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a b s t r a c t 

Supplier reliability is a critical issue for manufacturing companies. Delivery delays from suppliers create

backlog and firefighting on the shop floors. To avoid disruption and hedge against supplier lead time un- 

certainty, companies rely on diversification, multi-sourcing, and safety lead times. In multi-sourcing, the

buyer might order the same product (raw material) from different suppliers. The design of a robust and

cost-efficient purchasing/ordering plan in multi-sourcing is a complex task which has a strong impact

on the performance of the company. In this study, we investigate the use of robust optimization for the

integrated lot-sizing and supplier selection problem under lead time uncertainty. More specifically, we

use polyhedral budgeted uncertainty sets. The resulting model determines the ideal lot sizes to minimize

the total costs taking into consideration suppliers’ reliability and prices. To solve this problem, a row and

column generation approach is proposed. To alleviate scalability issues, we enhance the row and column

generation through a robust counterpart formulation, and we propose an efficient fix-and-optimize ap- 

proach. Our extensive computational experiments show that the fix-and-optimize approach yields good

quality solutions within a reasonable amount of computational time. We provide insights into supplier

diversification based on the risk profile of the decision-maker. One of the conclusions is that an extremely

risk-averse decision-maker selects a single supplier, namely the most reliable one even if it does not offer

the lowest price.

1. Introduction

This study was mostly conducted during the COVID-19 pan- 

demic from January 2020 to October 2020. COVID-19 had a signif- 

icant impact on supply chains, in particular on supply lead time 

lengths and uncertainties, which has led to supply disruptions 

( Ivanov, 2020; Queiroz, Ivanov, Dolgui, & Wamba, 2020 ). One of 

the major recommendations to avoid disruptions is source diver- 

sification, instead of relying on single sourcing (e.g., Business In- 

sider, 2020 ). For example, Aisin was the only supplier of brake 

valves for Toyota. After a fire occurred at one of its plants in 1997, 

Toyota lost revenue estimated at billions of US dollars ( Nishiguchi 

& Beaudet, 1998 ). Subsequently, Toyota decided to have at least 

two suppliers for each part. Another advantage of multi-sourcing 

over single sourcing is the reduced power of the supplier over the 

buyer and an increase in competition between suppliers for price, 
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quality, lead time, and other criteria. Burke, Carrillo, & Vakharia 

(2007) presented a thorough study comparing single-sourcing and 

multi-sourcing strategies. 

The choice of a multi-sourcing strategy results in new chal- 

lenges, and it increases management and procurement costs. While 

these costs can be reduced using the internet and web-based sup- 

ply chain management applications, the creation of the purchasing 

plan remains complex in a multi-sourcing strategy because of the 

large range of supplier attributes, such as price and lead time un- 

certainties (risk of late deliveries). Face masks in the first wave of 

the COVID-19 pandemic (April-May 2020), for example, illustrate 

the large range of prices, delivery lead times, and uncertainty as- 

sociated with supplies of key products during a crisis. A search on 

Amazon.com for a particular model of face masks yields multiple 

suppliers with prices ranging from $2 to above $20 and with very 

different delivery lead time intervals: [4,8], [4,18], [7,10], [16,23], 

[17,28], [28,46], and [45,64] days. Companies must develop pur- 

chase planning methods that are robust to such varying and un- 

certain lead times. 
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The integration of sourcing decisions with dynamic lot-sizing 

models is one of the highly recommended directions of re- 

search suggested in the literature (see, for example, Brahimi, Absi, 

Dauzère-Pérès, & Nordli, 2017 ). This integration between supply 

processes and order-fulfillment processes ( Krajewski, Larry, & Mal- 

hotra Manoj, 2016)  can lead to considerable cost reductions and 

other benefits ( Aissaoui, Haouari, & Hassini, 2007; Lamba, Singh, & 

Mishra, 2019 ). In the supplier selection process, tactical decisions 

include the selection of a pool of suppliers based on a predefined 

set of criteria. At the operational level, the procurement depart- 

ment decides the quantity to be ordered in each period and order 

allocation among the suppliers. Joint quantity determination and 

allocation leads to better decisions. For example, Motorola’s sup- 

pliers bid to supply items through online auctions. Motorola de- 

termines the number of suppliers to source from and the order 

quantity, for each of these suppliers ( Metty et al., 2005 ). 

In this study, we investigate the case of a company that pre- 

selects a set of suppliers for a given item and must place orders 

based on fixed ordering costs, purchasing prices, and delivery lead 

times offered by the suppliers. The objective is to find a purchas- 

ing plan that minimizes total ordering and inventory-related costs. 

Demand for the item is dynamic in time and the buying company 

can buy any quantity from any of the preselected suppliers. This 

approach accounts for the risk of suppliers’ late deliveries. Once 

a supplier is chosen and the order quantity is released, the deliv- 

ery takes place after an uncertain lead time. As this phenomenon 

can lead to storage and backlogging over several periods, it in- 

creases the costs. Order crossovers are taken into consideration in 

our model. Order crossovers take place if an order placed in period 

t may be delivered after an order placed in period t ′ with t ≤ t ′ . It 
is also assumed that the demand of a period can be served from 

different suppliers and different time periods. In other words, or- 

der splitting is allowed. 

Two major approaches are used in optimization under uncer- 

tainty in production and procurement planning ( Grossmann, Apap, 

Calfa, García-Herreros, & Zhang 2016 ): robust optimization ( Ben- 

Tal, El Ghaoui, & Nemirovski 2009 ) or stochastic programming 

( Birge & Louveaux 2011 ). Stochastic programming requires a good 

estimate of the probability distribution of the uncertain parame- 

ters, and it seeks to optimize the expected costs or to respect a ser- 

vice level. Robust optimization guarantees feasibility over an un- 

certainty set. The advantage of robust optimization approaches is 

that they do not require as much data as stochastic models; they 

do not need to make any assumptions on data distribution and 

they adapt to the risk aversion of the decision-maker by taking 

into consideration the worst case, given a certain budget of un- 

certainty ( Bertsimas & Sim, 2004; Bertsimas & Thiele, 2006 ). 

The major contributions of this study are as follows: We pro- 

vide a formulation for the robust dynamic demand lot-sizing (pur- 

chasing) and supplier selection problem under lead time uncer- 

tainty. We do not make assumptions on order crossovers, order 

splitting, or on the structure of the demand or lead times. We 

propose an exact row and column generation algorithm to solve 

the considered problem, along with some enhancements includ- 

ing a fast cut generation procedure. We develop heuristic methods 

(A hybrid of robust counterpart and row and column generation, 

fix-and-optimize, genetic algorithm) to solve large-scale instances. 

We provide managerial insights to show that supplier diversifica- 

tion does not only depend on supplier prices and inventory-related 

costs but also on the buyer’s behavior in terms of risk aversion. 

The remainder of the paper is organized as follows. In 

Section 2 we provide a literature review. The problem is presented 

and formulated in Section 3 . In Section 4 we present the optimiza- 

tion approaches. In Section 5 we detail our numerical experiments 

and analyze the numerical results from a computational point of 

view, and in Section 5.2 we provide some managerial insights. Fi- 

nally, we draw conclusions in Section 6 and suggest future research 

directions. 

2. Literature review

A large body of literature explores supplier selection problems 

because of their critical impact on the operational costs of a firm. 

However, most of the literature focuses on the selection of an in- 

teresting set of suppliers ( Wetzstein, Hartmann, Benton, & Hohen- 

stein, 2016 ). While the placement of orders for these pre-selected 

suppliers is an important decision, there is little literature on this 

topic ( Lamba et al., 2019 ). There are two main approaches to sup- 

plier selection: single sourcing supplier selection (ss-ss) and mul- 

tiple sourcing supplier selection (ms-ss). In ss-ss, a supplier meets 

the whole demand of the buyer for a given product (component). 

This is usually a more strategic decision-making problem where a 

long-term contract is signed with the selected supplier. The ms-ss 

is a rather tactical decision-making problem where no single sup- 

plier satisfies the whole demand of a given product or component. 

For a thorough analysis and comparison of these problems, we re- 

fer the reader to Burke et al. (2007) . One of the results found by 

Burke et al. (2007) is that the only situation where a single sourc- 

ing strategy is dominant is when supplier capacities are large rel- 

ative to the product demand and when the firm does not desire 

diversification benefits. Firouz, Keskin, & Melouk (2017) indicated 

that a company should have multiple suppliers for an item when: 

(i) suppliers experience capacity problems; (ii) the buyer needs a

backup source to protect against supplier disruptions; and (iii) the

buyers need to maintain competition among suppliers. For a sur- 

vey of ms-ss models and the associated challenges, interested read- 

ers can refer to Minner (2003) . In this study, we analyze the im- 

pact of the buyer’s risk aversion on her/his preference for ms-ss or

ss-ss strategy.

To the best of our knowledge, our study is the first to consider 

the dynamic lot-sizing problem with supplier selection under lead- 

time uncertainties. Therefore, the remainder of this section reviews 

the literature related to the main elements considered in our study, 

namely, the dynamic lot-sizing problem with supplier selection, 

lot-sizing under lead time uncertainties, and robust optimization 

for lot-sizing problems. 

Dynamic demand lot-sizing problems have received a lot of im- 

portance in the literature. In their survey, Brahimi et al. (2017) pre- 

sented several extensions of the single-item dynamic lot-sizing 

problem. These extensions include more general cost structures 

Koca, Yaman, & Aktürk (for example, 2014 ), constraints on re- 

sources Brahimi, Dauzère-Pérès, & Najid (for example, 2006 ), and 

integration with other supply chain management decisions such 

as scheduling, warehouse location, distribution, and supplier se- 

lection. Supplier selection and lot-sizing decisions are often made 

separately in practice, despite the benefits of integrating the two 

decisions. Surveys of integrated models can be found in ( Aissaoui 

et al., 2007; Golmohammadi & Hassini, 2020; Svoboda, Minner, 

& Yao, 2019 ). There is limited research on the lot-sizing problem 

with supplier selection in an uncertain environment, and demand 

and yield have been the focus of most studies ( Federgruen & Yang, 

2014 ). To the best of our knowledge, there are no studies on in- 

tegrated supplier selection and lot-sizing under lead time uncer- 

tainty. 

Nevertheless, there is a growing amount of research on classical 

lot-sizing problems under lead time uncertainty ( Aloulou, Dolgui, 

& Kovalyov 2014, Dolgui, Ben-Ammar, Hnaien, & Ould-Louly 2013 ). 

Some studies aim to determine the optimal planned lead time 

through mathematical analysis (for example, Ben-Ammar, Castagli- 

ola, Dolgui, & Hnaien, 2020 ). However, to simplify the computation 

of the probabilities of different states, these approaches require 

strong assumptions (single period, constant demand, no order 



crossover, among others). Consequently, these approaches are not 

applicable in complex supply chain environments such as the 

multi-period lot-sizing problem with setup ( Thevenin, Adulyasak, 

& Cordeau, 2020 ). In particular, the majority of these studies 

assume that order crossover cannot occur ( Disney, Maltz, Wang, 

& Warburton, 2016; Riezebos, 2006 ). We do not make such an 

assumption in this study. Some of the solution approaches for such 

problems include dynamic programming algorithms such as those 

developed by Liberatore (1977) and Alp, Erkip, & Güllü (2003).  

Nevison & Burstein (1984) proposed a multi-stage stochastic opti- 

mization approach for lot-sizing under lead time uncertainty, and 

Thorsen & Yao (2017) proposed robust optimization for this prob- 

lem. Other studies on lead time uncertainty in lot-sizing problems 

include ( Ben-Ammar, Bettayeb, & Dolgui, 2019; Rossi, Tarim, & 

Bollapragada, 2012 ). However, to the best of our knowledge, no 

study in this area considers supplier selection. 

Several approaches exist to account for uncertainty in optimiza- 

tion problems. Stochastic programming ( Birge & Louveaux, 2011)  

models the uncertain parameter through a probability distribu- 

tion, and it minimizes the expected costs. In robust optimization 

( Ben-Tal et al., 2009 ), the parameter subject to uncertainty takes 

value in an uncertainty set that contains possible realizations of 

the uncertainty. A robust optimization model will return a solu- 

tion that minimizes the costs for the worst scenario realization. To 

overcome the over-conservatism of this approach, Bertsimas & Sim 

(2004) proposed incorporating a budget of uncertainty into the ro- 

bust optimization model to limit the number of uncertain param- 

eters that can change at the same time. Finally, the distribution- 

ally robust optimization approach ( Wiesemann, Kuhn, & Sim, 2014)  

describes the parameter through a set of probability distributions, 

and it seeks the solution minimizing the costs for the worst-case 

distribution. The choice of the approach depends on the decision 

maker’s preference, on the availability of data, and on the required 

computation time. The present work focuses on robust optimiza- 

tion. In contrast with analytical models or stochastic optimization 

approaches, robust optimization does not require the estimation of 

a probability distribution. Such an approach is well-suited for con- 

tracting, as the reliability of the agent (in our case, the supplier) 

is known once he/she delivers to the manufacturer ( Yu & Kong, 

2020 ). In addition, robust optimization is practical for crises, where 

historical data are not representative of the current situation. 

