
HAL Id: hal-03614713
https://hal.science/hal-03614713v1

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining scientific survey and commercial catch data
to map fish distribution

Baptiste Alglave, Etienne Rivot, Marie-Pierre Etienne, Mathieu Woillez,
James Thorson, Youen Vermard

To cite this version:
Baptiste Alglave, Etienne Rivot, Marie-Pierre Etienne, Mathieu Woillez, James Thorson, et al.. Com-
bining scientific survey and commercial catch data to map fish distribution. ICES Journal of Marine
Science, 2022, 79 (4), pp.1133-1149. �10.1093/icesjms/fsac032�. �hal-03614713�

https://hal.science/hal-03614713v1
https://hal.archives-ouvertes.fr


1  

Please note that this is an author-produced PDF of an article accepted for publication following peer review. The definitive 
publisher-authenticated version is available on the publisher Web site.  

 
ICES Journal of Marine Science 
May 2022, Volume 79, Issue 4, Pages 1133-1149  
https://doi.org/10.1093/icesjms/fsac032 
https://archimer.ifremer.fr/doc/00754/86604/ 

Archimer 
https://archimer.ifremer.fr 

Combining scientific survey and commercial catch data to 
map fish distribution 

Alglave Baptiste 1, 2, *, Rivot Etienne 2, Etienne Marie-Pierre 3, Woillez Mathieu 4, Thorson James T 5, 
Vermard Youen 1 

 
1 DECOD (Ecosystem Dynamics and Sustainability), IFREMER, Institut Agro, INRAE, Nantes 44980, 
France  
2 DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, Rennes 35042, 
France  
3 Mathematical Research Institute of Rennes IRMAR, Rennes University, Rennes 35042, France  
4 DECOD (Ecosystem Dynamics and Sustainability), IFREMER, Institut Agro, INRAE, Brest 29280, 
France  
5 Habitat and Ecological Processes Research Program, Alaska Fisheries Science Center, National 
Marine Fisheries Service, NOAA, Seattle, WA 98112, USA 

* Corresponding author : Baptiste Alglave, email address : baptiste.alglave@agrocampus-ouest.fr  
 

Abstract :   
 
Developing Species Distribution Models (SDM) for marine exploited species is a major challenge in 
fisheries ecology. Classical modelling approaches typically rely on fish research survey data. They benefit 
from a standardized sampling design and a controlled catchability, but they usually occur once or twice a 
year and they may sample a relatively small number of spatial locations. Spatial monitoring of commercial 
data (based on logbooks crossed with Vessel Monitoring Systems) can provide an additional extensive 
data source to inform fish spatial distribution. We propose a spatial hierarchical framework integrating 
both data sources while accounting for preferential sampling (PS) of commercial data. From simulations, 
we demonstrate that PS should be accounted for in estimation when PS is actually strong. When 
commercial data far exceed scientific data, the later bring little information to spatial predictions in the 
areas sampled by commercial data, but bring information in areas with low fishing intensity and provide a 
validation dataset to assess the integrated model consistency. We applied the framework to three 
demersal species (hake, sole, and squids) in the Bay of Biscay that emphasize contrasted PS intensity 
and we demonstrate that the framework can account for several fleets with varying catchabilities and PS 
behaviours. 
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1 INTRODUCTION 33 

Developing species distribution models (SDM) is critical in marine and fisheries ecology 34 

for assessing the relationship between species and their habitat (Guisan and 35 

Zimmermann, 2000), identifying essential habitats (Paradinas et al., 2015), forecasting 36 

population and ecosystems response to environmental changes (Cheung et al., 2009). 37 

The development of statistical models to predict fishery resources distribution has 38 

received considerable attention (Planque et al., 2011; Thorson et al., 2015a, 2015b; 39 

Martínez-Minaya et al., 2018; Moriarty et al., 2020). Recent developments have 40 

generalized SDM to analyze biological data representing condition, stomach contents, 41 

size structure, and other  demography and population dynamics features (Thorson, 2015; 42 

Grüss et al., 2020). Ongoing research also seek to integrate individual movement, growth, 43 

species interactions into SDM (Kristensen et al., 2014; Thorson et al., 2017a, 2019), 44 

although these approaches are “data hungry” and therefore require integrating different 45 

sources of data within a single model. 46 

Scientific survey and commercial catch data consist in two potentially complementary data 47 

sources to estimate harvested fish spatial distribution (Pennino et al., 2016). Scientific 48 

surveys are key data sources in fisheries ecology. They most often benefit from a 49 

standardized sampling plan and a constant catchability (Hilborn and Walters, 1992; Ocean 50 

Studies Board and National Research Council, 2000; ICES, 2005; Nielsen, 2015). They 51 

are generally designed to cover the full geographical extent of specific populations 52 

including areas of low or null abundance, and are thus adapted to develop unbiased 53 

abundance indices and spatial predictions of species distribution (Rivoirard et al., 2008; 54 

ICES, 2012). In addition, they often seek to minimize selectivity in order to sample as 55 

many species, size groups and life stages as possible. However, the related expansive 56 
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charges generally comes at the cost of a relatively low sampling density in space and/or 57 

time. For instance, trawl survey can sample a limited number of spatial locations, and 58 

most often occur once or twice a year. Thus, they may provide poor information regarding 59 

intra-annual variability (Pennino et al., 2016; Rufener et al., 2021) and imprecise estimates 60 

of species abundance and distribution (ICES, 2005). 61 

Commercial catch declarations (logbooks) data constitute a complementary data source 62 

that may benefit of a higher sampling effort than scientific survey. In Europe, catch 63 

declarations must be reported in logbooks data for all fishing vessels; besides, geolocation 64 

through Vessel Monitoring System (VMS) is mandatory for all fishing boat above 12m long 65 

