or- 

er crossovers. As far as we know, order crossovers have not been 

nvestigated in the DLS problem. 

In the field of assembly systems, several studies have focused 

n lead time uncertainty with order crossovers. These works can 

e split into three groups according to the number of levels in the 

OM, the number of periods in the planning horizon, and the as- 

ect of the demand: (i) one-level assembly systems, multi-period 

lanning with a one demand (e.g., Hnaien & Afsar, 2017; Jansen, 

tan, Adan, & de Kok, 2019; 2018 ), (ii) one-level assembly systems 

or a multi-period planning and a constant demand (e.g., Ould- 

ouly & Dolgui, 2009; 2013; Shojaie, Bahoosh, & Pourhassan, 2015 ), 

nd (iii) multi-level assembly systems for a mono-period plan- 

ing and a one-demand (e.g., Axsäter, 2006; Ben-Ammar, Castagli- 

la, Dolgui, & Hnaien, 2020; Ben-Ammar & Dolgui, 2018; Sakiani, 

homi, & Zandieh, 2012 ). However, most of these studies are based 

n analytic models that require problem-specific assumptions, and 

hey do not apply to our case. Interested readers can refer to 

he literature review proposed by Díaz-Madroñero, Mula, & Peidro 

2014) ; Golmohammadi & Hassini (2020) . 

Finally, as one of the main contributions of the present work 

s a reformulation of the stochastic program that leads to sce- 

ario aggregation, we mention that scenario aggregation tech- 

iques exist in stochastic optimization (e.g., Dupa ̌cová, Gröwe- 

uska, & Römisch, 2003; Henrion, Küchler, & Römisch, 2009; He- 

itt, Ortmann, & Rei, 2021; Kuhn, 2008 ). These approaches seek a 

ood representation of the uncertain parameters with a restricted 

et of scenarios. More precisely, the problem of optimal scenario 
eduction determines a scenario subset of prescribed cardinality 

and a probability measure based on this set) that is the closest 

o the initial distribution. For instance, Hewitt et al. (2021) rely on 

lustering approaches to group scenarios that have a similar im- 

act on the decision making. The resulting approach leads to high- 

uality upper and lower bounds for stochastic models. Henrion 

t al. (2009) rely on a discrepancy measure to build the scenar- 

os set. The idea is to build a probability distribution represented 

y a few scenarios and that deviates at least as possible from the 

riginal distribution. Kuhn (2008) aggregate the scenarios based on 

pper and lower bounds of the optimal value of the original prob- 

em. Dupa ̌cová et al. (2003) have proposed a scenario reduction 

pproach for a convex stochastic programming problem with a dis- 

rete initial probability distribution. However, the existing methods 

re different from the one proposed in the present work. Here, we 

ely on the properties of the considered problem to reformulate 

he inventory constraint and aggregate the scenarios. 

. Problem description and formulation

.1. Problem description 

In the present work, we study the capacitated disassembly lot- 

izing problem in a two-level bill of materials. Fig. 1 shows the 

isassembly and refurbishing process considered in this work. The 

oL products (first level) are disassembled into | N | components 

second level), where the number in parentheses represents the 

isassembly yield (i.e., the number of components obtained by 

he disassembly operation). Such a BOM structure is common in 

ractice, for instance, in the disassembly of an EoL vehicle ( Pour- 

assahian-Tafti, Godichaud, & Amodeo, 2020b ). Once the factory 

as disassembled the End of Life item, each lot of component is 

ent to a different refurbishing facility, where they are repaired, 

leaned, and refurbished. The refurbishing and repair duration 

aries significantly from a lot of component to another because it 

epends on the quality of the components. Each component under- 

oes different refurbishing operations depending on its type and its 

uality. 

In this context, planning the disassembly operation is complex, 

nd it requires to account for the uncertain refurbish and repair 

ime. More precisely, once disassembled, the components i are 

vailable after a stochastic refurbishing and repair lead time L i . 

hat is, if any disassembly operation is performed in period t , the 

omponents i are available at period t + L i . For sake of simplicity,

e use the term refurbishing lead times to refer to refurbishing 

nd repair lead times in the rest of the paper. As the refurbishing 

nd repair times are specific for each component, the refurbishing 

ead times are non-identically distributed. In addition, we consider 
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hat the supports of the refurbishing lead time distributions are 

iscrete and finite. More precisely, the refurbishing lead times Li 

re random discrete variables characterized by known probability 

istributions and varying between L −
i 

and L + 
i 

, ∀ i ∈ N , L −
i 
, L + 

i 
∈ N 

∗,

ere, N 

∗ is the set of non-negative integers except zero. Such an 

ssumption is consistent with the literature on supply planning 

nder uncertain lead times (see Ben-Ammar, Dolgui, & Wu, 2018 , 

nd related works). Note that the disassembly orders can cross in 

ime; i.e., if a lot A is disassembled before lot B , the components

esulting from the disassembly of B can arrive before the compo- 

ents resulting from A . 

The problem is to decide the disassembly lot sizes Z t in each 

eriod t , and the amount of extra capacity O t required in the disas- 

embly facility. In most remanufacturing facilities, the disassembly 

peration is done manually, and it is a bottleneck. Consequently, 

e consider that the disassembled quantity is limited by a given 

apacity in each period C t . The capacity consumption corresponds 

o the disassembly time F which is known. As the disassembly line 

s the bottleneck, the disassembly lot-sizing plan must use its ca- 

acity correctly. Extra capacity can be added if a cost is paid. A 

lassic solution is to use overtime, but it is also possible to bring 

n an extra worker for instance by using temporary workers. As 

n Voß & Woodruff (2006) , we assume ‘overtime’ which encom- 

asses all these capacity additions with a cost penalty u t . Note that 

e consider that the disassembly time is known whereas the re- 

air/refurbishing times are uncertain. This assumption is realistic 

ince the refurbishing/repair time depends on the quality of the 

tem. We assume that the time required to disassemble an item is 

nown because the items are disassembled by batch, and the ca- 

acity consumption of each individual item averages out over the 

ot. Our objective is to manage the capacity on the disassembly 

ine, whereas the refurbishing operations are performed in other 

arts of the shop floor. 

The demand D it for each disassembled component i is known in 

ach period t of the planning horizon. The stochastic refurbishing 

ead times can lead to holding costs h i and backlog costs b i when- 

ver the demand of a disassembled component i is not satisfied 

n time. The objective is to optimize the disassembly quantities at 

evel 1 to minimize the sum of the expected holding and backlog 

osts of all components in level 2, as well as the setup and over-

ime costs over a finite horizon. Also, the release of a disassembly 

rder in period t leads to a setup cost s t in that period. 

In this work, we consider the situation where the disassembly 

lan is decided over a planning horizon of several periods, and it 

s frozen. This decision process is required because the capacity 

lanning decision (such as the schedule of the employees) can- 

ot be modified in one period for the next one. Frozen horizons 

re commonly used in the industry to avoid nervousness. The aca- 

emic literature (e.g., Sridharan & Berry, 1990; Sridharan, Berry, & 

dayabhanu, 1987; Sridharan & LaForge, 1994; Xie, Zhao, & Lee, 

003; Zhao & Lee, 1993 ) shows that freezing the production plan- 

ing has a notable impact on total cost, the service level of the 

ystem, and schedule instability. In addition, freezing the decisions 

s necessary when they must be made several months in advance. 

uch decisions include capacity adjustment since workers cannot 

e hired/fired at the last moment. 

