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Abstract—We are constantly using recommender systems, often
without even noticing. They build a profile of our person in
order to recommend the content we will most likely be interested
in. The data representing the users, their interactions with the
system or the products may come from different sources and be
of a various nature. Our goal is to use a multi-view learning
approach to improve our recommender system and improve its
capacity to manage multi-view data. We propose a comparative
study between several state-of-the-art multi-view models applied
to our industrial data. Our study demonstrates the relevance of
using multi-view learning within recommender systems.

Index Terms—multi-view, recommender system, attention
mechanisms, deep learning

I. INTRODUCTION

Many datasets contain data of various natures or coming
from different sources, those are called multi-view data. Mul-
tiple views can provide additional information compared to a
single view, intelligently exploiting the multi-view aspect of
such data can lead to an improvement in learning performance.
The main challenge of multi-view learning is not only to
exploit the consensus knowledge contained in all views but
also to exploit the complementarity of the views to improve
performance.

In this paper we present a comparative study in a real-
life application context on industrial data between a Baseline
model that does not exploit the multi-view aspect of the data
and three state-of-the-art models taking advantage of the multi-
view aspect of the data. We provide several results of different
models showing the advantage of multi-view learning. We thus
demonstrate the relevance and interest of multi-view learning
on a tire recommendation problem in an industrial context.

A. Recommender systems

The purpose of a recommender system is to estimate the
products that are most likely to be of interest to a user [1].
There exists two main recommendation tasks: the prediction
of a rating and the creation of a ranking. The prediction of a

rating is aimed at estimating the score that the user could give
to a product and is generally based on the scores given to other
products by the same user. The point of creating a ranking is
to define a ranked list composed of n products ordered by the
user’s estimated taste preference. It is usually called a “top-n”
[2]]. There are three main recommender system categories [3]:
1) Content-based recommendations. The user is recom-
mended products similar to those that he has previ-
ously consulted and appreciated [1]. Recommendations
are built from the user profile, they are based on the
similarity between the products the user is interested
in. To decide which product to recommend the system
calculates a utility value wtil(u,v) between the user u

and an item v [3]], usually defined as follows:

util(u, v) = score(profile(u), content(v)) (1)

The system creates a profile for each user containing
its tastes and preferences, noted profile(u). It does the
same for each product, noted content(v). The two main
drawbacks of this type of recommender system are the
cold start and overspecialization problems. Indeed, it is
hard to make pertinent recommendations to an unknown
user, since its profile is empty, and conversely it is hard
to properly recommend a new item that nobody has
ever consulted or purchased, this is called the cold-start
problem [4]]. Overspecialization can also appear, this has
the effect of enclosing the recommendations made to the
user in a bubble and does not allow the recommendation
of new and original products.

2) Collaborative Filtering. The user is recommended prod-
ucts that people with similar taste have liked before.
In that case the utility value wutil(u,v) between the
user u and the item v is estimated based on the utility
values util(u;,v) assigned v by users u; € U which are
similar to u [3[]. In this way, users with similar profiles
will be recommended similar products. That type of
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recommender system faces the cold-start problem too
but is less subject to the overspecialization problem than
content-based systems. It also faces the sparsity problem,
since it is based on the rating of products by users and
that each user only rates a very small part of available
products.

3) Hybrid approaches. The point of hybrid approaches is
to combine the two previously described approaches
together. The main point of combining content-based
recommendations and collaborative filtering is to avoid
specific limitations presented by each of those ap-
proaches [3], [6]]. The most common approach in recent
years has been to design a model combining the two
approaches [3], thus making it possible to solve, at least
partially, the cold-start and sparsity problems [[1]].

A lesser known and used category is session-based recom-
mender systems [[7]. Those use the similarities between user’s
browsing habits and their relationship to the consulted prod-
ucts to produce a recommendation. In that case it is important
to take into account the sequential nature of browsing sessions
data. It is therefore needed to use a model that is able to
handle a temporal dimension, such as an RNN (Recurrent
Neural Network) [[8] or a 3D-CNN (3D Convolutional Neural
Network) [7]].

B. Multi-view learning

A lot of data is collected from distinct sources. Making
intelligent use of these different views can improve the per-
formance of a classification system. Multi-view learning can
also be applied to improve performance on data organized in
a single view by manually generating multiple views [9].

