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On the hardness of determining the irregularity strength of graphs

Julien Bensmaila

aUniversité Côte d’Azur, CNRS, Inria, I3S, France

Abstract

Let G be a graph, and ` : E(G) → {1, . . . , k} be a k-labelling of G, i.e., an assignment of labels
from {1, . . . , k} to the edges of G. We say that ` is irregular if no two distinct vertices of G are
incident to the same sum of labels. The irregularity strength of G, denoted by s(G), is the smallest
k such that irregular k-labellings of G exist. These notions were introduced in late 1980s as an
alternative way to deal with an optimisation problem where one aims at making a graph irregular
by multiplying its edges in an optimal way. Since then, the irregularity strength has received a lot
of attention, focusing mainly on proving bounds and investigating side aspects and variants.

In this work, we consider the algorithmic complexity of determining the irregularity strength
of a given graph. We prove that two close variants of this problem are NP-hard, which we suspect
might indicate that the original problem is hard too. Namely, we prove that determining the distant
irregularity strength, where only vertices within a certain distance are required to be incident to
different sums of labels, and the multiset irregularity strength, where any two distinct vertices are
required to be incident to different multisets of labels, are NP-hard problems.

Keywords: irregularity strength; distant irregularity strength; detectable colouring; graph
labelling; algorithmic complexity.

1. Introduction

In this paper, we deal with the so-called irregularity strength of graphs, which can be
defined through the following notions. Let G be a graph. A k-labelling ` : E(G)→ {1, . . . , k} of G
is an assignment of labels from {1, . . . , k} to the edges of G. Now, from `, one can compute several
metrics of interest for the vertices of G. In particular, for every vertex v, one can compute σ(v),
the sum of labels assigned to the edges incident to v. In case these sums of labels for the vertices
turn out to distinguish all of them, i.e., we have σ(u) 6= σ(v) for every two distinct vertices u and v
of G, then ` is said irregular. The irregularity strength of G, denoted by s(G), is now the smallest
k such that G admits irregular k-labellings, if any.

The irregularity strength of graphs was first introduced in late 1980s by Chartrand et al. in [5],
as another way to deal with a particular optimisation problem where one aims at making a graph
irregular by multiplying some of its edges. Among the important properties of interest, let us
mention that s(G) is well defined whenever G does not have K2 as a connected component (a
property we thus implicitly assume for every graph considered throughout this work). Remark
also that considering the irregularity strength of non-connected graphs makes sense. In terms of
magnitude, note that there is no absolute constant bounding s(G) for all graphs G, as illustrated
by the fact that s(G) is at least the number of degree-1 vertices in G. It is known, however, that
|V (G)| is always an upper bound on s(G), as proved by Nierhoff [12]. Most of the investigations on
the topic are actually about establishing better bounds in general and for graphs fulfilling particular
conditions. Apart from that, the irregularity strength of graphs ramified into many more or less
distant variants, which, since then, have been studied for their own interest. A few of these variants
will be mentioned later in the current work, but, for more details on this wide topic, we refer the
interested reader to the dynamic survey [7] by Gallian, which gives a good insight into the vast
and tremendous topic that distinguishing labellings became over the years.

In this work, we focus on an aspect of the irregularity strength of graphs that, surprisingly,
seems to be missing in the literature. This aspect is the algorithmic complexity of determining
the irregularity strength of graphs. One reason why this is surprising is that, for many variants of



this parameter, this question has actually been quite investigated. In particular, there exist papers
dedicated solely to complexity aspects of very local variants, see e.g. [1, 6, 8], and other less local
ones [3]. This being said, irregular labellings are types of objects that are hard to deal with, as,
whenever designing one, one has to keep in mind that choices made in certain local places of the
graph have high chances to interfere in distant places to be considered later on.

The following question is, thus, our guiding thread throughout this work:

Question 1.1. Given a graph G, how hard is it to determine s(G)?

Although we do not manage to give an ultimate answer to Question 1.1 in this work, we prove
results1 on several variants of the irregularity strength parameter, which might stand as hints that,
perhaps, determining the irregularity strength of a given graph is NP-hard. Namely:

• In Section 2, we first consider a variant of the irregularity strength introduced by Przybyło
in [13] where a distance d ≥ 1 is fixed, and, by a labelling, it is required to have σ(u) 6= σ(v)
only for pairs of vertices u and v that are at distance at most d from each other. Note that
this variant is very flexible, as it encapsulates the two most extreme cases, being all notions
related to the so-called 1-2-3 Conjecture (when d = 1, see [9]) and the irregularity strength
of graphs itself (when, in some sense, d =∞). Some of the references we mentioned earlier,
namely [1, 6], actually answer Question 1.1 for the case d = 1, showing that the problem is
NP-hard. Through Theorem 2.3, we prove a similar result for every fixed d ≥ 2.

• In Section 3, we then consider a variant of the irregularity strength introduced by Chartrand
et al. in [4] in which all pairs of distinct vertices must be distinguished by a labelling, but
through their multisets of incident labels. Note that distinguishing vertices though their
multisets is easier than through their sums, as two multisets of labels are different whenever
their sums are, but the converse is not always true. We answer Question 1.1 in this setting,
showing, in Theorem 3.3, that determining this variant of the irregularity strength is NP-hard.

We believe our two main results complement each other, as, in the first variant of the irregularity
strength we consider, the distinguishing parameter is the same while the distance requirement is
weaker, while, in the second variant we consider, the distance requirement is the same while
the distinguishing parameter is weaker. In particular, we have good hope that the reduction
mechanisms we provide in our proofs could help in progressing towards answering Question 1.1.
We discuss further on this point in concluding Section 4.

2. Distant irregularity strength

The terminology we use throughout this section is the following. Let G be a graph, and ` be
a labelling of G. For any d ≥ 1, we say that ` is d-irregular if σ(u) 6= σ(v) for every two vertices
u and v that are at distance at most d from each other in G. We denote by sd(G) the smallest k
such that G admits d-irregular k-labellings.