As the decisions are frozen, even though the refurbishing lead 

imes are not revealed at once, the problem corresponds to a 

wo-stage decision model. Nevertheless, the approaches proposed 

n this work can also be used in a dynamic decision framework, 

here the decisions are updated in each period after observing the 

uantities refurbished in each period. Solving the dynamic decision 

ramework exactly requires a multi-stage model that would be too 

omplex to solve. In fact, with uncertain refurbishing lead times, 

he setup decision should be adjustable to make good decisions. 

ith the classical scenario tree representation, such an approach 
ould lead to an exponential number of binary variables, and the 

esulting model would not be solvable for realistically sized in- 

tances. In this context, the two-stage model provides a heuristic 

hat can be used in a rolling horizon framework and can make 

he problem more tractable from the computational point of view. 

uch an approach leads to close to optimal solutions for lot-sizing 

nder uncertain demand ( Thevenin, Adulyasak, & Cordeau, 2021 ). 

Before moving on to the core topic of this paper, we briefly in- 

estigate the complexity of the problem. The deterministic single 

tem capacitated lot-sizing problem (SCLP) is a special case of CDLS 

ith a single disassembled item i and L i equals to 0 with proba- 

ility 1. As the SCLP is NP-hard ( Bitran & Yanasse, 1982; Florian, 

enstra, & Rinnooy Kan, 1980 ), the CDLS is NP-hard too. 

.2. Two-stage stochastic programming formulation 

This section gives the two-stage stochastic programming model 

orresponding to the CDLS problem with stochastic refurbishing 

ead times. The first-stage decisions correspond to the disassembly 

lan and the disassembly capacity. These decisions are made be- 

ore the uncertainty is revealed, and they are frozen for the entire 

lanning horizon. The second-stage decisions (control decisions) 

orrespond to the inventory and backlog level which are taken af- 

er the uncertainty is revealed. These second stage decisions are 

omputed once the random refurbishing lead times are revealed. 

Before introducing the solution approaches proposed to solve 

he studied problem, the full list of notations used throughout this 

aper is given in Table 2 . 

In this work, we provide a scenario based stochastic optimiza- 

ion formulation. A scenario represents a possible realization of the 

efurbishing lead time for each component in each period. Clas- 

ically, in the literature, the set of scenarios contains all possi- 

le combination of the L it ’s value (e.g., Borodin, Dolgui, Hnaien, & 

abadie, 2016 ), such as | �| = 

∏ 

i ∈N 
∏ 

t∈T (L + 
i 

− L −
i

+ 1) . Typically, in

n assembly problem, an end-item is assembled when all its com- 

onents arrive. Consequently, the inventory level of the end-items 

epends on the lead time of each of its components. Conversely, 

n a disassembly operation, the refurbishing lead time of a compo- 

ent i only affects the inventory and backlog level of component i . 

onsequently, the expected inventory level can be computed inde- 

endently for each end-item i , and thus the scenarios can be gen- 

rated independently for each component i . 

efinition 3.1. Let �i be the set of all possible scenarios for each 

omponent i . Each scenario ω corresponds to the realizations from 

eriods 1 to t of the refurbishing lead times of component i . More 

recisely, if any disassembly operation starts in period t , the com- 

onent i is available in period t + L ω 
it 

in scenario ω, and the prob-

bility of scenario ω is P ω 
i 

. If the refurbishing lead times in each 

eriod are independent, P ω 
i 

= 

∏ 

t∈T P i (L it = L ω 
it 
) . 

efinition 3.2. Let A 

ω 
it 

be the set that regroups the indices of 

uantities that arrive at the least before the end of period t , i.e., 

 

ω 
it 

:= 

{
τ ∈ T | τ + L ω 

iτ
≤ t 

}
. 

Such an approach drastically reduces the total number of sce- 

arios to | �i | = 

∏ 

t∈T (L + 
i 

− L −
i 

+ 1) , ∀ i ∈ N .

The CDLS problem with stochastic refurbishing lead times 

an be expressed with the following two-stage stochastic MILP 

odel. 

 (T C) = min 

∑ 

t∈T

(∑ 

i ∈N 

∑ 

ω∈ �i 

P ω i 

(
h i H 

ω 
it + b i B 

ω
it

)
+ s t .Y t + u t .O t

)
(1) 



Table 2

Notation.

Indexes

t index of period t , ∀ t ∈ T 
i index of component i , ∀ i ∈ N
ω index for scenario ω for each component i , ω ∈ �i 

Parameters

T set of time periods of the planning horizon

N set of components

�i set of possible scenarios for each component i

Ri disassembly yield of component i

D it external demand for component i in period t

I i 0 starting inventory of component i

L ω
it

refurbishing lead time for component i in period t under scenario ω

hi per-period inventory holding cost of one unit of component i

s t setup cost in period t

bi per-period backlog cost of one unit of component i

F disassembly operation time

C t available capacity in period t

ut cost of adding a unit of extra capacity in period t

K a large number

Functions

E (. ) expected value

P ω
i 

probability of scenario ω for component i , with
∑ 

ω∈ �i 
P ω 

i 
= 1 , ∀ i ∈ N , ∀ ω ∈ �i 

First-stage decision variables

Z t disassembly quantity ordered in period t

Y t binary indicator of disassembly in period t

O t disassembly overtime in period t

Second-stage decision variables

I ω
it

inventory level at the end of period t

H ω
it

positive inventory level of component i at the end of period t under scenario ω. H ω
it

is equal to I ω
it

if I ω
it

> 0 and zero otherwise

B ω
it

negative inventory level of component i at the end of period t under scenario ω. B ω 
it 

is equal to −I ω 
it 

if I ω
it

< 0 and zero otherwise

Z

F

Z

Y

H

w

K

T

t

v

s

i

t

d

C

p

c

s

w

p

s

a

o  

r

a

o

t

d

a

p

d

r  

t  

t

4

t

n

t

t

n

s

4

(

s

T

p

o

c

subject to : 

H 

ω 
it − B 

ω 
it = I i 0 + 

∑ 

τ∈A ω
it

R i Z τ −
t ∑ 

τ=1

D iτ

i ∈ N , t ∈ T , ω ∈ �i (2) 

 t ≤ K.Y t t ∈ T (3) 

 .Z t ≤ C t + O t t ∈ T (4) 

 t , O t ≥ 0 t ∈ T (5) 

 t ∈ { 0 , 1 } t ∈ T (6) 

 

ω 
it , B 

ω 
it ≥ 0 i ∈ N , t ∈ T , ω ∈ �i (7) 

here 

 = max 
i ∈N

(∑
∀ i ∈N 

∑ 

∀ t∈T D it 

R i 

)
(8) 

he objective function (1) minimizes the expected value of the to- 

al cost over the planning horizon. Constraints (2) define the in- 

entory balance for each component i at the end of period t under 

cenario ω. Constraints (3) guarantee that a setup cost is generated 

n period t if any disassembly operation needs to be performed in 

hat period, where the big K is equal to the maximum cumulative 

emand of all components over the planning horizon (see Eq. (8) ). 

onstraints (4) give the disassembling capacity constraints in each 

eriod t . Finally, constraints (5) –(7) provide the domain of the de- 

ision variables. 

Note that the model (1) –(7) is flexible enough to represent the 

ituation where order crossover is allowed or forbidden. In the case 
ithout order crossover, no part of a component disassembled in 

eriod t can be available before the parts of a component disas- 

embled in period t ′ with t ′ < t . 