In order for multi-view learning to be effective it is nec-
essary that the views adhere to certain principles, otherwise
the use of multiple views could lead to performance degrada-
tion. The two main principles of multi-view learning are the
consensus principle and the complementary principle [[10]:

1) Consensus principle. In supervised learning, this princi-
ple defines that by minimizing disagreements between
each view, the error rate on each view will also be
minimized. In other words, a system capable of corre-
lating the results obtained from different views will at
the same time minimize classification errors on each of
these views.

2) Complementary principle. This principle defines that in
the context of multiple views, each view of the data
contains knowledge that the others do not possess, thus,
multiple views can be exploited to comprehensively and
accurately describe the data and lead to better learning
performance.

By exploiting these two principles, it is theoretically pos-

sible to ensure a learning performance improvement by com-
parison to single view learning.

C. Multi-view recommender systems

A recommender system can benefit from multi-view learn-
ing provided that the used data allows the application of the

consensus and complementary principles. Concrete applica-
tions of the multi-view approach in the field of recommen-
dation usually make use of deep learning composite models.
Several state-of-the-art models have been considered to be
applied to our industrial data and be part of our comparative
study.

o Wide & Deep model [11]: This model combines a linear
model with a deep model, allowing the benefits of each
model to be exploited within a unified system. Deep
models are capable of generalizing to unknown data but
tend to overgeneralise when insufficient training data is
used. Linear models are capable of storing exception rules
on scattered data with a lower generalization capacity
but a lower need for the number of parameters to be
learned. The wide component of the model applies the
linear model to a set of features, which can be raw
or transformed with simple operations, such as vector
products, and the deep component is a deep forward
propagation neural network. Before being passed to the
deep network, the scattered, high-dimensional data is
converted into smaller, dense vectors, called embedding
vectors. The model is trained as a whole using joint
training, which allows multi-branch models to be trained
using a single error function [12].

o DeepFM model [13]]: This model is based on the obser-
vation that the Wide & Deep model requires extensive
manual analysis work on the data in order to determine
the best mathematical transformations to use for the wide
component. The DeepFM model automates this manual
work using a factorization machine (FM), which allows
the modeling of pairwise interactions between data fea-
tures using vector products between embedding vectors.
The deep component of the model remains unchanged
compared to that of the Wide & Deep model. The model
is also driven as a single model using joint training.

e NeuMF model [14]: This model generates two latent
vectors from the user’s view and two others from a
product view. The two vectors from each view are gen-
erated with matrix factorization (MF vector) and with a
multi-layer perceptron (MLP vector). The NeuMF model
shares similarities with the DeepFM, both models were
published less than five months apart.

o« MV-DNN model [15]: The core of the MV-DNN is a deep
neural network (DNN) which is applied to several views.
Its structure is essentially the same as that of a Deep
Semantic Similarity Model (DSSM) [16], the difference is
that the number of branches of the model can be adapted
to the number of views of the data rather than being
limited to two. Each view passes through a different DNN
and the similarity between the outputs of each DNN is
measured using a cosine similarity function. DSSMs are
usually used on textual data but can be adapted to other
types of data. Their architecture can be linear as in [15]
or use another type, such as a convolutional structure in
[16].



o TDSSM [17]]: This model introduces a temporal dimen-
sion to the DSSM, it is called Temporal DSSM (TDSSM).
The temporal dimension is added to the structure with
a recurrent neural network (RNN), which makes the
model capable of handling temporal views in addition
to static views. In its application on a recommender
system the user and product characteristics are passed as
different views and the outputs of the neural networks are
combined and compared with a cosine similarity function.
This underlines the fact that the structure of a DSSM is
fully modular and can be modified at will to meet data
requirements.

e MV-AFM model [[18]]: The Multi-View Attentional Fac-
torization Machines (MV-AFM) model is a neural net-
work that uses hierarchical attention mechanisms at the
feature and view level. It is composed of an embedding
layer that allows the generation of dense and smaller vec-
tor representations of the data. The feature-level attention
mechanism allows the embedding vectors to be weighted
for each view. The next layer models pairwise interactions
between the views by calculating the sum of Hadamard
products between the vectors of each view. This extends
the number n of views by ”(”27_1) interaction views. The
attention mechanism at the view level then weights the
new generated views to pay more or less attention to each
view according to their relevance.

e NAML model [19]]: This model is called News recom-
mendation Approach with attentive Multi-view Learning.
It uses a news article encoder with multi-view learning.
This encoder is used to create an abstract representation
of news articles. Hierarchical attention mechanisms are
used within the encoder for features and views. Another
attention mechanism is also used to combine representa-
tions of the multiple articles the user has viewed.