In comparison to the extensive amount of research on optimiza- 

tion for planning problems, the application of robust optimization 

remains scarce. Nevertheless, research on the application of robust 

optimization for inventory control is growing, and most works fo- 

cus on the demand uncertainties. Bertsimas & Thiele (2006) intro- 

duced the tractable reformulation for the static problem with the 

budget uncertainty approach. Bienstock & Özbay (2008) propose 

an adversarial approach to compute a base stock policy. Ben-Tal, 

Golany, Nemirovski, & Vial (2005) provide a tractable reformulation 

of the adjustable robust optimization to deal with the inventory 

management problem in a two-echelon supply chain with flexible 

commitments contracts. Wagner (2018) gives a closed-form solu- 

tion for the infinite dimension version of the problem. See & Sim 

(2010) provide a second-order conic program for truncated linear 

replenishment policies (that correspond to an S policy), and they 

characterize the uncertain demand by covariance and directional 

deviation in addition to the classical mean and standard deviation. 

In addition, there exist several studies on extensions of the inven- 

tory management problem. For instance, Wei, Li, & Cai (2011) con- 

sider the planning problem with remanufacturing and uncertain 

item returns and demand, and Aouam & Brahimi (2013) propose 

a robust optimization approach for the integrated production plan- 

ning and order acceptance. Except for Bertsimas & Thiele (2006) , 

See & Sim (2010) , all the above studies ignore the fixed ordering 

costs. On the contrary, Solyalı, Cordeau, & Laporte (2016) consider 

fixed setup cost, and the authors show that the facility location 

formulation of the lot-sizing problem yields a more efficient robust 

formulation. Chu, Huang, & Thiele (2019) provide a reformulation 

for the case with demand and supply uncertainty. However, Chu 

et al. (2019) study the case of supply quantity uncertainty with 

a single supplier, whereas we consider delivery date uncertainty 

with supplier selection. We refer the interested reader to ( Lu & 

Shen, 2020 ) for a recent review on the application of robust op- 

timization to operation management problems. 

To the best of our knowledge, Thorsen & Yao (2017) and Hnaien 

& Afsar (2017) are the only studies proposing robust optimization 

approaches for lot-sizing problems under lead-time uncertainties. 

However, compared to our study, Thorsen & Yao (2017) consider 

a problem with only one supplier and ignore the fixed ordering 

costs in their model. Hnaien & Afsar (2017) explored the single 

supplier lot-sizing problem with discrete scenarios. The authors 

present specific characteristics of the problem, and they show that 

it is NP-hard, even with only two scenarios. Note that some stud- 

ies consider uncertain travel time in the inventory routing problem 

(e.g., Agra, Christiansen, Hvattum, & Rodrigues, 2018; Liu, Zhang, & 

Yuan, 2021 ). However, in the inventory routing problem, the pro- 

duction rate is typically given, and the uncertain transport time 

impacts the amount produced and consumed between two deliv- 

ery/replenishment rather than the delivery dates. To the best of 

our knowledge, there exists no study on robust optimization for 

the production routing problem (the extension of the inventory 

routing which includes production decisions) under transport time 

uncertainty. 

In summary, this study contributes to models integrating pro- 

duction planning and sourcing decisions under lead-time uncer- 

tainty. To the best of our knowledge, it is the first to investigate 

robust optimization for supplier selection decisions. Second, we 

propose optimization methods applicable to robust lot-sizing mod- 

els under lead time uncertainty. The robust optimization model 

seeks to minimize the cost of the worst-case lead-time realization. 

In practice, the number of lead time realizations is too large to 

generate them all. Consequently, we provide a row and column 

generation approach. However, this approach does not converge 

fast enough to the optimal solution. Therefore, we develop sev- 

eral approximations and heuristic approaches to solve the prob- 

lem, namely an approximation based on the robust counterpart 

reformulation, a hybrid of robust counterpart reformulation and 

row and column generation, a fix-and-optimize method, and a ge- 

netic algorithm. Third, we provide managerial insights that will 

help practitioners understand and use the models. In particular, we 

analyze the level of supplier diversification depending on the risk 

aversion profile of the buyer. We observe that risk-averse decision- 

makers tend to order from multiple suppliers. However, when their 

aversion to risk increases, the number of selected suppliers reduces 

to include only the most reliable ones. 

3. The robust lot-sizing with supplier selection problem

(RLS-SS)

Below, we provide a formal description of the robust supplier 

selection and lot-sizing problem (RLS-SS) under lead time uncer- 

tainty. For the sake of clarity, we provide the deterministic formu- 

lation of the problem before presenting the robust version. 

3.1. Deterministic model 

The inputs to the problem are the demand d t for each period t

in the planning horizon of length |T | ( t ∈ T ), and the set of sup- 

pliers S , where each supplier s is characterized by a per unit price 

p s , a fixed ordering cost o s , and a delivery lead time L s . The prob- 

lem is to decide the quantity Q ts to order in period t from supplier 



s,  to minimize the fixed ordering costs, variable purchasing costs, 

and inventory and backlogging costs. 

A mixed-integer linear programming formulation (MILP) of the 

deterministic problem is presented below. In addition to the sym- 

bols introduced above, inventory holding costs and backlogging 

costs are denoted h and b, respectively. Similarly to Thorsen & Yao 

(2017) and in order to formulate Constraints (2) below, we define 

the parameter δτ ts = 1 if the quantity Qτ s ordered in τ from sup- 
plier s arrives before period t , and 0 otherwise. This also means 

that the lead time Ls  is smaller than or equal to t − τ . Besides Q ts,
 

 

the model includes decision variables to represent the inventory 
level It  and the backlogged quantity Bt  at the end of each time 
period t , and the binary variables Y ts = 1 if an order is placed in 

period t from supplier s,  and 0 otherwise. 

[ DET ] min 

∑ 

t∈T

∑ 

s ∈S
( o s Y ts + p s Q ts ) +

∑ 

t∈T
( hI t + bB t ) (1) 

s.t. 

I t − B t = 

t ∑ 

τ=1

∑ 

s ∈S
δτ ts Q τ s −

t ∑ 

τ=1

d τ t ∈ T (2) 

Q ts ≤ Y ts 

∑ 

t∈T
d t t ∈ T s ∈ S (3) 

Q ts ≥ 0 and Y ts ∈ { 0 , 1 } t ∈ T s ∈ S (4) 

I t , B t ≥ 0 t ∈ T (5) 

The objective function (1) minimizes the total cost composed 

of fixed ordering, variable purchasing, inventory, and backlogging 

costs. The constraints in (2) calculate the inventory and backlog 

levels at the end of each time period t . Note that lead times are 

indicated by parameter δτ ts , which is equal to 1 if an order placed 

with supplier s at time period τ arrives at or before time period t . 

Hence, for a given supplier s with lead time L s , δτ ts = 1 only when 

t ≥ τ + L s . The constraints in (3) link the binary variables Y ts to the 

continuous quantities Q ts . Note that in constraint (2) , we assume, 

without loss of generality, that the horizon starts with no backlog 

or inventories. The constraints in (4) and (5) are integrality and 

non-negativity constraints. 

As mentioned earlier, we provide the deterministic model for 

clarity only. In fact, the problem with deterministic lead times is 

equivalent to a problem with no lead times. In addition, solving 

the deterministic model using a MILP solver is not efficient. There 

exist exact polynomial-time dynamic programming algorithms that 

can solved it in O ( |S| × |T | 2 ) (e.g., Toledo & Shiguemoto, 2005 ). 

This formulation is the basis of the robust optimization model pre- 

sented in Section 3.2 . We also compare the deterministic model 

with the robust optimization model in the numerical experiments. 

In this deterministic model, to make sure that all demands are 

satisfied before the end of the planning horizon, Constraint (6) be- 

low should be added. 

I |T | = B |T | = 0 (6) 

However, when there is uncertainty on lead times, this constraint 

can result in over-conservative solutions. In a robust model, it 

would require placing all orders before |T | − L max ; where L max is

the longest possible realization of the lead time. To be less conser- 

vative, Constraint (7) can be used instead. ∑ 

t∈T

∑ 

s ∈S
Q ts ≥

∑ 

t∈T
d t (7) 

More discussion about the ending horizon effects is done in the 

numerical experiments section. 

3.2. Robust optimization 

This section describes the robust model to handle the uncer- 

tainty of lead times. The robust optimization approach seeks to 

minimize the costs for the worst-case realization of the delivery 

delays. The resulting production plan performs well for all these 

realizations, but protection over a wide range of lead time values 

is costly. In other words, a model that accounts for any possible 

lead time realization yields over-conservative purchasing plans. To 

limit the considered lead time realization to realistic values, we 

use budgets of uncertainty, as proposed in Bertsimas & Sim (2004) . 

In this study, we consider a polyhedral budgeted uncertainty set. 

Such uncertainty sets are understandable by decision-makers, and 

they can be tailored for a specific problem. We aim to define the 

set specifically for suppliers who want to hedge against supplier’s 

delivery delays. Given the lead time L min 
s displayed by supplier s , 

the manufacturer foresees a maximum delay, and he/she can set 

the lead time interval 
[
L min 

s , L max 
s 

]
for each supplier. Further con- 

straining the uncertainty set provides less conservative decisions, 

and we assume the user may tighten the uncertainty set based on 

attributes of the delivery delays. Here, we propose three different 

constraints to limit the uncertainty set: 

1. First, the user may assume a maximum number �1 of late de- 

liveries per period, where an order is late if it is delivered after

the displayed lead time L min 
s . As a result, the uncertainty set

contains only lead time realizations where the number of late

orders in each period is lower than �1 .

2. Second, the user may restrict the maximum number of late de- 

liveries over the horizon. That is, over the entire planning hori- 

zon, at most �2 deliveries have a lead time larger than L min 
s .

3. Third, the user may limit the total lateness to �3 periods. If the

order placed to supplier s in period t is delivered in period L st ,

its lateness is L st − L min 
s periods. �3 is the sum of the lateness

over all the orders placed.

In practice, such an uncertainty set may be extended with user- 

specific constraints on the delays. More generally, the methods 

proposed in the rest of this work remain applicable if the lead 

times take values in a different polyhedral set. For instance, while 

our study focuses on methods to hedge against delivery delay, the 

model may be easily extended to hedge against early deliveries. 

In such a case, the nominal value corresponds to the average de- 

livery lead time, and the uncertainty set must include additional 

constraints to account for a budget of early delivery. 

Formally, the set � of possible lead time realizations is defined 

as follows: 

� = { δ ∈ R 

|T | ×|T | ×|S| | (8) 

δτ ts ≤ δτ,t+1 ,s t, τ ∈ T s ∈ S (9) 

− δτ ts ≤ −1 s ∈ S τ | t ≥ τ + L max
s 

(10) 

δτ ts ≤ 0 s ∈ S τ | t < τ + L min
s 

(11) 

|S| − ∑ 

s ∈S
δt−L min 

s ,t,s ≤ �1 t ∈ T (12) 

∑ 

s ∈S 

∑ 

t∈T 
(1 − δt−L min 

s ,t,s ) ≤ �2 (13) 

∑ 

s ∈S

∑ 

t∈T 

∑ 

τ≤t−L min 
s 

(1 − δτ ts ) ≤ �3 (14) 

0 ≤ δτ ts ≤ 1 τ, t ∈ T s ∈ S} (15) 



Constraints (9) state that if an order has arrived at t ( δτ ts = 1 ), 

then this order is available for subsequent time periods ( δτ t′  s = 1,  

for t ′  > t). Constraints (10) and (11) enforce the lead times to be 

within the interval [ L max , L min ].  Budget constraints are (12), (13),  
and (14).  Constraints (12) state that at most �1 orders are late in 

each period. Constraints in (13) state that at most �2 orders are 

late over the whole horizon. Constraints (14) state that the sum of 

lateness in the number of time periods over the horizon is smaller 

than �3.
 

 We consider δτ t′  s as a continuous variable. In practice, 

this assumption corresponds to the case where suppliers can de- 
liver partially in a period and complete their delivery later. 

The considered problem can be formulated as a two-stage 

model, where the first stage selects the suppliers and the order- 

ing quantities QT  S , whereas the second stage computes the worst- 
case inventory and backlogging costs f (QT  S ).  More precisely, the 

resulting robust lot-sizing with supplier selection problem formu- 

lation [RLS-SS] is: 

[ RLS − SS ] min 

∑ 

t∈T

∑ 

s ∈S
( o s Y ts + p s Q ts ) + f (Q T S ) (16) 

s.t. (3) − (4) , (7) , 

where the worst-case inventory and backlogging costs f (Q T S ) as- 

sociated with the ordering quantity matrix Q T S are obtained by 

solving the following sub-problem [SUB]: 

[ SUB ] f (Q T S ) = max 
∑ 

t∈T
( hI t + bB t ) (17) 

s.t. I t − B t = 

t ∑ 

τ=1

∑ 

s ∈S
δτ ts Q τ s −

t ∑ 

τ=1

d τ t ∈ T (18) 

I t ≤ αt 

|T | ∑ 

τ= t+1

d τ t ∈ T (19) 

B t ≤ (1 − αt ) 
t ∑ 

τ=1

d τ t ∈ T (20) 

αt ∈ { 0 , 1 } t ∈ T (21) 

δτ ts ∈ � τ, t ∈ T s ∈ S (22) 

To find the worst-case lead time realization within the uncertainty 

set, the objective (17) maximizes the inventory and ordering costs. 

The level of inventory and backlogging in each period t is com- 

puted using (18) , and it is the amount of item received minus the 

cumulative demand up to period t . Because this is a maximization 

problem, if Eq. (18) are used alone, it can result in solutions with 

both I t and B t strictly positive. To avoid this situation, we intro- 

duce the binary variable αt equals to one if the inventory level is 

positive in period t , and 0 otherwise. Constraints (19) (resp. (20) ) 

for the inventory (resp. backlog) level to 0 if αt equals 0 (resp. 1). 