To better explain the notion of non-crossing orders, we present 

 small example (with a single component and a planning horizon 

f 4 time periods). The lead times realisation L 1 t = (3 , 1 , 1 , 1) cor-

espond to a case with order crossover since the components dis- 

ssembled in period t ′ = 1 are received after the reception period 

f the component disassembled in period t = 2 . On the contrary, if 

he value of refurbishing lead times L 1 t are (2,1,1,1), there is no or- 

er crossover since the components disassembled in period t ′ = 1 

re received at the same time as the component disassembled in 

eriod t = 2 . To account for the situation where order crossover 

oes not occur, the set of scenarios must be generated such the 

eception period ( t + L ω 
it 

) of any order passed in period t is later

han the reception period ( t ′ + L ω 
it′ ) of any order passed in a period

 

′ earlier than t . 

. Solution approaches

The stochastic model describes the uncertain refurbishing lead 

ime through all possible scenarios. However, the size of the sce- 

ario set increases exponentially with the number of periods, and 

he resulting MILP requires too much memory and time resources 

o solve. Consequently, we investigate two techniques to reduce the 

umber of scenarios, namely Monte–Carlo (MC) sampling and the 

cenario aggregation (SA). 

.1. Monte–Carlo simulation and mixed integer linear programming 

MC-MILP) 

Model (1) –(7) is difficult to solve because the size | �i | of the

cenario set increases exponentially with the number of periods. 

herefore, we introduce the well-known Monte–Carlo (MC) sam- 

ling to estimate the expected total cost ( Fishman, 1996 ). MC relies 

n discrete samples to approximate a probability distribution that 

annot be calculated analytically. 



Fig. 2. Aggregation technique.
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The estimated total cost noted by ̂ T C is obtained by sampling

 ϑ i | refurbishing lead time scenarios for each component i . To

onstruct a scenario ω of ϑ i , each refurbishing lead time L ω 
it 

∈ 

 L ω 
i 1 

, . . . , L ω 
i |T | } is sampled randomly by following the probability 

istribution of L it . In the resulting sample, all the scenarios have 

he same probability 1 
| ϑ i | . The law of large numbers indicates that̂ 

 C converges with probability 1 to E (T C) as ϑ i increases. That

s, for any small value ε: lim 

ϑ i → + ∞ 

P (| ̂  T C − E (T C) | ≥ ε) = 1 . There-

ore, the model (1) –(7) can be converted to the following MC-MILP 

odel: ̂ T C = min
∑ 

∀ t∈T 

( ∑ 

∀ i ∈N 

∑ 

ω∈ ϑ i 
P ω i 

(
h i H 

ω 
it + b i B 

ω
it

)
+ s t Y t + u t O t

)
(9) 

ubject to (3) –(6) and: 

 

ω 
it − B 

ω 
it = I i 0 + 

∑ 

τ∈A ω
iτ

R i Z τ −
t ∑ 

τ=1

D iτ i ∈ N , t ∈ T , ω ∈ ϑ i (10) 

 

ω 
it , B 

ω 
it ≥0 i ∈ N , t ∈ T , ω ∈ ϑ i (11) 

he objective in (9) is now an estimation of the exact value in (1) .

onstraints (10) and (11) provide an estimation of the inventory 

evel for each component i at the end of period t based on the 

andom samples. 

.2. Scenario aggregation (SA) approach 

This section describes an aggregation strategy that reduces the 

umber of scenarios as much as possible. The SA approach cre- 

tes a reduced scenario set that keeps the stochastic properties of 

he original. This approach provides an efficient scenario reduction 

echnique for stochastic programming problems involving both dis- 

rete and continuous uncertain parameters, and it can assist re- 

earchers to solve the two-level and/or multi-product disassem- 

ly/assembly systems under uncertain lead times. The basic idea 

s to analyze the characteristics of the scenarios, to identify the es- 

ential features that affect the decisions, and to remove redundant 

cenarios. 

After releasing the disassembly operation of EoL product in a 

eriod τ (with t > τ ), each component is received after a random 

efurbishment lead time L iτ . As the support of the refurbishing 

ead time distribution is finite, the probability of receiving an order 

assed before period t − L + 
i 

is one, and the probability of receiving 

n order passed after period t − L −
i

is zero. Consequently, the dis- 

ribution of the backlog and inventory level depends only on the 

efurbishing lead times of orders passed within a specific time in- 

erval. Fig. 2 represents all possible cases of component reception. 
n cases 1 and 3, the disassembly occurs in period τ | τ ≤ t − L + 
i 

,

nd component i is received before the end of period t . In case 4, 

he disassembly occurs after period t − L −
i 

, and the resulting com- 

onents i are not available in period t . In the case 2, as the disas-

embly occurs in the interval [ t − L + 
i 

+ 1 , t − L −
i

] , the components

an arrive in the time interval [ τ + L −
i 
, τ + L + 

i 
] , and the inventory

nd backlog levels depend on the realization of lead-times. 

efinition 4.1. Let R t be the set of disassembly periods that may 

e involved in the calculation of the backlog or inventory level in 

eriod t . A period τ ∈ R t verifies: 

 t := 

{
τ ∈ T | t − L +

i 
+ 1 ≤ τ ≤ t − L −

i 
, ∀ i ∈ N 

}
.

emark 4.2. The cardinality of R t is constant, and it does not de- 

end on the value of |T | , i.e.: 

R t | = (L +
i 

− L −
i 
) , ∀ i ∈ N , t ∈ T .

efinition 4.3. Let αiτ t be a stochastic parameter indicating if the 

uantity of component i resulting from a disassembly in period τ
rrives before period t . That is, 

iτ t = 

{
1 if L iτ ≤ t − τ
0 if L iτ > t − τ. 

roposition 4.4. Eq. (2) are equivalent to the following inventory 

quations for all components i , periods t, and scenarios ω: 

 

ω 
it − B 

ω 
it = I i 0 + 

t−L +
i ∑

τ=1

R i Z τ + 

t−L −
i ∑

τ= t−L + 
i 
+1

αω 
iτ t R i Z τ −

t ∑ 

τ=1

D iτ . (12) 

The parameter αω 
iτ t 

(see Definition 4.3 ) defines the quantities of 

oL to be disassembled at period τ and received before the end of 

eriod t under scenario ω. Thus, ∀ i ∈ N , ∀ t ∈ T and ∀ ω ∈ �i , we

ave: 

 

ω 
it := { τ ∈ T | τ + L ωiτ ≤ t} := { τ ∈ T | αω 

iτ t > 0 } .
he inventory equation shown in constraints (2) can be replaced 

y: 

 

ω 
it − B 

ω 
it = I i 0 + 

t ∑ 

τ=1

αω 
iτ t R i Z τ −

t ∑ 

τ=1

D iτ ∀ i ∈ N , t ∈ T , ω ∈ �i .

(13) 

The quantities ( Z τ ) disassembled in period τ | τ ≤ t − L + 
i 

are re- 

urbished in period t with probability 1 (see cases 1 and 3 in 

ig. 2 ). Thus, for any scenario ω, component i , and period t: 

ω 
iτ t = 1 ∀ τ ≤ t − L + 

i 
. (14) 
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 (23) 
Similarly, the quantities ( Z τ ) disassembled in period τ | τ > t −
 

−
i

are not available in period t with probability 1 (see the cases 2 

nd 4 in Fig. 2 ). Thus, for any scenario ω, component i , and period

: 

ω 
iτ t = 0 ∀ τ > t − L −

i 
. (15) 

Finally, the components of an EoL disassembled in period τ | ≥
 − L + 

i
+ 1 can be received before or after t (see case 2 in Fig. 2 ).

or these periods, αω 
iτ t 

may take value 1 or 0. More precisely, for 

ny scenario ω, component i , and period t : 

ω 
iτ t ∈ { 0 , 1 } ∀ τ ≥ t − L +

i 
+ 1 . (16) 

e can easily deduce expression (12) by setting αω 
iτ t 

in Eq. (13) to 

he values given in (14) –(16) . 