(Hintzen, 2021). Hence, logbook data combined with VMS data can provide high 66 

resolution maps of Catch Per Unit Effort (CPUE - Gerritsen and Lordan, 2010; Murray et 67 

al., 2013) with a relatively dense spatio-temporal sampling within the range of the 68 

commercial fleets. However, inferring SDM with commercial data can be challenging as 69 

they generally arise from a preferential sampling (PS) behavior, i.e. a sampling that 70 

directly or indirectly depends upon the biomass of the target species. Indeed, fishermen 71 

tend to target areas with high biomass or may also favor fishing zones based on other 72 

criteria (like bottom substrate or distance to the coast for instance - Hintzen et al., 2021) 73 

that are indirectly related to the target species abundance. When not properly considered 74 

in statistical models, PS associated with commercial data may lead to biased estimates 75 

of fish distribution and biomass (Trenkel et al., 2013; Pennino et al., 2019). In particular, 76 

when the biomass is spatially heterogeneous, ignoring PS may overestimate the spatial 77 

predictions and the overall biomass estimates.  78 

Recent research has tackled this challenge and developed methods to account for PS in 79 

statistical inferences. Model based PS was first introduced by Diggle et al. (2010) who 80 
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proposed a base framework for estimating PS and applied it to led pollution data in Galicia. 81 

The authors extended a standard geostatistical approach within a hierarchical framework 82 

where the variable of interest is jointly modelled with the spatial intensity of the sampling 83 

effort which also contributes to the inference and accounts for PS towards the variable of 84 

interest. This approach was extended by Pati et al. (2011) who introduced covariates and 85 

random effects in the model. Conn et al. (2017) followed the same ideas and developed 86 

a more generic model for ecological applications, which they applied to aerial seal count 87 

data. Pennino et al. (2019) applied similar ideas to infer the distribution of shrimps from 88 

onboard fishery data.  89 

Provided PS is accounted for, integrated models (IM) appear as an attractive tool to 90 

combine fishery-independent and fishery-dependent data to infer harvested fish spatial 91 

distribution. IM have received considerable attention in the ecological literature (Schaub 92 

and Abadi, 2011; Parent and Rivot, 2012; Gimenez et al., 2014). By sharing the 93 

information between different data types, IM may provide more accurate estimates and 94 

predictions compared with separate analysis of different data types. Recently, Rufener et 95 

al. (2021) demonstrated the potential of IM to integrate scientific data and onboard 96 

observer count data to improve SDM of fishery resources. However, although onboard 97 

observer data provide useful complementary information to scientific survey, they 98 

generally only represent a small proportion of all sea trips (1% in average for the French 99 

observer programs - Cornou et al., 2021). By contrast, the combination of commercial 100 

catch declarations in logbooks with VMS data provides a more extensive data source to 101 

map fish spatial distribution. Furthermore, the potential of embedding PS within a 102 

hierarchical SDM to integrate catch declaration data and scientific survey is still an open 103 

challenge and new methodology are required to handle PS behaviors of commercial fleets 104 
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while accounting for all the complexity related to fishing locational choice (Salas and 105 

Gaertner, 2004; Haynie et al., 2009; Girardin et al., 2017). 106 

In this paper, we develop an IM model to infer fish spatial distribution by combining both 107 

scientific and commercial catch declaration data while taking into account the PS induced 108 

by fishing targeting behavior.  109 

To assess the challenges, the benefits and also the limits of the approach, we evaluate 110 

the performance of our IM based on simulated data. Simulations are primarily designed 111 

to assess the respective contribution of each data source to inference for different model 112 

configurations. We first evaluate how the balance between the commercial and scientific 113 

sample sizes affect the model outputs. Because the commercial data may often only 114 

partially cover the distribution area of a targeted species, we assess how this issue may 115 

affect the quality of estimation and how scientific data may contribute to reduce the effect 116 

of this gap in the commercial data. Introducing PS within an IM framework involves adding 117 

new parameters, complexifying the model structure and then increasing the computational 118 

cost. We therefore assess how perform a more parsimonious model that would ignore PS. 119 

Last, in addition to the PS, the fishing locations can be controlled by other factors 120 

independent from the species distribution (e.g. logistical constraints, management 121 

regulations – see Girardin et al., 2017; Ducharme-Barth et al., 2022). We therefore assess 122 

how such process blurring strict PS may affect the quality of inferences.  123 

We demonstrate the flexibility of the approach by fitting the model to three different 124 

important European demersal fishery resources in the Bay of Biscay: common sole (Solea 125 

solea, Linnaeus, 1758), hake (Merluccius merluccius, Linnaeus, 1758) and squids 126 

(Loliginidae family). With these contrasted examples, we illustrate the capacity of the 127 
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framework to handle multiple commercial fleets with potentially distinct PS intensities and 128 

different fishing behaviors.  129 
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2 MATERIAL AND METHODS 130 

2.1 Spatial integrated model 131 

Below we provide the core elements of the modelling approach. Additional details are 132 

provided in supplementary material (SM 1). The model is structured in four layers: 133 

observations (here commercial and scientific CPUE in weight per unit of effort), sampling 134 

process, latent field (here fish biomass relative density) and parameters (Figure 1 - all 135 

notations are available in SM 1.1, Table S1). Sampling process is usually ignored in 136 

hierarchical models as it is mostly considered independent of the quantity of interest, and 137 

then has no consequence on the estimation procedure (Diggle et al., 2010). Here, the 138 

spatial distribution of commercial fishing is explicitly modelled as a inhomogenous Poisson 139 

point process whose intensity may depend on the biomass field and contributes to the 140 

likelihood. The observation processes of scientific and commercial data are conditional 141 

upon the biomass latent field and the sampled locations. 142 

All processes are considered to occur in a discrete fine grid (see for instance SM 2.1, 143 