Constraints (21) and (22) give the domain of the variables. 

Proposition 3.1. The RLS-SS and the sub-problem SUB are NP-hard 

Proof. RLS-SS is NP-hard because it is an extension of the robust 

single item lot-zing problem under lead time uncertainty, which 

is NP-Hard ( Hnaien & Afsar, 2017 ). Besides, even the sub-problem 

SUB is NP-Hard, and we prove it with a reduction from the knap- 

sack. The decision version of SUB asks if there exists an assignment 

of the lead times that lead to an inventory cost larger than value 

B. Given a bag with capacity C and a set of items where each item

is associated with a weight w i and profit λi , the decision version 

of the knapsack asks is there exists a subset of items with profit 

larger than β and that respects the capacity. Given an instance of 

the knapsack, we create the following instance of the SUB: 

• h t = 0 and b t = 1
• �3 is set to C, whereas �1 and �2 are large enough to not be

constraining.
• d t = 0 ∀ t ∈ T − { T } , and d T is large enough (any upper bound

of the optimal solution, for instance, d T can be set to the sum

of profit.)
• For each item, we create a supplier i , with L min 

i 
= 0 and L max 

i 
= 

w i , and we place an order Q (T −w i ) i 
= λi to supplier i in period

T − w i . 
• We set the time horizon large enough ( max i ∈ I w i )
• We set B to β .

For this instance of SUB, delaying an order by less than w i units

is sub-optimal since it consumes the budget, but it does not in- 

crease the costs. Similarly, an order cannot be delayed by more 

than w i since L max 
i 

= w i . Therefore, the problem is to select the or- 

ders to delay by exactly w i units, and delaying the order of supplier 

i increases the costs by λi units, and it consumes w i units of the 

budget. Therefore, solving SUB yields the solution to the knapsack, 

and the decision version of SUB is NP-complete, and the optimiza- 

tion version is NP-Hard. �

Finally, we assume that all suppliers in the set S are non- 

dominated since a dominated supplier would never be selected. 

We propose the following definition for the dominance relation be- 

tween two suppliers: 

Definition 3.1. A supplier s 1 is in S if and only if: 

∀ s 2 ∈ S, ¬ ((o s 1 ≤ o s 2 ) ∧ (p s 1 ≤ p s 2 ) ∧ (L max 
s 1 

− L min 
s 1 

≤ L max 
s 2 

− L min 
s 2 

)) 

where ¬ and ∧ represent the logical ”not” and ”and” respec- 

tively. 

4. Optimization approaches

This section presents several solution approaches to solve the 

robust supplier selection and lot-sizing problem under lead time 

uncertainty. The first procedure is a row and column generation 

approach ( Section 4.1 ). As this method suffers from scalability is- 

sues, we propose different heuristic approaches to solve large in- 

stances in reasonable computation time. First, we provide a ro- 

bust counterpart reformulation ( Section 4.2 ). The robust counter- 

part formulation is based on a reformulation per constraint. Thus, 

this model is a slight modification of the original problem, where 

the worst-case cost is computed independently in each period. In 

other words, the worst-case scenarios might be different in two 

different periods. While this approach requires significantly less 

computation time, it yields over conservative solutions. We show 

how to embed this robust counterpart formulation in a hybrid of 

row and column generation and robust counterpart reformulation 

( Section 4.3 ). Then, we study the possibility of embedding two 

common heuristics for lot-sizing in the row and column genera- 

tion framework, namely a fix-and-optimize ( Section 4.4 ) method 

and a genetic algorithm ( Section 4.5 ). 

4.1. Row and column generation approach 

A generic approach to solve robust optimization problems re- 

lies on the set � of all possible lead-time realizations within the 

uncertainty set. The resulting optimization problem for the RLS-SS 

is given below, where ω denotes a scenario, that is, a specific lead 

time realization, and each component of this matrix is denoted by 

δω 
τ ts . We also introduce the inventory or backlogging cost c ω t in pe- 

riod t for scenario ω, and the worst-case cost C. As the backlog- 

ging and the inventory costs are complementary (either the inven- 

tory or the backlog is positive in a period for a given scenario, but 

not both at the same time), the cost c ω t is computed with the pair 



of inequalities (24) and (25).  The constraints in (26) compute the 

worst-case cost over all the scenarios. 

[ RCG ] min 

∑ 

t∈T

∑ 

s ∈S
( Y ts o s + Q ts p s ) + C (23) 

s.t. (3) − (4) , (7) , 

c ω t ≥ h 

(
t ∑ 

τ=1

∑ 

s ∈S
δω 
τ ts Q τ s −

t ∑ 

τ=1

d τ

)
t ∈ T ω ∈ � (24) 

c ω t ≥ −b 

(
t ∑ 

τ=1

∑ 

s ∈S
δω 
τ ts Q τ s −

t ∑ 

τ=1

d τ

)
t ∈ T ω ∈ � (25) 

C ≥
∑ 

t∈T
c ω t ω ∈ � (26) 

c ω t ≥ 0 t ∈ T ω ∈ � (27) 

C ≥ 0 (28) 

Model [RCG] can be solved using any mixed-integer linear pro- 

gramming solver. However, the set of scenarios � is too large for 

the approach to be tractable. In fact, the number of scenarios is 

infinite as δτ ts are continuous. Therefore, a common solution ap- 

proach to solve the considered problem relies on the row and 

column generation approach (also called adversarial formulation) 

( Zeng & Zhao, 2013 ). Rather than solving the model for the en- 

tire set of scenarios �, this approach iteratively builds a subset of 

scenarios 
, with only the scenarios required to prove optimality. 

This approach initializes the set 
 of scenarios with a single sce- 

nario where all suppliers deliver on time, and it iteratively builds 

the set of scenarios. In each iteration, the row and column genera- 

tion methods perform the following steps: 

1. Solve model [RCG] on the current set of scenarios 
, to get the

purchasing plan Q̄ T S .
2. Solve model (17) –(22) to get f ( ̄Q T S ) and the scenario ω̄ with

lead time values maximizing the inventory and backlogging

costs.

3. Add scenario ω̄ to the set 
 of scenario.

As [RCG] uses a restricted set of scenarios in each iteration, its

optimal cost is a lower bound of the initial problem. In contrast, 

f ( ̄Q T S ) is a valid evaluation of the trial solution Q̄ ts , and it pro- 

vides an upper bound. The method stops when the gap between 

the upper and lower bounds is sufficiently small, or when a time 

limit is reached. 

To speed up the convergence of the row and column genera- 

tion approach, we use the algorithmic improvement proposed in 

McDaniel & Devine (1977) for Benders decomposition. We start by 

solving the linear relaxation of the first-stage problem. Once the 

optimal solution of the LP relaxation is found, the integrality con- 

straints are enforced to solve the initial problem in a few itera- 

tions. For the considered problem, the integrality constraints on 

the Y ts are relaxed to quickly generate interesting scenarios. Once 

the approach converges, the initial model is solved. 

4.2. Robust counterpart reformulation 

Robust counterpart reformulation ( RCR ) ( Bertsimas & Sim, 

2004 ) considers the worst case of each constraint independently, 

and it reformulates each constraint with dualization to yield a 

tractable model. For our problem, RCR considers the inventory 

holding and backlogging costs constraints separately before refor- 

mulating them by taking the dual. That is, the cost function sums 

the maximum between the worst-case inventory and worst-case 

backlog in each period, and not the backlogging or inventory cost 

in the worst-case scenario as in the original model. 

This slightly modified model is faster to solve through a com- 

mercial solver than the original one, and its solution is valid 

(but not necessarily optimal) for the original problem. In addition, 

Thorsen & Yao (2017) showed that RCR yields good quality solu- 

tions for a similar problem. For the polyhedral uncertainty sets, the 

robust counterpart reformulation requires three steps ( Bertsimas, 

Brown, & Caramanis, 2011 ). The first step expresses the cost con- 

straint that must be satisfied for all scenarios with a single con- 

straint that corresponds to the worst-case scenario. Indeed, if the 

constraint is valid for the worst-case scenario, it is valid for all sce- 

narios. Consequently, this constraint includes a maximization inner 

problem to find the worst-case scenario. In our case, the model be- 

comes: 

min 

∑ 

t∈T

∑ 

s ∈S
(Y ts o s + Q ts p s ) + 

∑ 

t∈T
c t (29) 

s.t. (3) , (4) , (7) ,

c t ≥ max 
ω∈ �

( 

h 

(
t ∑ 

τ=1

∑ 

s ∈S
δω 
τ ts Q τ s −

t ∑ 

τ=1

d τ

) )
t ∈ T (30) 

c t ≥ max 
ω∈ �

(
−b

(
t ∑ 

τ=1

∑ 

s ∈S
δω 
τ ts Q τ s −

t ∑ 

τ=1

d τ

) )
t ∈ T (31) 

where the scenario with the maximum inventory in (30) and 

(31) is selected independently for each time period. In contrast,

the original model takes the worst case in each scenario (see con- 

straints in (26) in the [RCG] model). 

The second step is to build the dual of the maximization prob- 

lem. Given fixed purchasing quantities Q̄ ts , the right-hand side of 

Constraints (30) can be rewritten as follows: 

max 

t ∑ 

τ=1

∑ 

s ∈S
hδτ ts Q̄ τ s −

t ∑ 

τ=1

hd τ

s.t. (9) − (15) . (32) 

The primal and dual yield the same cost, and thus the primal can 

be replaced by the dual. A major advantage of the dual is that 

it does not contain the multiplication of the variable that exists 

in the primal. The dualization is performed independently for 

each constraint (not only for the backlog and inventory cost in 

a period but also independently between the different periods). 

Therefore, the uncertainty set � must be expressed based on the 

information available in each period t only. First, the constraints 

in (9) ( δτ ts ≤ δτ,t+1 ,s ) disappear because they link periods t and 

t + 1 . Second, Constraint (34) prevents more than �2 late orders in 

each period t . In contrast to Constraint (13) , Constraint (34) only 

accounts for the δ’s that appear in each of the constraints in (30) . 

As a result, Constraint (34) prevents more than �2 late deliveries 

among orders passed before period t . Note that in contrast to 

Constraint (33) , Constraint (34) counts all late orders, and not 

only orders late in a single period. Similarly, Constraint (14) is 

modified to account only for the δ’s that appear in each of the 

Constraints (30) . Thus, (35) prevents the total lateness observed 

in period t from being larger than �3 . Finally, Constraints (11) are 

removed, the unnecessary variables are not defined, and the con- 

stant (−h 
∑ 

τ∈ 0 ... t d τ ) is dropped from the objective. The resulting 

model is given below (the dual variables are shown between 



parentheses). 

max 

t ∑ 

τ=1

∑ 

s ∈S 
hδτ ts Q τ s 

s.t. |S| − ∑ 

∫∈S
δ
−L �〉\ 

∫ , 
 , ∫ ≤ −∞ 

(ρ1 
t ) (33) 

∑ 

s ∈S 

∑ 

τ≤t−L min 
s 

(1 − δτ ts ) ≤ �2 (ρ2 
t ) (34) 

∑ 

s ∈S 

∑ 

τ≤t−L min 
s 

(t − τ − L min 
s + 1)(1 − δτ ts ) ≤ �3 (ρ3 

t ) (35) 

− δτ ts ≤ −1 τ ≤ t − L max 
s s ∈ S (ξτ ts ) (36) 

δτ ts ≤ 0 τ > t − L min 
s s ∈ S (λτ ts ) (37) 

δτ ts ≤ 1 τ ≤ t s ∈ S (ψ τ ts ) (38) 

δτ ts ≥ 0 τ ≤ t s ∈ S (39) 

The second step formulates the dual problems provided in the on- 

line supplement. In the third step, we drop the dual in Constraints 

(30) and (31) . As the objective of our problem is to minimize the

sum of the costs c t , it seeks to minimize the right-hand side of

(30) and (31) , the minimum sign can be omitted in the right-hand

side of these constraints.

[ RCR ] min 

∑ 

t∈T

(
c t + 

∑ 

s ∈S
(Y ts O s + Q ts p s ) 

)
s.t. (3) − (4) , (7) , 

c t ≥ ρ1 
t (�1 − |S| ) + ρ2

t 

(
�2 −

∑ 

s ∈S 

∑ 

τ≤t−L min 
s 

1 

)

+ ρ3
t 

(
�3 −

∑ 

s ∈S 

∑ 

τ≤t−L min 
s 

(t − τ − L min 
s ) 

)

− h

t ∑ 

τ=1

d τ t ∈ T 

c t ≥ ρ ′ 1 
t (�1 − |S| ) + ρ ′ 2

t 

(
�2 −

∑ 

s ∈S 

∑ 

τ≤t−L min 
s 

1 

)

+ ρ ′ 3
t 

(
�3 −

∑ 

s ∈S 

∑ 

τ≤t−L min 
s 

(t − τ − L min 
s ) 

)

+ b

t ∑
τ=1

d τ t ∈ T 

4.3. Hybrid robust counterpart reformulation with row and column 

generation 

As explained earlier, the robust counterpart reformulation in 

Section 4.2 is an approximation because it considers the worst 

lead time realization independently for each constraint. Neverthe- 

less, based on our experimental results, the simplification is small, 

and the resulting solution sol leads to a good heuristic. To fur- 

ther improve this solution, the hybrid robust counterpart reformu- 

lation and row and column generation takes the setup values in 

sol and fixes them in the row and column generation approach. 

The resulting linear program can be solved efficiently. Such an ap- 

proach shows that the robust counterpart reformulation approach 

has merit even when the uncertainty set is hard to express as a 

convex set. Moreover, such an approach could be applied to other 

problems (e.g., where the uncertain parameters take discrete val- 

ues). 

