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Abstract
Over the past two decades, several studies have paid great attention to biometric palmprint recognition. Recently, most

methods in literature adopted deep learning due to their high recognition accuracy and the capability to adapt with different

acquisition palmprint images. However, high-dimensional data with a large number of uncorrelated and redundant features

remain a challenge due to computational complexity issues. Feature selection is a process of selecting a subset of relevant

features, which aims to decrease the dimensionality, reduce the running time, and improve the accuracy. In this paper, we

propose efficient unimodal and multimodal biometric systems based on deep learning and feature selection. Our approach

called simplified PalmNet–Gabor concentrates on the improvement of the PalmNet for fast recognition of multispectral and

contactless palmprint images. Therefore, we used Log-Gabor filters in the preprocessing to increase the contrast of

palmprint features. Then, we reduced the number of features using feature selection and dimensionality reduction pro-

cedures. For the multimodal system, we fused modalities at the matching score level to improve system performance. The

proposed method effectively improves the accuracy of the PalmNet and reduces the number of features as well the

computational time. We validated the proposed method on four public palmprint databases, two multispectral databases,

CASIA and PolyU, and two contactless databases, Tongji and PolyU 2D/3D. Experiments show that our approach achieves

a high recognition rate while using a substantially lower number of features.

Keywords Biometrics � Deep learning � Gabor filters � Feature selection � Dimensionality reduction � Multispectral

palmprint � Contactless palmprint

1 Introduction

The fast growth of modern human civilization has led to an

increasing demand for new and efficient technologies to

sustain it. Alongside, security and privacy concerns have

emerged, and the usage of highly reliable and accessible

individual authentication and identification techniques

became crucial. Biometrics has emerged to address this

need and has become a science that studies physiological

and behavioral characteristics of the human body to rec-

ognize an individual’s identity.

Biometric technologies focus on techniques that auto-

matically authenticate both stable human traits, such as

DNA, fingerprint [1], faces [2], iris [3], palmprint, and

human behavioral traits such as gait [4], voice [5],

keystroke [6], and signature [7]. Among these, palmprint

recognition has shown itself to be one of the essential

biometric technologies, attracting significant attention.

The palmprint images contain rich features such as

principal lines, wrinkles, and minutiae. They are relatively

stable, and their captured images are easy to obtain [8, 9].

They can be categorized according to the way of their

acquisition. Therefore, they can be divided into two cate-

gories of palmprint images, contact-based and contactless.

The main difference between them is whether the hand is in

touch with the acquisition device or not [10]. The first type

of image is gathered by placing the palms on the device

and using user-pegs, while the second type is obtained

without contacting the device’s surface [11].

A biometric system can be divided into two categories,

unimodal and multimodal biometric systems. The uni-

modal biometric system is designed to recognize
Extended author information available on the last page of the article
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individuals based on a single biometric trait’s information.

That system suffers from some limitations and cannot

provide satisfactory recognition accuracy. The multimodal

biometric system integrates information from multiple

biometric traits. It is more secure than a unimodal system

and can solve a variety of problems, including noisy sensor

data, non-universality, distinctiveness, and the lack of

biometric traits. The combination of modalities provides

efficient means for improving the performance and relia-

bility of the biometric system [12].

The main component of a biometric system is feature

extraction. It extracts only the discriminant information

from the acquired image to create a new representation that

should be essentially unique to each person [13]. Deep

learning techniques, which provide a better representation

of the image, have become popular methods for this pur-

pose. The main benefit of deep learning methods is their

ability to generate efficient and discriminative features

from the biometric image. Recently, many feature extrac-

tion methods based on deep learning techniques have been

proposed in the literature [14, 15].

Since feature extraction is an essential part of the

recognition task, predicting performance and reducing the

computation required can be achieved by using Feature

Selection (FS). This latter is an essential component of

machine learning and data mining, which has been studied

for many years under different conditions and in diverse

scenarios [16]. These algorithms aim to rank and select a

subset of related features based on their degrees of pref-

erence, relevance, or importance, as defined in a particular

application. Since feature selection may reduce the number

of features needed to train classification models, it miti-

gates the effect of dimensionality’s curse, speeds up the

learning process, improves model performance, and pro-

motes data understanding.

In this paper, inspired by the work of PalmNet [17], we

will propose efficient biometric identification systems

based on palmprint traits. To accomplish this, we suggest

applying Log-Gabor filters in the preprocessing step to

adjust the pixel luminance of palmprint images. After, we

process to extract the discriminant information by using an

adaptive Gabor-based filter tuning procedure [17]. To

improve the recognition rate as well as reduce the size of

large feature vectors and the computational time, we use

feature selection and dimensionality reduction procedures.

Additionally, we employ a Support Vector Machines

(SVM) classifier instead of the K-Nearest Neighbor (KNN)

classifier based on the Euclidean distance, with K=1 (de-

noted by 1-NN in the following). For the multimodal sys-

tem, we fuse modalities at the matching score level to

improve system performance. To validate our method, we

applied it to several public palmprint databases containing

images of distinct qualities, resolutions, and dynamic

ranges. We also carried out comparisons with several

recent state-of-the-art methods.

The main contributions of this work are as follows:

– The development of effective unimodal and multimodal

biometric systems for palmprint recognition.

– Improvement of palmprint images using log-Gabor

filters by adjusting pixel luminance.

– Using feature selection with dimensionality reduction

significantly reduced the features vector size with a

reduction rate of 0.003 %, which allowed reducing

computational time without degrading the performance

of our recognition systems.

– Employing the SVM classifier instead of the 1-NN

classifier as in the paper [17]. Experimental results

demonstrate that our methodology scored a higher

recognition accuracy than existing approaches in the

literature.

The rest of the paper is organized as follows: Sect. 2

summarizes earlier works on biometric systems based on

multispectral and contactless palmprint databases. Sec-

tion 3 introduces the proposed approach of unimodal and

multimodal identification systems for palmprint recogni-

tion. The experimental results are given in Sect. 4, which

reports the obtained experimental results. Finally, Sect. 5

Table 1 Table of Abbreviations

Abbreviation Definition

CMC Cumulative Matching Characteristic

CNN Convolutional Neural Network

CPU Central Processing Unit

EER Equal Error Rate

FAR False Acceptance Rate

FRR False Rejection Rate

FS Feature Selection

GAR Genuine Acceptance Rate

kNN k-Nearest Neighbor

MUL Product score

PCA Principal component analysis

ROC Receiver operating characteristic

ROI Region of interest

ROR Rank one recognition

RPR Rank of perfect rate

SUM Sum score

SVM Support Vector Machine

WHT MUL Product weighted score

WHT SUM SUM weighted score

WPCA Whitening principal component analysis
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concludes the paper. To facilitate reading, Table 1 presents

the list of abbreviations and definitions.

2 Related works

Palmprint recognition has enjoyed great research popular-

ity for identity authentication and identification in recent

years. It has many unique advantages, e.g., the richness of

features, high user-friendliness, suitability for private

security, etc. [18]. There are many palmprint identification

systems that exhibit encouraging results, but there is a need

to improve the performance of the existing systems. State-

of-the-art methods can be broadly organized into two main

categories: Handcrafted-features-based and deep-learning-

based approaches.

The texture features are an important low-level feature

in palmprint recognition [19] that can describe the contents

and details of a specific region in an image, and for that,

several handcrafted features-based approaches are based on

the analysis of image texture information and provide

precise features for the best palmprint recognition rate.

Zhang et al. [20] supplied a multispectral palmprint

recognition approach that captured palmprint images under

four bands: Red, green, blue, and near-infrared light. A

score-level fusion of these bands achieved superior per-

formance compared to any single band. Jing et al. [21] used

a two-dimensional (2D) separability judgment to select

DCT frequency bands with appropriate linear separability.

Then from the given bands, it extracts the linear discrim-

inant features by optimized Fisherface method and classi-

fies by nearest neighbor classifier. Luo et al. [22] proposed

a new image descriptor, local line directional patterns

(LLDP). This work shows that different implementations

of LLDP descriptors perform competitively in palmprint

recognition. Kang et al. [23] presented a novel recognition

approach for contact-free palm-vein recognition that per-

forms feature extraction and matching on all vein textures

distributed over the palm surface, including finger veins

and palm veins, to minimize the loss of features informa-

tion. First, a hierarchical enhancement algorithm is adop-

ted, which combines a DOG filter and histogram

equalization to alleviate uneven illumination and highlights

vein textures. Second, a Root Scale Invariant Feature

Transform (RootSIFT), a more stable local invariant fea-

ture extraction method compared to Scale Invariant Feature

Transform (SIFT), is used to overcome the projection

transformation in contact-free mode.