Figure S2.1 or SM 3.1, Figure S3.1). We assume the density of the point process is 144 

piecewise constant in each cell grid which brings simplification in the expression of the 145 

likelihood of the point process (Diggle, 2013 - see SM 1.2). The time component is omitted 146 

and both commercial and scientific data are assumed to occur at the same time step. 147 

The IM is designed to assimilate the scientific data of several surveys and/or the 148 

commercial data of several fleets. In the following, the subscript 𝑗 refers to the different 149 

data sources either scientific or commercial. For instance, in a model with one scientific 150 

survey and two commercial fleets, 𝑗 will take the values 𝑗 = 1,2,3, with 𝑗 = 1 for the 151 

scientific data and 𝑗 = 2,3 for the two commercial fleets. 152 
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2.1.1 Latent field of relative biomass 153 

The fish biomass relative density 𝑆 (eq. (1) – (2)) is modeled through a latent log Gaussian 154 

spatial field defined on the same discrete spatial domain as the point process. The mean 155 

of the Gaussian field depends on environmental covariates through a log link where the 156 

linear predictor combines an intercept 𝛼ௌ, the linear effect of environmental covariates 157 

𝛤ௌ(𝑥) (effects captured by the corresponding fixed parameters 𝛽ௌ representing the 158 

species-habitat relationship). The remaining spatial variation is accounted for through a 159 

zero-mean Gaussian random field (GRF) denoted 𝛿(𝑥) parameterized with a Matérn 160 

correlation function 𝑀(𝑥, 𝑥ᇱ; 𝜅, 𝜙), characterized by the shape 𝜅 and the scale 𝜙 (Cressie, 161 

1993; Gelfand et al., 2010; Lindgren et al., 2011 and Banerjee et al., (2014)). The shape 162 

can be expressed in term of range 𝜌 =
√଼ 


 where 𝜌 is the distance for which the correlation 163 

between points is near 0.1. 164 

log൫𝑆(𝑥)൯ = 𝛼ௌ + 𝛤ௌ(𝑥)் ⋅ 𝛽ௌ + 𝛿(𝑥)  (1) 165 

𝛿(𝑥) ∼ 𝐺𝑅𝐹(0, 𝑀(𝑥, 𝑥′; 𝜅, 𝜙))  (2) 166 

2.1.2 Sampling process 167 

Recent literature has emphasized the complexity of the targeting behavior processes 168 

(Salas and Gaertner, 2004; Haynie et al., 2009; Abbott et al., 2015; Girardin et al., 2017; 169 

Hintzen, 2021). In this paper, we did not attempt to model explicitly all those processes 170 

(e.g. resource distribution, logistical constraints, tradition, management regulations) and 171 

opted for a simplified representation where the spatial targeting directly depends on the 172 

biomass field 𝑆 and on an additional spatially structured random term.  173 

Let us denote 𝑋  the spatial point process where commercial vessels of fleet 𝑗 are 174 

identified as fishing. In the following, all vessels in the same commercial fleet are assumed 175 
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to have homogeneous behaviors. Following Diggle et al. (2010), the set of fishing locations 176 

are modeled conditionally on 𝑆, as a inhomogeneous Poisson point process with 177 

piecewise constant intensity 𝜆(𝑥) (eq. (3) - (4)). 178 

𝑋  ∼ ℐ𝒫𝒫(𝜆(𝑥))  (3) 179 

log ቀ𝜆(𝑥)ቁ = 𝛼  + 𝑏 ∙ log(𝑆(𝑥)) + 𝜂(𝑥)  (4) 180 

For any fleet 𝑗, intensity 𝜆(. ) of the Poisson point process is modeled as a log-linear 181 

combination of the intercept 𝛼 , the logarithm of the relative biomass 𝑆(. ) scaled by a 182 

parameter 𝑏, and a residual spatial effect 𝜂(. ) with the same structure as 𝛿(. ) but with 183 

specific parameters 𝜅 and 𝜙. All parameters 𝛼 , 𝑏 and the spatial random effect 𝜂(𝑥) 184 

are specific to each fleet.  185 

The parameter 𝑏 quantifies the strength of PS by scaling the relationship between the 186 

local value of the resource field and the local fishing intensity. 187 

Fishing locations potentially depend on many other factors than fish distribution such as 188 

distance to harbor, logistical constraints, management regulations - spatial closures, 189 

quotas – or fishing habits/tradition (Salas and Gaertner, 2004; Haynie et al., 2009; Girardin 190 

et al., 2017). The spatial random effect 𝜂(. ) is needed to capture any remaining additional 191 

effect not captured by the dependence to 𝑆(. ). 192 

In that sense, a zero value for 𝑏 indicates that the choice of the sampling locations does 193 

not depend on the fish biomass relative density but only on the spatial random effect.  194 

In addition to 𝑏, a dimensionless spatial metric was developed to quantify the strength of 195 

PS (SM 1.3).  196 
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2.1.3 Observation process 197 

Both scientific and commercial observations are considered as proportional to the 198 

underlying biomass through a zero-inflated observation process. In our applications, 199 

observations are expressed as CPUE (in weights / unit effort), with high proportion of 200 

zeros (zeros represent on average 30% of the commercial data and 10 to 50% of scientific 201 

data).  202 

Observations are modelled through a zero-inflated lognormal model conditionally on 203 

biomass 𝑆(𝑥) in cell 𝑥 (eq. (5-6)). The model is derived from Thorson et al. (2016) or 204 