4.4. Fix-and-optimize heuristic 

We propose a fix-and-optimize heuristic ( Helber & Sahling, 

2010 ) to find good-quality solutions within a reasonable amount of 

time. The approach starts with an initial solution (Economic Order 

Quantity based heuristic). This solution is improved with the fix- 

and-optimize procedure applied to the robust counterpart refor- 

mulation framework before applying the fix-and-optimize heuris- 

tics to the row and column generation framework. We successively 

describe the methods to generate the initial solution (Step 1), the 

fix-and-optimize in the robust counterpart reformulation frame- 

work (Step 2), and the fix-and-optimize in the row and column 

generation framework (Step 3). 

Step 1: Initial solution: To produce a starting solution, the ini- 

tialization step selects a single supplier. The initialization step se- 

lects the supplier s with the lowest estimated cost ( EC s ): 

E C s = D̄ p s + o s 
D̄

E OQ s 
(40) 

where D̄ is the average demand over the planning horizon and 

EOQ s is the approximated economic order quantity of supplier s 

calculated as: 

EOQ s = 

√
2 o s ̄D 

h 

, (41) 

Once the supplier s � is selected, we solve the robust counterpart 

formulation (model RCR) for the single supplier problem within a 

short computation time limit (set to 30 s in our implementation) 

to get an initial solution. The single supplier problem corresponds 

to the cases where the setup variables are set to 0 for all suppliers 

except s � . 

Step 2: Fix-and-optimize for the robust counterpart reformu- 

lation . The second step aims to quickly find a good solution to the 

robust counterpart formulation. Fix-and-optimize solves the model 

iteratively. In each iteration, a large proportion of the setup vari- 

ables is fixed, and only a few of them remain open for optimiza- 

tion. Therefore, the model is solved quickly. The approach performs 

two types of fix-and-optimize passes. The first seeks to improve 

supplier selection decisions, whereas the second improves lot- 

sizing decisions. Fix-and-optimize iterates these two passes suc- 

cessively, and it stops if both passes are not able to improve the 

current solution. 

• The supplier selection based pass opens the binary variables Y ts

for all suppliers s at a given period t . The pass starts in period

0, and iterates for each period t in the horizon.
• The lot-sizing based pass opens the variables Y ts for all suppli- 

ers s in S u and all periods t ∈ [ a, b ] , where S u is the set of

currently-used suppliers, and [ a, b ] is a given time interval. The

pass starts at period 0, and after each iteration, it shifts the in- 

terval by half of its length.

Step 3: Fix-and-optimize in the row and column generation

framework. The online supplement gives the steps of the fix- 

and-optimize approach in the row and column generation frame- 

work. In each iteration, the scenario-based model is solved with a 

given set of scenarios and with most of the setup variables fixed 

to their current values and a few open. In this context, an im- 

provement in optimization does not mean an improvement for the 



global problem because the optimizer has a partial set of scenar- 

ios only. Therefore, if the optimization of the scenario-based model 

improves the best-known solution (evaluated with f (QT  S ) ), the 

method moves there, and the current solution changes. Otherwise, 

it adds the worst-case scenario in the current set of scenarios, and 

continues with the current solution. To speed up the method, the 

fix-and-optimize approach starts by generating an interesting sub- 

set of scenarios. These scenarios are obtained by fixing all setup 

variable to the value of the initial solution, and iterates until it 

finds the best purchasing quantities for the initial setup values. 

In step (2), the approach stops when the two successive passes 

cannot improve the solution. In step (3), the approach stops after 

a given time limit. If two successive passes do not improve the 

solution in step (3), we increase the size of the intervals. 

4.5. Genetic algorithm 

In this section, a genetic algorithm is developed and coupled 

with the model RCR.  The decision variables are the binary vari- 
ables Y ts,

 

 where Y ts is equal to 1 if an order is passed to sup- 
plier s in period t , as defined before. A chromosome is encoded 

as a matrix of binary values whose dimensions are |S| × |T |.  Each 

gene of a chromosome contains the value of Y ts.
 

 The proposed 

GA starts with an initial population of N individuals that are ran- 

domly generated. The sum of Y ts , denoted by G , is the number of 

orders. G is randomly generated in the interval 

[ 
T 
g 1 

, T 
g 2 

] 
, where

g 1 = min 
s ∈S

( 
√ 

2 o s / ( ̄D h ) is an estimate of the minimum time between 

two orders computed based on the EOQ formula without backlog 

given in (41) and g 2 = max 
s ∈S

( 
√ 

2 o s / ( ̄D h ) 
√ 

(h + b) /b ) is an estimate 

of the maximum time between two orders computed based on 

the EOQ formula extended to account for backlog ( Silver, Pyke, & 

Thomas, 2017 ). For each individual of the initial population, G se- 

tups are set to 1, and they are selected randomly with a uniform 

distribution. Each one is evaluated using RCR model with a fixed 

setup value as a fitness function. 

The elitist strategy is employed to select individuals on which 

we apply evolutionary operators. Here, we only consider a stan- 

dard single-point crossover. It is randomly performed horizontally 

or vertically with a probability x 1 . Therefore, we choose this point 

between 1 and |S| or between 1 and |T | . For the mutation opera- 

tor, four types of mutations are considered: (i) if Y ts = 0 , mutate to 

1 with probability m 1 , (ii) if Y ts = 1 , mutate to 0 with probability 

m 2 and Y lk = 1 (where k is randomly generated between 1 and |S| ,
and l between 1 and |T | ), (iii) if Y ts = 1 , mutate to 0 with probabil- 

ity m 3 ; (iv) if Y ts = 1 , mutate to 0 with probability m 4 and Y lk = 1 

(where k and l are randomly generated, ∀ k, l ∈ {−1 , 1 } ). 

5. Experiments

This section presents the numerical experiments that were run 

using the approaches presented above. The algorithms were im- 

plemented using C++ language, with FICO (2019) Xpress version 

8.6 as the MILP solver. No changes were made to default settings. 

The tests were carried out on a server with an Intel(R) Xeon(R) 

X5650@2.67GHz processor. The generation of datasets was inspired 

mainly by the studies of Thorsen & Yao (2017) and Brahimi & 

Aouam (2016) . Two groups of instances were generated. The pur- 

pose of the first group is to analyze the performance of the so- 

lution approaches. The purpose of the second group is to provide 

managerial insights. The method to generate this data is presented 

in the online supplement. In particular, it is worth to mention here 

that when a planning horizons is set to 41 time periods, for ex- 

ample, the demand for the first 11 periods is set to zero. The 11 

periods correspond to the longest lead time of suppliers. This is to 

allow all suppliers to deliver on time. 

This section is divided into two parts. The first part summarizes 

the numerical experiments that were run to analyze the numerical 

performance of the algorithms. The second part presents manage- 

rial insights based on a large set of generated data. 

5.1. Performance of the methods 

This section evaluates the performance of the proposed ap- 

proaches in terms of convergence towards the optimal solution and 

in terms of solution quality. We provide a summary of the meth- 

ods below. To show the benefit of each step of the fix-and-optimize 

approach, three versions are considered, where the ingredients are 

added one by one. 

• DET Min , DET Max , DET A v g : deterministic model (1) - (5) where

the lead time is set to the minimum ( L min 
s ), maximum ( L max 

s ),

and average lead time value ( 
L max 

s −L min 
s 

2 ), respectively.
• RC : the row and column generation approach leading to

the true optimal solution of the considered problem (see

Section 4.1 ).
• RC − NW : row and column generation (see Section 4.1 ) without

the algorithmic improvement.
• RCR : the robust counterpart reformulation presented in

Section 4.2 .
• H − RCR − RC : Hybrid robust counterpart reformulation and row

and column generation (see Section 4.2 ).
• F AO : the three steps of the fix-and-optimize approach (see

Section 4.4 ), with an interval length of five periods.
• F AO 1 : Step 1 of the fix-and optimize approach (see Section 4.4 ).
• F AO 2 : Steps 1 and 2 of the fix-and-optimize approach (see

Section 4.4 ).
• GA : Genetic Algorithm (see Section 4.5 ).

5.1.1. Convergence of the exact methods 

The evaluation in terms of convergence to the optimal solution 

includes only the exact methods. To analyze the convergence of RC , 

RCR , and DET , Table 1 reports the average gap and computational 

time required to solve the instances with a given planning horizon 

size |T | and the number of suppliers |S| . These gaps indicate the 

convergence of the method. For RCR and DET , we give the integral- 

ity gap Gap Int returned by Fico Express. For RC , Gap RC corresponds 

to the average gap between the lower LB RC (solution of RCG on the 

subset of scenarios) and upper bound UB RC (obtained by solving 

(17) –(22) ) as follows:

Gap RC = 100 

UB 

RC − LB 

RC 

LB 

RC 
.

In addition, we provide the number of iterations (Nr it) per- 

formed by RC (without accounting for the warm-up phase where 

the linear relaxation is solved), as well as the time spent solving 

the master problem and the subproblem. 

Table 1 shows that the considered problem is difficult to solve 

as even the deterministic version of the problem cannot be solved 

optimally within 10 min. A deeper analysis of the results showed 

that the linear programming relaxation of the problem is weak. 

Note that preliminary experiments (see Section 3 in the online 

supplement) show that classical improvement techniques of the 

lot-sizing model such as the facility location-based formulation 

( Krarup & Bilde, 1977 ) did not provide better results. Therefore, 

while such reformulation were applied with some success in a re- 

lated problem ( Attila, Agra, Akartunalı, & Arulselvan, 2021 ), they 

do not apply to our study. 

RCR is slightly slower than the deterministic problem (314 s on 

average versus 215 for DET ). However, this approach remains prac- 

tical because the solver can quickly find good solutions, and it only 



Table 1

Solution gaps and computational time for the column and row generation approach and robust counterpart reformulation.

|T | |S|
RC RC − NW RCR DET Max 

Gap RC (%) CPU (s) Nr it CPU Sub. (s) CPU Mas. (s) Gap RC (%) CPU (s) Nr it CPU Sub. (s) CPU Mas. (s) Gap Int (%) CPU (s) Gap Int (%) CPU (s)

21 5 0.81 84.99 5.33 0.32 84.66 26.58 518.22 30.89 1.05 517.14 0 2.58 0 1.18

10 5.88 264.32 5.11 0.43 263.88 41.51 594.51 24.39 1.47 593 0 17.16 0 2.22

15 9.98 251.26 4.39 0.5 250.75 64.44 597.01 21.72 1.74 595.21 0 15.14 0 3.17

41 5 6.21 487.51 2.2 0.2 487.3 48.8 502.66 6.77 0.52 502.12 1.29 294.37 0.13 126.41

10 14.73 490.17 1.53 0.3 489.86 76.09 501.81 6.37 0.94 500.83 2.9 407.87 0.01 62.48

15 12.88 503.57 1.87 0.93 502.63 76.72 529.31 5.07 1.05 528.22 2.16 363.06 0.25 153.77

61 5 7.56 591.73 2.2 0.47 591.24 98.91 601.79 2.53 0.38 601.4 2.73 525.27 0.73 482.46

10 14.93 601.13 1.07 0.5 600.62 119.36 601.65 1.5 0.47 601.16 5.39 600.2 0.83 502.42

15 20.39 603.33 1 2.03 601.27 128.78 600.65 1 0.6 600.02 8 600.34 3.02 600.58

Average 10.37 430.89 2.74 0.63 430.25 75.69 560.85 11.14 0.91 559.9 2.5 314 0.55 214.97

Table 2

Gap from best solution for each approach depending on the number of suppliers and number of periods (maximum CPU time

equals to 600 s).

|T | |S| DET Min DET Max DET A v g RC RC − NW RCR H − RCR − RC F AO F AO 1 F AO 2 GA

21 5 53.77 11.20 41.29 0.70 17.38 3.23 1.63 0.02 3.27 3.23 32.50

10 53.41 10.44 40.85 4.05 24.73 2.74 1.24 0.06 4.32 2.74 29.61

15 56.63 12.39 45.00 6.32 33.65 3.15 1.12 0.04 5.15 3.13 55.3

41 5 33.75 3.67 20.65 5.06 22.24 1.51 3.54 0 2.69 1.42 19.98

10 38.86 5.25 26.18 10.42 30.96 1.90 0.94 0.06 3.14 1.74 27.48

15 36.48 4.72 22.40 10.36 29.67 1.54 0.70 0.02 3.52 1.39 33.03

61 5 32.41 2.86 21.98 5.94 32.24 2.03 2.82 0.01 3.36 1.86 26.44

10 34.77 5.01 22.72 11.60 33.25 2.05 0.79 0.03 4.53 1.76 35.78

15 38.07 4.71 24.99 25.08 36.47 2.38 0.95 0.08 3.90 1.71 36.69

Average 40.08 5.98 27.59 9.63 29.52 2.16 1.56 0.04 3.69 1.97 32.03

requires time to close the gap. Indeed, Table 1 shows that RCR 

returns a solution with an integrality gap below 10% on average 

for all instance sizes. On the contrary, RC performs poorly because 

it does not converge even for small instances with an integrality 

gap of 5 . 88% on average for instances with 21 periods and 10 sup- 

pliers. While RC requires few iterations only to converge (around 

5 for small size instances), solving the master problem requires 

too much computation time, and RC cannot perform enough it- 

erations to converge within the given time limit. The algorithmic 

improvement from McDaniel & Devine (1977) significantly reduces 

the number of iterations (from approximately 30 to 5 for small in- 

stances) required to converge. Reducing the time required to solve 

the master problem is complex. Not only, the reformulations com- 

monly used in lot-sizing do not apply directly to the cases with 

multiple lead time scenarios, but they are not necessarily efficient 

for the case with supplier selection. For instance, Table 2 in the 

appendix shows that the aggregated formulation is not efficient. 