As mentioned earlier, these notions were first considered by Pryzyło in [13] as a distinguishing
labelling notion generalising both the notions revolving around the 1-2-3 Conjecture (case where
d = 1) and the irregularity strength itself (case where, in some sense, d = ∞). Note that, this
time, if d is fixed, then it makes sense to consider the parameter sd only in connected graphs.

Regarding complexity aspects, it was proved that determining s1(G) for a given graph G is
NP-hard [1, 6]. In [1] was actually proved a stronger result, namely that this complexity result
remains true when G is regular (actually cubic); this is a very useful result of the field, as many
close labelling problems tend to behave similarly in regular graphs, and this NP-hardness result
consequently implies the NP-hardness of several other related problems (see e.g. [2]).

1More precisely, we prove NP-hardness results of the form “Given a graph G, it is NP-hard to decide if G can
be labelled in a certain way with labels 1 and 2 only”. This indeed implies that determining the corresponding
chromatic parameter is NP-hard, as, for each of the labelling notions we consider in this work, deciding if label 1
suffices for a graph G can clearly be determined in polynomial time, by checking whether G has certain properties.
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In this section, through upcoming Theorem 2.3, we actually prove that determining sd(G) for a
given graph G is NP-hard for every d ≥ 2. Before that, we need to introduce two results. In these
two results and later on, we deal with labellings that permit to properly distinguish all required
paired of vertices but a few of them. This is what we mean when saying that, omitting some
vertices, a labelling has certain properties.

Lemma 2.1. Let G be a complete graph on d+1 ≥ 3 vertices w, v1, . . . , vd. Omitting w, there exist
irregular 2-labellings of G, and by every such labelling, {σ(v1), . . . , σ(vd)} is either {d, . . . , 2d− 1}
or {d+ 1, . . . , 2d}. Furthermore, for every s ∈ {d, 2d}, there exist irregular 2-labellings ` where:

• s 6∈ {σ(w), σ(v1), . . . , σ(vd)}; and

• σ(w) = 3d
2 if d is even (regardless of s), or

– σ(w) = 3d−1
2 if d is odd and s = 2d, or

– σ(w) = 3d+1
2 if d is odd and s = d.

Proof. Since the vi’s have degree d, then, by every irregular 2-labelling ` of G, we have σ(vi) ∈
{d, . . . , 2d} for every i ∈ {1, . . . , d}. Note also that the σ(vi)’s must be pairwise distinct since ` is
irregular, and that having σ(vi) = d for some i implies, due to the edge vivj being assigned label 1,
that we cannot have σ(vj) = 2d for any j 6= i. Similarly, having σ(vi) = 2d for some i implies we
cannot have σ(vj) = d for any j 6= i. This implies the first part of the statement.

Let us now focus on proving the rest of the statement. We start by proving the claim for
s = 2d. We prove it by induction on d. For the base case where d = 2, we have three vertices
w, v1, v2. Consider `, the 2-labelling of G where `(v1v2) = 1, `(wv1) = 1, and `(wv2) = 2. Then we
have σ(v1) = 2, σ(v2) = 3, and σ(w) = 3. Thus, omitting w, the vertices are distinguished. Also,
2d = 4 6∈ {2, 3} = {σ(w), σ(v1), σ(v2)}, and we have σ(w) = 3d

2 = 3.
Consider now a general value as d, and assume the claim holds for smaller values as d. Consider

`, a 2-labelling of G′ = G[v1, . . . , vd] verifying all conditions of the claim, which exists by induction.
In particular, there is an α such that, in G′, all σ(vi)’s but σ(vα) are pairwise distinct, the value
2(d − 1) does not appear in {σ(v1), . . . , σ(vd)}, and σ(vα) = 3(d−1)

2 (if d − 1 is even) or σ(vα) =
3(d−1)−1

2 (otherwise). Assume σ(v1) < · · · < σ(vα) = σ(vα+1) < · · · < σ(vd). We extend `
to the edges incident to w, thus from G′ to G, by setting `(wv1) = · · · = `(wvα) = 1 and
`(wvα+1) = · · · = `(wvd) = 2. As a result, note that, in G, we now have σ(v1) < · · · < σ(vd). Also,
no vi has all its incident edges assigned label 2 by `, and neither does w, so no vertex has sum 2d.
Actually, regarding w, due to the value of α, it is either incident to d

2 edges assigned label 2 (if d
is even) or d−1

2 edges assigned label 2 (otherwise). Thus, σ(w) = 3d
2 or σ(w) = 3d−1

2 , depending
on the parity of d. So ` fulfills all desired properties, and the induction is proved.

To see that the claim also holds for s = d, just consider the same arguments as above, but, for
the base case, consider `, the 2-labelling of G where `(v1v2) = 1, `(wv1) = 2, and `(wv2) = 2.

We need some special graph modifications for the next preliminary result. Given a graph G
with a vertex v, by attaching a k-clique at v we mean adding a clique on k vertices to G, and
joining v and each of the k vertices of that clique. Remark that, as a result, all vertices of the
clique get degree exactly k. Now, for any k ≥ 7, assuming v has degree 2, by attaching a k-fan at
v we mean modifying G in the following way:

• we add k− 2 new vertices u1, . . . , uk−2, which we join to v through the edges vu1, . . . , vuk−2;

• we attach both a k-clique Q1 and a (2k + 1)-clique Q2 at u1, and set n1 = 3k + 2 = d(u1);

• we attach a (2n1 + 1)-clique Q3 and a (2(2n1 + 1) + 1)-clique Q4 at u2 and set n2 = d(u2);
then we attach a (2n2+1)-clique Q5 and a (2(2n2+1)+1)-clique Q6 at u3 and set n3 = d(u3);
then we attach a (2n3+1)-clique Q7 and a (2(2n3+1)+1)-clique Q8 at u4 and set n4 = d(u4);
and so on. That is, we treat the ui’s one by one in order. For any i ≥ 5 treated that way, if
we define ni−1 as the degree of ui−1, then we attach, at ui, a (2ni−1 + 1)-clique Q2i−1 and a
(2(2ni−1 + 1) + 1)-clique Q2i at ui. Note that the order of any Qi is a function of k only.
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Note also that, through attaching a k-fan at v, the degree of v becomes exactly k.
With respect to d-irregular 2-labellings, attaching fans has the following properties:

Lemma 2.2. Let G be a graph obtained from the path of uvw length 2 by attaching a k-fan at
v for some k ≥ 7. Omitting u and w, if ` is a d-irregular 2-labelling of G for some d ≥ 2, then
σ(v) ∈ {k, 2k}, i.e., all edges incident to v must be assigned the same label. Furthermore, omitting
u and w, for every s ∈ {k, 2k}, there exist d-irregular 2-labellings of G for which σ(v) = s.