Thorson (2018). We assume that the expected catch 𝜇(𝑥) for any fleet/data source 𝑗 in 205 

the cell 𝑥 depends on the latent field value 𝑆(𝑥) and a catchability coefficient 𝑞 (eq. (5)). 206 

A zero catch (𝑦 = 0) is modeled as a Bernoulli random variable with parameter 𝑒𝑥𝑝(−𝑒కೕ ⋅207 

𝜇(𝑥)), where 𝜉 is the parameter controlling the intensity of zeros relatively to the 208 

expected catch (eq. (6)). Then, 𝜇(𝑥) being fixed, the higher (resp., the lower) 𝜉, the lower 209 

(resp. the higher) the probability of obtaining a zero-catch.  210 

The distribution of a positive catch 𝑦 > 0 at a given 𝑥 is defined as the combination of the 211 

probability of obtaining a non-zero catch (1 − 𝑒𝑥𝑝(−𝑒కೕ ⋅ 𝜇(𝑥))) times a positive 212 

continuous distribution 𝐿 (here a lognormal distribution) with expected value 213 

ఓೕ(௫)

(ଵି௫(ି
ೕ ⋅ఓೕ(௫)))

 and standard deviation 𝜎. This formulation allows to represent the zero 214 

catch while assuring that the expected catch still equals 𝜇(𝑥).   215 

𝜇(𝑥) = 𝑞 ⋅ 𝑆(𝑥)  (5) 216 
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         P(𝑌 = y|𝑥, 𝑆(𝑥)) =217 

⎩
⎪
⎨

⎪
⎧ exp൫−𝑒కೕ ⋅ 𝜇(𝑥)൯  if 𝑦 = 0

ቀ1 − exp൫−𝑒కೕ ⋅ 𝜇(𝑥)൯ቁ ⋅ 𝐿 ቌ𝑦,
ఓೕ(௫)

ቆଵିexpቀି
ೕ ⋅ఓೕ(௫)ቁቇ

, 𝜎
ଶቍ  if 𝑦 > 0

  (6) 218 

Per se, catchability 𝑞 are not identifiable as there is no information in the model to 219 

estimate the absolute scale of 𝑆. Commercial catches and/or scientific surveys will be only 220 

informative about fish biomass relative density and additional information must be 221 

provided to ensure statistical identifiability. If only one data type feeds the model (only 222 

scientific or commercial data), relative catchability is fixed to 1 and the spatial random field 223 

values is in the same scale as the data. If two data types (or more) are used to feed the 224 

model, one of the relative catchability (denoted 𝑞) has to be fixed, the other ones being 225 

estimated relatively to the first one through a scaling factor 𝑘 (eq. (7)).  226 

𝑞 = 𝑘 ∗ 𝑞  (7) 227 

As it is illustrated further in the simulation-estimation study (see section 3.1.1), the choice 228 

of the reference level can have important consequences on the precision of estimation.  229 

2.1.4 Maximum likelihood estimation 230 

The estimation of the model is performed with TMB (Template Model Builder - Kristensen 231 

et al. (2016)) and the spatial random effects are estimated through the SPDE approach 232 

(Lindgren et al., 2011) within the R software (R Core Team, 2020). More details on 233 

estimation are available in the supplementary material (SM 1.4).   234 

2.1.5 Integrated model validation 235 

A key issue with IM is whether the different data sources provide consistent or conflicting 236 

information (Saunders et al., 2019; Zipkin et al., 2019; Peterson et al., 2021). In our 237 
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framework, the key question is whether integrating commercial data in addition to scientific 238 

data will complement or will disrupt the inferences obtained from the scientific data, 239 

considered as a reference source of information. To address this issue, we propose a 240 

validation procedure based on the consistency check initially developed by Rufener et al. 241 

(2021) and designed to check whether estimates obtained from the IM are consistent with 242 

those obtained from the model fitted to scientific data only. The procedure would reject 243 

consistency if the parameters estimates from the IM fall outside the 95% confidence region 244 

of parameters estimates from scientific data only (see SM 1.5 for more details on the 245 

procedure). This validation step is applied to both simulations and case studies. 246 

2.2 Simulation-estimation experiments 247 

We conducted simulation-estimation experiments to assess the performance of the 248 

method for different data/model configurations (Table 1, see also SM 2 for extended 249 

details on simulations). For all scenarios, simulations of data, covariates and GRF were 250 

parameterized to tailor the case studies described hereafter. All scenarios and 251 

configurations are repeated 100 times so as to capture the variability between replicates.  252 

Simulation-estimation experiments were specifically designed to address four questions 253 

detailed below. In all cases, commercial data were simulated with various levels of PS 254 

(𝑏 = 0 for uniform sampling, 𝑏 = 1 for moderate PS, 𝑏 = 3 for strong PS) to assess the 255 

effect of PS on model’s performance (Figure 2). 256 

(Q1) How does each data source contribute to inferences?  257 

In real case study, commercial data sample size may be far superior to scientific data 258 

(specifically when using landings data) which might result in commercial data that 259 

dominate inferences. To assess how the balance between the scientific and commercial 260 
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sample sizes drives the relative contribution of each data source, simulations were 261 

conducted with few scientific samples (50 each) with increasing commercial samples 262 

(50=small, 400=medium and 3000=large), and with a large commercial sample size 263 