Therefore, we propose to solve the master problem with a fix and 

optimize heuristic embedded in the row and column generation 

framework. 

5.1.2. Performance of the methods 

This section compares the quality of the solution obtained by 

the proposed methods. The main document presents aggregated 

results only for the sake of brevity; the detailed results are avail- 

able in the online supplement. In this section, we compare the 

worst-case total cost F (Q 

m ) associated with the production quan- 

tities Q 

m returned by each method m . F (Q 

m ) includes the setup 

costs, the variable production costs, and the worst-case inventory 

and backlogging costs computed by solving the linear program- 

ming model (17) –(22) . We indicate the percentage Gap between 

the cost F (Q 

m ) obtained with a method m and the smallest worst- 

case total cost F (Q 

� ) obtained with any method. More precisely, 

Gap is computed as follows: 

Gap = 100 

F (Q 

m ) − F (Q 

� ) 

F (Q 

� ) 
(42) 

For each method, Table 2 gives the average Gap over all in- 

stances with a given number of periods and a given number of 

suppliers, and the best average Gap is indicated in boldface. First, 

Table 2 shows that RC significantly outperforms RC − NW with an 

average Gap of 8 . 84% and 28 . 95% , respectively. Clearly, the fast-cut 

generation accelerates the solution process because it quickly gen- 

erates interesting scenarios. Second, each step of F AO helps to im- 

prove the solution because F AO significantly outperformed F AO 2 

(0.04% vs 2.11%), and F AO 2 outperforms F AO 1 ( 2 . 11% vs 3 . 76% ). 

Third, RCR performs relatively well with a Gap of 2 . 28% . How- 

ever, the constraint decomposition leads to overly conservative so- 

lutions, and this conservatism impacts both the setup and quan- 

tity decisions. H − RCR − RC considers the setup decisions obtained 

with RCR , and it finds the optimal production quantities associ- 

ated with these setup decisions. As H − RCR − RC does not lead 

to the overall optimal solution (it has a positive Gap), the setup 

decisions from RCR are sub-optimal, In addition, as H − RCR − RC 

outperforms RCR , it is able to improve the quantity decision, and 

RCR also finds sub-optimal quantities. Nevertheless, the impact of 

this conservatism on the setup decisions is relatively small because 

H − RCR − RC performs very well with a Gap of 1 . 53% . Fourth, GA 

performs poorly, with an average Gap of 32 . 98% . While GA is com- 

monly used to deal with lead time uncertainty ( Ben-Ammar et al., 

2020 ); it is not adapted for the hybridization with the MILP solver. 

Indeed, GA is unable to perform enough iterations in the 600 s 

time limit because the evaluation of a solution by solving the lin- 

ear program takes too much time. Finally, F AO leads to the best re- 

sult, with an average Gap of 0 . 04% . Our results show that the deter- 

ministic model should account for the maximum lead time value, 

since DET Max outperforms DET A v g and DET Min . This result was ex- 

pected because the backlogging costs are larger than the inventory 

holding costs. Nevertheless, the consideration of the uncertainty in 

the optimization model leads to significantly better results, with a 

Gap of 0 . 04% for F AO versus 6 . 69% for DET Max . 

Table 3 provides the average Gap over the instances with iden- 

tical values for �1 , �2 , and �3 . The results indicate that F AO is ro- 

bust since it performs well for all values of �1 , �2 , and �3 . On 



Table 3

Gap from best solution for each approach depending on the uncertainty set.

�1 �2 �3 DET Min DET Max DET A v g RC RC − NW RCR H − RCR − RC F AO F AO 1 F AO 2 GA

2 - - 49.97 4.63 34.82 7.40 39.74 1.81 1.04 0.03 3.63 1.79 31.00

4 - - 49.96 4.61 34.81 7.36 37.61 1.73 1.00 0.06 3.57 1.70 31.41

- 10 - 46.14 4.68 32.60 13.55 34.61 2.04 2.80 0.02 3.73 1.77 31.65

- 20 - 49.67 4.64 34.82 9.92 39.28 1.83 1.05 0.02 3.69 1.75 31.77

- - 10 16.65 9.88 10.61 6.75 7.60 2.99 1.60 0.07 3.64 2.51 33.78

- - 20 28.10 7.43 17.89 12.79 18.30 2.58 1.84 0.02 3.87 2.27 32.59

Average 40.08 5.98 27.59 9.63 29.52 2.16 1.56 0.04 3.69 1.97 32.03

Table 4

Gap from best solution for each approach depending on the T BO .

T BO DET Min DET Max DET A v g RC RC − NW RCR H − RCR − RC F AO F AO 1 F AO 2 GA

1 50.70 10.53 41.22 6.60 37.60 2.60 1.01 0.07 2.90 2.46 37.22

2 51.39 10.69 40.67 6.34 37.55 2.72 2.07 0.02 3.08 2.59 42.82

4 44.58 4.38 28.98 16.98 34.53 2.54 1.58 0.01 4.87 2.05 28.04

10 22.27 0.31 9.91 12.76 18.12 1.55 2.72 0.07 3.44 1.49 24.26

20 18.23 0.14 3.12 4.94 9.25 0.74 0.40 0.02 4.29 0.65 21.83

Average 40.08 5.98 27.59 9.63 29.52 2.16 1.56 0.04 3.69 1.97 32.03

Table 5

Maximum Gap from best solution.

|T | |S| DET Min DET Max DET A v g RC H − RCR − RC F AO GA

21 5 63.20 20.50 50.26 12.62 2.68 0.19 40.93

10 61.50 22.46 51.98 31.58 1.78 1.00 51.79

15 62.13 21.64 52.55 38.41 2.64 0.16 67.14

41 5 71.52 21.76 57.07 24.44 21.92 0 29.87

10 71.54 21.58 57.26 37.71 3.22 0.39 47.08

15 71.93 21.71 56.67 37.66 2.78 0.39 56.18

61 5 72.74 19.13 57.36 23.14 59.45 0.09 47.77

10 72.70 22.62 57.57 36.01 2.26 0.38 43.53

15 72.87 21.83 57.96 86.06 2.78 1.08 56.42

Average 68.90 21.47 55.41 36.40 11.06 0.41 48.97

Fig. 1. Supplier selection rates and number of suppliers selected as a function of �3 .

the other hand, Table 3 shows that H − RCR − RC and RCR per- 

form better when the uncertainty set is not too tight. For in- 

stance, the average Gap of H − RCR − RC increases from 1.05 to 

2.8 when �2 decreases from 20 to 10. Such behavior is expected 

as the robust counterpart reformulation leads to over conservative 

solutions. 

Table 4 provides the average Gap over the instances generated 

with an identical Time Between Orders ( T BO ). It shows that the in- 

stances with small T BO values are harder to solve. For example, the 

GAP of RC reduces from 16 . 98% to 12 . 76% when the T BO increases 

from 4 to 10. When the T BO is large, the plan has fewer orders. 

As a consequence, the uncertainty sets become more conservative 

(it relies on the number of orders), and there are fewer scenarios 

to consider. The setup decisions not only make robust optimization 

methods more difficult to solve, but also impact the parameteriza- 

tion of the uncertainty set. This observation calls for more research 

on robust optimization approaches for lot-sizing problems with 

setups. 

Finally, to study the stability of the proposed approach, 

Table 5 presents the maximum Gap obtained by each method for 

each instance size. F AO is the best method, since it leads to the 

smallest maximum Gap on all instance sizes. 



Fig. 2. Supplier selection rates for Experiment #1: Decreasing the maximum lead time of each supplier.

5.1.3. Discussion about ending backlog level 

To investigate the impact of considering the restriction that no 

backlog is allowed at the end of the time horizon, we provide addi- 

tional experimental results by comparing different constraints. The 

three experiments (cases) that were run are the following. In Case 

a , Constraint (7) is used. In Case b , this constraint is replaced by 

Constraint (6) . Finally, Case c does not contain any of the two con- 

straints. 

The numerical experiments show that solving Case b takes on 

average 13.80 s of CPU time, and this is about three times faster 



Fig. 3. Supplier selection rates for Experiment #2: Reducing variability while keeping the same average lead time.

than Case a (41.02 s) and two times faster than Case c (24.47 s). 

In Cases b and c , all decision variables are considered for t = 

1 , . . . , |T | − L max . The solver solves Case b faster because it exploits

Constraint (6) to reduce the search space. In terms of total costs, 

there is no noticeable difference. In Case c , under certain condi- 

tions, the buyer does not order enough to fulfill the demand over 

the planning horizon. This happens when the backlogging and in- 

ventory holding costs are relatively small. In Case c , for some in- 

stance, up to 4% of the total demand was not satisfied (703 instead 

of 732 units). 



Fig. 4. Suppliers’ selection rates as function of lead time (by increasing the minimal lead times) (Experiment #3).

Fig. 5. Supplier selection rates for Experiment #4: For all suppliers, setting the same costs and the same lead time variability ( L max
s − L min

s is constant), and simultaneously

increasing both L min
s and L max

s for each supplier individually.

Fig. 6. Supplier selection rates for Experiment #5: Similar to Experiment #4 but setting the same variability for all other suppliers.

5.2. Managerial insights 

This section provides certain managerial insights related to sup- 

plier diversification, order splitting, and link with suppliers’ lead 

times and prices, based on the instances presented in Section 2.2 

in the online supplement. Supplier diversification in an uncer- 

tain environment is a topic that has been presented in the lit- 

erature (for example, Anupindi & Akella, 1993 ). However, we do 

not find any study that analyzes the level of diversification with 

respect to the risk aversion of buyers. To the best of our knowl- 

edge, the only study related to this topic is from Adelman & 

Wang (2013) , who analyze the quantities that should be ordered 

from two unreliable suppliers when the buyer is risk-averse or 

risk-neutral. 

Fig. 1 (a) shows the selection rate of each supplier when �3 is 

varied from 0 to M . M is a very large number set at 10 5 in the 

experiments. Large values of �3 correspond to a more risk-averse 

buyer because the resulting solution ”covers” a larger set of possi- 

ble disruptions. We include the case with �3 = 0 to show that in 

the case without uncertainty, the buyer will order only from the 

supplier who has the best compromise between its unit purchas- 

ing price and its setup cost. Risk aversion is proportional to the 

value of �3 , where the most risk-averse buyer is assigned the value 

of �3 = M. We notice that the number of suppliers first increases 

as �3 increases and then drops slowly until it reaches 1 supplier 

for the extreme values of �3 ≥ 7 . An extremely risk-averse (large 

�3 ) buyer orders only from the most reliable supplier (supplier 2

in this case) because he/she considers that any order placed will

be delivered as late as possible. When the buyer is less risk-averse,

he/she will rely on the cheapest suppliers (Suppliers 2, 4, and 5).

Risk aversion will push the buyer to include more suppliers to mit- 

igate risks. Diversification is a well-known tool to mitigate risk and 

is useful in the case of market-responsive supply chains ( Chopra & 

Meindl, 2016 ). 

This is further supported by Fig. 1 (b), which shows the number 

of orders as a function of the value of �3 . As expected, the num- 

ber of orders and source diversification increases as �3 increases 

from 1 to 3. For larger values of �3 , the number of orders de- 

creases and stabilizes at 6 orders for �3 ≥ 10 . Another very im- 

portant observation from Fig. 1 (b) is the fact that the number of 

orders can exceed the number of periods with a positive demand 

over the horizon. This means that order splitting becomes interest- 

ing in the case of lead time uncertainty, and it is impacted by the 

profile of the buyer. Note that the optimal solution in the deter- 

ministic case ( �3 = 0 ) does not require any order splitting ( Toledo 

& Shiguemoto, 2005 ). 



Fig. 7. Supplier selection rates Experiment #2: SR s vs the purchasing prices.



We carried out six more experiments to understand the behav- 

ior of the buyer in terms of diversification of suppliers as a func- 

tion of the buyer’s risk aversion ( �3 ), lead time value, lead time 

variability, and prices of the suppliers. Experiment #1 consists in 

decreasing the maximum lead time of each supplier. Its results are 

presented in the matrix of charts in Fig. 2.  Each chart shows the 

selection rates ( SRs  ) of each supplier s when the maximum lead 

time ( Ls  
max ) of one supplier varies. 

In each row, the lead time of a single supplier is changed 

(for suppliers s = 1,  . . . , 5 ), and each column of Fig. 2 corresponds 

to a different level of risk aversion of the buyer through the 

value of �3 = 2, 5, and M. In the upper left corner chart (s  = 1 

and �3 = 2 ), for example, the maximum lead time of supplier 1 

( L max 
1 

) is varied from 0 ( L min 
1 ) to its default value of 7 time peri- 

ods, while the lead times of the other suppliers are set to their 

default values ( L max 
s = 3 , 5 , 7 , 9 , for s = 2 , . . . , 5 ). This chart sug- 

gests that supplier 1 is selected only if his/her maximum lead 

time is reduced to zero with a selection probability of approxi- 

mately 22%. In the next figure to the right ( s = 1 , �3 = 5 ), where 

the buyer is more risk-averse, again supplier 1 is selected only if 

its L max is set to zero, but with a selection rate of approximately 

33%. Note that supplier 1 has the highest selling price, which ex- 

plains the extra effort s on lead times he/she has to make to be 

selected. 