We explain below how Proposition 4.4 helps to identify the sce- 

ario that leads to the same amount of inventory or backlog for a 

omponent in a period. Here, the idea is to propose an aggregation 

trategy in order to reduce the number of possible scenarios by re- 

rouping similar scenarios to form only one.In fact, the inventory 

nd backlog levels of component i in period t are equal for any two 

cenarios ω 1 and ω 2 such that α
ω 1 
iτ t 

= α
ω 2 
iτ t 

, ∀ τ ∈ R t . Therefore, for

ach component i and period t , such scenarios ω 1 and ω 2 can be 

ggregated. 

The resulting set �it of aggregated scenarios contains all possi- 

le values for the αiτ t ’s with τ ∈ R t . Clearly, P (αiτ t = 1) = P (L iτ ≤
 − τ ) , and P (αiτ t = 0) = P (L iτ > t − τ ) . Therefore, the occurrence

robability P 
φ
it 

of scenario φ ∈ �it corresponds to the joint prob- 

bility of these refurbishing lead times. In particular, if the refur- 

ishing lead times in each period are independent, the occurrence 

robability P 
φ
it

of scenario φ ∈ �it is: 

 

φ
it 

= 

∏ 

τ∈R t 

(
αφ

iτ t
× P (L iτ ≤ t − τ ) + (1 − αφ

iτ t 
) × P (L iτ > t − τ ) 

)
When the probability distribution is more complex to express 

e.g., the case where order crossover is forbidden), the distribution 

an be described with the set �, and the joint probability distribu- 

ion can be computed with P 
φ
it

= 

∑ 

ω∈ �φ P ω , where P ω is the prob-

bility of scenario ω, and �φ is the set of scenarios in � with the 

orrect value for the indicator αiτ t ( αω 
iτ t 

= αφ
iτ t 

) : 

φ := { ω ∈ � | L ωiτ ≤ t − τ ∀ τ with αφ
iτ t 

= 1 and L iτ

> t − τ ∀ τ with αφ
iτ t 

= 0 } 
efinition 4.5. The cardinality of the set of the aggregated scenar- 

os ( �it ) is | �it | = 2 |R t | , ∀ i ∈ N , t ∈ T . More precisely, �it con-

ains all possible values for the vector [ αi (t−L + 
i 

+1 ) t , . . . , αi (t−L −
i 

) t ] . 

roposition 4.6. The cardinality of the set of the aggregated scenar- 

os ( �it ), without considering the crossover of orders: 

 �it | = L +
i 

− L −
i 

+ 1 ∀ i ∈ N , t ∈ T 

roof. If orders cannot cross, αiτ−1 t ≥ αiτ t . That is, if the order 

assed in period τ arrived in period t ( αiτ t = 1 ), then the order 

assed in period τ − 1 arrived ( αiτ−1 t = 1 ). As a consequence, the 

ector [ αi (t−L + 
i 

+1 ) t , . . . , αi (t−L −
i 

) t ] contains only 1 at the beginning 

ollowed by only 0: 

 αi (t−L + 
i 
+1 ) t , . . . , αi (t−L −

i 
) t ] = [1 , . . . , 1 , 0 , . . . , 0] . (17)

here is only L + 
i

− L −
i

+ 1 such vectors. �

Based on the scenario aggregation (SA) technique and Proposi- 

ion (4.4) , a model denoted as SA-MILP is proposed to solve the 

tudied problem with and without orders crossover. Therefore, the 
odel (1) –(7) is equivalent to the following SA-MILP model: 

 (T C) = min 

∑ 

t∈T

(∑ 

i ∈N 

∑ 

φ∈ �it 

P 
φ
it 

(
h i H

φ
it

+ b i B
φ
it

)
+ s t Y t + u t O t

)
(18) 

ubject to (3) –(6) and: 

H 

φ
it 

− B 

φ
it

= 

t−L +
i ∑

τ=1

R i Z τ + 

∑ 

τ∈R t 

αφ
iτ t 

R i .Z τ + I i 0 

−
t ∑ 

τ=1

D iτ i ∈ N , t ∈ T , φ ∈ �it 

(19) 

 

φ
it 

− B 

φ
it 
> 0 i ∈ N , t ∈ T , φ ∈ �it (20) 

Although the SA approach reduces significantly the number of 

cenarios, this number remains exponential in the refurbishing 

ead time range when the orders can cross in time. In the next 

ection, we show that SA-MILP can be coupled with MC sam- 

ling to solve large instances. Note that in the case where order 

rossover is forbidden, the number of aggregated scenarios gener- 

ted by the SA technique is small enough to directly solve large 

nstances (without the need to sample with MC). 

.3. Monte–Carlo simulation and scenario aggregation (MC-SAMILP) 

A straightforward approach to couple the scenario aggregation 

ith MC sampling is to sample a large number of refurbishing 

ead time scenarios (as presented in Section 4.1 ), before aggregat- 

ng these scenarios (as presented in Section 4.2 ). However, such 

n approach prevents the control of the number of resulting sce- 

arios, and thus the computation time would be unpredictable. In 

his section, we propose to generate a scenario set 
it by sampling 

irectly from the zero-one matrix ( αiτ t ) and to determine the pro- 

uction plan with the minimal estimated total cost ̂ T C . The steps

f the MC-SAMILP approach are given below. 

• Step 1: Generate random values for αγ
iτ t 

by following the dis- 

tribution of αiτ t . More precisely, generate a random value X 
γ
iτ t

following a uniform distribution in [0 ;1] for each component i , 

each period t and τ , and each scenario γ . Then, set αγ
iτ t 

to 1 or 

0 according to the distribution of αiτ t , as follows: 

αγ
iτ t 

= 

{
1 if X 

γ
iτ t 

≤ P (αiτ t = 1)
0 otherwise 

• Step 2: Set the probability of each scenario γ ∈ 
it as follows:

P
γ
i

= 

1 
| 
it | ∀ i ∈ N , ∀ t ∈ T , ∀ τ ∈ R t .

• Step 3: Estimate the expected total cost expressed in (18) using

the following MC-SAMILP model:

̂ T C = min 

∑ 

t∈T

(∑ 

i ∈N 

∑ 

γ ∈ 
it 

P 
γ
it 

(
h i H 

γ
it 

+ b i B 

γ
it 

)
+ s t Y t + u t O t 

)
(21)

subject to (3) –(6) and: 

H 

γ
it 

− B 

γ
it

= 

t−L +
i ∑

τ=1

R i Z τ + 

∑ 

τ∈R t 

αγ
iτ t 

R i .Z τ + I i 0 

−
t ∑ 

τ=1

D iτ i ∈ N , t ∈ T , γ ∈ 
it (22) 

γ γ

it it it 
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.4. Sample average approximation (SAA) approach 

The sample average approximation algorithm, which is based 

n the MC simulation technique, is a method that gives a robust 

olution for a stochastic optimization problem by solving the aver- 

ge sample approximated problems under a large random sample 

f the stochastic parameters ( Kim, Park, & Lee, 2018b; Kleywegt, 

hapiro, & Homem-de Mello, 2002 ). 