Proof. Note that for a vertex x of degree k, by any 2-labelling of any graph we have σ(x) ∈
{k, . . . , 2k}. Thus, the first part of the claim follows from the fact that, in G, the k vertices of Q1

(following the terminology above) are adjacent with degree k, and they are at distance at most d
from v, since d ≥ 2, while v also has degree k. This implies that if we denote by v1, . . . , vk the
vertices of Q1, then we must have {σ(v), σ(v1), . . . , σ(vk)} = {k, . . . , 2k}. Particularly, one vertex
vi of Q1 must verify σ(vi) ∈ {k, 2k}, and, for this to happen, all edges incident to vi must be
assigned the same label by `. If this label is 1, then this implies that we have σ(vj) 6= 2k for every
j 6= i since `(vivj) = 1. Similarly, if this label is 2, then we must have σ(vj) 6= k for every j 6= i
since `(vivj) = 2. Thus, in the former case we must have σ(v) = 2k, while in the latter case we
must have σ(v) = k. All edges incident to v must thus be assigned the same label.

We now prove the last part of the statement. Consider the 2-labelling ` of G obtained as follows.

• First, setting Q1 = {v1, . . . , vk}, label the edges of G[Q1 ∪ {u1}] as described in Lemma 2.1,
that is, so that σ(v1) = k, σ(v2) = k + 1, . . . , σ(vk) = 2k − 1, and either σ(u1) = 3k

2 (if k is
even) or σ(u1) = 3k−1

2 (otherwise).

• Similarly, setting Q2 = {w1, . . . , w2k+1}, label the edges of G[Q2 ∪ {u1}] next, as described
in Lemma 2.1, so that σ(w1) = 2k + 1, σ(w2) = 2k + 2, . . . , σ(w2k+1) = 4k + 1, and σ(u1) =
3(2k+1)−1

2 (which is mandatory, since 2k + 1 is odd).

• For every i ∈ {3, . . . , 2k − 4}, do the same for G[Qi ∪ {uj}], where uj is the vertex to which
Qi was attached. That is, setting |Qi| = r and Qi = {w1, . . . , wr}, then, as described in
Lemma 2.1, label the edges of G[Qi ∪{uj}] so that σ(w1) = r, . . . , σ(wr) = 2r− 1, and, since
r is odd by construction, σ(uj) = 3r−1

2 .

• Lastly, assign label 2 to all edges incident to v, i.e., to uv, vw, and the vui’s.

We claim that, omitting u and w, all vertices of G get distinguished by ` (not only those at
distance at most d from each other). By how ` was obtained, recall first that two vertices from a
single Qi cannot be in conflict. The important property, now, is that any two different of the Qi’s
cannot have their vertices being in conflict, due to their degrees being too different. Indeed, if Qi
and Qj are two cliques, then, assuming i < j, note that if the vertices of Qi have degree r, and
thus sum at most 2r, then, by construction, the vertices of Qj have degree at least 2r+1, and thus
sum at least 2r + 1. Similarly, note that, by how ` was obtained, we have σ(v) = 2k, while the
vertices from Q1 have sum at most 2k − 1 and all other vertices have sum at least 2k + 1. Also,
note that, for any i such that ui+1 exists, we have d(ui+1) > 2d(ui) by construction, which implies
that the ui’s cannot be in conflict. Lastly, some uj cannot be in conflict with the vertices of a Qi
attached at uj by construction of `, and due to the degrees of the vertices in the other Qi’s, vertex
uj cannot be in conflict with any of these vertices neither. In particular, note that, regardless of
the parity of k, if some uj is incident to two attached cliques having r vertices of degree r and
2r + 1 vertices of degree 2r + 1, respectively, then d(uj) = 3r + 2 (recall that vuj is an edge), and
we have σ(uj) ≥ 3r−1

2 + 6r+2
2 + 2 = 9r+5

2 , which is strictly greater than 4r+ 1, the maximum sum
of a vertex adjacent to uj , since r ≥ k ≥ 7. Thus, omitting u and w, we have that ` is d-irregular.

It can be checked, that, by a similar construction as above (but labelling the edges of G[Q1 ∪
{u1}] and G[Q2∪{u1}] in the second way described in Lemma 2.1, so that no vertex has sum k), we
can also obtain a d-irregular 2-labelling of G where all edges incident to v are assigned label 1.

We are now ready to prove our main result in this section.

Theorem 2.3. For every d ≥ 2, deciding if sd(G) ≤ 2 for a given graph G is NP-complete
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Proof. For any fixed value of d ≥ 2 the problem is clearly in NP, so let us focus on proving it
is NP-hard. This is done by reduction from the problem of deciding whether s1(H) ≤ 2 for a
given cubic graph H, which was shown to be NP-hard in [1]. That is, given a cubic graph H, we
construct, in polynomial time, a graph G such that s1(H) ≤ 2 if and only if sd(G) ≤ 2.

So that we can describe the construction of G from H, we need some colouring of the edges of
H. Since H is cubic, then, by Vizing’s Theorem [14], it admits a proper 4-edge-colouring φ, i.e.,
an assignment of colours from {1, 2, 3, 4} to the edges such that no two adjacent edges are assigned
the same colour. Furthermore, φ can be obtained in polynomial time according to [10].

We now construct G from H as follows. We start from H, and subdivide every edge uw of
H exactly d − 1 times, resulting in d − 1 new degree-2 vertices forming a set which we denote by
S(uw). Note that once all edges of H have been subdivided this way, then, for every two adjacent
vertices u and w of H, in the current graph u and w are now at distance exactly d. We now modify
the current graph further as follows.