Recently, many systems and applications have used

deep learning for biometric identification. The deep net-

work is trained on a variety of patterns. Once the network

has learned all the unique features of the dataset, it can be

used to recognize similar patterns. Deep learning

approaches have been used primarily to learn features for

palmprint recognition. Deep learning can also be very

efficient in classification (supervised learning) and clus-

tering (unsupervised learning) tasks. In a classification task,

the system classifies the input instances based on their

corresponding class labels, while in clustering, the instan-

ces are grouped based on their similarity without the need

for class labels. Clustering can be used for several well-

known problems, such as recommender systems [24] [25]

[26]. Several approaches described below are based on

deep learning with classification and clustering.

Wang et al. [27] proposed 2D Gabor wavelets for

palmprint images. They used a Pulse-Coupled Neural

Network (PCNN) to imitate the creatural vision perceptive

process and decompose each Gabor subband into a series

of binary images. Entropies for these binary images are

calculated and regarded as features. An SVM classifier is

employed for classification. Minaee and Wang [15] pro-

posed deep scattering convolutional network with a two-

layer for palmprint recognition. Then Principal Component

Analysis (PCA) is applied to reduce the dimensionality of

the data. For classification, a multi-class SVM and the

nearest neighbor classifier are used. Svoboda [28] proposed

a Convolutional Neural Network (CNN) based on the

AlexNet model and trained by optimizing a loss function

related to the d-prime index to achieve a better genuine/

impostor score distribution separation of touchless palm-

print databases. Meraoumia et al. [14] proposed Principal

Component Analysis Network (PCANet) deep learning-

based feature extraction using two stages. Then four clas-

sifiers (SVM, Radial Basis Function - RBF, Random Forest

Transform—RFT, and KNN) are used with the supervised

procedure. The testing was performed on multispectral

palmprint databases.

Cheng et al. [29] proposed Deep Convolutional Fea-

tures-Based Supervised Hashing (DCFSH). They used

CNN-F architecture to extract the palmprint convolutional

features, followed by learning binary coding from distilled

deep features. DCFSH is evaluated on a multispectral

palmprint database. The Hamming distance is employed in

the matching steps. Zhong et al. [30] proposed a new

method to achieve end-to-end palmprint recognition using

Siamese network. In their network, two parameter-sharing

Visual Geometry Group-16 (VGG-16) networks were used

to extract convolutional features of two input palmprints

images, and the top network directly got the similarity of

two input palmprints based on their convolutional features.

Bensid et al. [19] proposed a simple new deep learning

feature extraction algorithm for an efficient multispectral

palmprint identification system called Discrete Cosine

Transform Network (DCTNet).

Genovese et al. [17] proposed PalmNet, which is a

convolutional network that uses Gabor responses and PCA
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filters through an unsupervised procedure applied on dif-

ferent touchless palmprint databases and uses the 1-NN

classifier based on the Euclidean distance for classification

step. Besides, Zhao et al. [33] proposed a joint constrained

least-square regression (JCLSR) model with deep convo-

lutional neural networks to solve the under-sampling

classification problem by extracting different deep local

convolution features using different patches of the same

palmprint image. The experiments of the proposed method

(JCLSR) are performed on touchless and multispectral

palmprint databases. Table 2 include a summary of deep

learning methods for palmprint recognition.

Fei et al. [31] proposed LRRIPLD which is a new Low-

Rank Representation (LRR) model integrated with princi-

pal line distance for contactless palmprint recognition.

LRRIPLD generates a graph that is more distinct than LRR

because main line distances effectively improve clustering

results by increasing the weights of the links between

Table 2 A summary of published deep learning approaches for Palmprint Recognition

Authors Year Databases Performance Train /Test

(%)
Methods Name N.

ind

N.

samp

EER

(%)

ROR

(%)

Wang et al. [27] 2012 2-D-Gabor wavelet and pulse-coupled neural

network

PolyU 193 7752 – 97.37 50/50

Minaee and Wang

[15]

2016 Deep scattering convolutional network PolyU 500 6000 – 100 50/50

IITD 460 2300 1.640 –

Svoboda et al. [28] 2016 AlexNet, Discriminative index learning CASIA 312 2751 1.860 – 50/50

Fei et al. [31] 2016 LRRIPLD IITDT 230 2600 – 91.78

GPDST 100 1000 – 91.30 –

CASIAT 312 5500 – 95.05

Meraoumia et al.

[14]

2017 PCANet with two stages PolyU 500 6000 0.000 100 33.33/

CASIAM 100 1200 0.125 99.50 66.67

CASIA 100 1200 0.006 99.83 50/50

Cheng et al. [29] 2017 DCFSH PolyU 193 7752 0.000 – –

PolyU 500 6000 0.281 –

Zhong et al. [30] 2018 Siamese network XJTV 114 2078 4.559 –

PolyU 500 6000 0.000 100

CASIAM 100 1200 0.111 99.33 25/75

PolyU 500 6000 0.000 100

Bensid et al. [19] 2018 DCTNet with Two-stages CASIA 100 1200 0.003 99.83 50/50

CASIAT 624 5455 0.720 99.77

IITDT 467 2669 0.520 99.37

RESTT 358 1937 4.500 97.16

Genovese et al. [17] 2019 PalmNet–GaborPCA TongjiT 600 5182 0.160 99.83 50/50

CASIA 312 2750 – 99.84

PolyU 500 6000 – 100

Zhao et al. [33] 2020 JCLSR IITDT 230 2601 – 98.17 70/30

CASIA 312 2496 0.031 99.98

ITTDT 460 1841 0.390 99.62

TongjiT 193 6000 0.530 97.85

Arora et al. [32] 2021 PalmHashNet PolyU

II

300 3860 0.011 99.83 –

–N. ind = Number of individuals

–N. samp = Number of samples

–M= Multispectral database

–T= Touchless database
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similar samples. The approach is tested on three palmprint

databases IITD-Touchless, GPDS-Touchless, and CASIA.

Arora et al. [32] introduced PalmHashNet, a novel

indexing method that learns compact feature vectors for

palmprint identification. They used the Softmax loss

function with additive margin to train the model to index

the palmprint database and to simultaneously learn the

feature vector embeddings. Furthermore, to generate an

index table, the learned embeddings are indexed using the

k-means clustering and locality sensitive hashing tech-

niques. PalmHashNet is evaluated on four publicly avail-

able palmprint databases CASIA, IITD-Touchless, Tongji-

Contactless, and PolyU II.

As we studied above about the state-of-the-art of the

existing palmprint recognition, all authors have relied their

research on feature extraction using deep learning. Thus, a

large number of features are obtained, which causes com-

putational complexity problems, and in order to solve

them, this paper presents feature selection and dimen-

sionality reduction schemes to get higher performance and

reduce the computational time.

3 Proposed approach

Figure 1 shows the block diagram of the proposed uni-

modal palmprint identification system, composed of five

steps: Preprocessing; feature extraction; feature selection

and dimensionality reduction; classification and matching;

decision. Every unimodal system calculates its own

matching score. For the multimodal system, these indi-

vidual scores are eventually combined or fused at the

matching score level into a total score used by the decision

module. A final decision is made based on this matching

score (the user is identified or not). This structure can

improve the proficiency of a unimodal system and be used

to solve some of its limitations.

3.1 Preprocessing

The preprocessing step can be divided into three separate

tasks: (a) extracting the Region of Interest (ROI) from the

palmprint image, (b) resize the ROI palmprint images, and

(c) applying the Log-Gabor filter (see Fig. 2). First, the

surface of the palm image is segmented for extracting the

Region Of Interest (ROI). The ROI attempts to get only the

area where the hand has useful information. For that, we

have to align the palmprints by using the algorithm men-

tioned in [34]. The central part of the image, which is

128� 128, is then cropped to represent the whole palm-

print. Second, we resize the ROI to dimensions of 32� 32

pixels in order to reduce the computational time. In the last

step of the preprocessing module, and to enhance the ROI

image of palmprint, a Log-Gabor filter is applied to provide

a better enhancement with its good smoothening charac-

teristics based on performance and quality measurements

that have been empirically observed (Fig. 2d). The log-

Gabor filter is a derivative of the standard Gabor filter. The

log-Gabor frequency response is Gaussian in the logarith-

mic frequency scale, as opposed to the standard Gabor that

has Gaussian frequency response in a linear scale. The log-

Gabor frequency response is described by (Eq. 1):

GðwÞ ¼ exp
� logðw=w0Þð Þ2

2 logðk=w0Þð Þ2

 !
ð1Þ

Where w0 is the centre frequency of the filter, and the

bandwidth is determined by the k
w0

term. The parameters of

Log-Gabor filter were experimentally selected as w0 = 1/3

and k = 0.65.

3.2 Features extraction

Feature extraction is a key module for recognition systems.