The stochastic problem can be approximated by a determinis- 

ic optimization problem expressed by MC-MILP (respectively MC- 

AMILP). However, the costs resulting from the optimization over 

 sample of scenarios in MC-MILP and MC-SAMILP are biased be-

ause the decisions are tailored for these specific scenarios. There- 

ore, we use the SAA framework developed in Lamiri, Xie, Dol- 

ui, & Grimaud (2008) to compute an unbiased approximation of 

he expected total costs (see expressions (1) and (18) ). The basic 

teps of the SAA algorithm based on MC simulation are given in 

lgorithm 1 . 

Algorithm 1: The SAA algorithm for MC-MILP (respectively 

MC-SAMILP).

1 Input: The model MC-MILP (respectively MC-SAMILP) and the 

related parameter ϑ i (respectively 
it ). 

2 Step 1 : Solve the MC-MILP (respectively MC-SAMILP) model; 

3 Step 2 : Let X ∗ and 

̂ T C 
∗

be the optimal solution and the

‘estimated’ optimal cost obtained by each model, respectively; 

4 Step 3 : Generate B i large set of independent random samples 

of L 1 
it 
, . . . , L 

B i 
it 

(respectively B it of α1 
iτ t 

, . . . , α
B it 
iτ t 

);

5 Step 4 : Evaluate the exact cost of the optimal solution 

̂ T C B 
for the MC-MILP using (24) (respectively (25), for the 

MC-SAMILP).

6 Output: The approximate cost ̂ T C B for each model.

Algorithm 2: Rolling horizon (R-H) sampling method. 

1 Generate the sets of μit optimization scenarios with Monte 

Carlo: α1 
iτ t 

, . . . , α
μit 
iτ t 

, ∀ i ∈ N , ∀ t ∈ T 
2 Create the MC-SAMILP model based on these scenarios 

3 Define t:=1 

4 while ( t ≤ T ) do 

5 Solve MC-SAMILP and implement the resulting 

disassembly decisions Z o t , Y 
o 

t , O 

o 
t of period t . 

6 Observe the arrival of components sent to repair. That is, 

the value αo 
iτ t 

unfolds ∀ i ∈ N , τ ≤ t 

7 Modify the MC-SAMILP model to set Z t = Z o t , Y t = Y o t , 

O t = O 

o 
t , and αω 

iτ t 
= αo 

iτ t
∀ i ∈ N , τ ≤ t, 1 ≤ ω ≤ μit

8 Solve MC-SAMILP model 

9 t = t + 1 

10 end while 

11 Calculate the ̂ T C over the planning horizon.

orollary 4.7. The expected total cost expressed in (1) can be approx- 

mated by the following SAA model: 

̂ 

 C B =
∑ 

t∈T

(∑ 

i ∈N 

∑ 

ω∈B i 
P ω i 

(
h i H 

ω 
it + b i B 

ω
it

)
+ s t .Y t + u t O t

)
(24) 

ubject to (4) , (5) and (10) , (11) , where B i is a large set of indepen-

ent random samples of L 1 
it 
, . . . , L 

B i 
it 

such that B i ⊂ �i , ∀ i ∈ N .
orollary 4.8. The expected total cost in Eq. (18) can be approxi- 

ated by the following SAA model: 

̂ 

 C B =
∑ 

∀ t∈T 

( ∑ 

∀ i ∈N 

∑ 

γ ∈B it 
P 

γ
it 

(
h i .H

γ
it

+ b i .B
γ
it

)
+ s t .Y t + u t .O t

)
(25) 

ubject to (4) , (5) and (19) , (20) , where B it is a large set of indepen-

ent random samples of α1 
iτ t 

, . . . , α
B it 
iτ t 

, ∀ i ∈ N . 

We note that the models presented in Corollaries 4.7 and 4.8 do 

ot contain the equations related to the binary indicator of disas- 

embly variables formulated in (3) and (6) . Here, we consider an 

valuation of the disassembly plans provided by the MC-MILP and 

C-SAMILP models.

.5. Rolling horizon framework 

As mentioned earlier, the proposed MILP, MC-MILP, SA-MILP, 

nd MC-SAMILP models are developed to deal with the static deci- 

ion framework. In the static decision framework, the disassembly 

ecisions are made in period 1, and they are frozen. In this sec- 

ion, we develop a rolling horizon (R-H) strategy to deal with the 

ynamic decision framework. In the dynamic decision framework, 

he disassembly decisions are updated in each period t of the hori- 

on after observing the value of the refurbishing lead time up to 

eriod t . 

We extend the SA-MILP approach to revise the decisions at each 

eriod. More precisely, the simulation model (MC-SAMILP) opti- 

izes the disassembly plan in period 0 by considering the first H
eriod, and the decisions of period 0 are implemented. Then, the 

alue of RLT in period 0 is revealed, and the inventory levels and 

n-hand inventory can be updated. The model is updated to ac- 

ount for the initial and on-order inventory, and the disassembly 

lan is re-optimized on the horizon from period 1 until the last 

eriod. 

Note that the ̂ T C considered in this simulation is not the objec- 

ive function of the optimization model, but the sum over time of 

he true cost incurred by the resolution of the MC-SAMILP model 

ver a true scenario. In the next section, all the proposed ap- 

roaches are evaluated in order to verify their effectiveness. 

. Numerical results

This section presents the results of experiments conducted to 

tudy the behavior of the proposed optimization approaches. The 

roposed models are implemented in C with Concert Technology 

nd solved with IBM CPLEX 12.5 on a PC with processor Intel (R) 

ore TM i7-5500 CPU @ 2.4 GHz and 8 Go RAM under Windows 10 

rofessional. 

.1. Instances generation 

The instance generation methods extends the one used by Kim 

 Xirouchakis (2010) to account for the specificity of the CDLS with 

tochastic refurbishing lead times. Table 3 shows the generation 

ethod for each parameter, where D ∼ U (a, b) indicates that the 

arameter is randomly generated following a discrete uniform dis- 

ribution with support { a, . . . , b} . 
The numerical experiments are performed with two test beds. 

he first contains small and medium size instance to compare the 

A approach with the classical stochastic MILP model, and the sec- 

nd contains large instances to show the scalability and the lim- 

ts of the proposed methods. The small and medium size test bed 

onsists of eight sets of instances. Each set contains one randomly- 

enerated problem. Table 4 gives the refurbishing lead time range 

 L + 
i

− L −), the number of components and the number of periods 

f each instance set. The large test beds consists of 50 problems for 



Table 3

Characteristics of data sets ( Kim & Xirouchakis, 2010 ).

Parameters hi s t I i 0 bi D it

Values D ∼ U(5 , 10) D ∼ U(50 0 , 10 0 0) D ∼ U(20 , 100) D ∼ U(10 0 , 20 0) D ∼ U(50 , 200) 

Parameters Ri F C t ut L it
Values D ∼ U(1 , 4) D ∼ U(1 , 4) D ∼ U(280 , 480) D ∼ U(20 , 40) D ∼ U(L −

i 
, L + 

i 
)

Table 4

Set combinations.