In this paper we will present some of these state-of-the-art

models to apply them to our industry data and compare their
performance in the context of our recommender system.

D. Attention mechanisms

The first attention mechanism in deep learning was intro-
duced in 2014 in [20]. It was initially developed to improve the
performance of encoder-decoder models over long sentences.

Encoder-decoders are composed of two recurrent neural
networks, the first one encodes a sequence into a latent vector
representation, this vector is called a context vector. The
second uses this abstract representation of the initial sequence
to generate a new output sequence. In such a model, the
terms of the input sequence are propagated one after the
other through the network. After several terms have been
propagated, the model tends to forget the oldest terms because
of the problem of vanishing gradient. The input sequence is
encoded within a context vector, this vector is an embedding of
fixed size and the decoder only has access to it to generate the
new sequence. If some of the information has been forgotten
or is missing within the context vector, then the quality of the
output sequence will not be optimal.

To solve this problem, Bahdanau et al. [20] proposed an
encoder-decoder in which the decoder not only relies on a
single context vector to create the new sequence, but rather
generates a new context vector containing the information
needed at each step. In this model the decoder has access to
all the hidden vectors of the encoder (hq, ..., h,). To generate
each term of the new sequence the decoder relies on the
last generated term y;_;, on the previous decoder hidden
vector s;—1 and on a context vector c¢; capturing the relevant
information of the input sequence for step <. A formal notation
of the generation of the i-th term s; by the decoder is the
following recursive function :

si = f(si—1,¥i-1,¢i) 2

The context vector c¢; captures the relevant information for
the i-th decoding step within the hidden encoder vectors and
the previous hidden decoder vector. A score e; ; is calculated
for each hidden encoder vector h;, this score will be used to
weight each hidden vector according to its relevance for the
1-step:

eij = a(si—1,hj) 3)

In this notation a is an alignment model, such as neural net-
work layer. The parameters of the alignment model are trained
simultaneously during the optimization of the global model.
The obtained sequence of scalars ¢; 1, ..., €; , is normalized
with a softmax function whose terms are defined as follows:

ZZ:1 exp(ei,k)
The obtained vector «; is called the alignment vector and is

used to weight the hidden encoder vectors to generate the
context vector c¢;:

Q45 =

C; = Zai’j . hj (5)
j=1

This vector contains the relevant information from the input
sequence for the i-th decoding step.

Attention mechanisms can be applied at different levels
in order to extract interesting and relevant information at
each of these levels [21]. This theory is called hierarchical
attention and has been successfully applied to capture basic
notions about the structure of a document. Documents have
a hierarchical structure, with words forming sentences that
form paragraphs that form a document. Not all words have
the same importance within a sentence and therefore should
not be considered equal by the model, the same applies to
the importance of sentences and paragraphs. A model that
includes a hierarchical attention mechanism is therefore able to
take into account this notion of various importance at different
levels.

In this paper we will first describe multi-view learning meth-
ods applied to recommender systems which will be evaluated
on our industry data in a comparative study. We will then
detail the used data as well as the experimental protocol used
for the study. Finally, we will present the results obtained in
our comparative study.



II. MULTI-VIEW LEARNING FOR RECOMMENDATION
A. Available views

Rezulteo is an online comparison tool that contains a rec-
ommender system, this system is subject to constraints, such
as the cold-start problem [4], implicit interactions between
the user and the products, and no purchase confirmation
after product recommendation (the user is redirected towards
retailer sites).

This section focuses on the detailed presentation of the
five available views for the Rezulteo project and on their
individual evaluation. All the models that will be presented
will exploit all or a part of those data sources to produce their
recommendation.

1) User sessions data: This data is obtained from the
user’s browser session history. It is sequential data,
since it brings together all actions taken by one user
after another, in chronological order, thus its temporal
dimension is primordial.

2) Expert product data: This is business data collected
from manufacturers that characterizes each Rezulteo
product. It is static data that associates a unique and
abstract representation to each product.