The acquired biometric data are processed, and only the

salient information is extracted to form a new representa-

tion of the data. Ideally, for each person, this new repre-

sentation should be unique. In our scheme, to extract highly

discriminative palmprint features, PalmNet deep learning is

used to extract the features vector of each data type. It is a

particular case of an image classification deep learning

baseline, which consists of three stages: (1) convolutional

stage, (2) binarization stage, (3) histograms stage. Thus, the

block diagram of PalmNet algorithm is presented in Fig. 3

and can be summarized as follows [17]:

Fig. 1 Flowchart of the proposed approach
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3.2.1 Convolutional stage

As shown in Fig. 3, the convolution process is ensured by

two layers of the Gabor filter bank:

– First convolutional layer (L1) consisting of k1 filters.

Each filter is convolved with the input image (layer L0
with dimensions of u� v). Thus, the output of this layer

consists of k1 images with dimensions of u� v. So,

Il1ði; jÞ ¼
X
m

X
n

hl1ðm; nÞIl0ði� m; j� nÞ;

1� l1 � k1

ð2Þ

Where Il0 represents the input image of layer L0 to be

convolved with the filter hl1 to produce the output image Il1
of layer L1. The indices i and j deal with the images while

m and n work with the filters.

– Second convolutional layer (L2) consisting of k2 filters.

Each filter is convolved with the output of layer L1.

Thus, the output of this layer consists of k1k2 images

with dimensions of u� v.

Il1l2ði; jÞ ¼
X
m

X
n

hl2ðm; nÞIl1ði� m; j� nÞ;

1� l1 � k1 and 1� l2 � k1k2

ð3Þ

Where Il2 represents an image of the k1k2 output filtered

images. hl2 is a filter of layer L2.

The significance of this part is that we used two types of

filters, fixed-scale Gabor filters and adaptive multiscale

Gabor filters. In the first type, we created a set of fixed

scale 2� D Gabor filters with dimensions of h1 � h2, as

products of a sinusoidal wave with a Gaussian function

[17]. In the second type, we first computed a set of adaptive

orientations from the training subset of palmprint ROI.

Fig. 2 The main tasks of

preprocessing step. a input

image, b ROI palmprint

extraction, c Image resizing, and

d results of Log-Gabor filter

Fig. 3 Topology of the proposed network
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Then, we computed a bank of multiscale Gabor filters with

the computed orientations. Finally, we selected the filters

that get the greatest magnitude responses with dimensions

of g1 � g2 where g1 � g2 ¼ 4 � 2mf . The value of mf is

computed as mf ¼ 0; 1; � � � ; � � �M½ �, where M equal to M ¼
log2ðu=2Þ½ � and u is the horizontal size of the ROI images

[17]. So, the number of filters chosen for each layer of the

network, i.e., k1 and k2, consists of F þ A0 filters, corre-
sponding to F fixed-scale 2� D Gabor filters and A0

adaptive multiscale 2� D Gabor filters.

3.2.2 Binarization stage

In this stage, the k1k2 output images obtained from the

output of the second layer are converted to binary format

using a Heaviside step function illustrated by the following

equation:

Bl2ði; jÞ ¼
1 if Il2ði; jÞ[ 0

0 otherwise

�
ð4Þ

Where Bl2 is a binary image. In total, we obtain k1 groups

of binary images, each containing k2 binary images Bi, with

i ¼ 1; 2; . . .; k2. These images have the same dimensions of

u� v. For each position (i, j), by concatenating the binary

values of all k2 binary images, we obtain:

b ¼ B1ði; jÞ;B2ði; jÞ; � � � ;Bk2ði; jÞ½ � ð5Þ

We convert the binary vector b into a decimal number as

follows:

d ¼
Xk2
k¼1

2k�1bðkÞ ð6Þ

This process is repeated for each position (i, j). Finally, we

obtain a decimal matrix D(i, j) that describes the whole k2
binary output image group.

Likewise, the decimal matrices Dl are determined for all

k1 binary images groups, with l ¼ 1; 2; � � � ; k1.

3.2.3 Histograms stage

In this stage, each Dl matrix is partitioned into nB non-

overlapping (disjoint) blocks with dimensions of bl � b2,

and their histograms are computed. Each histogram con-

sists of 2k2 bins. Thus, a features vector H is obtained by

concatenating the histograms for all blocks of all images

Dl, where:

Hj j ¼ k1nB2
k2 ð7Þ

In conclusion, to achieve the best recognition accuracy, the

hyperparameters of the PalmNet include the number of

filters in each layer k1 and k2, and the values of b1 and b2
are experimentally tuned.

3.3 Feature selection and dimensionality
reduction

Feature selection (Fs) is a significant component of

machine learning, computer vision, artificial intelligence,

and data analysis. The aim of feature selection is to select

useful features and remove redundant information. In this

section, we use the feature selection and dimensionality

reduction methods as follows: (i) Fisher score algorithm (as

feature selection method), (ii) ReliefF algorithm (as feature

selection method) and (iii) Whitening Principal Component

Analysis (WPCA) algorithm (as dimensionality reduction

method).

Feature selection algorithms can be divided into three

groups [35]:

– Wrappers method that uses classifiers to score a

particular subset of features;

– embedded methods that insert the selection process into

the classifier’s learning process;

– filter methods that analyse intrinsic properties of data,

ignoring the classifier [36].

We aim to use feature selection algorithms to rank and

select a subset of pertinent features based on their degree of

importance, preference, or significance as specified in an

application, since the number of features used for training

classification models can be decreased by the selection of

features. Furthermore, dimensionality reduction reduces

the impact of the dimensional curse, reduces time and over-

fitting, improves training model, and data comprehension.

While feature selection can be used in both supervised

and unsupervised learning, we will focus our study on

supervised learning (classification) methods in which the

class labels are known ahead of time. The interesting topic

of feature selection for unsupervised learning (clustering)

is a more complicated issue, and research in this field is

recently getting more attention in several communities. In

recent years, a variety of feature selection methods have

been exploited for clustering paradigms, for example

[37–41].

3.3.1 Fisher score algorithm

Fisher score is one of the most common supervised feature

selection methods. We used a linear discriminant approach

based on Fisher’s score, which evaluates the discriminating

power of features. The score is given by:

Wi ¼
Pc

j¼1 Nj:ðmj � �mÞ2Pc
j¼1 Njr2j

ð8Þ

Where Wi is the score of features i, c is the number of

classes, Nj is the number of samples in class j, �m is the
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feature mean. mj and r2j are the mean and the variance of

the class j in the intended feature.

3.3.2 ReliefF algorithm

Kira and Rendell [42] formulated the original Relief

algorithm inspired by instance-based learning, which is

optimized for two-class problems without losing values.

The basic idea of the algorithm, when analysing learning

instances, is to take into account not just the difference in

features values and the variation in classes but also the

distance between the instances. In the features space, dis-

tance is calculated so that similar instances are close to

each other and far apart, and dissimilar ones are far away.

By taking into account the similarity of instances, the

context of all the features is implicitly considered [35]. For

each instance, from a random subset of m (m 6 M),

learning instances compute the closest instance of the same

class (near hit xH) and the closest instance of the opposite

class (near miss xM). Then it updates the quality of each

feature (see Eq. 8).

W ½i� ¼ W ½i� � diff ði; xk; xHÞ=mþ diff ði; xk; xMÞ=m ð9Þ

Kononenko et al. [43] propose a number of updates to

Relief. First, they found the near hit ðxHÞ and near miss

ðxMÞ instances using the Manhattan (L1) norm rather than

the Euclidean (L2) norm, although the rationale is not

specified. Second, they found taking the absolute differ-

ences between xk and near hit ðxHÞ, and xk and near miss

ðxMÞ to be sufficient when updating the weight vector

(rather than the square of those differences), which can

deal with multiclass problems.

3.3.3 Whitening principal component analysis (WPCA)
algorithm

Principal Component Analysis (PCA) is the most popular

dimensionality reduction technique widely used in machine

learning to reduce the features’ redundancy for efficient

palmprint recognition. However, PCA has two weaknesses:

The performance of PCA is degraded when using its

leading eigenvalues and the weak discriminating in its

eigenvectors. WPCA is PCA with an extra step: whitening

the eigenvectors by eigenvalues. The whitening step is

simple but very effective; it helps to rectify the deficiencies

of PCA, where (i) the features are less correlated with each

other, and (ii) the features all have the same variance.

Therefore, making the palmprint recognition system

achieve better performance.

3.4 Classification and feature matching
procedures

A person’s identity can be ascertained through the classi-

fication and feature matching process. The feature vectors

of the training set issued by the feature extraction module

are used for classification. In our work, we used two

classifiers, a 1-NN classifier based on the Euclidean dis-

tance and a multi-class SVM classifier with Gaussian

kernel. The first classifier arranges a sample based on the

category of its nearest neighbour. It basically consists of

finding the similarity between the test model and each

model of the training set. The second classifier uses a set of

training data that enables a hyperplane to separate the best

points [44].