Set L it |N | |T |
1 D ∼ U (1, 4) 10 5

2 D ∼ U(1, 4) 20 5

3 D ∼ U(1, 3) 10 7

4 D ∼ U(1, 3) 20 7

5 D ∼ U(6, 10) 10 15

6 D ∼ U(6, 10) 20 15

7 D ∼ U(1, 6) 10 20

8 D ∼ U(1, 6) 20 20
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ach combination of 3 levels of the number of components (10, 20 

nd 30) and 3 levels of the number of periods (10,20, and 30). For 

ach level of the number of periods, 4 sizes of refurbishing lead 

ime range are considered (1, 6, 9 and |T | ). 
The size of the random samples ϑ i and 
it takes value in [2, 

0, 30, 50, 150, 200]. For each ϑ i and 
it , we perform 10 indepen-

ent runs to provide 10 Monte–Carlo optimum solutions X ∗ and 

heir ‘estimated’ optimal costs ̂ T C 
∗
. The SAA evaluation of X ∗ uses 

0 4 random independent samples. However, to keep the computa- 

ional time reasonable, the instances with 30 components and 30 

eriods are evaluated with 10 3 random samples. The time limit is 

et to one hour, and we report the following performance mea- 

ures throughout the numerical study: 

• I ∗: the number of optimal solutions (out of 50 instances) ob- 

tained by CPLEX solver in one hour;
• CPU (s): the average CPU times in second;
• G 

∗: the average integrality gap given by CPLEX;
• G 

+ : the average percentage deviation between the estimated

total cost ( ̂  T C ) and the expected total cost ( E (T C) ). More pre-

cisely, G 

+ is calculated as follows:

G 

+ = 

̂ T C − E (T C) 

E (T C) 
× 100 (26) 

.2. Effectiveness of the scenario aggregation approach 

We start our experiments by showing the good computational 

erformance of the proposed SA-MILP model compared to the 

ILP model. Table 5 reports the performance of SA-MILP and MILP 

n the small and medium-size testbed, whether order crossover is 

onsidered or not. More precisely, for each instance set, Table 5 re- 

orts the number of scenarios, and the CPU times. For some in- 

tances, the MILP model is too large to be generated, and it is in-

icated with a “–” in such cases. 

As the number of scenarios in the stochastic MILP is exponen- 

ial in the number of periods, the MILP consumes too much mem- 

ry for instances with more than 10 periods. On the contrary, the 

umber of scenarios remains small using our SA technique. As a 

onsequence, the SA method requires significantly less computa- 

ion time. While MILP requires several minutes to solve instances 

ith less than 10 periods, SA-MILP solves these instances in less 

han a second. Besides, the special case where orders do not cross 

n time is even easier to solve with SA-MILP since CPLEX requires 

ess than 0.50 seconds for this special case versus 9.50 seconds for 

he general case. Note that, for this test bed, the optimality gap G 

∗

eturned by CPLEX is null for all instances. 
Tables 6 and 7 report the performance of MILP and SA-MILP 

n the large testbed, when the orders can and cannot cross in 

ime, respectively. As previously stated, the MILP returns an op- 

imal solution only for small-size instances with 10 periods when 

he refurbishing lead time range does not exceed 1. Table 6 pro- 

ides further evidence of the effectiveness of the scenario aggre- 

ation technique for the case without order crossover since SA- 

ILP solves all instances in few seconds. For instances with order 

rossover, Table 7 shows that the performance of SA-MILP depends 

n the size of the support of the refurbishing lead times probabil- 

ty distribution, the number of periods, and the number of compo- 

ents. Among these parameters, the lead-time range has the most 

ignificant impact on the computation time, and once the size of 

he interval of uncertainty passes a certain value (i.e., L + 
i

− L −
i

≥ 9 ), 

A-MILP cannot solve any instance with 30 periods and/or compo- 

ents. 

.3. Effectiveness of scenario aggregation combined with scenario 

ampling (case with order crossovers) 

The numerical results reported in Section 5.2 show that SA- 

ILP outperforms MILP. Besides, SA-MILP solves large instances 

n a few seconds when order crossover is forbidden. However, 

A-MILP cannot solve instances with large refurbishing lead time 

anges when orders can cross. Therefore, the present section in- 

estigates the performance of SA-MILP for the case with crossover, 

hen the total costs are approximated with Monte–Carlo Sam- 

ling, as presented in Eqs. (1) and (18) . Figs. 3–5 illustrate the av- 

rage convergence of the estimated values towards the exact val- 

es under different number of samples. On the one hand, Figs. 3–

 show that for ϑ i (respectively 
it ) equal to 200, the MC-MILP 

pproach (respectively MC-SAMILP) can generate a good approxi- 

ation of the stochastic problem for all tests on average. In addi- 

ion, the results show that the proposed MC-SAMILP model results 

n a good approximation with less scenarios than the MC-MILP. For 

xample, for problems with 10 periods, the curves in Fig. 3 shows 

hat the MC-SAMILP provides a good approximation with 50 sce- 

arios, whereas MC-MILP requires at least 100 scenarios. 

The optimization results of the MC-MILP and MC-SAMILP ob- 

ained under 200 random samples are detailed in Table 8 . This ta- 

le indicates that the computation time of the MC-MILP approach 

ecreases with the size of the refurbishing lead time range. Re- 

arding the method combining Monte–Carlo simulation and sce- 

ario aggregation approach (MC-SAMILP), the same table clearly 

hows that this approach can solve all problems within a reason- 

ble time frame. 

To investigate further the quality of the approximation obtained 

ith optimization, in Table 9 , we analyze the percentage deviations 

 

+ between the optimal cost obtained with SA-MILP, and the solu- 

ion obtained with the sampling approach MC-MILP (respectively, 

C-SAMILP). For instances with a large number of components, a

arge number of periods, and a large refurbishing lead times range,

he model based on scenario aggregation (SA-MILP) becomes too

arge to be generated. In such a case, SA-MILP cannot provide a

olution, the gap cannot be computed, and this case is indicated

y a “∗”. The most remarkable observation is that the percent- 

ge deviation between MC-MILP and SA-MILP solutions does not 

xceed 1.76% on average for all tests, while that of MC-SAMILP 



Fig. 3. Convergence of problems with 10 periods on average.

Fig. 4. Convergence of problems with 20 periods on average.

Fig. 5. Convergence of problems with 30 periods on average.



Table 5

SA performance.

Without order crossovers With order crossovers

MILP SA-MILP MILP SA-MILP

L it |N | |T | | �i | CPU(s) | �it | CPU(s) | �i | CPU(s) | �it | CPU(s)

[ 1 , 4 ] 10 5 1024 9.17 4 0.04 1,024 30.28 8 0.10

[ 1 , 4 ] 20 5 1024 22.59 4 0.09 1,024 98.65 8 0.15

[ 1 , 3 ] 10 7 2,187 699.56 3 0.07 2,187 457.03 4 0.17

[ 1 , 3 ] 20 7 2187 1,790.62 3 0.10 2,187 2095.56 4 0.24

[ 6 , 10 ] 10 15 5 15 – 5 0.12 5 15 – 16 0.35

[ 6 , 10 ] 20 15 5 15 – 5 0.18 5 15 – 16 5.28

[ 1 , 6 ] 10 20 6 20 – 6 0.21 6 20 – 32 1.42

[ 1 , 6 ] 20 20 6 20 – 6 0.38 6 20 – 32 9.32

Table 6

Performances of the SA-MILP: without orders crossover.

MILP SA-MILP

#components 10 20 30 10 20 30

L + 
i 

− L −
i 

I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU

(a) Problem with 10 periods.

1 50 59.7 50 210.8 50 552.1 50 0.09 50 0.38 50 0.61

6 0 – 0 – 0 – 50 0.14 50 0.83 50 1.28

9 0 – 0 – 0 – 50 0.17 50 0.31 50 1.5

10 0 – 0 – 0 – 50 0.33 50 1.5 50 1.73

Mean 12.5 14.9 12.5 52.7 12.5 138 50 0.2 50 0.8 50 1.3

(b) Problem with 20 periods.