3) Latent user vectors: Latent user vectors are generated
by factoring matrices on user interactions using the
eALS model, Element-wise Alternating Least Square
model [22]. The goal is to reuse one of the two compo-
nents (user matrix) needed to reconstruct the implicit
interaction matrix to generate a unique and abstract
representation for each user.

4) Comparability view: This static view is obtained from
similarity coefficients which are calculated between each
pair of products. These are determined by an expert
system based on business indicators (age of the product,
market sales volume and its presence on the different
market shares, etc.). To make it exploitable, a vector
of size n is associated with each product, n being the
number of products in total. Each product is assigned a
unique index between 0 and n — 1, which is determined
arbitrarily and represents the position of the product
within the list. The vector associated with each product
contains the similarity values between that product and
all other products in the system. The values are orga-
nized within the vectors according to the indices of the
corresponding products in order to make it possible to
learn about this data.

5) Compatibility view: This static view lists all the prod-
ucts that are compatible with user sessions, each ses-
sion being associated with a query that determines this
compatibility. As each vehicle is compatible with only
a limited set of tires, this view simply represents the list
of products that are compatible with the user session. It
is a simple vector of boolean values of size n, where n
is the total number of products.

The quality of each view has been analyzed by training a
neural network on each isolated view. The architecture of the

used neural network is always the same, so that if the obtained
recommendation quality is higher than the one obtained using
randomly generated data, it means that the isolated view
contains useful information for recommendation.

By using several views, all of which provide useful infor-
mation, a deep composite model is able to naturally make
use of the complementary principle. This principle defines
that multiple views that all contain useful and complementary
information can be exploited to lead to better learning perfor-
mance than if they were treated independently of each other. A
deep composite model using multiple views is also capable of
making use of the consensus principle. This principle defines
that by minimizing the disagreement between each view, the
error rate on each view will also be minimized. Such a model
is capable of using this principle since each view is associated
with an independent branch in the model architecture. Thus,
each branch learns from one view, then all the branches are
combined into one. In the final branch, the abstract representa-
tions of each view are brought together to retrieve all the useful
and complementary knowledge they contain and exploit them
together to maximize learning performance.

To evaluate our views we used two common metrics in the
recommendation field which complement each other :

1) HR (Hit Rank), it measures the system capacity to pro-

vide all relevant solutions (varies from 0 to 100%).
hits ©)
users

hits : the number of users for which the product has

properly been recommended.

users : the total number of users.

2) NDCG (Normalized Discounted Cumulative Gain), it
measures the quality of the produced ranking (varies
from 0 to 100%).

p
rel;
DCG, =Y ——
CG ;logz(i-i-l)

HR =

rel
P 27’el,; 7
IDCG, = S (7
P ; loga(i+ 1)
DCG
NDCG, = — 2
P IDCG,
p : The position in the ranking for which the gain is

calculated.
rel; : The graded relevance of the result at position .

Table [[] shows the quality of each available view for this
project in comparison to a view composed of random data.
Each value is obtained by the mean of 10 experiments of 20
epochs each. The metrics are both calculated on a top 100 and
all values are converted to percentages.

The user sessions data cannot be processed with the same
neural network architecture as the other views, as it is se-
quential data. The session view is therefore evaluated using a
3D CNN (3D Convolutional Neural Network), a convolution
model that is able to handle temporal data using three-
dimensional convolutions, it has already been used for this



TABLE I
EVALUATION OF EACH AVAILABLE VIEW IN COMPARISON TO A RANDOM

VIEW.

Evaluated view HR@100 NDCG @100
Random 66.33 +£0.08 | 19.83 +0.04
User sessions 82.01 +£0.30 | 32.42£0.36
Expert data 83.568 £ 0.10 | 34.16 +0.13
Comparability view | 83.83 +0.13 | 31.82£0.13
Compatibility view 85.37 £ 0.17 | 33.89 +£0.18
Latent user vectors | 89.56 +£0.10 | 37.21 +0.18

purpose by the authors of [7]. The used confidence interval is
the standard deviation.

The evaluation of the quality of the views shows that all
available views provide useful information to make recommen-
dation. As the evaluation is based on a top 100, the random
view obtains a HR and NDCG that might seem high, but
we can see significantly better results for the other views.
Deep composite models will therefore be able to exploit the
consensus principle on the different views to obtain the best
possible results.