Fig. 2 shows that the diversification of suppliers depends on 

risk aversion, as discussed before, and also that it depends on 

supplier lead times. Diversification can even lead to the choice 

of very expensive suppliers if their lead times are low in vari- 

ability and magnitude. For a given level of risk aversion of the 

buyer, Fig. 2 also indicates at which lead time level it becomes 

more interesting to target a single supplier. For example, in the 

case of supplier 2 with �3 = 5 (second row and second column) 

supplier 2 is selected even when the buyer is not extremely 

risk-averse and the lead time of supplier 2 is not at its mini- 

mum value. Note that while supplier 2 is not the cheapest in 

terms of the selling price, it shows a good balance between price 

and lead time. However, this experiment and Fig. 2 might sim- 

ply indicate that the only reason for increasing the selection is 

rate is actually the variability and not the magnitude of the lead 

time. 

To check the impact of variability alone, Experiment #2 was 

run. It consists in reducing the variability (the range of values 

for the lead time) while keeping the same average (default) lead 

time. The results are shown in Fig. 3 . For example, the aver- 

age lead time of supplier s = 1 is equal to (L max 
1 

− L min 
1 

) / 2= 3.5 

time periods and the lead time range is (L max 
1 

− L min 
1 

) = 7 . To 

vary (reduce) this range, L max 
1 

is decreased while L min 
1 

is increased 

by the same amount. It is clear from these figures that sup- 

pliers with low lead time variability are more likely to be se- 

lected. In the fifth row, for example, supplier5 ′ s selection rate in- 

creases considerably and is the only one which is selected when 

L max 
5 

− L min 
5 

decreases from 9 ( L max 
5 

= 9 , L min 
5 

= 0 ) to 1 ( L max 
5 

=
5 , L min 

5 = 4 ). This selection rate becomes even higher when �3 

increases. 

To further confirm the above findings, the following experi- 

ments were run. Experiment #3 consists in increasing the mini- 

mum lead time of each supplier. Experiment #4 keeps the same 

level of variability (the same value of L max 
s − L min 

s ), but we increase 

both values of L max 
s and L min 

s one period at a time. Experiment #5 

is similar to the previous one, but all suppliers have the same vari- 

ability (the same value of L max 
s − L min 

s ) but not necessarily the same 

values of L min 
s and L max 

s ). We limit the presentation of these results 

to supplier 5 on Figs. 4 , 5 , and 6 , which correspond to experiments 

#3, #4, and #5, respectively. We notice that increasing L min 
5 

results 

in higher selection rate for supplier 5. This looks counter intuitive 

though it confirms the previous finding related to the importance 

of variability. As L min 
5 increases it gets closer to L max 

5 
which reduces 

the lead time variability of supplier 5. Fig. 5 shows that when both 

L min 
5 

and L max 
5 

are decreased simultaneously (keeping a constant 

variability for s = 5 ), the selection rate of supplier 5 does not nec- 

essarily increase. Fig. 6 further confirms this. It can be seen that 

selection rate of supplier 5 (very small here) does not change when 

both L min 
5 and L max 

5 
decrease while all suppliers have the same level 

of lead time variability. 

Figure 7 provides further managerial insights. This figure is sim- 

ilar to Fig. 2 , but each chart illustrates the impact of reducing the 

selling price of a given supplier from its default value down to 30% 

of its value. For example, the default selling price of supplier 1 on 

the upper-left corner chart is $1.9 and we show the selection rate 

of each of the five suppliers if supplier 1 reduces its selling price 

down to $0.57 with steps of 10%. Fig. 7 shows that the most risk- 

averse buyer �3 = M (third column of charts) will mostly choose 

supplier 2 because of its lead time reliability. 

6. Conclusion

This study contributes to integrating production planning and 

sourcing decisions under lead-time uncertainty and is the first to 

investigate robust optimization for supplier selection decisions un- 

der these considerations. The objectives of this study were to de- 

velop solution approaches to this problem and to provide manage- 

rial insights. 

We formulated a robust optimization model, which was solved 

using a row and column generation algorithm and three heuris- 

tic approaches (a fix-and-optimize, a genetic algorithm, and a hy- 

brid robust counterpart). First, numerical experiments showed that 

the problem is difficult to solve. The commercial MILP solver that 

was used to solve the robust counterpart gave an average inte- 

grality gap of 17% even with instances of 21 time periods and 10 

suppliers. Among all the presented approaches, two were partic- 

ularly efficient: the row and column generation approach applied 

to the hybrid robust counterpart formulation ( H − RCR − RC ), and 

the fix-and-optimize heuristic. These two approaches obtained the 

best solutions in most cases, although the fix-and-optimize heuris- 

tic outperformed the H − RCR − RC heuristic on average. 

From a managerial point of view, if there is no uncertainty, 

a buyer selects only one supplier with a lower total cost (fixed 

and variable). On the contrary, if there is uncertainty, diversifi- 

cation takes place. This is a well-known result in the literature. 

However, we show that the number of selected suppliers (level 

of diversification) depends on the buyer’s risk aversion. A buyer 

with low-risk aversion will select a limited number of suppliers. 

As risk aversion increases, the buyer orders from a larger num- 

ber of suppliers. However, with extremely risk averse buyers, the 

number of selected suppliers decreases until it reaches one sup- 

plier, namely the most reliable one, even if it has the highest 

costs. 

Despite the interesting results we obtained in this paper, it 

can be improved and extended in different directions to consider 

more generic environments. For instance, interesting and useful 

extensions could consider uncertainties on the supplied quanti- 

ties and the demand levels. Another direction of research could 

be to solve multi-item problems with or without supplier capac- 

ities. Such problems are computationally more challenging. Thus, 

more efficient solution approaches could be developed. Finally, re- 

cent works on robust optimization for inventory management un- 

der demand uncertainty have shown adjustable recourse variables 

leads to less conservative solutions ( Yanıko ̆glu, Gorissen, & den 

Hertog, 2019 ), and this approach may be investigated for lead-time 

uncertainty. 
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Supplementary Materials to Robust Optimization Approaches for
Purchase Planning with Supplier Selection under Lead Time

Uncertainty

This online supplement provides algorithmic details, additional experiments, and detailed results.

Section 1 provides the detailed step of the dualization for the robust counterpart reformulation and

the pseudo-code of the fix-and-optimize approach. Section 2 gives the data generation approach.

Section 3 reports the computational performance of the aggregated formulation for the deterministic

model. Section 4 gives the detailed results of our experiments. Finally, Section 5 analyses the

quality of the robust counterpart reformulation depending on the setup values.

1. Algorithmic details

1.1. Duals of the worst case reformulation of each constraints

The dual of problem (33) - (39) in the main document is:

min ρ
1
t (Γ1 −|S |)+ρ

2
t (Γ2 − ∑

s∈S
∑

τ≤t−Lmin
s

1)+ρ
3
t (Γ3 − ∑

s∈S
∑

τ≤t−Lmin
s

(t − τ −Lmin
s +1))

+ ∑
s∈S

(
t−Lmax

s

∑
τ=1

−ξτts + ∑
τ≤t

ψτts

)
(1)

s.t. ψτts −ρ
2
t − (t − τ −Lmin

s +1)ρ3
t ≥ hQτs t −Lmax

s < τ < t −Lmin
s s ∈ S (2)

ψτts −ρ
1
t −ρ

2
t − (t − τ −Lmin

s +1)ρ3
t ≥ hQτs τ = t −Lmin

s s ∈ S (3)

ψτts +λτts ≥ hQτs τ > t −Lmin
s s ∈ S (4)

ψτts −ξτts ≥ hQτs τ ≤ t −Lmax
s s ∈ S (5)

ψτts,ξτts,ρ
1
t ,ρ

2
t ,ρ

3
t ≥ 0 τ ≤ t −Lmax

s s ∈ S (6)

For the backorder constraint, the dual is identical but h is replaced by −b.
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1.2. Pseudo code of fix-and-optimize in the row and column generation framework

Algorithm 1: Fix and optimize in the row and column generation framework
Input: An initial setup matrix YT S

1 Generate an initial set of scenarios: Fix the setup values in model (23)-(28) in the main

document to YT S , and run the row and column generation method to generate a set of

scenarios and the optimal quantities Q⋆
T S associated with the initial setups. ;

2 Set the current setup value ȲT S to YT S ;

3 while A stopping condition is not met do

4 Fix the setup values in model (23)-(28) to ȲT S , but open a subset of the setup

variables ;

5 Solve the resulting model to get the purchasing plan Q̄T S with setups Y ′
T S . ;

6 Compute the cost f (Q̄T S ) for the worst-case scenario ω̄ with model (9)-(14)in the

main document ;

7 if f (Q̄T S )< f (Q⋆
T S ) then

8 Move there: the current solution ȲT S = Y ′
T S , and record the best known

production plan Q⋆
T S ;

9 else

10 Add scenario ω̄ to the set Ω ;

11 end if

12 end while

2



2. Data generation

We generate two groups of instances based on the generators presented in Thorsen & Yao

(2017) and Brahimi & Aouam (2016). The first group contains a large set of instances to analyze

the performance of the solution approaches. The second group is designed to generate managerial

insights.

2.1. Data for performance analysis

Time horizons were set to 21, 41, and 61 time periods, where the demand for the first 11 periods

is set to zero in each case. As setting the initial inventory is complex, we set the demand of the first

11 periods to zero (i.e., the maximum lead time), so that all suppliers can deliver on time. Demands

in periods from t = 12 to t = |T | were drawn from a uniform distribution in [20,40]. The number

of suppliers was set to |S | = 2, 5, and 10. The inventory holding cost was set to 0.2, while the

back-ordering cost was equal to 2.4 (12 times the holding cost).

For each supplier, the purchasing cost was drawn from a uniform distribution in [5,20]. To

generate fixed ordering costs, we set the time between orders (TBO) to different values as follows:

For instances with |T |= 21, TBO was set to 4 periods. For instances with |T |= 41 and |T |= 61,

TBO was set to 4, 10, and 20 periods. Hence for a TBO of 2, 4, 10, and 20, ordering costs os are

randomly generated in the intervals [12,14], [38,58], [240,360], and [960,1440], respectively.

Each supplier s can deliver a lead time within [Lmin
s ,Lmax

s ], where Lmin
s = [max(0, L̂−L−)] and

Lmax
s = L̂+L+. The values of L̂, L−, and L+ are randomly drawn from sets {2,4,6}, {1,3,5}, and

{1,3,5}, respectively.

To generate relevant data and avoid instances with trivial solutions where the same supplier is

always selected, we only accept instances where no supplier dominates all others (see Definition 1).

For the genetic algorithm (see section 4.5), the following parameters were empirically chosen

after preliminary tests: (i) a population of size 120 chromosomes; (ii) a cross-over probability

x1 = 0.9, and (iii) mutation probabilities for each gene of m1 = 0.02, m2 = 0.001, m3 = 0.001, and

m4 = 0.018. The stopping criteria were 10000 iterations or 10 minutes.

2.2. Data for managerial insights

For managerial insights, one single instance with |S |= 5 and |T |= 21 was arbitrarily chosen

from previously-described datasets and considered as the reference case (see Table 1). Then, 100

instances were obtained by varying the demand values in the range [0,200] in each time period.

3



Managerial insights are drawn by varying the instance characteristics in this reference case. To

analyze decisions based on lead time variability, we decrease the value of Lmax
s for each supplier

one unit at a time from default Lmax
s until default Lmin

s . For example, for supplier 1, we consider

eight instances with the following lead time range: [0,0], [0,1], ..., [0,7]. To analyze the impact of

suppliers’ discounts, we reduce the default purchasing cost by 5%, 10%, ..., 70% (with a step of 5%

each time). Hence, we generate instances with ps = 0.95× ps, ...,0.5× ((default)ps). To analyze

the impact of inventory, back-ordering, and fixed ordering costs, we generated instances where

these costs are multiplied by 2 or 4. Finally, to analyze the impact of the buyer’s risk aversion, Γ3

was varied in {0, . . . ,10,M}, where M is a very large value (set to 105 in our experiments). Γ1 and

Γ2 were set to M in this experiment.

3. Aggregated formulation for the deterministic problem

Table 2 provides the integrality gap and the computation time required to solve the deterministic

problem or the facility location-based reformulation:

[DETRef] min ∑
t∈T

∑
s∈S

(osYts + psQts)+ ∑
t∈T

(hIt +bBt) (13)

s.t.

It −Bt =
t

∑
τ=1

∑
s∈S

δτts Qτs − ∑
τ∈1...t

dτ t ∈ T (14)

qtτs ≤ dτYts t ∈ T s ∈ S (15)

∑
τ∈T

qtτs = Qts t ∈ T s ∈ S (16)

∑
t∈T

qtτs = dτ τ ∈ T s ∈ S (17)

∑
t∈T

∑
s∈S

Qts ≥ ∑
t∈T

dt (18)

Qts ≥ 0 and Yts ∈ {0,1} t ∈ T s ∈ S (19)

qtτs ≥ 0 t ∈ T s ∈ S (20)

It ,Bt ≥ 0 t ∈ T (21)

Table 2 shows that the aggregated formulation is not efficient for the production planning prob-

lem with supplier selection since the classical formulation is on average twice as fast to solve.