(3000) with increasing scientific sample size (50=small, 400=medium, 3000=large). No 264 

scenario with more scientific samples than commercial samples is presented here as it is 265 

a very unlikely configuration when using logbook catch data.  266 

For each combination of commercial and scientific sample size, we fitted four different 267 

models: a model fitted to scientific data only, a model fitted to commercial data only, and 268 

two IM fitted to both commercial and scientific data, one with the scientific data used as 269 

reference level and another one using the commercial data as reference level (Cf. eq. (7)). 270 

For questions Q2, Q3 and Q4, all simulations were conducted using 𝑛௦௧ = 50 and 271 

𝑛 = 3000 to tailor the case studies. Commercial data are used as the reference 272 

for catchability in the IM. 273 

(Q2) How does a partial coverage of the study area by the commercial data affect 274 

the quality of the estimation?  275 

While scientific surveys are supposed to cover the full population distribution area, partial 276 

coverage of the area by commercial fishing boats may arise from different sources like 277 

spatial management closures (e.g. box closure) or too expensive travels from the coast. 278 

To assess how a partial coverage by commercial data can affect estimates, we simulated 279 

data with the commercial sampling intensity arbitrarily fixed to 0 in a fixed 9x9 box (15% 280 

of the domain) while some biomass and some scientific samples are still simulated in this 281 

area. We compared estimates of the biomass in the entire area with those obtained with 282 

commercial data available on the whole domain.  283 
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(Q3) What is the cost of ignoring PS in estimation when sampling is preferential?  284 

Modelling preferential sampling involves conditioning results upon a specified structural 285 

assumption about sampling as well as increased computational cost. Here, we assess 286 

how ignoring PS would affect the quality of inferences when sampling is actually 287 

preferential. We voluntary introduce misspecification between the model used for 288 

simulating the data (with various levels of PS intensity) and the one used in the estimation 289 

procedure (b is alternatively estimated or arbitrarily fixed at 0).  290 

(Q4) How does the estimation perform when additional processes other than PS 291 

drive the fishing locations? 292 

Fishing locations potentially depend on many other factors independent from the species 293 

distribution (Salas and Gaertner, 2004; Haynie et al., 2009; Girardin et al., 2017). To 294 

assess how such process blurring strict PS may affect the quality of inferences, we 295 

simulate data with a sampling intensity that depends on both the biomass distribution (PS) 296 

and an additional spatial random terms 𝜂(. ) independent from the biomass distribution 297 

(eq. (4); see Table 1 for more details on 𝜂(. ) parameterization), and compare the 298 

inferences obtained from a data set simulated with strict PS (𝜂(. ) = 0 on the full domain).  299 

Note that for questions Q1, Q2 and Q3, the random effect 𝜂 was fixed to 0 in simulations 300 

(but it is still estimated in the estimation model), so that the sampling process only 301 

depends on the distribution of biomass.  302 

2.2.1 Performance metrics 303 

The performance of the estimation method was assessed using different metrics on key 304 

model outputs such as the total biomass, the PS parameter 𝑏 and the spatial biomass 305 

predictions.  306 
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The quality of the total biomass estimation (the sum over all grid cells, 𝐵 = ∑ 𝑆௫ (𝑥)) was 307 

explored through the relative bias 
(ି)


, that quantifies how much the total biomass is over 308 

or under-estimated.  309 

The quality of the estimation of the parameter 𝑏 is assessed through the relative bias 310 

defined as 
ି


 (except for 𝑏 = 0, where only the absolute bias is considered). We also 311 

assessed the relative bias of the species-habitat relationship estimate 𝛽መௌ and range 312 

parameter 𝜌 as these parameters are meaningful for understanding species distribution.  313 

The precision of the spatial predictions was studied with the mean squared prediction error 314 

between the simulated and the estimated latent field values 
ଵ


∑ ൫𝑆(𝑥) − 𝑆(𝑥)൯

ଶ
௫  (MSPE – 315 

𝑛 stands for the number of grid cells).  316 

2.3 Case studies 317 

We applied the approach on three case studies of demersal fisheries in the Bay of Biscay: 318 

the common sole (Solea solea, Linnaeus, 1758), the hake (Merluccius merluccius, 319 

Linnaeus, 1758) and the squids (Loliginidae family). These case studies were selected 320 

because they emphasize different intensities of preferential sampling. Further details on 321 

case studies and data are provided in SM 3. 322 

To compare models on the same spatial domain for the three species, we limited the 323 

analysis to scientific and commercial data available on the Bay of Biscay only (SM 3.1, 324 

Figure S3.1 for the spatial grids). Besides, to get some replicates of the analysis, we 325 

applied the approach on 2 years for each case study (2017 and 2018 for common sole – 326 

2014 and 2015 for hake and squid). To keep it synthetic, only the data and the results of 327 

the models for hake in 2014, sole in 2017 and squids in 2015 are presented in this 328 
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manuscript as the related IM pass the consistency check and they emphasize contrasted 329 

level of PS. 330 

2.3.1 Survey data 331 

Scientific data (CPUE, in kg/hour - Figure 3) were derived from the Orhago survey for 332 

common sole and EVHOE survey for hake and squids (ICES, 2020a). The sampling 333 

density (number of data points / km2) of those two surveys revealed representative of the 334 

sampling density of the main European trawl surveys from the DATRAS database (see 335 

SM 3.2). In comparison, commercial data used in the case studies are denser by 2 orders 336 

of magnitude. Scientific data was aligned on commercial data by filtering only individuals 337 

above the minimum landing size when available (24 cm for sole, 27 cm for hake - ICES, 338 