• We first consider all edges of H being assigned colour 1 by φ. For each such edge uw with
φ(uw) = 1, let us set S(uw) = {v1, . . . , vd−1}. We start by attaching a 7-fan at v1. Denoting
by α1 the maximum degree of a vertex in that 7-fan, we then attach a (2α1 + 1)-fan at
v2. Denoting by α2 the maximum degree of a vertex in that fan attached at v2, we then
attach a (2α2 + 1)-fan at v3. We go on like this for every i ∈ {4, . . . , d − 1} in turn, that
is, denoting by αi−1 the maximum degree of a vertex in the fan attached at vi−1, we then
attach a (2αi−1 + 1)-fan at vi. We denote by αd−1 the maximum degree of a vertex in the
last fan, attached at vd−1.

• We then consider all edges of H assigned colour 2 by φ. For every such edge uw with
φ(uw) = 2, set S(uw) = {v1, . . . , vd−1}. We start by attaching a (2αd−1+1)-fan at v1. Then,
for every i ∈ {2, . . . , d− 1} in turn, denoting by βi−1 the maximum degree of a vertex in the
fan attached at vi−1, we attach a (2βi−1 + 1)-fan at vi. Eventually, we denote by βd−1 the
maximum degree of a vertex in the fan attached at vd−1.

• We next consider all edges of H assigned colour 3 by φ. For every such edge uw with
φ(uw) = 3, we set S(uw) = {v1, . . . , vd−1}. We first attach a (2βd−1+1)-fan at v1. Then, for
every i ∈ {2, . . . , d− 1} in turn, defining γi−1 as the maximum degree of a vertex in the fan
attached at vi−1, we attach a (2γi−1 + 1)-fan at vi. Once vd−1 has been treated, we denote
by γd−1 the maximum degree of a vertex in the fan attached at vd−1.

• Lastly, we consider all edges of H assigned colour 4 by φ. For every edge uw with φ(uw) = 4,
we set S(uw) = {v1, . . . , vd−1}. We begin by attaching a (2γd−1 + 1)-fan at v1. Then, for
every i ∈ {2, . . . , d − 1} in turn, assuming δi−1 denotes the maximum degree of a vertex in
the fan attached at vi−1, we attach a (2δi−1 + 1)-fan at vi.

The resulting graph is G. Note that G is essentially obtained from H by subdividing all edges
exactly d − 1 times, and attaching a particular fan (following φ) at each vertex resulting from a
subdivision, which we call a subdivision vertex. So, the number of subdivision vertices in G is
exactly (d−1)|E(H)|. Now, notice that the fans we have attached at the subdivision vertices grew
exponentially. Particularly, there are exactly 4(d− 1) distinct types of fans, that is, k-fans for all
k in

(7, 2α1 + 1, . . . , 2αd−1 + 1, 2β1 + 1, . . . , 2βd−1 + 1, 2γ1 + 1, . . . , 2γd−1 + 1, 2δ1 + 1, . . . , 2δd−2 + 1) .

For every two consecutive values x and y of this ordered set, note that the number of vertices in a
y-fan is a function only of y and of the number of vertices of an x-fan. Since the initial value, 7,
and d are constant, and there are 4(d− 1) types of fans, the maximum number of vertices in a fan
is bounded above by a function of 7 and d only, and is thus constant. Since the number of fans in
G is exactly (d− 1)|E(H)|, we deduce that G is obtained in polynomial time from H.

We now prove that we have the desired equivalence between H and G.

• Assume first that G admits a d-irregular 2-labelling `. The key property is the following.
Consider an edge uw of H, and the corresponding set S(uw) = {v1, . . . , vd−1} of subdivision
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vertices of G. Assume P = (u, v1, . . . , vd−1, w) is the d-path joining u and w in G. By
Lemma 2.2, note that the fan attached at v1 implies that `(uv1) = `(v1v2). Similarly, the fan
attached at v2 implies that `(v1v2) = `(v2v3). More generally, for every i ∈ {1, . . . , d − 1},
the fan attached at vi implies that the two edges of P incident to vi must be assigned the
same label by `. Thus, all edges of P must be assigned the same label by `.

Now, consider the 2-labelling `′ of H obtained by considering every edge uw of H, and,
as above, denoting by (u, v1, . . . , vd−1, w) the corresponding d-path in G, setting `′(uw) =
`(uv1). By the property we have pointed out above, it can be noted that, for every vertex v
of H, the value of σ(v) by `′ in H is the same as the value of σ(v) by ` in G. Now, since ` is
d-irregular and, for every edge uw of H, the vertices u and w are at distance exactly d in G,
we have σ(u) 6= σ(w) by `. Then, we also have σ(u) 6= σ(w) by `′. Since this holds for every
edge uw of H, we deduce that `′ is 1-irregular.

• Conversely, assume H admits a 1-irregular 2-labelling `. We consider `′, the 2-labelling
of G obtained as follows. For every edge uw of H, consider P = (u, v1, . . . , vd−1, w), the
corresponding d-path in G. To every edge of P , we assign label `(uw) by `′. Now, for every
i ∈ {1, . . . , d − 1}, we extend `′ to the edges of the fan attached at vi in a d-irregular way
and so that all edges incident to vi are assigned label `(uw), which is possible by Lemma 2.2.
Note that, once all edges uw of H have been considered, `′ labels all edges of G.

We claim that `′ is d-irregular. First off, as previously, note that for every vertex v of H, the
value of σ(v) by ` is the same as the value of σ(v) by `′. Note now that G has two main types
of vertices: those originating from H, and the other ones we have added when constructing
G, which are each part of an attached fan (assuming a subdivision vertex to which a fan was
attached is part of that fan). Thus, we split the analysis into the following two cases:

– If v is a vertex of V (H) ∩ V (G), then, in G, note that v has degree 3 by construction
(since H is cubic). Note that every vertex that is part of a fan has degree at least 7,
and thus it cannot be in conflict with v by `′. So v can only be in conflict with another
(degree-3) vertex u of V (H)∩V (G). By construction, v and u are at distance at most d
in G if and only if v and u are adjacent in H. Due to how `′ was obtained, and because
` is 1-irregular and v and u have the same sum by ` and `′, we have σ(v) 6= σ(u) by `′.