4



Table 1: Details of the reference case

h b Supplier 1 2 3 4 5

0.2 1.6

os 12 14 13 14 13
ps 1.9 1.0 1.6 0.8 1.2
Lmax

s 7 3 5 7 9
Lmin

s 0 1 3 1 0

Table 2: Solution gaps and computational time for the classical lot sizing formulation and the aggregated formulation

|T | |S |
DET Max DET Re f

GapInt (%) CPU (s) GapInt (%) CPU (s)

21
5 0 1.2 0 6.1

10 0 2.2 0 8.2
15 0 3.2 0 18.6

41
5 0.1 126.4 0.2 570.9

10 0 62.5 0.4 600.3
15 0.3 153.8 0.3 600.4

61
5 0.7 482.5 1 600.4

10 0.8 502.4 0.6 600.7
15 3 600.6 0.5 601.2

Average 0.5 215 0.3 400.8

4. Detailed Results

Tables 3, 4, 5 and 6 provide the average gaps (as defined in the main document) of DET , RC,

RCR, H−RCR−RC, FAO, and GA for each instance. As described in the main document, each in-

stance has a single restrictive budget (Γ1, Γ2, or Γ3), and the others are set to a large enough value

(indicated with a “-” in Tables 3, 4, 5, and 6).

5. Impact of the setup costs on the quality of the robust counterpart approximation

Rodrigues et al. (2021) consider the lot-sizing problem under demand uncertainty, and they

show that the quality of the robust counterpart approximation (when compared to the exact row and

column generation approach) decreases when setup costs increase. On the contrary, our results sug-

gest that the robust counterpart approximation provides good decisions for the setups. Therefore, in

this section, we further analyze the impact of the setup costs on the solution resulting from RC and

RCR for the LSP under lead time uncertainty. We perform a similar experiment to Rodrigues et al.

(2021) with similar instances. More precisely, we generate ten instances with a single supplier. The

demand is randomly generated in [0,50], the unit production cost is set to 1, the holding cost is set

to 4, the backlog cost is set to 6. The minimum lead time is set to 1 and the maximum to 5. To

5



Table 3: GAP of DET Min, DET Max, DET Avg , RC, RCR, H−RCR−RC, FAO and GA on instance with 21 time periods

|T | |S | TBO Γ1 Γ2 Γ3 Min DET Min DET Max DET Avg RC RCR H−RCR−RC FAO GA

21

5

1

2 - - 2743.26 54.02 6.31 43.88 0 1.91 1.29 0.19 32.96
4 - - 2743.26 54.02 6.31 43.88 0 1.91 1.44 0.19 32.96

- 10 - 2743.26 54.02 6.31 43.88 0 1.91 1.03 0 32.96
- 20 - 2743.26 54.02 6.31 43.88 0 1.91 1.03 0 32.96
- - 10 2625.32 31.84 10.34 22.39 0 2.21 1.67 0 33.46
- - 20 2711.66 47.6 7.39 44.52 0 2.36 0.92 0 32.56

2

2 - - 1806.39 63.2 11.57 50.26 0 3.51 1.23 0 39.72
4 - - 1806.39 63.2 11.57 50.26 0 3.51 1.23 0 39.8

- 10 - 1806.39 63.2 11.57 50.26 0 3.51 1.23 0 39.96
- 20 - 1806.39 63.2 11.57 50.26 0 3.51 1.23 0 39.74
- - 10 1624.06 36.88 20.5 28.43 0 4.94 2.68 0 40.93
- - 20 1714.66 55.39 16.06 42 0 3.8 1.7 0 39.74

4

2 - - 2623.51 55.64 11.73 41.38 0 4.08 2.33 0 23.77
4 - - 2623.51 55.64 11.73 41.38 0 4.08 2.52 0 23.77

- 10 - 2623.51 55.64 11.73 41.38 0 4.08 2.11 0 23.77
- 20 - 2623.51 55.64 11.73 41.38 0 4.08 2.33 0 23.77
- - 10 2489.1 48.66 16.25 21.78 0 3.51 1.44 0 27.67
- - 20 2596.09 56.1 12.65 41.99 12.62 3.24 1.91 0 24.56

10

1

2 - - 2259.86 61.5 13.78 51.98 0 3.29 0.97 0 21.91
4 - - 2259.86 61.5 13.78 51.98 0 3.29 0.97 0 23.61

- 10 - 2259.86 61.5 13.78 51.98 0 3.29 0.97 0 23.61
- 20 - 2259.86 61.5 13.78 51.98 0 3.29 0.97 0 23.61
- - 10 2032.42 34.12 22.46 23.67 0 3.6 1.78 0 31.3
- - 20 2139.28 53.77 18.38 40.88 31.58 3.7 1.78 0 27.69

2

2 - - 2478.56 58.1 6.88 47.89 0 2.35 1.57 0 50.21
4 - - 2478.56 58.1 6.88 47.89 0 2.35 1.74 0 50.21

- 10 - 2478.56 58.1 6.88 47.89 1.28 2.35 1.57 0 50.14
- 20 - 2478.56 58.1 6.88 47.89 0 2.35 1.57 0 50.21
- - 10 2293.46 31.92 13.84 20.26 0 3.1 1.73 1 51.79
- - 20 2377.42 49.96 10.68 37.87 0 2.81 0.54 0 50.7

4

2 - - 3383.78 55.39 6.46 38.07 0 2.4 1.11 0 11.77
4 - - 3383.78 55.39 6.46 38.07 0 2.4 1.11 0 11.77

- 10 - 3383.78 55.39 6.46 38.07 1.93 2.4 1.11 0 13.34
- 20 - 3383.78 55.39 6.46 38.07 0 2.4 1.11 0 13.34
- - 10 3342.59 36.33 7.6 22.74 7.41 1.55 0.61 0 14.39
- - 20 3383.78 55.39 6.46 38.07 30.75 2.4 1.11 0 13.34

15

1

2 - - 2297.91 61.1 12.22 52.3 0 3.01 1.02 0.16 64.07
4 - - 2297.91 61.1 12.22 52.3 0 3.01 1.02 0.16 64.06

- 10 - 2297.91 61.1 12.22 52.3 0 3.01 1.3 0.16 64.04
- 20 - 2297.91 61.1 12.22 52.3 0 3.01 1.3 0.16 64.07
- - 10 2051.41 36.01 21.64 35.05 0 3.7 1.71 0 66.22
- - 20 2185.1 54.27 16.53 45.88 35.65 4 1.72 0 64.71

2

2 - - 2024.41 62.13 12.26 52.55 0 3.95 1.09 0 65.25
4 - - 2024.41 62.13 12.26 52.55 0 3.01 0.65 0 65.3

- 10 - 2024.41 62.13 12.26 52.55 0 3.01 0.65 0 65.3
- 20 - 2024.41 62.13 12.26 52.55 0 3.01 0.65 0 65.3
- - 10 1828.34 33.15 20.76 23.79 0 5.08 2.64 0 67.14
- - 20 1917.21 52.76 16.91 41.62 0 3.99 1.89 0 66.21

4

2 - - 2370.54 60.99 7.95 43.26 0 2.59 0.76 0 34.74
4 - - 2370.54 60.99 7.95 43.26 0 2.59 0.76 0 34.74

- 10 - 2370.54 60.99 7.95 43.26 38.41 2.59 0.76 0 35.81
- 20 - 2370.54 60.99 7.95 43.26 0 2.59 0.76 0 35.81
- - 10 2331.71 45.3 9.46 27.89 10.49 1.86 0.67 0 36.86
- - 20 2370.54 60.99 7.95 43.26 29.2 2.59 0.76 0 35.81

Average 2406.8 54.61 11.34 42.38 3.69 3.04 1.33 0.04 39.14
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Table 4: GAP of DET Min, DET Max, DET Avg , RC, RCR, H−RCR−RC, FAO and GA on instance with 41 time periods

|T | |S | TBO Γ1 Γ2 Γ3 Min DET Min DET Max DET Avg RC RCR H−RCR−RC FAO GA

41

5

1

2 - - 6034.41 71.52 9.59 57.07 0.62 2.04 0.6 0 28.76
4 - - 6035.98 71.52 9.57 57.06 1.3 2.01 1.13 0 28.74

- 10 - 6033.08 66.44 9.61 56.24 22.8 2.3 1.33 0 27.2
- 20 - 6034.41 71.52 9.59 57.07 5.11 2.04 1.15 0 28.76
- - 10 5222.04 13.14 21.76 13.52 4.35 3.77 0.39 0 29.87
- - 20 5515.6 27.22 17.37 20.42 14.03 3.64 1.18 0 28.26

2

2 - - 8206.03 54.44 2.15 37.17 0.81 1.19 1.07 0 23.71
4 - - 8200.22 54.47 2.22 37.21 1.09 1.26 0.94 0 23.76

- 10 - 8211.76 47.75 2.08 37.13 2.58 1.14 0.94 0 23.66
- 20 - 8236.1 54.27 1.79 36.94 0.25 0.83 0.7 0 23.43
- - 10 7983.35 9.95 4.27 6.71 5.58 1.89 1.13 0 23.85
- - 20 8177.82 21.29 2.48 14.59 3.35 1.66 0.87 0 22.94

4

2 - - 17672.3 43.35 1.7 27.95 11.28 0.96 0.24 0 14.12
4 - - 17661.8 43.39 1.76 27.99 16.23 1 0.33 0 14.17

- 10 - 17631 43.49 1.93 28.12 24.44 2.03 1.98 0 14.32
- 20 - 17631 43.49 1.93 28.12 17.07 1.97 1.54 0 14.32
- - 10 17293.9 7.12 3.8 3.88 6.35 1.21 0.91 0 15.96
- - 20 17595.9 16.93 2.12 9.3 7.9 1.9 21.92 0 14.49

10

2 - - 10797.8 15.98 0.72 11.04 0 2.07 11.31 0 22.31
4 - - 10797.8 15.98 0.72 11.04 0 2.07 11.31 0 22.31

- 10 - 10797.8 15.98 0.72 11.04 0 2.07 11.31 0 22.31
- 20 - 10797.8 15.98 0.72 11.04 0.06 2.07 11.31 0 22.31
- - 10 10797.8 10.55 0.72 7.87 6.74 2.07 11.31 0 22.31
- - 20 10797.8 15.98 0.72 11.04 0.01 2.07 11.31 0 22.31

20

2 - - 16227 28.75 0 0 0 0 0 0 10.14
4 - - 16227 28.75 0 0 0 0 0 0 11.01

- 10 - 16227 28.75 0 0 0 0 0 0 11.01
- 20 - 16227 28.75 0 0 0 0 0 0 11.01
- - 10 16227 16.92 0 0 0 0 0 0 11.01
- - 20 16227 28.75 0 0 0 0 0 0 11.01

10

1

2 - - 6169.28 71.54 7.77 57.26 1.16 2.07 0.86 0 43.61
4 - - 6174.76 71.52 7.69 57.22 0.93 1.99 0.77 0 43.56

- 10 - 6179.81 66.28 7.61 56.43 24.49 2.38 1.42 0 42.46
- 20 - 6174.76 71.52 7.69 57.22 11.56 1.99 0.83 0 43.56
- - 10 5305.98 13.61 20.67 10.44 6.78 4.57 3.22 0 47.08
- - 20 5636.28 27.06 15.74 17.61 18.55 3.46 0.96 0 44.54

2

2 - - 6440.34 71.03 9.01 56.61 1.22 2.13 0.52 0 29.72
4 - - 6440.34 71.03 9.01 56.61 0.93 2.13 0.52 0 29.72

- 10 - 6444.29 66.4 8.95 55.65 22.36 2.62 1.57 0 29.68
- 20 - 6440.34 71.03 9.01 56.61 2.97 2.13 0.52 0 29.72
- - 10 5550.39 14.54 21.58 13 8.07 4.29 1.09 0 39.43

- - 20 5913.47 27.94 16.45 15.5 14.22 3.56 1.2 0 35.47

4

2 - - 15736.9 43.83 2.32 30.45 3.89 1.34 0.97 0 16.78
4 - - 15768.2 43.72 2.12 30.31 17.47 1.19 0.35 0 16.62

- 10 - 15768.2 43.72 2.12 30.31 17.79 1.34 0.51 0 17.37
- 20 - 15749.2 43.79 2.24 30.4 18.25 1.42 0.4 0 17.47
- - 10 15374.4 8.42 4.57 5.11 8.53 1.48 1.32 0 19.44
- - 20 15680.8 19.65 2.67 11.2 10.86 2.12 0.83 0 17.83

10

2 - - 9277.58 54.6 0.22 23.82 2.75 2.41 2.08 0 18.97
4 - - 9297.64 54.5 0 23.65 7.91 2.2 1.87 0.39 18.79

- 10 - 9297.64 54.5 0 23.65 18.11 2.77 1.31 0.39 20.1
- 20 - 9297.64 54.5 0 23.65 34.96 2.23 1.44 0.39 20.1
- - 10 9297.64 24.9 0 7.65 20.98 2.76 2.01 0.39 20.1
- - 20 9297.64 43.63 0 21.25 37.71 2.41 1.57 0.39 20.1

20

2 - - 10275.8 5.4 0 2.31 0 0 0 0 21.29
4 - - 10275.8 5.4 0 2.31 0 0 0 0 23.36

- 10 - 10275.8 5.4 0 2.31 0 0 0 0 24.35
- 20 - 10275.8 5.4 0 2.31 0 0 0 0 24.35
- - 10 10275.8 5.4 0 2.31 0 0 0 0 24.35
- - 20 10275.8 5.4 0 2.31 0 0 0 0 24.35