2020). The Orhago survey provides 49 samples for 2017 and 2018 and the EVHOE survey 339 

provides 86 samples for 2014 and 2015. 340 

2.3.2 Commercial data 341 

For each species, we filtered commercial data for ‘bottom trawlers’ as they cover a wide 342 

part of the study area (Figure 3) and provide easy to compute and reliable CPUE. 343 

Commercial data were standardized by the fishing effort in (kg/hour). For hake and sole, 344 

we filtered the métier targeting demersal fish (called OTB_DEF) and for squids, the métier 345 

targeting cephalopods (called OTB_CEP). 346 

In comparison with scientific data, the orders of magnitude of commercial sample size is 347 

much larger. For hake (i.e. OTB_DEF), there are 6852 commercial samples in 2014 and 348 

5000 in 2015. For squids (i.e. OTB_CEP), there are 7486 commercial samples in 2014 349 

and 9611 in 2015. For sole (i.e. OTB_DEF), there are 2401 samples in 2017 and 3325 in 350 

2018. 351 
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2.3.3 Habitat covariates  352 

Two covariates classically used to describe benthic species distribution were selected: 353 

depth and sediment type (Le Pape et al., 2003; Witman and Roy, 2009; Rochette et al., 354 

2010). Depth was separated into several categories and was considered (as sediment) 355 

as a categorical variable (SM 3.7, 3.8). 356 

2.3.4 Model configurations  357 

As for the simulation-estimation experiments, the models of the case studies were fitted 358 

under different configurations. To assess the information brought by each dataset, we 359 

compared the model fitted to scientific data only, to commercial data only and to both 360 

scientific and commercial data. To assess the effect of PS on model outputs, we compared 361 

the IM accounting for PS (𝑏 is estimated) with the IM where PS is ignored (𝑏 is fixed to 0). 362 

For the sole case study, we compared results obtained from the IM by considering one 363 

homogeneous or two distinct fleets with specific catchability and targeting parameters. 364 

Note that splitting one fleet in 2 distinct fleets is performed through a PCA coupled with a 365 

HCPC analysis on vessels characteristics data derived from both logbooks and VMS data. 366 

All the clustering analysis is described in SM 3.9.  367 

2.3.5 Model evaluation 368 

Uncertainty of the predictions are quantified through the coefficient of variation and all 369 

estimates (e.g. fixed parameters, total biomass) are represented with related 95 % 370 

confidence intervals. We assess the consistency of the IM through the statistical tests 371 

described in section 2.1.5 and in SM 1.5. Finally, the different IM are compared through a 372 

5-fold cross validation, and model performance was quantified based on two metrics: the 373 

𝑀𝑆𝑃𝐸௧ that measures goodness of fit (MSPE – mean squared prediction error), and the 374 

𝑃𝐶𝑉 that measures predictive capacity (see SM 3.10 for more details on the metrics and 375 
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guidelines for interpretation). For both metrics, the lower the values, the better the model 376 

fits/predicts the data. 377 

3 RESULTS 378 

3.1 Simulations 379 

We summarize the main results of the simulation-estimation experiments below. 380 

Additional results are provided in SM 4. 381 

3.1.1 Contribution of each data source in the integrated model 382 

Models fitted on scientific data only provide systematically unbiased estimates of total 383 

biomass (the mean bias is close to 0 for all sample size - Figure 4, 1௦௧ row), and the 384 

variance of estimations decreases with scientific sample size. Note that the species-385 

habitat relationship estimates 𝛽መௌ are also unbiased (see SM 4.1). 386 

Overall, inferences from the IM revealed consistent with those obtained from scientific 387 

data only (SM 4.2.1). Even when the commercial sample size is large and the scientific 388 

sample size is small, only 3% of the p-values fall below the 0.05 threshold for the fixed 389 

effect test (the test wrongly rejects consistency). For the random effect test, the results 390 

are more contrasted as 10% of the p-values fall below the 0.05 threshold when data size 391 

are very unbalanced (low scientific sample – high commercial sample). 392 

In almost all configurations, the IM provide unbiased and more precise estimates for total 393 

biomass and spatial biomass predictions compared to the model fitted to scientific data 394 

only (Figure 4). As expected, the larger the commercial and the scientific sample size, the 395 

more accurate the spatial predictions, the PS parameter 𝑏 and total biomass estimates. 396 

Estimates of 𝑏 are unbiased in most cases except when commercial sample size is small 397 

and PS is strong (Figure 4, 2ௗ row).  398 
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As expected, the contribution of each data sources in the IM directly depends on the 399 

balance in the sample size. When sample size is balanced between the data sources, 400 

then integrating the two data sources in the model systematically improves the inferences 401 

with regards to situations where only one data source is analyzed. For instance, for large 402 

commercial and scientific sample size (com.L_sci.L) and no PS, the precision is 1.5 higher 403 

(i.e. the MSPE is 1.5 lower) for the IM compared to single-data models (either scientific or 404 

commercial - Figure 4, 3ௗ row, 1௦௧ column). However, when the sample sizes are 405 

unbalanced, the data source with the larger sample size (here commercial data) 406 

dominates inference and integrating another data source with a smaller sample size (here 407 

scientific data) contributes to a much lesser extent to inference. See for instance the 408 

situation where commercial sample size is large and scientific sample size is small 409 

(com.L_sci.S - Figure 4, 3ௗ row, 1௦௧ column). In this case, the performances of the model 410 

fitted to commercial data alone – with reference level fixed to commercial data - are very 411 

close to those of the IM whatever the intensity of PS. 412 

Interestingly, the higher the intensity of PS, the higher the benefits of fitting commercial 413 

data in the model (Figure 4, 3ௗ row); for instance, when both datasets have large sample 414 

sizes (com.L_sci.L), increasing PS reduces error predictions (i.e. increases accuracy) by 415 