A matching process is intended to compare the test

features vectors against the stored templates (training set)

to generate match scores. The match score is a measure of

the similarity or dissimilarity between the template and the

test. Therefore, a higher match score indicates a greater

similarity between the template and the query. If a matcher

measures the dissimilarity between the two feature sets, the

score is denoted as a distance score. A lower distance score

points to higher similarity.

3.5 Normalization and fusion procedures

In multimodal systems, the normalization method widely

used allows each measured score to be converted into a

common interval. Min�Max is the type of normalization

mostly used in biometric recognition systems. This tech-

nique is most appropriate where the limits (minimum and

maximum values) of the scores produced by the systems

are known [45]. So, we can conveniently convert the

minimum and maximum values of the scores vector into 0

and 1, respectively. The following formula gives the score

normalized by the Min�Max method.

cVd ¼ Vd � minðVdÞ
maxðVdÞ � minðVdÞ

ð10Þ

Where the vector Vd includes all the scores calculated

between the test and all the stored feature vectors, while the

vector cVd comprises the normalized scores.

Score level fusion is the most commonly used biometric

information fusion strategy since matching scores are

readily available, and they retain enough information to

distinguish genuine matching from impostor matching.

There are several matching score fusion rules that integrate

normalized matching scores of a user to produce the final

matching score. In our work, we conducted the experiment

with four fusion rules: sum-score rule (SUM), product
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score rule (MUL), SUM-weighted-score (SUM MUL), and

product-weighted-score (WHT MUL) [45].

– Simple Sum rule: This rule takes the sum of the N

unimodal systems matching scores of the k th user as

the final matching score Sk of this user. Sk is calculated

as follows:

Sk ¼
XN
i¼1

Ski ð11Þ

– The product rule: This rule presents the multiplication

result of the N unimodal systems matching scores of the

k th user as the final matching score of this user, which

is expressed as follows:

Sk ¼
Y

i¼1;2;:::;N

Ski ð12Þ

– The weighted Sum rule: This rule can define the final

matching score of the k th user, which is calculated as

follows:

Sk ¼
XN
i¼1

wiSki ð13Þ

– The weighted Product rule: This rule can determine the

final matching score of the k th user, which is shown as

follows:

Sk ¼
Y

i¼1;2;...;N

Swi

ki ð14Þ

Where wi represents the weight of the matching score

of the i th biometric trait of the k th user, which is

calculated as follows:

wi ¼
1

EERiPN
j¼1ð 1

EERj
Þ

ð15Þ

3.6 Simplified PalmNet gabor algorithm

The proposed approach uses an innovative procedure based

on deep learning and feature selection for palmprint

recognition. First, we apply Log-Gabor filters in the pre-

processing step to adjust the pixel luminance of palmprint

images. Then, in order to extract discriminative palmprint

features, we use the PalmNet Gabor network [17] in feature

extraction. Additionally, we employ a Support Vector

Machines (SVM) classifier and K-Nearest Neighbour

(KNN) classifiers. The key idea of our approach is to use

feature selection and dimensionality reduction procedures

to improve PalmNet Gabor performance and reduce feature

vector size. Therefore, we use the Fisher score and ReliefF

feature selection algorithms and dimensionality reduction

WPCA algorithm. For the multimodal system, we com-

bined modalities at the matching score level to improve

system performance. To validate our method, we applied it

to several public palmprint databases.

4 Experiments and results

This section presents the experimental evaluation, by

conducting experiments on four popular and publicly

available databases which are CASIA multispectral palm-

print, PolyU multispectral palmprint, Tongji contactless

palmprint, and PolyU 2D/3D contactless palmprint. First,

we give a brief description of the adopted palmprint data-

bases (Sect. 4.1). Second, we present the setup of our

approach in the experimental setup (Sect. 4.2). Finally, in

the experimental results (Sect. 4.3), we discuss and analyse

the results.

4.1 Databases

The proposed method is tested using four publicly avail-

able palmprint databases; the CASIA and PolyU multi-

spectral databases and Tongji and PolyU 2D/3D contactless

databases. The aim of employing contact-based and con-

tactless databases is to verify the robustness and high

efficiency of our method. A description of these databases

is given below.

4.1.1 CASIA multispectral palmprint database V1.0

The CASIA Multispectral Palmprint Image Database

comprises 7,200 palm images obtained from 100 different

individuals using self-designed multiple spectral imaging

devices described in [46]. In this database, the images of

each hand are collected in two separate sessions. The time

interval between two sessions is more than one month. In

each session, there are three samples. Each sample includes

six palm images, which are captured at the same time with

six different electromagnetic spectrums. Wavelengths of

the illuminator corresponding to the six spectrums are 460,

630, 700, 850, 940 nm, and white light, respectively (see

Fig 4). Between two samples, certain degrees of variations

of hand postures are allowed. All palm images are low

resolution \150dpi stored as 8-bit gray-level images per

band with dimensions of 128� 128.

4.1.2 PolyU multispectral palmprint images database

PolyU Multispectral Palmprint Images Database comprises

6000 images obtained from 500 different palms for each

band using palmprint images capturing device designed by

Hong Kong Polytechnic University researchers described
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in [47]. The multispectral database contains cropped mul-

tispectral palmprint images of four different bands (Red,

Green, Blue, and NIR) are shown in Fig 5. The images

were collected in two separate sessions at a time interval of

about two months. In each session, the person provides 6

images per palm, so there are 12 images for each person.

Therefore, 48 spectrum images of all illumination from 2

palms were collected from each person. The average time

interval between the first and the second sessions was about

nine days. Also, all palm images are low resolution

\150dpi stored as 8-bit gray-level images per band with

dimensions of 128� 128.

4.1.3 Tongji contactless palmprint dataset

Tongji Contactless Palmprint Dataset comprises 12,000

images obtained from 600 different palms using the pro-

prietary touchless acquisition device described in [48].

Tongji University collected images from 300 volunteers,

including 192 males and 108 females. Among them were

235 people between the ages of 20 and 30 and the others

between the ages of 30 and 50. The left and right samples

were collected in two separate sessions (see Fig 6). In each

session, the person provides ten images per palm. There-

fore, 40 images from 2 palms were collected from each

person. The average period of time between the first and

second sessions was approximately 61 days. The minimum

and maximum time intervals were 21 days and 106 days,

respectively. All palm images are stored as 8� bit gray-

level images per band with dimensions of 128� 128.

4.1.4 PolyU 2D/3D contactless palmprint dataset

The PolyU 2D/3D Contactless Palmprint database contains

8000 images collected from 400 palms of 200 volunteers.

The Bio-Research Center (UGC/CRC) of Hong Kong

Polytechnic University [49] created the PolyU 2D/3D

database. The participants’ gender includes 136 males and

64 females with the age range of 18 to 50 years. Each

person provided twenty samples for both the left and right

palms. The left and right palms from the same person can

be considered as belonging to different classes. Thus, there

are 400 classes of 2D/3D palmprint image samples. The

samples have been collected in two sessions, where ten

samples are captured in each session, and the average time

between the two sessions is one month. All 2D images in

this database are stored as 8� bit gray-level images with

dimensions of 128� 128. In this work, we use only the 2D

ROI images. The following figure (Fig 7) shows the 2D

ROI images from this database.

4.2 Experimental setup

The identification system can operate in two modes: open-

set and closed-set identification. In the first mode, the

person to identify is not guaranteed to exist in the database,

but is assumed to exist in the second mode. The proposed

approach has been tested in both modes of our work. The

three principal criteria illustrate the performance of a bio-

metric system for open-set identification:

– False Rejection Rate or FRR: It reflects the percentage

of persons required to be accepted, but the system

rejects them. It is described by the following equation:

FRR ð%Þ ¼ Number of rejected genuineðFRÞ
Total number of genuine access

ð16Þ

– False Acceptance Rate or FAR: This rate reflects the

percentage of persons expected to be not recognized,

but they are accepted by the system. It is described by

the following equation:

FAR ð%Þ ¼ Number of accepted imposter ðFAÞ
Total number of imposter access

ð17Þ

– Equal Error Rate or EER: This rate is defined as the

percentage where the false acceptance rate and false

rejection rate are equal FAR = FRR. That is the best

trade-off between false rejections and false

acceptances.