B. Evaluated models

This section focuses on the different state-of-the-art models
that we have implemented, adapted and applied to our indus-
trial data within the framework of the comparative study. Our
goal is to study multi-view learning performance when applied
to the field of industrial data recommendation. We chose three
state-of-the-art models that will be compared to our Baseline, a
hybrid between eALS and a 3D CNN. The model architectures
are described and presented in a generic way in order to allow
their application on different data.

Some of the models previously presented could not be
applied to our industrial data or were too similar to other
implemented models, thus they were not selected to be part
of our comparative study.

1) Baseline: The used Baseline is based on the work
of [23] from which we used the “hybridization by feature
combination” to build this model. Its architecture is composed
of a 3D-CNN, a convolutional model capable of handling
sequential data. The input to this model is a concatenation
of the user sessions data, expert data and latent user vectors.
Therefore, it only makes use of three out of the five available
views. The views concatenation is carried out so as to keep
the temporal dimension of the user sessions data.

2) MV-DNN, Multi-View Deep Neural Network [15]: This
model is capable to handle data organized in multiple views,
it is composed of as many parallel branches as there are used
different views. Each branch of the model handles one view
and builds a dense and abstract representation of that view.
The model possesses a pivot view (corresponding to the users
data in the paper [15]) and aims to maximize the sum of the
similarities between the pivot view and all other views by
using a cosine similarity function.

For the sake of generalization and adaptation to our project,
the implemented version of this model, showed on figure |1}

Output

Dense layers

Concatenation

Dense layers

View n Input data

Fig. 1. Architecture of our implemented version of the MV-DNN.

does not make use of a pivot view and a similarity function.
In our version the results obtained from each branch are
concatenated to be used as input to a final neural network. The
output of the model is a vector associating a recommendation
weight to each Rezulteo product.

The developed model architecture is generic and can handle
as many views as necessary. All the branches are made
up of forward propagation neural networks with the same
architecture, so each branch is able to manage one static
view. The user sessions view is composed of sequential data,
therefore it cannot be exploited by this model.

3) TDSSM, Temporal Deep Semantic Similarity Model
[17]: The previously presented MV-DNN has the inconve-
nience of only being able to manage static data. In order
to make use of the total available data for this project it is
mandatory for us to use a model capable of handling both
static and sequential views.

Output

nb_items

Dense layers

Concatenation

Dense layers /
3D CNN

Static view 1 Static view n  Temporal view 1 Temporal view m  Inputdata

Fig. 2. Architecture of our implemented version of the TDSSM.

The TDSSM model extends the MV-DNN architecture by
integrating one or more recurrent models within its branches.
Rather than using a recurrent model, our implementation uses
a 3D-CNN. As for the previous model, the implemented archi-
tecture is generic so that it can manage static and sequential
views, it is represented on figure [2|

4) MV-AFM, Multi-View Attentional Factorization Ma-
chines [18)]: The MV-AFM model introduces two new con-
cepts to multi-view architectures, the hierarchical attention
concept and the concept of pairwise interactions between the
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Fig. 3. Architecture of our implemented version of the MV-AFM.

views. The purpose of those two additions is to improve the
learning capabilities of the model. Using attention mechanisms
is an increment to the work previously done on the Rezulteo
project in order to better manage the multi-view context. The
pairwise combination of the views can theoretically allow
correlating information between the views and thus improve
recommendation performance. In the initial paper [18], the
model was applied in a multi-view context on datasets from
Google Play and from the Apple App Store. The model
architecture has been slightly modified to be fully adapted
to the Rezulteo project, it is shown on figure 3] and described
more precisely below.

The model architecture is organized hierarchically, with
a feature-level attention mechanism and a global view-level
attention mechanism. There is one branch per view, each
branch starts with a model specified to handle the input data
type (static or sequential), which returns a fixed size vector.
That vector goes through an embedding layer, which generates
x vectors of size y by passing the input vector through x
linear layers in parallel, each of y neurons. Those x vectors go
through the feature-level attention mechanism which generates
a context vector that theoretically contains the most relevant
and useful information from each of the x entry vectors. The
next layer models pairwise view interactions, it operates a
Hadamard product between each context vector pair, which
makes it possible to model the interactions between all pairs
of views one by one. The view-level attention mechanism
can then generate a global context vector that brings together
all the relevant information from all the views and all their
interactions. All branches are thus gathered into one and the
final output of the model is obtained through two final linear
layers.