– Assume now that v is part of a k-fan. Due to how `′ was constructed, v cannot be in
conflict with a vertex from the same fan. Also, as mentioned earlier, v cannot be in
conflict with a vertex u of V (H)∩V (G), since u has degree 3 while v has degree at least 7.
So v can only be in conflict with a vertex u from another k′-fan. By construction, note
that, when k 6= k′, the degrees of v and u are so different that they cannot be in conflict.
So we must have k = k′, in which case, still by construction, the two fans were attached
on subdivision vertices resulting from the subdivision of two distinct edges assigned the
same colour by φ. Since no two adjacent edges of H are assigned the same colour by
φ, by construction it can be noted that, in G, actually v and u are at distance strictly
more than d. Thus, having σ(v) 6= σ(u) is not required for `′ to be d-irregular.

All these arguments imply that `′ is indeed d-irregular, as claimed.

Thus, the equivalence between H and G holds.

3. Multiset irregularity strength

Throughout this section, we deal with the following notions. Let G be a graph, and ` be a k-
labelling of G. For every vertex v of G, we denote by µ(v) the colour code of v, being the multiset
of labels assigned to the edges incident to v. For convenience, we will represent colour codes in a
compact way, namely through the notation µ(v) = (1n1 , 2n2 , . . . , knk), where every ith element ini

of the code tells that v is incident to ni edges assigned label i by `. Note that d(v) = n1+ · · ·+nk.
Now, we say that ` is m-irregular if we have µ(u) 6= µ(v) for every two distinct vertices u and v of
G, and we define sm(G) as the smallest k such that m-irregular k-labellings of G exist.
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Note that an irregular labelling is always m-irregular (while the converse does not have to be
true), so, as mentioned earlier, we always have sm(G) ≤ s(G) for a graph G. M-irregular labellings
were first introduced by Chartrand et al. in [4], under the name “detectable colourings”.

In this section, we prove that determining sm(G) for a given graph G is NP-hard. To that end,
we will make use of some of the preliminary results we introduced in previous Section 2, and of
a few more easy results which we prove now. In these ones, for any d ≥ 1 and k ≥ 1, we denote
by U(k, d) the set containing all colour codes (1n1 , . . . , knk) that can be obtained for a degree-d
vertex through a k-labelling of some graph, i.e., n1 + · · ·+ nk = d. Note that |U(2, d)| = d+ 1, as
U(2, d) = {(10, 2d), (11, 2d−1), . . . , (1d, 20)}.

Lemma 3.1. Let G be a complete graph on d+ 1 ≥ 3 vertices w, v1, . . . , vd, and ` be a 2-labelling
of G. Omitting w, if ` is m-irregular, then {µ(v1), . . . , µ(vd)} is either U(2, d)\ (10, 2d) or U(2, d)\
(1d, 20). Furthermore, omitting w, for every S ∈ {U(2, d) \ (10, 2d),U(2, d) \ (1d, 20)}, there exist
m-irregular 2-labellings of G for which S = {µ(v1), . . . , µ(vd)}.

Proof. This follows directly from Lemma 2.1, since an irregular labelling is m-irregular.

Lemma 3.2. Let G be a graph obtained from a complete graph on p ≥ 3 vertices v1, . . . , vp by
attaching a degree-1 vertex u at vp. Omitting u, for every s ∈ {1, 2}, there exist m-irregular
2-labellings of G where `(uvp) = s.

Proof. By Lemma 3.1, there are 2-labellings ofG[{v1, . . . , vp}] where {µ(v1), . . . , µ(vp−1)} = U(2, p−
1) \ (10, 2p−1). Consider `, such a 2-labelling of G[{v1, . . . , vp}], and extend it to G by assigning
any label s ∈ {1, 2} to vpu. Note that, omitting u, this results in an m-irregular 2-labelling of
G, since d(vp) > d(vp−1), . . . , d(v1) which implies that µ(vp) 6= µ(vp−1), . . . , µ(v1), while the other
p− 1 vi’s cannot be involved in multiset conflicts due to the main property of `.

We are now ready to prove our main result in this section.

Theorem 3.3. Deciding if sm(G) = 2 for a given graph G is NP-complete.

Proof. The problem is clearly in NP, so we focus on proving its NP-hardness. This is done by
reduction from Monotone Cubic 1-in-3 SAT, which is known to be NP-hard [11]. In that
problem, a 3CNF formula F , in which all clauses have three distinct non-negated variables and
every variable appears in exactly three distinct clauses, is given, and the question is whether there
is a truth assignment to the variables such that F is satisfied in a 1-in-3 way, i.e., so that every
clause contains exactly one variable set to true. From an instance F of Monotone Cubic 1-in-3
SAT, we construct, in polynomial time, a graph G such that F can be satisfied in a 1-in-3 way
if and only if G admits m-irregular 2-labellings. Let us denote by n the number of clauses and
variables of F (note that these two numbers are indeed equal).

The construction of G starts as follows:

• We start from GF , the cubic bipartite graph modelling the structure of F . That is, GF has
a clause vertex vC for every clause C of F , a variable vertex vx for every variable x of F ,
and a formula edge vCvx whenever a variable x is contained in a clause C of F .

• We add a special vertex w to the graph, isolated for now.

In the rest of the construction below, we will need to increase the degrees of some vertices of
GF by a particular amount, through incident edges which, eventually, will have to be assigned a
particular label by any m-irregular 2-labelling of G. As will be made clear below, such edges can
be generated at will, mainly through attaching certain cliques at w. The only issue we need to
be careful with is that, when eventually designing m-irregular 2-labellings, the vertices of these
cliques might interfere with other vertices (having the same degree) of the whole graph (since no
two vertices are allowed to have the same colour code). To make sure to avoid such problems, we
will mainly make sure to consider vertices with sufficiently different palettes of degrees. To better
track the vertex degrees throughout the proof, we will maintain some sets C (clause vertices), V
(variable vertices), T (trail vertices), and U (clean-up vertices) containing the degree values of
certain types of vertices. Initially, these sets are empty.