Fig. 4 Palmprint ROI samples from the multispectral CASIA

database. a 460 nm, b 630 nm, c 700 nm, d 850 nm, e 940 nm,

and f White light

Fig. 5 Palmprint ROI samples from the multispectral PolyU database.

a Red, b Green, c Blue, and d NIR
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We can use another performance measurement, which is

the Genuine Acceptance Rate (GAR). It represents the

system identification rate. This rate is defined as the per-

centage of genuine users accepted by the system, which is

expressed as follows:

GAR ð%Þ ¼ 100� FRR ð%Þ ð18Þ

So, we can display the Receiver Operating Characteristics

(ROC) curves, which are the GAR against the FAR or the

FRR against the FAR [50].

In closed-set identification, to measure the accuracy

performance of a biometric system, we use the Cumulative

Matching characteristic (CMC) curve. It shows the ranking

of individual templates based on the match rate. This curve

is associated with two criteria Rank of Perfect Rate (RPR),

defined as at which rank the identification rate attempts

100% and Rank-One Recognition (ROR) defined as the

percentage of persons recognized by the system as a

function of a variable ‘‘rank’’.

Moreover, to evaluate the computational time require-

ments of each algorithm, the performance indicator time

refers to the CPU time needed to classify one palmprint

image in seconds.

To evaluate the efficiency of our proposed method, the

experiments were conducted on two sub-datasets. The first

sub-dataset is used for the training phase, while the second

is for the testing phase. Each sub-dataset contained 50% of

the images in the database.

To reach the best possible recognition accuracy on the

considered datasets, we experimentally tuned some filter

parameters, and we selected the others by considering the

optimal values found in the literature [17]. For the Gabor

filters, the chosen values of the filter numbers k1 and k2
were k1 ¼ k2 ¼ 13 in two stages. The fixed-scale 2� D

Gabor filters F is 10 with dimensions h1 ¼ h2 ¼ 31 and the

adaptive multiscale 2� D Gabor filters A
0
is 3.

The feature vector size is computed by using the Eq. 7 as

follows: Hj j ¼ k1nB2
k2 ¼ 13:4:213 ¼ 425984. Where nB ¼

4 represents the number of non-overlapping blocks with the

values of b1 ¼ b2 ¼ 15 that fit in the input ROI image with

size u ¼ v ¼ 32. The network parameters are summarized

in Table. 3.

4.3 Experimental results

In our experiments, after extracting the Region of Interest

(ROI) from the palmprint images, we resized the images to

32� 32 and applied the Log-Gabor filters for adjusting

pixel luminance. We used two layers of Gabor filters with

an adaptive Gabor-based filter tuning technique for

extracting palmprint specific informative features. To

increase recognition accuracy and reduce computation

time, we used feature selection algorithms Fisher score and

ReliefF with the reduction of dimensionality algorithm

whitening Principal Component Analysis (WPCA). For

classification, we used the Support Vector Machine clas-

sifier (SVM) and the Nearest Neighbour classifier (1-NN).

Finally, we fuse the spectral bands at the matching score

level to improve identification system performance.

All the computation times presented in this paper are

obtained with MATLABr 2018a in PC with a processor

(Intel Core i7-4710MQ) 2.50-GHz and RAM 16 GB.

The experimental results can be divided into three

subparts: the first subpart includes the results obtained from

the unimodal identification system evaluated on the CASIA

and PolyU multispectral databases, and the contactless

Tongji and PolyU 2D/3D databases. While in the second

subpart, the results of the multimodal identification system

are presented. As for the third subpart, we do a comparison

study with some works in literature.

4.3.1 Unimodal biometric system performance

The unimodal system results were performed on four

public multispectral and contactless palmprint databases.

1. CASIA multispectral database results In order to

evaluate and test the effectiveness of the proposed

method, experiments are done on the CASIA multi-

spectral database with 100 persons and six spectral

bands (460, 630, 700, 850, 940 nm, and white light).

Since our evaluation adopts random splits for training

and testing, we studied the effect of the amount of

Fig. 6 Palmprint ROI samples from the Contactless Tongji database.

a Left and b Right

Fig. 7 Palmprint 2D ROI samples from the Contactless PolyU 2D/3D

database
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training on the method’s performance. To this end, we

run our method using three different random training-

testing splits (without Feature selection) (see Table 4).

From the obtained results, we can observe that the 50%

training-testing split gives the best results for all

spectral bands. Therefore, the experiments will be

conducted using the 50% training-testing splits. Also,

to evaluate the performance of the proposed approach,

we calculated the performance indicators for several

random splits of the training and testing images. Thus,

we calculated the standard deviation of the main

performance indicators EER and ROR in two cases:

without and with FS and dimensionality reduction

using the SVM classifier. To this end, we have adopted

ten random image splits, each of which contains six

images for training and the remaining six images for

testing. The number of genuine and impostor compar-

isons for each spectral band is 600 and 29,700,

respectively. Table 5 shows the different results of

ERR (%) and ROR (%) on the ten random splits for

two cases without feature selection (FS) and with FS

(Fisher score) and dimensionality reduction (WPCA)

of six spectral bands from the CASIA database. This

table also shows the mean and standard deviation of

ERR (%) and ROR (%). Comparing all the results in

the two tables shows that feature selection and

dimensionality reduction have improved average per-

formance (i.e., EER and ROR) and reduced standard

deviations, implying that performance is relatively

stable. Moreover, in the case without feature selection,

the best results were obtained with band 630, and in the

case with feature selection, with band 460. Table 6

shows the results of the proposed method with two

classifiers (1-NN and SVM) and two modes of

identification (open-set and closed-set). This

table also shows the mean of ERR (%), ROR (%),

and time for all spectral bands. By comparing all the

obtained findings, it is clear that the spectral band 460

nm gives the best results in terms of EER and ROR

values. Firstly, the features’ number of the unimodal

identification systems is reduced from 12288000

features for the work [17] to 425984 features for our

work. In order to reduce features more, applying Fisher

score algorithm with ReliefF algorithm or not has

allowed reducing the features while maintaining a good

identification accuracy. Figures 8 and 9 show an

example of selecting features for a Fisher score

algorithm using an SVM classifier based on the

performance of EER (%) and GAR (%) against the

number of ranked features, respectively. The obtained

Table 3 Network parameters
Parameter(s) Description Value(s)

u, v Size of the palmprint ROI images 32, 32

k1 Number of filters in L1 13

k2 Number of filters in L2 13

h1; h2 Dimensions of the fixed-scale Gabor filters 31, 31

F Number of fixed-scale Gabor filters 10

A
0

Number of adaptive multiscale Gabor filters 3

b1; b2 Size of non-overlapping blocks 15, 15

Table 4 Performances comparison of different random training-testing splits

Spectral bands Performance of 25% for training and

75% for testing

Performance of 33.33% for training and

66.67% for testing

Performance of 50% for training and

50% for testing

ERR (%) ROR (%) ERR (%) ROR (%) ERR (%) ROR (%)

460 6.951 73.55 1.306 92.75 0.333 97.66

630 4.755 85.88 2.000 92.25 0.666 98.00

700 6.057 77.77 2.805 88.62 0.914 95.50

850 8.169 71.44 3.875 86.25 1.650 92.83

940 6.440 78.33 4.345 88.62 1.833 94.66

WHT 9.579 72.33 2.250 86.25 0.500 97.50
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results show that the insertion of Fisher score with

SVM classifier achieves the perfect results with EER

equal to 0.000 % in the open set and ROR equal to 100

% in the closed set for spectral band 460 nm with

11500 features. Fig 10 illustrates the effectiveness

(ROC and CMC curves) of this case for all spectral

Table 5 Mean and standard deviation results using 50% for training and 50% for testing

Spectral

bands

Cases Random

split

1 2 3 4 5 6 7 8 9 10 Mean ± SD

460 Without FS ERR(%) 0.333 0.833 2.474 2.319 2.440 0.500 0.333 1.883 1.763 0.333 1.321 ±

0.938

ROR (%) 97.66 96.16 88.66 89.00 91.00 98.16 97.16 90.00 88.83 97.50 93.41 ±

4.208

FS ?

dimensionality

ERR(%) 0.003 0.367 1.000 0.833 0.666 0.166 0.166 1.244 0.521 0.166 0.513 ±

0.413

reduction ROR (%) 99.83 97.83 94.33 96.33 96.66 99.33 98.83 94.83 97.16 99.16 97.42 ±

1.907

630 Without FS ERR(%) 0.666 0.773 2.666 2.000 1.500 0.500 0.636 1.666 0.996 0.666 1.207 ±

0.722

ROR (%) 98.00 95.50 88.66 93.00 94.33 98.00 97.00 90.50 94.16 97.83 94.69 ±

3.248

FS ?

dimensionality

ERR(%) 0.268 0.333 1.666 0.833 0.693 0.205 0.185 0.744 0.333 0.166 0.542 ±

0.466

reduction ROR (%) 98.83 99.00 94.33 95.50 96.66 98.50 98.50 95.50 97.33 98.66 97.28 ±