2 each time (i.e. for 𝑏 = 0, 𝐸(𝑀𝑆𝑃𝐸) = 20; for 𝑏 = 1, 𝐸(𝑀𝑆𝑃𝐸) = 10; for 𝑏 = 3, 416 

𝐸(𝑀𝑆𝑃𝐸) = 5). 417 

Still, the simulations also reveal some limits in the inferences. First, the range parameter 418 

might be poorly estimated and slightly biased when the sample size is small while being 419 

better estimated when increasing the sample size or integrating additional data in the 420 

analysis (see SM 4.3). 421 
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Also, in unbalanced cases the accuracy of total biomass estimates from the IM revealed 422 

highly sensitive to the choice of the reference level (Figure 4, 1௦௧ row). When the 423 

commercial sample size far exceeds the scientific sample size, setting the reference level 424 

to the commercial data produces more precise estimates than setting the reference level 425 

to scientific data. When defining scientific data as reference level, the intercept of the 426 

latent field of relative biomass is estimated from the few scientific samples and resulting 427 

estimates are less precise than when defining the reference level with a more numerous 428 

data source (here commercial data). This is also true - to a lesser extent - for spatial 429 

predictions (Figure 4, 3ௗ row).  430 

In the following, only the case where commercial samples exceed scientific samples and 431 

the reference level is fixed with commercial data is explored further as it is the closest to 432 

the case studies configuration (Table 1). 433 

3.1.2 Impact of a partial coverage of the study area by the commercial data 434 

When commercial data only partially cover the distribution area, commercial data still 435 

provide valuable information to predict biomass spatial distribution whatever the PS 436 

intensity is (Figure 5, 2ௗ column). When sampling is not preferential (data simulated with 437 

𝑏 = 0), a partial coverage of the distribution area produces on average 1.5 less precise 438 

spatial predictions but estimates remain unbiased (Figure 5, 3ௗ row, comparing 1௦௧ and 439 

2ௗ column). When sampling is preferential (either moderate or high), biomass estimates 440 

are slightly underestimated. Integrating scientific data in the analysis does not correct this 441 

bias. 442 
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Finally, all model configurations allow for unbiased and precise estimation of the species-443 

habitat parameters 𝛽መௌ whether or not there is a partial coverage of the domain (see SM 444 

4.1) and overall almost all IM are consistent with scientific-based model (SM 4.2.2). 445 

3.1.3 How does ignoring PS impact inferences? 446 

As expected, the impact of ignoring PS in the estimation model is negligible when data is 447 

simulated with no PS, and becomes more and more detrimental when the intensity of PS 448 

increases in the truth (Figure 5, 3ௗ column). With no surprise, when data are generated 449 

with no PS (𝑏 = 0), ignoring PS in the estimation procedure has no effect on the estimation 450 

performance. When PS is moderate, total biomass estimates are 5 % overestimated (𝑏 =451 

1). In the case of strong PS (𝑏 = 3), ignoring PS in the estimation strongly deteriorates the 452 

quality of inferences regarding total biomass estimates (Figure 5, 1௦௧ row, 3ௗ column). 453 

Total biomass estimates are overestimated by 50% on average. However, the main spatial 454 

patterns are well identified with or without consideration of PS, even though more precise 455 

when accounting for PS (Figure 5, 3ௗ row, 1௦௧ column). SM 4.4 (Figure S4.4.1) presents 456 

maps comparing a simulated biomass field and model predictions obtained by considering 457 

or ignoring PS when 𝑏 = 3. The areas with high biomass values (i.e. where commercial 458 

sampling is dense) are well predicted by the models accounting for PS or not. The main 459 

differences are localized in poorly sampled areas where biomass is low. Accounting for 460 

PS in estimation allows to interpret the low sampling intensity areas as low-density areas, 461 

and therefore to reduce the bias in those areas (SM 4.4, Figure S4.4.2).  462 

Finally, from a computational point of view, accounting for PS on average multiplies by 4 463 

the computational time (see SM 4.5). 464 
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3.1.4 Effect of other spatially structured processes affecting fishing locations 465 

As expected, precision of estimates are deteriorated when fishing locations actually 466 

depend upon a combination of biomass distribution (PS) and other mechanisms (here 467 

captured by a spatially structured random term - Figure 5, 4௧ column). In this case, the 468 

IM still provides valuable inferences on fish distribution, fish total biomass and estimates 469 

of 𝑏, although estimations are less accurate than the base case. For instance, MSPE are 470 

5 times lower when nothing else than PS affects sampling locations compared with a case 471 

where sampling locations depend on both PS and other independent spatial processes 472 

(Figure 5, 3ௗ row, 1௦௧ and 4௧ column). But interestingly, the weight of scientific data 473 

increases when the sampling distribution of commercial data is blurred by spatial 474 

processes independent from biomass spatial distribution. MSPE and relative bias 475 

provided by the IM are both 1.4 smaller compared to those obtained when the model is 476 

fitted to commercial data only. 477 

3.2 Case studies 478 

Below we summarize the main results obtained from the application of the framework to 479 

the three case studies. Additional results and maps are provided in SM 5. 480 

3.2.1 Contribution of each dataset to the inferences 481 

Almost all the case studies successfully passed the consistency test between the IM and 482 

the model fitted to scientific data only (see SM 5.1).  483 

Models based on scientific data provide different spatial predictions compared with the 484 