We start by defining the sets C and V, which we do as follows:
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• Assuming the clauses of F are C1, . . . , Cn, we will, later on, add edges incident to every vCi

so that its degree, which is currently precisely 3, is eventually e(vCi) = i + 2. Thus, the
degrees of vC1

, . . . , vCn
will eventually be 3, . . . , n + 2, respectively. We add these n values

e(vC1
), . . . , e(vCn

) to the set C. We define C as the maximum value in C, which is n+ 2.

• Assuming the variables of F are x1, . . . , xn, through adding edges incident to the vxi
’s, we will

make sure that each vxi
eventually has degree e(vxi

) = C+i. In other words, vx1
, . . . , vxn

will
eventually have degree C+1, . . . , C+n, respectively. We add these n values e(vx1), . . . , e(vxn)
to V, and we define V as the maximum value in V, which is C + n.

So that each vC and each vx eventually has degree e(vC) and e(vx), respectively, we will need
to generate e(vC)−3 and e(vx)−3 edges, respectively, and attach them at vC and vx, respectively.
Recall indeed that each of these vertices is currently incident to three formula edges of GF . This
will be done by generating such edges for which the label by any m-irregular 2-labelling of G is
known. This way, the colour code of vC and vx will, eventually, be mostly known by any m-irregular
2-labelling, as only the formula edges incident to these vertices will fluctuate. More precisely, since
vC and vx are incident to exactly three incident edges, their eventual colour codes will each be one
of four possible values only (depending on whether all, two, one, or no incident formula edges are
assigned label 1, while the others are assigned label 2). To have the desired equivalence between
G and F , we will need the colour code of every vC to be precisely one of the four possible values,
while we will need the colour code of every vx to be one of two of the four possible values. To force
that, we will also generate three and two vertices of degree e(vC) and e(vx), respectively, and force
their incident edges to be assigned some labels by any m-irregular 2-labelling, so that the colour
codes of these vertices are precisely those we want to forbid for vC and vx.

In what follows, we will thus require some particular edges that we will “attach” at other
vertices. Formally, assuming xy is a pending edge of some graph, i.e., d(x) > 1 and d(y) = 1, then,
by attaching xy at some vertex z 6∈ {x, y}, we mean identifying y and z. Note that the attachment
operation involves an edge with exactly one degree-1 vertex; this means a pending edge can be
attached only once. We need to attach edges which, eventually, we know which label they will be
assigned by an m-irregular 2-labelling; to get such edges, we add some more structure to the graph.

• We grow a sufficient long (see later) 1-forcing trail in the following way. We start by adding
a trail vertex v to the graph which we join to V + 1 new degree-1 vertices u1, . . . , uV+1 (so
that v has degree V + 1), then attach a (V + 1)-clique at w, and finally add the value V + 1
to T . Now, to make the 1-forcing trail one step longer, we proceed as follows. Assume u is
the last trail vertex we have added to the 1-forcing trail, and that this vertex u is of degree
d. Then, to make the 1-forcing trail longer, we add a new trail vertex v joined to each of
d+1 new degree-1 vertices (so that v has degree d+1), attach a (d+1)-clique at w, add the
value d + 1 to T , and, lastly, identify one pending edge ux and one pending edge yv (that
is, we identify u and y, and, similarly, x and v, and keep only one edge joining u and v). In
other words, the 1-forcing trail is obtained from a main path by attaching degree-1 vertices
to every of its inner vertices (being the trail vertices) so that certain consecutive degrees are
attained. We denote by T1 the maximum value added to T .
Additionally, once the 1-forcing trail is long enough (see below), we eventually identify any
two of its degree-1 vertices with distinct neighbours, resulting in a degree-2 vertex t1.

• We also grow a sufficiently long (disjoint) 2-forcing trail similarly as the 1-forcing trail, the
difference being that the first trail vertex is of degree T1 +1. We denote by T2 the maximum
value added to T in the process, once the trail is long enough. We also identify two degree-1
vertices of the 2-forcing trail, and denote by t2 the resulting degree-2 vertex.

The length of a forcing trail is its number of trail vertices. For every i ∈ {1, 2}, a pending
edge of the i-forcing trail is called an i-edge. In what follows, we assume the forcing trails are long
enough so that the number of i-edges is at least R = 8nV for every i ∈ {1, 2}.

We can now continue the construction of G:

• We start by considering every clause vertex vC first, and attach at vC exactly e(vC) − 3
1-edges so that the degree of vC becomes exactly e(vC). We then add a new vertex aC to
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the graph, and attach exactly e(vC) 1-edges at aC . Similarly, we then add a new vertex bC
to the graph, and attach exactly e(vC)− 1 1-edges and one 2-edge at bC . Lastly, we also add
a new vertex cC to the graph, and attach exactly e(vC)− 3 1-edges and three 2-edges at cC .
Note that all of aC , bC , and cC have degree precisely e(vC).

• We then consider every clause vertex vx, and attach at vx e(vx)−3 1-edges so that the degree
of vx becomes e(vx). We then add a new vertex ax to the graph, at which we attach e(vx)−1
1-edges and one 2-edge. Lastly, we add a new vertex bx, at which we attach e(vx)−2 1-edges
and two 2-edges. Note, here, that ax and bx have degree e(vx).

Since there are a total of 2n clause vertices and variable vertices, we have added at most three
new vertices for each clause vertex and variable vertex, and the maximum value of some e(vC) or
e(vx) is V , note that, due to the value of R, we indeed have sufficiently many 1-edges and 2-edges
in hands to go through the whole process above.

We finish off the construction of G with some final clean-up:

• Some 1-edges and 2-edges were, perhaps, not attached to any vertex of the graph, and are
thus pending. We consider every such edge xy (where d(x) > 1 and d(y) = 1) in turn, choose
the largest value d ∈ {T2} ∪ U , attach a (d+ 1)-clique at x, and add d+ 1 and d+ 2 to U .

• If U is the maximum value in U , then we attach a (U + 1)-clique at w, and add U + 1 to U .