The feature-level attention mechanism takes the matrix F
as input, F' is composed of the x vectors of the size y

previously generated by the embedding layer. The purpose
of this attention mechanism is to extract the most relevant
knowledge from the input in order to generate a context
vector from it. The realized experiments on this model have
shown better performances with this attention mechanism than
without. The mechanism can be formalized by the following
8]

e; =q-tanh(W - F; +b)
exp(e:)
==z
> k=1 €rp(er) (®)

T
c= E Oéi~Fi
i=1

With alpha the alignment vector of size x and c the generated
context vector of size y. The variables ¢, W and b are weights
and biases that are learned during the global training of the
model.

The pairwise view interaction layer takes as input the
context vectors obtained with the feature-level attention mech-
anism from each branch, thus there is one context vector per
input view. The point of this layer is to model the interactions
between each pair of views. The resulting number of views is
o+ M, with 0 = n 4+ m, n being the number of static
input views and m the number of temporal input views. Each
interaction view is generated by the sum of the Hadamard
product between two context vectors. The size of the output
vectors is the same as the size of the input vectors, y. The
output of this layer are the o input vectors and the w
newly generated vectors, on figure 3| the o input vectors do
not appear in the layer output for the sake of clarity.

The view-level attention mechanism extracts the most useful
and pertinent knowledge from all the views and their pair
interactions. It takes as input the o + O'((’Q_l) vectors from
the previous layer and outputs one context vector of size y.
This attention mechanism is based on the same model as the
feature-level one and can therefore be formalized in the same
way [8] The generated context vector is then given as input
to two last forward propagation layers that output the final
recommendation vector.

III. INDUSTRIAL DATA AND EXPERIMENTAL PROTOCOL

We conducted our experiments on real data from an online
tire comparison tool. We have two datasets at our disposal. The
first one, noted D1, is composed of four views (user sessions
data, latent user vectors, expert data and the comparability
view), only the compatibility view is missing. The second one,
noted D2, is a subset of the first one and is composed of the
five available views. The compatibility view, missing from D1,
is built for D2 by re-executing user queries to obtain the list
of all the products that are compatible with the query. Table
[ summarizes the volume of the two datasets:

From the datasets volume it can be seen that there is about
one session per user, which means that users usually only use
the recommender system once, and therefore it is impossible
for us to create a user profile. Without user profiles our



TABLE 11
DATASETS VOLUME.
Dataset | Sessions | Products | Interactions Users
DI 114,359 7,726 307,231 102,613
D2 50, 241 3,268 144,095 46,148

recommender system is subject to the cold-start issue, which
means that the system has to recommend product to a user
for whom it has no previous information. Furthermore, the
data that is collected during the system utilization is implicit
interactions between the user and the system, thus in our case
it is not possible to rely on explicit user ratings or feedback
as is usually the case with recommender systems. It should
also be noted that the system does not collect information
regarding the purchase of a product by the user, since the
user is redirected to the merchant site if he is interested in a
product, which further complicates the recommendation.

Our goal is to evaluate the four selected model performances
on our two available datasets. Our Baseline will serve as a
benchmark for comparison. The metrics used to evaluate the
models are the same as those used in the previous evaluation
of the views: HR and NDCG. Each interaction between the
user and Rezulteo concerns a product, the target variable that
the models learn to recommend is the product concerned by
the next user interaction.

In order to keep a consistent comparison between the
two datasets, we balanced the size of the ranking to be
recommended depending on the number of products included
in each dataset. The dataset D1 contains about 2.36 times as
many products as the second, thus models using D1 will be
evaluated on a top 236 and a top 12, while those using D2
will be evaluated on a top 100 and a top 5.

IV. COMPARATIVE STUDY

Table [l1I| shows the number of trainable parameters for each
selected model, depending on the used dataset, therefore de-
pending on the number of products that can be recommended.

MODELS EVALUATION USING DATASET D1.