1 0 – 0 – 0 – 50 0.31 50 0.34 50 0.44

6 0 – 0 – 0 – 50 0.83 50 1.08 50 1.98

9 0 – 0 – 0 – 50 1.19 50 1.63 50 2.63

20 0 – 0 – 0 – 50 2.16 50 5.17 50 6.19

Mean 0 – 0 – 0 – 50 1.12 50 2.1 50 2.9

(c) Problem with 30 periods.

1 0 – 0 – 0 – 50 0.55 50 1.03 50 1.88

6 0 – 0 – 0 – 50 0.75 50 1.59 50 2.20

9 0 – 0 – 0 – 50 1.23 50 2.97 50 3.42

30 0 – 0 – 0 – 50 6.47 50 13.39 50 29.02

Mean 0 – 0 – 0 – 50 2.25 50 4.74 50 9.13

Table 7

Performances of the SA-MILP: with orders crossover.

MILP SA-MILP

#components 10 20 30 10 20 30

L + 
i 

− L −
i 

I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU

(a) Problem with 10 periods.

1 50 510.8 50 829.9 50 2336.5 50 0.3 50 0.07 50 0.4

6 0 – 0 – 0 – 50 2.7 50 8.9 50 35.1

9 0 – 0 – 0 – 50 4.9 50 99.6 50 341.2

10 0 – 0 – 0 – 50 9.5 50 1620.2 0 –

Mean 12.5 127.7 12.5 207.5 12.5 584.2 50 4.3 50 432.2 37.5 94.2

(b) Problem with 20 periods.

1 0 – 0 – 0 – 50 0.4 50 0.5 50 0.7

6 0 – 0 – 0 – 50 8.4 50 71.3 50 89.3

9 0 – 0 – 0 – 50 622.3 0 – 0 –

20 0 – 0 – 0 – 0 – 0 – 0 –

Mean 0 – 0 – 0 – 37.5 157.7 25 17.9 25 22.5

(c) Problem with 30 periods.

1 0 – 0 – 0 – 50 1.2 50 1.9 50 2.6

6 0 – 0 – 0 – 50 7.8 50 81.7 50 135.4

9 0 – 0 – 0 – 0 – 0 – 0 –

30 0 – 0 – 0 – 0 – 0 – 0 –

Mean 0 – 0 – 0 – 25 2.5 25 20.9 25 34.5
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oes not exceed 1.05% on average. This observation confirms that 

C-SAMILP provides better approximations than MC-MILP. Note

hat, the optimality gap G 

∗ returned by CPLEX is null for all

nstances.

To investigate the computation time and the average opti- 

ality deviation obtained by solving the SAA approach for both 
C-MILP and MC-SAMILP, the sampling results are presented in

able 10 . Note that the costs for MC-MILP (respectively, MC- 

AMILP) are unbiased since they are evaluated through a simula- 

ion over 10 4 / 10 3 scenarios different from the scenarios used for

ptimization. Table 10 shows that the SAA can guarantee the con- 

ergence of the exact solution with a G+ and a resolution time that 



Table 8

Performances of the MC simulation.

MC-MILP MC-SAMILP

#components 10 20 30 10 20 30

L + 
i 

− L −
i 

I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU I ∗ CPU

(a) Problem with 10 periods.

1 50 16.68 50 38.60 50 90.31 50 7.48 50 23.25 50 41.53

6 50 9.89 50 27.20 50 54.39 50 4.23 50 17.73 50 36.15

9 50 6.68 50 25.71 50 51.06 50 4.92 50 17.17 50 64.21

10 50 5.62 50 14.75 50 49.95 50 5.23 50 13.09 50 34.35

Mean 50 9.71 50 26.56 50 61.42 50 5.46 50 17.81 50 44.06

(b) Problem with 20 periods.

1 50 74.3 50 290.1 50 482.1 50 22.8 50 88.2 50 260.2

6 50 49.9 50 93.4 50 191.9 50 20.7 50 98.2 50 200.3

9 50 31.4 50 98.8 50 210.1 50 22.2 50 75.6 50 190.9

20 50 26.7 50 84.6 50 98.7 50 19.6 50 93.8 50 277.1

Mean 50 45.6 50 141.7 50 245.7 50 21.3 50 88.9 50 232.1

(c) Problem with 30 periods.

1 50 160.9 50 430.1 50 1757.5 50 50.9 50 261.2 50 632.4

6 50 113.5 50 302.7 50 600.9 50 61.5 50 292.6 50 883.5

9 50 129.4 50 264.5 50 574.2 50 67.6 50 275.7 50 952.4

30 50 84.9 50 204.9 50 647.5 50 59.0 50 255.9 50 1255.3

Mean 50 122.1 50 300.5 50 895 50 194.7 50 271.35 50 931

Table 9

Percentage deviation from MC simulation.

MC-MILP MC-SAMILP

#components 10 20 30 10 20 30

L + 
i 

− L −
i 

G + G + G + G + G + G + 

(a) Problem with 10 periods.

1 2.01 1.08 1.26 0.74 1.65 0.95

6 1.65 0.35 0.75 0.45 0.99 1.32

9 2.33 1.67 1.07 1.06 0.57 0.72

10 1.06 1.87 ∗ 1.35 1.01 ∗

Mean 1.76 1.24 0.77 0.9 1.05 0.74

(b) Problem with 20 periods.

1 0.87 1.36 1.94 0.41 1.02 0.81

6 1.96 0.74 1.98 0.09 0.94 1.06

9 0.98 ∗ ∗ 1.12 ∗ ∗

20 ∗ ∗ ∗ ∗ ∗ ∗

Mean 0.95 0.52 0.98 0.4 0.49 0.46

(c) Problem with 30 periods.

1 0.06 1.33 1.27 0.06 0.98 1.02

6 1.92 1.47 0.65 1.43 0.57 1.18

9 ∗ ∗ ∗ ∗ ∗ ∗

30 ∗ ∗ ∗ ∗ ∗ ∗

Mean 0.49 0.7 0.48 0.37 0.38 0.55
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Table 11

RH performance.

SA-MILP RH GAP (%)

L it |N | |T | | �it | E (T C) | �it | ̂ T C 

[ 1 , 4 ] 10 5 8 45,168 200 33789 −25.19

[ 1 , 4 ] 20 5 8 246,381 200 202794 −17.69

[ 1 , 3 ] 10 7 4 958,800 200 812578 −15.25

[ 1 , 3 ] 20 7 4 97,100 200 77630 −20.05

[ 6 , 10 ] 10 15 16 568,932 200 427853 −24.80

[ 6 , 10 ] 20 15 16 768,547 200 607469 −20.96

[ 1 , 6 ] 10 20 32 12,535 200 10368 −17.29

[ 1 , 6 ] 20 20 32 336,412 200 213576 −31.51
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o not exceed 0.5% and 110 seconds on average for the two mod- 

ls, respectively. 

From all these analyses, we conclude that the model that 

ombines scenario aggregation and Monte–Carlo simulation (MC- 

AMILP) is quite efficient and can provide a good approximation 

ith 200 independent random samples. Therefore, we can state 

hat our study provides additional support for solving the stochas- 

ic CDLS problem and validates the usefulness of the SA, MC and 

AA approaches. 
Table 10

Performances of the SAA on average.