Average 10598.23 36.3 4.46 23.42 7.74 1.7 2.24 0.03 23.73
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Table 5: GAP of DET Min, DET Max, DET Avg , RC, RCR, H−RCR−RC, FAO and GA on instance with 41 and 61 time
periods

|T | |S | TBO Γ1 Γ2 Γ3 Min DET Min DET Max DET Avg RC RCR H−RCR−RC FAO GA

41 15

1

2 - - 6403.55 71.29 6.55 56.41 0.29 2 0 0.39 32.84
4 - - 6374.79 71.42 6.96 56.61 1.21 1.94 0.93 0 35.59

- 10 - 6365.73 67.81 7.1 56.67 23.21 2.88 1.81 0 36.84
- 20 - 6373.17 71.42 6.99 56.62 4.56 1.99 0.66 0 36.77
- - 10 5495.54 16 19.8 14.37 11.91 4.57 2.78 0 45.47
- - 20 5846.46 29.42 14.68 21.07 14.65 4.4 2.09 0 41.99

2

2 - - 6527.83 71.93 8.91 56.54 1.02 2.03 0.53 0 52.99
4 - - 6527.83 71.93 8.91 56.54 2.73 2.03 0.91 0 52.99

- 10 - 6530.76 67.12 8.87 56.52 30.35 2.12 1.05 0 52.26
- 20 - 6540.38 71.88 8.73 56.46 14.04 1.84 0.34 0 52.9
- - 10 5610 18.3 21.71 12.92 10.32 4.21 1.18 0 56.18
- - 20 5954.53 31.07 16.91 19.83 11.76 3.44 1.06 0 54.39

4

2 - - 12150.4 51.16 0 29.93 37.66 1.66 0.9 0.36 18.79
4 - - 12104.2 51.35 0.38 30.2 3.38 1.33 0.4 0 22.71

- 10 - 12104.2 51.35 0.38 30.2 33.8 1.77 1.03 0 23.56
- 20 - 12104.2 51.35 0.38 30.2 24.7 1.46 0.16 0 23.56
- - 10 11980.7 11.96 1 6.57 18.43 3.05 1.68 0 24.34
- - 20 12093.9 26.44 0.07 15.2 19.69 1.82 0.5 0 23.62

10

2 - - 9871.08 20.3 0.56 1.47 1.03 0.25 0.14 0 30.7
4 - - 9871.08 20.3 0.56 1.47 0.4 0.25 0.14 0 30.7

- 10 - 9871.08 20.3 0.56 1.47 14.52 0.25 1.27 0 30.7
- 20 - 9871.08 20.3 0.56 1.47 5.74 0.25 0.14 0 30.7
- - 10 9871.08 14.45 0.56 1.47 16.46 0.25 1.27 0 30.7
- - 20 9871.08 20.3 0.56 1.47 8.79 0.25 0.14 0 30.7

20

2 - - 9806.4 12.55 0 0.03 0 0 0 0 17.55
4 - - 9806.4 12.55 0 0.03 0 0 0 0 17.55

- 10 - 9806.4 12.55 0 0.03 0 0 0 0 20.94
- 20 - 9806.4 12.55 0 0.03 0 0 0 0 20.94
- - 10 9806.4 12.55 0 0.03 0 0 0 0 20.94
- - 20 9806.4 12.55 0 0.03 0 0 0 0 20.94

61 5

1

2 - - 13184.9 61.26 2.2 47.19 0.41 0.66 0.39 0 19.92
4 - - 13123.3 61.44 2.66 47.44 0.73 1.17 0.91 0 20.29

- 10 - 13105.2 39.06 2.79 33.28 8.1 1.41 0.85 0 20.4
- 20 - 13119.6 57.16 2.68 47.45 1.03 1.17 0.76 0 20.32
- - 10 12316.5 3.76 8.64 3.91 3.76 2.59 0.56 0 21.41
- - 20 12854.3 10.19 4.65 8.92 4.85 2.81 0.28 0 19.35

2

2 - - 10555.3 72.74 4.19 57.28 2.48 1.31 0.29 0 24.35
4 - - 10566 72.71 4.09 57.24 2.41 1.16 0.01 0 24.27

- 10 - 10527.7 55.86 4.44 44.05 12.7 1.61 59.45 0 24.55
- 20 - 10535.2 71.6 4.37 57.36 4.49 1.45 0.4 0 24.49
- - 10 8909.58 7.57 19.13 9.45 5.93 4.4 0.37 0 28
- - 20 9527.19 16.53 13.52 9.68 6.59 3 0 0.03 26.2

4

2 - - 13271.4 56.97 1.39 30.28 21.57 1.52 0.66 0 47.6
4 - - 13271.4 56.97 1.39 30.28 6.47 1.66 0.88 0 47.6

- 10 - 13268.2 51.47 1.41 28.37 23.14 2.94 2 0 47.61
- 20 - 13271.4 56.97 1.39 30.28 2.34 1.78 0.24 0 47.6
- - 10 13228 8.53 1.22 5.25 5.06 3.96 2.17 0 47.77
- - 20 13261.4 22.13 1.4 12.93 14.12 2.34 1.14 0 47.64

10

2 - - 23657.9 14.22 0.2 7.29 1.12 1.41 0.63 0 22.65
4 - - 23705.2 14.05 0 7.11 0.29 1.22 0.43 0.08 23.26

- 10 - 23705.2 14.05 0 7.11 4.69 1.22 0.43 0.04 23.26
- 20 - 23705.2 14.05 0 7.11 0.09 1.21 0.31 0.08 23.26
- - 10 23627.2 4.95 0.29 3.49 4.95 1.34 5.56 0 23.52
- - 20 23705.2 11.23 0 7.11 7.18 1.22 0.43 0.09 23.26

20

2 - - 22172.2 21.45 0.65 10.98 2.62 2.56 0.72 0 15.78
4 - - 22172.2 21.45 0.65 10.98 1.95 2.56 0.72 0 15.78

- 10 - 22172.2 21.45 0.65 10.98 0.34 2.56 0.72 0 15.78
- 20 - 22172.2 21.45 0.65 10.98 0 2.56 0.72 0 15.78
- - 10 22171 9.63 0.66 4.79 14.39 3.49 1.77 0 15.79
- - 20 22172.2 21.45 0.65 10.98 14.3 2.56 0.72 0 15.78

Average 12636.46 34.45 3.79 22.19 8.15 1.78 1.76 0.02 29.74
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Table 6: GAP of DET Min, DET Max, DET Avg , RC, RCR, H−RCR−RC, FAO and GA on instance with 61 periods

|T | |S | TBO Γ1 Γ2 Γ3 Min DET Min DET Max DET Avg RC RCR H−RCR−RC FAO GA

61

10

1

2 - - 11500.3 72.66 7.89 57.57 2.11 1.7 0.92 0 39.66
4 - - 11542.8 72.56 7.55 57.38 1.54 1.3 0 0.25 39.44

- 10 - 11493.2 53.87 7.94 40.66 13.89 1.78 0.12 0 39.7
- 20 - 11516.9 70.76 7.75 57.5 2.74 1.57 0.65 0 39.58
- - 10 9736.44 8 22.02 8.73 5.86 4.6 0.16 0 42.44
- - 20 10433.4 15.09 16.43 12.76 11.81 3.2 0.36 0 41.84

2

2 - - 10563.1 72.7 8.4 57.26 4.29 1.85 0.41 0 40.56
4 - - 10644 72.49 7.7 56.93 2.64 0.91 0.01 0 40.13

- 10 - 10526.5 54.56 8.72 46.06 24.18 3.26 1.46 0 39.42
- 20 - 10546.5 70.61 8.54 57.32 36.01 1.82 0.74 0 40.68
- - 10 8923.51 6.67 22.62 11.44 5.53 4.91 0.4 0 43.53
- - 20 9578.3 14.89 16.94 14.15 11.99 4.14 1.58 0 42.67

4

2 - - 17203.5 54.33 0.68 31.18 17.93 1.58 0.27 0 32.49
4 - - 17185.9 54.38 0.79 31.25 33.56 1.94 1.48 0 34.06

- 10 - 17176.9 52.96 0.84 31.29 32.65 2.13 1.2 0 34.82
- 20 - 17185.9 54.38 0.79 31.25 33.81 2.34 1.27 0 34.79
- - 10 17003.7 6.36 1.84 3.05 10.47 3.92 1.59 0 35.48
- - 20 17154.2 17.2 0.97 10.41 10.01 3.46 2.26 0 34.91

10

2 - - 24427.3 10.9 0.3 7.05 0.74 1.15 0.67 0 30.73
4 - - 24427.3 10.9 0.3 7.05 0.69 1.36 0.55 0 31.31

- 10 - 24427.3 10.9 0.3 7.05 0.4 1.04 0.54 0 31.31
- 20 - 24427.3 10.9 0.3 7.05 1.01 1.37 0.67 0 31.31
- - 10 24399.4 5.7 0.41 3.21 5.27 1.15 1.17 0 31.39
- - 20 24427.3 10.9 0.3 7.05 10.69 1.4 0.87 0 31.31

20

2 - - 19487.1 28.56 0.02 4.51 3.97 1.29 0.66 0 31.66
4 - - 19487.1 28.56 0.02 4.51 4.27 1.29 0.66 0 31.66

- 10 - 19487.1 28.56 0.02 4.51 8.21 1.39 1.36 0 31.66
- 20 - 19487.1 28.56 0.02 4.51 11.83 1.68 1.05 0 31.66
- - 10 19490.1 15.61 0 4.49 13.74 1.27 0.64 0.38 31.65
- - 20 19490.1 28.55 0 4.49 26.21 0.78 0 0.38 31.65

15

1

2 - - 11762.6 68.26 4.68 54.83 2.9 1.66 0.9 0 38.24
4 - - 11822.9 68.1 4.19 54.6 1.59 1.18 0 1.08 37.93

- 10 - 11756.7 51.25 4.73 41.47 15.48 1.79 0 0.09 39.23
- 20 - 11797 67.38 4.4 54.7 25.09 1.41 0.09 0 39.02
- - 10 10545.3 7.08 14.54 4.06 6.06 3.65 0 0.71 45.49
- - 20 11068.1 15.53 10.31 8.83 13.61 4.12 2.65 0 42.79

2

2 - - 10645.5 72.86 7.98 57.94 3.21 1.61 0.83 0 52.37
4 - - 10642.1 72.87 8.01 57.96 1.46 1.64 0.82 0 52.39

- 10 - 10633.6 56.43 8.08 44.25 31.61 2.62 1.34 0 51.54
- 20 - 10663.7 71.48 7.82 57.87 31.84 1.51 0.29 0 52.29
- - 10 9043.7 6.96 21.83 10.2 4.55 4.57 0.13 0 56.42
- - 20 9663.01 15.6 16.47 10.55 15.64 4.23 1.39 0 54.23

4

2 - - 13198.7 64.32 3.21 45.5 86.06 3.15 1.97 0 40.1
4 - - 13197.2 64.32 3.22 45.5 86.06 2.68 0.64 0 41.6

- 10 - 13182.1 61.19 3.33 45.57 33.66 2.96 1.68 0 41.67
- 20 - 13182.3 64.36 3.33 45.56 45.91 3.09 1.37 0 41.67
- - 10 12304.9 7.04 8.68 4.39 14.52 9.94 2.78 0 45.55
- - 20 12936.6 18.25 4.53 10.82 11.24 4.99 2.49 0 42.75

10

2 - - 24315.8 37.71 0.06 17.53 69.07 1.95 0 0.08 18.32
4 - - 24329.9 37.68 0 17.49 77.23 1.63 0.07 0.03 18.27

- 10 - 24329.9 37.68 0 17.49 25.63 2.47 1.57 0.03 18.27
- 20 - 24329.9 37.68 0 17.49 44.7 2.03 1.55 0.03 18.27
- - 10 24218.1 7.16 0.13 3.34 9.74 1.93 0 0.25 18.64
- - 20 24166.8 18.21 0.67 10.06 19.73 1.91 1.12 0 18.82

20

2 - - 27777.3 20.11 0.17 1.93 8.27 0.04 0.69 0 27.86
4 - - 27777.3 20.11 0.17 1.93 12.59 0.04 0.69 0 28.98

- 10 - 27777.3 20.11 0.17 1.93 17.75 0.43 0.33 0 29.54
- 20 - 27777.3 20.11 0.17 1.93 6.77 0.04 0.69 0 29.54
- - 10 27777.3 12.18 0.17 1.93 11.18 1.42 1.7 0 29.54
- - 20 27777.3 20.11 0.17 1.93 19.35 0.69 0.6 0 29.54

Average 16896.33 36.42 4.86 23.85 18.34 2.22 0.87 0.06 36.24
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Figure 1: Number of setups in the solution obtained with Exact, RCR, and DetMin depending on the setup costs

avoid generating an initial inventory, we set the demand to 0 during the first 5 periods.

Figure 1 and 2 provide the total cost (evaluated with the rows and columns generation frame-

work) and the number of setups depending on the setup cost. These figures show that the difference

between the total costs of the two methods remains stable when the setup costs increase. However,

RCR provides solutions with more setups, and the difference between the number of setups resulting

from the two methods decreases when the setup cost increases. RCR tends to place the orders to

meet the demand in each period independently to minimize the inventory and backlog cost. In other

words, RCR seeks to balance the worst-case inventory with the worst-case backlog in each period,

and it leads to frequent orders when the setup costs are small. On the contrary, in the adversarial

approach, as the lead time is unknown, an order does not correspond to a specific demand. The or-

der placed in a period t will meet the demand between in the interval [t +Lmin, t +Lmax] depending

on the worst-case scenario. In this case, it is convenient to aggregate the demand between several

periods.
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Figure 2: Worst case cost for the solution obtained with Exact, RCR, and DetMin depending on the setup costs.
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