1.688

700 Without FS ERR(%) 0.914 1.333 4.500 3.056 3.245 0.833 1.133 4.636 2.102 0.850 2.260 ±

1.500

ROR (%) 95.50 93.33 84.16 87.16 88.00 95.33 95.16 81.66 86.66 95.66 90.26 ±

5.318

FS ?

dimensionality

ERR(%) 0.500 1.016 2.666 1.666 1.776 0.500 0.500 2.166 0.666 0.221 1.168 ±

0.841

reduction ROR (%) 97.66 96.33 90.50 93.50 94.33 98.00 98.50 90.16 95.50 98.33 95.28 ±

3.109

850 Without FS ERR(%) 1.650 2.833 4.666 4.666 4.333 1.115 1.833 3.833 3.166 1.880 2.997 ±

1.336

ROR (%) 92.83 90.33 83.66 81.50 83.00 94.16 94.66 85.50 90.16 93.66 88.94 ±

5.067

FS ?

dimensionality

ERR(%) 0.934 1.333 3.192 2.333 2.833 0.587 0.666 1.950 1.280 1.000 1.611 ±

0.918

reduction ROR (%) 96.16 94.33 89.50 92.83 90.83 97.66 97.66 91.50 95.50 96.16 94.21 ±

2.904

940 Without FS ERR(%) 1.833 2.500 4.500 4.333 3.500 1.166 0.833 3.275 2.333 1.666 2.594 ±

1.273

ROR (%) 94.66 92.83 85.33 87.16 85.50 96.33 96.83 85.83 90.66 95.16 91.02 ±

4.719

FS ?

dimensionality

ERR(%) 0.833 1.368 2.666 2.071 2.166 0.500 0.500 1.967 1.166 1.000 1.424 ±

0.753

reduction ROR (%) 96.66 94.66 91.83 92.83 90.00 97.83 97.33 92.16 95.16 97.50 94.59 ±

2.764

WHT Without FS ERR(%) 0.500 1.677 4.255 3.504 3.500 0.500 0.623 2.746 2.333 0.725 2.036 ±

1.428

ROR (%) 97.50 94.50 84.16 87.66 86.16 97.66 96.16 81.00 86.50 97.00 90.83 ±

6.349

FS ?

dimensionality

ERR(%) 0.271 0.666 2.166 1.204 1.500 0.500 0.166 1.196 1.125 0.040 0.883 ±

0.673

reduction ROR (%) 98.50 97.33 90.66 94.33 95.33 98.00 99.00 92.83 94.83 99.16 95.99 ±

2.870
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Table 6 The unimodal identification system performance for the CASIA database using 50% for training and 50% for testing

Feature selection

schemes

Classifier Number of

features

Spectral bands

460 630 700

ERR

%

ROR

%

Time (s) EER

%

ROR

%

Time (s) EER

%

ROR

%

Time (s)

Without feat.

select.

1-NN 425,984 0.075 99.50 0.024 0.201 98.66 0.023 0.666 96.83 0.023

Fisher score 11,500 0.026 99.50 0.009 0.333 98.50 0.009 0.888 96.33 0.009

Fisher

score?ReliefF

7000 0.152 99.83 0.007 0.500 98.00 0.007 0.833 95.83 0.007

Fisher

score?WPCA

410 2.333 92.83 7:031� 10�4 2.166 93.00 7:032� 10�4 3.588 90.16 8:073� 10�4

Without feat.

select.

SVM 425,984 0.333 97.66 0.478 0.666 98.00 0.496 0.914 95.50 0.503

Fisher score 11,500 0.00 100 0.014 0.283 98.50 0.014 0.703 97.83 0.013

Fisher

score?ReliefF

7000 0.001 99.83 0.009 0.314 98.16 0.008 1.000 97.16 0.008

Fisher

score?WPCA

410 0.003 99.83 0.001 0.268 98.83 0.001 0.500 97.66 0.002

Feature selection

schemes

Classifier Number of

features

Spectral bands

850 940 WHT

EER

%

ROR

%

Time (s) EER

%

ROR

%

Time (s) EER

%

ROR

%

Time (s)

Without feat.

select.

1-NN 425,984 0.833 95.66 0.025 1.166 96.00 0.025 0.333 98.66 0.024

Fisher score 11,500 1.003 95.00 0.008 1.246 95.33 0.008 0.359 97.83 0.009

Fisher

score?ReliefF

7000 1.087 94.33 0.006 1.500 94.83 0.006 0.500 97.66 0.006

Fisher

score?WPCA

410 5.500 86.50 7:032� 10�4 4.794 88.50 6:770� 10�4 2.529 93.00 7:813� 10�4

Without feat.

select.

SVM 425,984 1.650 92.83 0.497 1.833 94.66 0.502 0.500 97.50 0.510

Fisher score 11,500 0.767 96.50 0.013 0.833 96.83 0.015 0.221 98.33 0.014

Fisher

score?ReliefF

7000 0.834 96.16 0.009 0.707 96.66 0.008 0.202 98.00 0.009

Fisher

score?WPCA

410 0.934 96.16 0.002 0.833 96.66 0.002 0.271 98.50 0.001

Feature selection schemes Classifier Number of features Mean ± SD

ERR % ROR % Time (s)

Without feat. select. 1-NN 425,984 0.546 ± 0.416 97.55 ± 1.597 0.024 ± 7:966� 10�4

Fisher score 11,500 0.643 ± 0.471 97.08 ± 1.810 0.009 ± 4:147� 10�4

Fisher score?ReliefF 7000 0.762 ± 0.482 96.74 ± 2.110 0.007 ± 4:412� 10�4

Fisher score?WPCA 410 3.485 ± 1.397 90.66 ± 2.752 7:166� 10�4 ± 7:527� 10�5

Without feat. select. SVM 425,984 0.982 ± 0.621 96.02 ± 2.054 0.497 ± 0.010

Fisher score 11,500 0.468 ± 0.344 97.99 ± 1.265 0.014 ± 5:036� 10�4

Fisher score?ReliefF 7000 0.510 ± 0.393 97.66 ± 1.309 0.009 ± 5:564� 10�4

Fisher score?WPCA 410 0.468 ± 0.359 97.94 ± 1.383 0.001 ± 5:921� 10�4

Note: Time= CPU time needed to classify one palmprint image for the CASIA database

Best results are shown in bold
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bands. For the last case, Fisher score algorithm with

WPCA algorithm, the system yielded better results

compared with previous (without FS), it can achieve an

EER of 0.003 % in the open set and a ROR of 99.83 %

in the closed set for the 460 nm spectral band while

reducing the feature vector size to 410 with CPU time

0.001s instead of 0.478s. Thus, the use of the FS and

dimensionality reduction allowed us to reduce the

number of features and improve the identification

accuracy.

2. PolyU multispectral database results In the fol-

lowing, we present experimental results of the pro-

posed system evaluated on the PolyU multispectral

database, which contains 500 persons and various

modalities (Red, Green, Blue, and NIR). In our

experiment, six images of each person are selected for

training and the other six for testing. Namely, 3000

images are used for training, and 3000 images are used

for testing for each modality. Furthermore, there are

3000 genuine comparisons, and 748,500 impostor

comparisons are generated for each band. Thus, in

order to see the performance of the biometric system

with two modes of identification and CPU time needed

to classify one palmprint image, we present the find-

ings in Table 7. We can observe from the results

obtained by the proposed system that NIR and Blue

spectral bands presented the best results in terms of the

EER(%) and ROR(%) values. For example, the results

of the open-set identification with 1-NN classifier and

without FS give EERs equal to 4:008� 10�4 % and

8:016� 10�4 % for NIR and Blue spectral bands,

respectively. While, for the closed-set identification,
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Table 7 The unimodal identification system performance for the PolyU database using 50% for training and 50% for testing

Feature selection schemes Classifier Number of features Spectral bands

Red Green

EER % ROR % Time (s) EER % ROR % Time (s)

Without feat. select. NN 425,984 0.002 99.90 0.106 0.008 99.93 0.122

Fisher score 15,000 0.002 99.90 0.065 0.008 99.93 0.062

Fisher score?ReliefF 3000 0.009 99.90 0.030 0.024 99.93 0.028

Fisher score?WPCA 410 7:984� 10�4 99.90 0.003 0.033 99.83 0.003

Without feat. select. SVM 425,984 0.033 99.90 12.081 0.034 99.90 9.898

Fisher score 15,000 0.001 99.93 0.085 0.061 99.90 0.083

Fisher score?ReliefF 3000 0.001 99.93 0.021 0.036 99.93 0.025

Fisher score?WPCA 410 0.011 99.93 0.009 0.033 99.93 0.008

Feature selection schemes Classifier Number of features Spectral bands

Blue NIR

EER % ROR % Time (s) EER % ROR % Time (s)