MC-MILP

#components 10 20 30

periods CPU G + CPU G + CPU G

10 24.1 0.62 48.2 0.17 83.1 0

20 53.9 0.43 117.3 0.51 211.7 0

30 88.4 0.04 157.3 0.52 27.2 0

Mean 55.5 0.36 107.6 0.4 107.3 0
.4. Effectiveness of R-H method (case with order crossovers) 

We continue our experiments by highlighting the good com- 

utational performance of the proposed R-H method compared to 

A-MILP model. Table 11 reports the performance of these two ap- 

roaches on the small and medium-size testbed for the case with 

rder crossovers. More precisely, for each instance set, Table 11 re- 

orts the number of scenarios, the expected total costs E (T C) , the 

stimated total costs ̂ T C and the percentage deviation between

hem. Results from Table 11 suggest that the disassembly plan 

btained by the R-H strategy is significantly better than the dis- 

ssembly plan provided by a two-stage stochastic programming 

odel. We note that cost reduction mainly comes from the de- 

rease in the backlog costs obtained when the R-H approach makes 

ynamic and corrective decisions. 
MC-SAMILP

10 20 30

 

+ CPU G + CPU G + CPU G + 

.33 22.3 0.29 53.9 0.12 85.4 0.64

.09 69.6 0.35 81.2 0.05 120.3 0.07

.74 77.7 0.64 136.3 0.26 22.9 0.17

.38 56.5 0.42 90.46 0.14 76.3 0.29



Table 12

Characteristics of data sets (TBO ≥2). 

Parameters hi s t I i 0 bi D it

Values D ∼ U(0 . 3 , 0 . 5) D ∼ U(350 0 , 450 0) D ∼ U(20 , 100) D ∼ U(0 . 6 , 1) D ∼ U(0 , 160) 

Parameters Ri F C t ut L it
Values D ∼ U(1 , 3) D ∼ U(1 , 4) D ∼ U(280 , 480) D ∼ U(150 , 200) D ∼ U(L −

i 
, L + 

i 
)

Table 13

Performances of the SA-MILP according to TBO.

TBO = 1 TBO ≥ 2 

#components 10 20 30 10 20 30

periods CPU CPU CPU CPU CPU CPU

10 0.15 0.18 0.34 0.10 0.21 0.26

20 0.54 0.76 1.75 0.46 0.578 1.56

30 22.0 25.65 42.69 5.17 10.79 23.89

Mean 7.57 8.87 14.93 1.92 3.86 8.57
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.5. Impact of the time between order 

The time Between Order (TBO) plays an important role on the 

omputational complexity of lot-sizing problems. In Section 5.1 , 

umerical results are presented based on the benchmarks of Kim 

 Xirouchakis (2010) that contains instances with a TBO equal to 

 (an order at each period). In this section, these benchmarks are 

odified to obtain a TBO greater than or equal to 2. We modify 

he ratio related to setup cost, inventory holding costs and backlog 

osts. Eq. (27) presents the TBO formula adapted from Godichaud 

 Amodeo (2018, 2019) ; Pour-Massahian-Tafti et al. (2020b) . We 

efine N as the set of components and s̄ , R̄ , ̄h , ̄b , D̄ as the mean of

he discrete uniform distribution used to randomly generate setup, 

ield, holding inventory, backlog and demand, respectively. In ad- 

ition, the instance of Kim & Xirouchakis (2010) consider rather 

mall values for u t (cost of outsourcing) and rather large values for 

he backlog cost b i . In this section, we investigate the impact of 

nstances with values more in line with the lot-sizing literature. 

The parameters given in Table 12 are generated in such a way 

hat TBO ≥ 2. The time needed to obtain optimal solutions pre- 

ented in Table 13 is significantly reduced. This is explained by the 

act that increasing TBO reduces the number of orders whom the 

umber of scenario depends. 

2 . ̄s 

N . ̄R . ̄h . ̄D 

≤ T BO ≤
√

2 . ̄s 

N . ̄R . ̄h . ̄D 

√
h̄ + b̄ i

b̄ i 
(27) 

.6. Benefit of stochastic modelling 

In this subsection, we seek to assess the practical performance 

f the stochastic programming model (SA-MILP) by comparing it 

ith three deterministic models which completely ignores uncer- 

ainty. These deterministic versions consider the minimum, aver- 

ge, and maximum lead time, respectively. More precisely, in the 
Table 14

Performances of the stochastic approach.

L i = L −
i 

L i = E (

#components 10 20 30 10

periods G (%) G (%) G (%) G (%)

10 30.06 20.23 28.61 43.63

20 31.37 14.69 27.56 34.05

30 32.01 18.68 21.83 43.93

Mean 31.14 17.86 26.01 40.54

G : Percentage deviation from the stochastic approach.
rst version, the value of L i corresponds to L −
i 

( L i = L −
i 

). In the sec-

nd version, the value of L i is the expected refurbishing lead time 

 L i = E (L i ) ). Finally, in the most conservative model, the value L i is

et to the maximum lead time L + 
i

( L i = L + 
i 

). 

The parameters given in Table 12 and the MILP model (1–8) 

re used to evaluate the “exact” costs of the solutions obtained 

ith this deterministic model. Results from Table 14 show that the 

olution provided by the stochastic optimization approach signifi- 

antly outperforms the deterministic methods, since the stochastic 

pproach reduces the costs by up to 31.14% 

. Conclusion

In this paper we have proposed a stochastic model for the ca- 

acitated disassembly lot sizing problem (CDLS) that can allow 

he orders to cross in time. The time necessary to refurbish the 

omponents is considered as a stochastic variable under the in- 

erval representation of uncertainty. The planning problem iden- 

ifies how much end-of-life (EoL) product to disassemble during 

ach period in order to minimize the expected total cost. Our con- 

ribution can be summarized as follows: first, a formulation of 

he stochastic CDLS problem by a two-phase stochastic mathemat- 

cal program is proposed. The first-stage decisions correspond to 

he quantity of EoL product that has to be disassembled as well 

s the extra capacity to be added in each period. The second- 

tage decisions correspond to the inventory and the backlog lev- 

ls. This model describes the random parameter through the set 

f all possible scenarios. Second, due to the large number of sce- 

arios, a scenario aggregation (reduction) technique is developed. 

he effectiveness of the SA approach has been successfully tested 

nd proved, especially for the case when order crossover is for- 

idden. Third, an approach combining a Monte–Carlo simulation 

nd mixed integer programming (respectively scenario aggrega- 

ion) is proposed in order to study the convergence of the expected 

ost. Fourth, an almost optimal solution is obtained from a SAA 

ased on the Monte–Carlo optimization method. Fifth, to deal with 

he dynamic decision frameworks, we introduce a rolling horizon 

pproach. 

Our investigations into this area are still ongoing. First, most 

tudies treat the problem under uncertainty on two level DLS 

roblems. Since in real life, most DLS are multi-levels, a promis- 

ng future research area could be solving the multi-level CDLS 

roblem. Second, studying the uncertainty of demand and/or yield 

s also an important consideration. Finally, most existing research 

ocuses only on developing effective and efficient approaches for 

olving stochastic models. However, it is important to evaluate the 
L i ) L i = L + 
i 

20 30 10 20 30

G (%) G (%) G (%) G (%) G (%)

37.51 24.54 15.16 15.93 19.41

32.06 35.69 4.92 8.35 9.37

24.08 27.61 8.44 3.45 1.16

31.22 29.28 9.51 9.24 10.98
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ffectiveness and the robustness of the solution methods. Perfor- 

ance indicators for evaluation should be introduced in future re- 

earch. 
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