TABLE IV

Metric Baseline MV-DNN TDSSM MV-AFM
HR@236 92.12+0.13 93.45 £ 0.14 93.39 £ 0.16 93.47 + 0.21
HR@12 49.04 £ 0.40 51.36 + 1.50 52.02 + 1.02 51.11+0.65
NDCG@236 | 34.64+0.21 | 35.12+0.97 | 35.06 +0.76 34.55 +0.36
NDCG@12 26.36 + 0.26 26.97 +1.23 26.98 + 0.96 26.29 + 0.43
TABLE V
MODELS EVALUATION USING DATASET D2.
Metric Baseline MV-DNN TDSSM MV-AFM
HR@100 88.51 +£0.15 | 91.79 £ 0.17 91.82 +£0.12 91.91 + 0.22
HR@5 33.18 £0.28 | 40.13£0.26 40.22 +0.38 40.33 +0.54
NDCG@100 | 35.30+0.17 | 39.84 +0.16 | 39.87 £0.17 39.57 £ 0.38
NDCG@5 21.93+0.22 | 27.09+£0.22 | 27.13 £0.31 26.78 £+ 0.49

TABLE III
COUNT OF TRAINABLE PARAMETERS PER MODEL AND PER DATASET.
Dataset Baseline MV-DNN TDSSM MV-AFM
D1 8,094,087 | 12,036,431 | 12,187,687 | 10,490,119
D2 3,524,637 | 6,907,973 7,059, 229 5,752,477

Tables and [V] show the performance of the models
evaluated on datasets D1 and D2. Bold values are the highest
values for each metric. Each value is obtained by the mean of
20 experiments for which the seed of the stochastic gradient
descent varies. Each experiment is performed for 50 epochs
for the Baseline and 10 epochs for the other models. Indeed,
multi-view models converge faster than the Baseline, thus the
training time of those models is shorter.

From these results it can be observed that the three models
using the multi-view approach obtain better results than the
Baseline. This shows that the multi-view approach is relevant

and effective for our project. We can notice that the MV-AFM
model obtains slightly better results than the others for the Hit
Rate metric, and that the TDSSM gets better results for the
NDCG metric. It may therefore be appropriate to use the MV-
AFM if one wishes to maximize the chances of recommending
the most coherent product and to use the TDSSM if one wishes
to achieve a more relevant ranking. However, given the very
narrow range of performance between the three multi-view
models it is not possible to say for sure that one of those
models is superior to the others.

In order to be able to distinguish the recommendation
performance of the three multi-view models and to investigate
why the MV-AFM seems to perform better on the Hit Rate
and the TDSSM on the NDCG metric, it would be necessary
to conduct a more thorough study that would compare their
performance on various datasets and not only on a real case
as was the case in this study.

Figures [ and [5] show the attention level associated with
each view and views interaction within the MV-AFM model,
averaged over 1000 predictions. The y-axis represents the
attention level in percentage and the x-axis shows the views
and their interactions. The views are noted as follows:

o 3d : User sessions view, handled by the 3D-CNN.

e uv : Latent user vectors.

o cd : Expert data.

e cr : Comparability view.

o ct : Compatibility view.

o Interactions between views are noted “view 1 x view 2”.
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Fig. 4. Average attention levels for the MV-AFM on dataset D1.
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Fig. 5. Average attention levels for the MV-AFM on dataset D2.

It can be noted that, in both cases, the majority of attention
is paid to the latent user vectors (uv), which is in line with
the previously conducted evaluation of views that had achieved
the best results with this view. In the case of D1 the expert
data (cd) are also widely exploited and the sequential view of
user sessions seems to be of interest when correlated with
user vectors (3dxuv) and expert data (3dxcd). In the case
of D2 we find a similar pattern with the addition of the
compatibility view (ct) which is logically of capital importance
in determining recommendations that are consistent with the
user’s query.

V. CONCLUSION

In this paper, we presented three state-of-the-art models
making use of the multi-view learning approach and applied
to tire recommendation. We presented the results of a compar-
ative study between three multi-view models and our Baseline
applied to real industrial data. We observed that the models
using the multi-view approach obtained better results than our
Baseline, thus demonstrating the relevance of the multi-view
approach for recommendation. The TDSSM model showed the
best results for the NDCG metric, which shows its ability to
generate a relevant recommendation ranking, while the MV-
AFM, using attention mechanisms, obtained the best results for
the Hit Rate metric, which shows a higher accuracy in recom-
mending the target product. Further experiments are planned
to evaluate the characteristics of the models that explain a
better result on one metric or another. The compared models
managed to achieve a remarkable recommendation quality
given the constraints the system faces (cold-start problem,
implicit interactions and no purchase confirmation).
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