We denote by G the resulting graph. We claim that G is obtained in polynomial time from F ,
due to the following arguments. Note first that the number of vertices of GF is 2n, and, since we
have added three vertices aC , bC , and cC for every clause vertex vC , and two vertices ax and bx
for every variable vertex vx, the total number of all these vertices is O(n). Next, we can assume
every i-forcing trail generates R i-edges, meaning that its number of trail vertices is bounded by R.
Thus, in total, there are O(n2) trail vertices. Since the first trail vertex we have added has degree
V +1 and all trail vertices we have added after that have consecutive degrees, the maximum degree
of a trail vertex is O(n2). For every trail vertex of degree d, we have also attached a d-clique at
w. These cliques attached at w thus have O(n4) vertices, since there are O(n2) trail vertices, all
of which have degree O(n2). Finally, for every trail vertex of degree d, at most d of its incident
pending edges were not attached to aC ’s, bC ’s, cC ’s, ax’s, and bx’s, and, at the end of each such
pending edge, we have attached a k-clique for some k ∈ U , resulting in a vertex of degree k + 1.
Recall that d is O(n2). Regarding k, the smallest possible value is T2 + 1, which is O(n2), and
we have added consecutive pairs of consecutive values or single values to U only. Since there are
O(n2) trail vertices all of which have degree O(n2), in total we have attached O(n4) cliques to
pending edges, and thus added O(n4) values to U . So the maximum value in U is O(n4). Thus,
in total, all these cliques attached to pending edges have O(n8) vertices. The very last clique we
have attached at w is a (U + 1)-clique, which is thus of order O(n4). So the order of G is O(n8),
and the construction of G from F is thus performed in polynomial time.

We now prove that we have the desired equivalence between F and G. Assume first that G
admits an m-irregular 2-labelling `. We analyse how `must behave in G. Let us start by considering
the two forcing trails first. Let v be a trail vertex of degree d. Recall that we have attached, at w, a
d-clique, and no other vertex has degree d. There are thus, in G, exactly d+1 vertices of degree d.
Furthermore, by Lemma 3.1, we deduce that, by `, the colour code of v must be (10, 2d) or (1d, 20).
In other words, all edges incident to v must be assigned the same label. Now, since the same
argument applies to every trail vertex, by repeatedly considering pairs of adjacent trail vertices
(i.e., sharing an incident edge), we deduce that, by `, in each forcing trail all trail vertices must
have all their incident edges being assigned the same label. Now, recall that, in each i-forcing trail,
we have identified two degree-1 vertices to form the degree-2 vertex ti. By the previous remarks,
the colour code of ti is either (10, 22) or (12, 20). Thus, so that µ(t1) 6= µ(t2), we deduce that the
edges of the 1-forcing trail are assigned the same label that must be different from that assigned to
the edges of the 2-forcing trail. Free to swap labels 1 and 2 by `, we may assume that all 1-edges
are assigned label 1, while all 2-edges are assigned label 2.

• Now consider every clause vertex vC . Recall that d(vC) = e(vC), and, assuming this value
is d, that three other vertices, aC , bC , and cC , also have degree d. Furthermore, because
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of incident 1-edges and 2-edges, d − 3 edges incident to vC are assigned label 1, while, by
construction, the colour codes of aC , bC , and cC are exactly (1d, 20), (1d−1, 21), and (1d−3, 23),
respectively. This means that the colour code of vC is precisely (1d−2, 22), and, thus, that
there must be exactly one formula edge incident to vC assigned label 1.

• Similar deductions can be made for every variable vertex vx. Setting d = d(vx) = e(vx),
recall that exactly two other vertices, ax and bx, have degree d. Also, due to how 1-edges
and 2-edges were attached, vx is incident to d− 3 1-edges, while the colour codes of ax and
bx are (1d−1, 21) and (1d−2, 22). Thus the colour code of vx is either (1d, 20) or (1d−3, 23),
meaning that either all formula edges incident to vx are assigned label 1 by `, or they are all
assigned label 2.

In G, imagine that having `(vxvC) = 1 models, in F , the fact that variable x brings truth value
true to clause C, while having `(vxvC) = 2 models that x brings truth value false to C. The fact,
in G, that all formula edges incident to vx must be assigned the same label by ` thus models, in
F , the fact that, by a truth assignment, x brings the same truth value to all clauses that contain
it. Similarly, the fact, in G, that, for every clause vertex vC , exactly one incident formula edge
is assigned label 1 while the other two are assigned label 2 by `, models, in F , the fact that C is
considered satisfied by a truth assignment if and only if it has one true variable and two false ones.
From this, we directly deduce, from `, a 1-in-3 truth assignment to the variables of F .

Let us now focus on the converse direction, i.e., assume F admits a 1-in-3 truth assignment
φ to its variables. We construct an m-irregular 2-labelling ` of G in the following way. The key
point is that vertices with the same degree in G form very particular sets, which is crucial since
vertices with distinct degrees cannot have the same colour code. In particular, no two cliques we
have attached to some vertices (either to w or to degree-1 vertices during the eventual clean-up
process) are both k-cliques, meaning that these cliques can be labelled independently.

We start by considering any one trail vertex v of the 1-forcing trail, and assign label 1 by ` to
all its incident edges. As described above, assuming v has degree d, we have attached a d-clique at
w, and it can be checked that the vertices from that d-clique are the only vertices, besides v, that
have degree d. According to Lemma 3.1, we can 2-label the edges of that clique in an m-irregular
way and so that none of its vertices has colour code (1d, 20), thereby avoiding any conflict with v.
Since the same arguments apply to all trail vertices, by arguments we have used earlier we deduce
that all edges of the 1-forcing trail must be assigned label 1, and for every trail vertex v of degree d,
by Lemma 3.1 we can 2-label the edges of the d-clique attached at w in an m-irregular way and
so that none of its vertices gets colour code (1d, 20). Now, since the two edges incident to t1 are
assigned label 1, the colour code of t1 is (12, 20).