Without feat. select. 1-NN 425,984 8:016� 10�4 99.96 0.118 4:010� 10�4 99.96 0.121

Fisher score 11,500 0.002 99.93 0.062 1:336� 10�4 99.96 0.061

Fisher score?ReliefF 7000 0.008 99.93 0.028 0.010 99.93 0.027

Fisher score?WPCA 410 0.006 99.93 0.003 2:672� 10�4 99.96 0.003

Without feat. select. SVM 425,984 0.013 99.93 16.582 0.003 99.93 15.102

Fisher score 11,500 0.009 99.93 0.093 0.000 100 0.085

Fisher score?ReliefF 7000 0.000 100 0.020 7:001� 10�4 99.96 0.023

Fisher score?WPCA 410 1:336� 10�4 99.96 0.007 0.000 100 0.007
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Table 8 The performance of unimodal identification systems for the Tongji database using 50% for training and 50% for testing

Feature selection schemes Classifier Number of features Samples

Left Right

EER % ROR % Time (s) EER % ROR % Time (s)

Without feat. select. NN 425,984 0.000 100 0.088 0.000 100 0.083

Fisher score 10,000 0.000 100 0.070 0.000 100 0.064

Fisher score?ReliefF 3000 0.000 100 0.020 0.000 100 0.020

Fisher score?WPCA 410 0.000 100 0.005 0.001 99.93 0.005

Without feat. select. SVM 425,984 0.000 100 6.987 0.000 100 7.184

Fisher score 10,000 0.000 100 0.036 0.000 100 0.035

Fisher score?ReliefF 3000 0.000 100 0.014 0.000 100 0.012

Fisher score?WPCA 410 0.000 100 0.004 0.000 100 0.004

Note: Time= CPU time needed to classify one palmprint image for the Tongji database

Table 9 The performance of

unimodal identification systems

for the Contactless PolyU 2D/

3D database using 50% for

training and 50% for testing

Feature selection schemes Classifier Number of features Spectral band

2D

EER % ROR % Time (s)

Without feat. select. NN 425,984 0.000 100 0.022

Fisher score 10,000 0.976 89.85 0.019

Fisher score?ReliefF 3000 0.000 100 0.007

Fisher score?WPCA 410 0.000 100 0.003

Without feat. select. SVM 425,984 0.000 100 2.394

Fisher score 10,000 0.000 100 0.063

Fisher score?ReliefF 3000 0.000 100 0.022

Fisher score?WPCA 410 0.000 100 0.007

Note: Time= CPU time needed to classify one palmprint image for the Contactless PolyU 2D/3D database
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the system achieved a ROR ¼ 99:96% and CPU time

¼ 0:121s with NIR band, and a ROR of 99:96% and

CPU time equal 0.118 s with Blue. It is also clear that

the use of feature selection and dimensionality reduc-

tion improves the system’s accuracy and reduces

computational time. The Fisher score with SVM clas-

sifier achieves the perfect results with an EER =

0:000% in the open-set and a ROR = 100% in the

closed-set for NIR spectral band. The effectiveness of

all spectral bands is shown in Fig 11, where the ROC

and CMC curves are illustrated. The use of the Fisher

score ? ReliefF with SVM classifier reduced the fea-

ture vector size to 3000 and gave a perfect result with

an EER = 0:000% in the open-set and a ROR of 100%

in the closed-set for the blue spectral band. Similarly,

the Fisher score þ WPCA yielded perfect results with

an EER = 0:000% in the open-set and a ROR = 100%

in the closed-set and reduced the feature vector size to

410 and CPU time to 0.007 s for NIR spectral band.

3. Tongji contactless database results In order to verify

the robustness and high efficiency of the proposed

method in the contactless database, we used the Tongji

database that containing 300 persons with two modal-

ities (Left and Right hands). In our experiment, we

apply the 10 images of each person for training and the

other ten for testing. Namely, 3000 images are used for

training, and 3000 images are used for testing each

sample. Thus, 3000 genuine comparisons and 448,500

impostor comparisons are generated. Table 8 shows the

performance of our unimodal biometric system with

two modes of identification system (open-set and

closed-set) and the CPU time needed to classify one

palmprint image. Compared to all the obtained results,

almost all of them give perfect accuracies. The feature

selection and dimensionality reduction with two clas-

sifiers have not decreased the performance of our

identification system. Effectively, with the SVM clas-

sifier, the use of the fisher score and the WPCA yielded

perfect results with EER of 0:000% in the open-set and

ROR of 100% in the closed-set and reduced the feature

vector size to 410 and CPU time 0.004 s instead of

6.987 s (without FS) and 0.004 s instead of

7.184 s (without FS) for Left and Right hands,

respectively.

In our case, we do not need the fusion for PolyU and

Tongji databases because we got perfect results in the

unimodal system (EER = 0:000% and ROR = 100%).

4. PolyU 2D/3D contactless database results

In order to evaluate the efficiency of the proposed method

in the contactless database, we utilized the PolyU 2D/3D

database, which contains 400 people. In our experiment,

we used 2D images from this database splitting each per-

son’s 20 images into ten for training and ten for testing.

Each sample is tested using 4000 images for training and

4000 images for testing. As a result, there are 4000 genuine

comparisons and 798,000 impostor comparisons. Table 9

shows the performance of our unimodal biometric system

with two modes of identification system (open-set and

closed-set) and the CPU time needed to classify one

palmprint image. From the obtained results, we observe

that the SVM classifier achieves better performance than

the NN classifier, especially in the case of the Fisher score.

Furthermore, the use of the fisher score and the WPCA

provided perfect results with an EER of 0:000% in the

open-set and ROR of 100% in the closed-set, reducing the

feature vector size to 410 and CPU time 0.007 s instead of

2.394 s (without FS).

Table 10 The performance of

multimodal identification

system fusion between (460,

630, 700) and (850, 940, WHT)

using 50% for training and 50%

for testing

Fusion rules 460- 630- 700 850- 940- WHT

Open-Set Closed-Set Open-Set Closed-Set

EER (%) T0 ROR (%) RPR EER (%) T0 ROR (%) RPR

SUM 0.010 0.863 99.00 3 0.046 0.651 100 1

MUL 0.000 0.584 100 1 0.043 0.271 100 1

WHT SUM 0.000 0.985 100 1 0.057 0.647 100 1

WHT MUL 0.000 0.962 100 1 0.006 0.710 100 1

Table 11 The performance of multimodal identification system (fu-

sion between all spectral bands) using 50% for training and 50% for

testing

Fusion rules 460-630-700-850-940-WHT

Open-Set Closed-Set

EER (%) T0 ROR (%) RPR

SUM 0.000 0.940 100 1

MUL 0.000 0.070 100 1

WHT SUM 0.000 0.939 100 1

WHT MUL 0.000 0.940 100 1
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Table 12 Performance comparison of the unimodal systems using 50% for training and 50% for testing

Method Performance Number of features Classifier Computing Time (s)

Databases ERR (%) ROR (%)

Deep scattering PolyUM – 100 12,512 SVM 0.090 (9 64.3)

Convolutional network [15]

PCANet with two stages [14] CASIAM 0.006 99.83

PolyUM 0.000 100 46,080 SVM 1.194 (9 852.8)

DCTNet with two stages [19] CASIAM 0.003 99.83

PolyUM 0.000 100 46,080 SVM 1.552 (9 1109)

PalmNet Gabor-PCA [17] TongjiT 0.720 99.77 12,288,000 KNN 0.151 (9 108.4)

CASIAM 0.003 99.83

PolyUM 0.000 100

TongjiT 0.000 100

Simplified PalmNet Gabor PolyUT 0.000 100 410 SVM 0.001

For each competing method, the number in parentheses indicates how many times the proposed method is faster

Table 13 Performances

comparison of the multimodal

systems using 50% for training

and 50% for testing

Method Performance Number of features

EER (%) ROR (%)

PCANet with two stages [14] 0.000 100 46,080

DCTNet with two stages [19] 0.000 100 46,080

Simplified PalmNet-Gabor 0.000 100 410
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Fig. 12 Multimodal system results for the CASIA database (SUM rule) using 50% for training and 50% for testing. a ROC curves (FRR against

FAR) and b CMC curves (Identification rate against Rank)
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4.3.2 Multimodal biometric system performance

Unimodal systems suffer from some limitations and cannot

provide satisfactory recognition performance in several

cases, such as the possibility of noise in the biometric

modality and its non-universality [51], which increases

system error (EER). Intra-class dissimilarity, as well as

inter-class similarity, can also impact the unimodal bio-

metric system and hence the result of identification [52].

An excellent biometric identification system requires a

very low EER value, which can be achieved by the mul-

timodal system [53] [54]. Such a system combined several

features of each modality at different levels to improve

system performance. Matching score level fusion is the

most widely used in the biometric system. In our work, we

fuse only the spectral bands of CASIA database palmprint

at the matching score level to improve system perfor-

mance. The other databases have given perfect results with

unimodal biometric systems (EER = 0:000% and ROR =

100%). The experiment was conducted with four methods

of fusion which are the SUM rule (SUM), the product rule

(MUL), and their weighted versions, that is, weighted SUM

rule (WHT SUM) and weighted product rule (WHT MUL).

The performance of our multimodal identification system is

shown in Tables 10 and 11. The analysis of data showed

that the results of the multimodal fusion were much better

than those of the unimodal biometric systems. As can be

seen from the results, the lowest EER of multimodal

identification was obtained by using the combination of all

spectral bands that are always better than the lowest results

of the unimodal system. In addition, the best results were

obtained with an EER = 0:000%. In contrast, the best

results of the unimodal biometric system were 0:003%
(case Fisher scoreþ WPCA with SVM classifier). Fig-

ure 12 illustrates the CMC and ROC curves for the mul-

timodal identification system.

4.3.3 Comparative study

To prove the effectiveness of the proposed approach

against alternative methods, we did a comparative study

along with some works found in the literature. Thus, in this

paper, we provided unimodal and multimodal identification

systems using multispectral and contactless palmprint

images. The results validated the robustness and effec-

tiveness of the proposed method. The system reached very

high identification accuracy (EER ¼ 0:000% and

ROR ¼ 100%). Therefore, a comparison of some related

and existing techniques must be made on the same data-

bases. Table 12 summarizes the works of the unimodal

biometric system performed on the multispectral CASIA

and PolyU databases and the contactless Tongji and PolyU

2D/3D databases. To obtain an equitable comparison, we

chose works where the percentage of training and testing is

50%. From this table, we observe that the proposed algo-

rithm (Simplified PalmNet-Gabor) provides high identifi-

cation performance for multispectral PolyU database and

contactless Tongji and PolyU 2D/3D databases, using a

substantially lower number of features compared with

other methods listed in the same table. On the other hand,

for the multispectral CASIA database, a fusion process is

used to improve the identification performance. Table 12

also lists the recognition accuracies of the proposed

method and the most recent methods published in the lit-

erature with the number of features and computing time of

the different classifiers. The computing time represents the

CPU time needed to classify one palmprint image. To

obtain an equitable comparison, we chose works where the

percentage of training and testing is 50%. From this table,

we observe that the proposed algorithm (Simplified Palm-

Net-Gabor) provides high identification performance for

multispectral PolyU database and contactless Tongji and

PolyU 2D/3D databases, using a substantially lower num-

ber of features compared with other methods listed in the

same table. On the other hand, for the multispectral CASIA

database, a fusion process is used to improve the identifi-

cation performance.

For the multimodal biometric system, a comparative

study was performed in Table 13 with the works that used

fusion at the matching score level and 50% train-test split

procedure. It is observed that the proposed algorithm has

also given perfect identification performance

(EER ¼ 0:000%, ROR ¼ 100%) like the two other works,

but it has reduced the features vector to 410 instead of

46,060 for the two other works.

5 Conclusion

In this work, we proposed efficient unimodal and multi-

modal identification systems for fast palmprint recognition.

The proposed method, namely simplified PalmNet-Gabor,

adopts the PalmNet network with enhancements based on

feature selection and reduction dimension methods.

Therefore, we used feature selection methods to select a

subset of relevant features of PalmNet using Fisher score

and ReliefF methods and dimensionality reduction by

WPCA method to reduce the computational time and

improve the accuracy recognition. Furthermore, we applied

log-Gabor filters by adjusting the pixel luminance of

palmprint images. For the multimodal system, we use the

matching score fusion method to improve the performance

of the unimodal system. The proposed method effectively

improves the accuracy of PalmNet, reduces the number of

features, and solves the problem of computational
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complexity. The proposed approach was evaluated using

four popular and publicly available palmprint databases.

The extensive experiments presented in this work have

validated the robustness and effectiveness of our method

by achieving high recognition accuracy with a significantly

smaller number of features. The unimodal identification

system performed on multispectral PolyU database and

contactless Tongji and PolyU 2D/3D databases obtained a

very high identification accuracy (EER ¼ 0:000% and

ROR ¼ 100%). It gave a CPU time less than 0.009 s and

reduced the feature vector size to 410. Likewise, the mul-

timodal identification system performed on the CASIA

database offers perfect results EER ¼ 0:000% for the open-

set identification and ROR ¼ 100% for the closed-set

identification. In the future, we will test our proposed

method with other large databases, such as medical images.

We will also employ additional clustering and dimension-

ality reduction techniques. Furthermore, we will employ

the graphics processing unit (GPU) to reduce processing

time, which is a highly valuable tool for speeding up the

processing speed of computationally intensive algorithms.

Acknowledgements The authors gratefully acknowledge the Direc-

torate General for Scientific Research and Technological Develop-

ment (DGRSDT) of Algeria for the financial support to this work.

Funding Open Access funding provided thanks to the CRUE-CSIC

agreement with Springer Nature.

Declaration

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Zhang D, Guo Z, & Gong Y (2016). Multispectral biometrics

systems. In Multispectral biometrics (pp. 23-35). Springer, Cham.

https://doi.org/10.1007/978-3-319-22485-5_2

2. Deng J, Guo J, Xue N, & Zafeiriou S (2019). Arcface: Additive

angular margin loss for deep face recognition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (pp. 4690-4699)

3. Bowyer KW, Burge MJ (eds) (2016) Handbook of iris recogni-

tion. Springer, London

4. Wan C, Wang L, & Phoha VV (Eds.). (2018). A survey on gait

recognition. ACM Computing Surveys (CSUR), 51(5), 1-35.

https://doi.org/10.1145/3230633

5. Eljawad L, Aljamaeen R, Alsmadi MK, Al-Marashdeh I,

Abouelmagd H, Alsmadi S, Haddad F, Alkhasawneh RA,

Alzughoul M, Alazzam MB (2019) Arabic Voice Recognition

Using Fuzzy Logic and Neural Network. International Journal of

Applied Engineering Research 14:651–662

6. Kochegurova EA, Gorokhova ES, & Mozgaleva A I (2017).

Development of the keystroke dynamics recognition system. In

Journal of Physics: Conference Series (Vol. 803, No. 1,

p. 012073). IOP Publishing

7. Elhoseny M, Nabil A, Hassanien AE, & Oliva D (2018). Hybrid

rough neural network model for signature recognition. In

Advances in Soft Computing and Machine Learning in Image

Processing (pp. 295-318). Springer, Cham. https://doi.org/10.

1007/978-3-319-63754-9_14

8. El-Tarhouni W, Boubchir L, Elbendak M, Bouridane A (2019)

Multispectral palmprint recognition using Pascal coefficients-

based LBP and PHOG descriptors with random sampling. Neural

Computing and Applications 31(2):593–603. https://doi.org/10.

1007/s00521-017-3092-7

9. Serrano A, de Diego IM, Conde C, Cabello E (2010) Recent

advances in face biometrics with Gabor wavelets: A review.

Pattern Recognition Letters 31(5):372–381. https://doi.org/10.

1016/j.patrec.2009.11.002

10. Xu N, Zhu Q, Xu X, Zhang D (2021) An effective recognition

approach for contactless palmprint. The Visual Computer

37(4):695–705. https://doi.org/10.1007/s00371-020-01962-x

11. Fei L, Lu G, Jia W, Teng S, Zhang D (2018) Feature extraction

methods for palmprint recognition: A survey and evaluation.

IEEE Transactions on Systems, Man, and Cybernetics: Systems

49(2):346–363. https://doi.org/10.1109/TSMC.2018.2795609

12. Tahmasebi A, Pourghassem H (2017) Robust intra-class distance-

based approach for multimodal biometric game theory-based

rank-level fusion of ear, palmprint and signature. Iranian Journal

of Science and Technology, Transactions of Electrical Engi-

neering 41(1):51–64. https://doi.org/10.1007/s40998-017-0017-5

13. Bai X, Meng Z, Gao N, Zhang Z, Zhang D (2020) 3d Palmprint

identification using blocked histogram and improved sparse

representation-based classifier. Neural Computing and Applica-

tions 1–14. https://doi.org/10.1007/s00521-020-04711-2

14. Meraoumia A, Kadri F, Bendjenna H, Chitroub S, & Bouridane A

(2017). Improving biometric identification performance using

PCANet deep learning and multispectral palmprint. In Biometric

security and privacy (pp. 51-69). Springer, Cham. https://doi.org/

10.1007/978-3-319-47301-7_3

15. Minaee S, & Wang Y (2016). Palmprint recognition using deep

scattering convolutional network. arXiv preprint arXiv:1603.

09027
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