We now apply all the exact same arguments to the 2-forcing trail, but with labelling all its
edges with label 2. Note that this raises no conflict, since all trail vertices of the 2-forcing trail and
their associated cliques have degrees more than those of the 1-forcing trail. Also, the colour code
of t2 is (10, 22), and, thus, t1 and t2, the only two vertices of degree 2 of G, are not in conflict.

So, as previously, the 1-edges are all assigned label 1 by `, while the 2-edges are all assigned
label 2. By construction, every vertex aC with degree d has colour code (1d, 20), every vertex bC or
ax with degree d has colour code (1d−1, 21), every vertex cC with degree d has colour code (1d−3, 23),
and every vertex bx with degree d has colour code (1d−2, 22). This implies, since every clause vertex
or variable vertex with degree d is incident to d− 3 1-edges, that a clause vertex must have colour
code (1d−2, 22) while a variable vertex must have colour code (1d, 20) or (1d−3, 23). If we can achieve
this, note that this will not raise any further conflict, since no other vertex of G has degree d. To
achieve this, we just consider every variable x of F , and assign, in G, label 1 to all formula edges
incident to vx if φ sets x to true, while we assign label 2 to these edges otherwise. This results in vx
(of degree d) getting colour code (1d, 20) (if x is set to true by φ) or (1d−3, 23) (otherwise), while,
due to φ 1-in-3-satisfying F , this results in every clause vertex vC to get colour code (1d−2, 22).

To finish off the construction of `, we lastly consider every clique attached at a pending 1-edge
or 2-edge during the clean-up process, and the (U+1)-clique attached at w, and 2-label their edges
arbitrarily in an m-irregular way, following Lemma 3.1. This results in ` being m-irregular. Indeed,
w is the only vertex with maximum degree, so it cannot be involved in conflicts. For every degree
value d ∈ U , note that the only degree-d vertices are either 1) the vertices of a d-clique attached at

10



w or at a (previously) pending vertex of a forcing trail, or 2) a single (previously pending) vertex to
which a (d−1)-clique was attached; thus, in both cases, they cannot be involved in conflicts due to
how G was labelled. Similarly, for a degree value d ∈ T , only the vertices of a d-clique attached at
w and one trail vertex have degree d, and they cannot be in conflict due to how ` was constructed.
For a d ∈ V, only one variable vertex vx and two vertices ax and bx have degree d, and they are
not in conflict due to how ` was obtained. Similarly, for a d ∈ C, only one clause vertex vC and
three vertices aC , bC , and cC have degree d, and they are not in conflict. Lastly, only t1 and t2 are
of minimum degree, 2, and, as pointed out earlier, they are not in conflict. Thus, ` is m-irregular.

We thus have the desired equivalence between F and G.

4. Discussion

Our goal in this work was to provide evidence, towards Question 1.1, that the problem of
determining the irregularity strength of a given graph might be NP-hard. To that aim, we have
considered two close variants of the problem, related to the distant irregularity strength and the
multiset irregularity strength of graphs, and proved that these two problems are NP-hard. The
interesting fact is that these two variants are close to the original one for different reasons: in
one of the two variants, the distance requirement is weaker while the distinguishing requirement
is similar, while, for the second variant, it is the other way round. Thus, in a sense, these two
variants complement each other, with respect to the original problem.

Looking at the forcing mechanisms we employed in the reductions for proving Theorems 2.3
and 3.3, we can definitely come up with similar ones for the original irregularity strength. In
particular, in both reductions, note that an important tool are cliques, which are very convenient
for forbidding sums or multisets and making sure a vertex must be incident to certain labels by
a labelling. A way to use cliques for the irregularity strength is for instance as follows. Let G be
a graph with a vertex w, and, for some k, attach both a (k + 1)-clique Q1 and a (2k + 1)-clique
Q2 at w. Assume further that, somewhere in G, there is another vertex v of degree k. Then note
that, by all irregular 2-labellings of G, we must have σ(v) = k, i.e., all edges incident to v must
be assigned label 1. This is because the set of sums of the k + 1 vertices of Q1 must be either
{k+1, . . . , 2k+1} or {k+2, . . . , 2k+2} while the set of sums of the 2k+1 vertices of Q2 must be
either {2k+1, . . . , 4k+1} of {2k+2, . . . , 4k+2} (by Lemma 2.1), which forces the set of sums of
the 3k + 2 vertices of Q1 and Q2 to be {k + 1, . . . , 4k + 2} so that there is no conflict. Thus, since
the sum of v must lie in {k, . . . , 2k}, so that there is no conflict, we indeed must have σ(v) = k.

The downside of this method, now, is that to force a single vertex v to have a particular sum,
k, by any irregular 2-labelling, we had to make all values in {k + 1, . . . , 4k + 2} appear as sums
of some vertices. Then, if we want to force another vertex to have a particular sum k′ > k, then
the smallest k′ we can consider is 4k + 3, which, by the method above, requires to attach both a
(4k + 4)-clique and a (8k + 7)-clique at w. After that, if we want to force another vertex to have
some sum k′′ > k′, then the smallest k′′ we can consider is 16k+15, which requires to attach both
a (16k + 16)-clique and a (32k + 31)-clique at w. And so on. This means that, with this method,
the number of vertices of the resulting reduced graph would be exponential in the number of things
we need to force, which is most probably a function of the input of the problem we reduce from.
In other words, a reduction using such forcing mechanisms would not run in polynomial time.

Note that we did not run into this problem in the proofs of Theorems 2.3 and 3.3, as, for
the distant irregularity strength, it is possible to have several cliques with the same number of
vertices provided they are pairwise far from each other (which limits the growth of the reduced
graph), while, for the multiset irregularity strength, the convenient property is that a k-clique and
a k′-clique cannot have conflicting vertices provided k 6= k′ (which limits the size of the cliques,
thus that of the reduced graph). In other words, while definitely close to the original irregularity
strength, these two variants have peculiarities that make them way easier to work with.

To go further, probably a good direction could be to investigate the existence of other forcing
graphs which, with respect to irregular 2-labellings, would be more permissive and less demanding
than cliques. It would be crucial, for instance, to come up with graphs of reasonable size admitting
certain sets S of values such that, by every irregular 2-labelling, no vertex has sum in S.
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