IM. Predictions for sole and squids from the scientific-based model are mainly shaped by 485 

the covariate effects (Figure 6; for further analysis see SM 5.2, SM 5.3 and SM 5.4). On 486 

the other hand, predictions from the IM are mainly shaped by the spatial random effect as 487 

commercial data allow to better capture the local spatial correlation structures. 488 



23 
 

Consistently with simulations, inferences from the IM are mainly driven by the commercial 489 

data (Figure 6). This logically arise from the much larger sample size of commercial data 490 

compared with scientific data, combined with the good coverage of commercial data in 491 

high-density areas (Figure 3). As commercial data is denser than scientific data, they will 492 

better capture local spatial correlation structures than scientific data. SM 5.5 provide some 493 

additional analysis of the information brought by commercial data in the IM.  494 

In this configuration, scientific data bring information to model predictions in areas poorly 495 

covered by the commercial data (SM 5.6 - e.g. for squids, the offshore predictions are 496 

downscaled by scientific data). 497 

3.2.2 Preferential sampling and other processes affecting fishing locations 498 

In this section and related SM (SM 5.7 to SM 5.10), we focus on results from the IM only. 499 

For the three case studies, estimates of 𝑏 are positive, suggesting sampling by fishermen 500 

is preferential towards high biomass density areas. The hake case study has the lowest 501 

PS parameter (𝑏 = 0.88, 𝑠𝑑(𝑏)  =  0.107), followed by sole (𝑏 = 2.4, 𝑠𝑑(𝑏)  =  0.046) and 502 

squids (𝑏 = 3.5, 𝑠𝑑(𝑏)  =  0.025).  For more intuition concerning the strength of PS and 503 

how it varies in space, refer to SM 5.7. In all case studies, the spatial random term 𝜂 in 504 

the sampling process turned out to be spatially structured (SM 5.8) and captures 25% to 505 

97% of the spatial variability of fishing locations (SM 5.9). This highlights the importance 506 

of other spatial mechanisms in the choice of fishing locations compared to strict PS 507 

towards biomass distribution. 508 

Consistently with simulations, the higher the PS intensity, the higher the differences 509 

between inferences obtained with and without considering PS. When comparing biomass 510 

field values (Figure 7, left column), ignoring PS increases predictions in poorly sampled 511 
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areas (all red areas – compare with Figure 3). This effect is particularly marked for the 512 

squid case study where the relative difference is the strongest in the offshore areas. 513 

However, considering PS or not has relatively little effect in areas where sampling is 514 

spatially denser (all white areas). Ignoring PS affects total biomass indices estimates and 515 

the relative difference between biomass estimates with or without PS increases with the 516 

value of b estimates (Figure 7, right column).  517 

When the estimated PS intensity is high (i.e. in the case of squids) accounting for PS can 518 

improve model goodness-of-fit and predictive capacity (SM 5.10). 519 

3.2.3 Benefits of considering different fleets in the estimation model 520 

Based on the sole case study, we demonstrate the capacity of the model to integrate 521 

multiple commercial fishing fleets, each with specific parameters (catchability and 522 

targeting). In the sole case studies, considering two different fleets in the IM (instead of 523 

one homogeneous) improves goodness-of-fit towards scientific data (SM 5.11, y-axis) and 524 

modifies spatial predictions (SM 5.12). 525 

  526 
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4 DISCUSSION 527 

Main findings 528 

Combining multiple sources of data to build more informative spatio-temporal models for 529 

fish distribution is a major challenge in fishery ecology. Commercial catch per unit effort 530 

data have long been recognized as a valuable source of information eventually highly 531 

complementary to scientific survey data. But the complexity of the mechanisms driving 532 

the way fishermen sample in space and time make the combination of scientific and 533 

commercial data challenging.  534 

In this paper, we provide a hierarchical framework to integrate scientific surveys and 535 

commercial catch declaration data to infer species distribution while considering the effect 536 

of PS on fishing points distribution. The new model allows for exploring and questioning 537 

the challenges raised by such integration. The benefit but also the limits of the new 538 

approach were evaluated using simulations and through the application of the model to 539 

three contrasted demersal case studies (sole, hake and squids) of the Biscay Bay fishery.  540 

Both simulations and case studies demonstrate that ignoring PS in the inference may be 541 

highly detrimental when the intensity of PS is strong. The present framework can serve 542 

as a tool to assess the benefit of including PS in analysis, depending on the intensity of 543 

PS but also on the modelling objectives. As already shown in previous studies (Conn et 544 

al., 2017; Pennino et al., 2019), when PS actually occurs in commercial catches, ignoring 545 

this process may bias inferences on total biomass estimates. Even if ignoring PS may not 546 

hamper the capacity to detect areas of high biomass, the biomass in low-density areas 547 

may be overestimated. Therefore, if the objective is to compute biomass indices integrated 548 

over a large area, then it might be worth accounting for PS to avoid biased results. By 549 
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contrast, if the objective is to identify hotspots, the benefits of considering PS may be 550 

small with regard to the additional computational time it requires.  551 

The three case studies illustrated the potential of the model to handle the variability of PS 552 

behavior among species and fleets. Low PS was revealed for hake, while a moderate and 553 

strong PS was revealed for sole and squids, respectively, which is consistent with the 554 

expert knowledge on the behavior of those bottom trawls fleets (Y. Vermard, com. pers.).  555 

Results also demonstrate the capacity of the framework to integrate commercial catch 556 

data from multiple fleets, and the benefits for the quality of inferences when those fleets 557 

have different features such as distinct catchabilities or targeting behaviors. For the sole 558 

case study, this approach proves useful to distinguish two segments in the bottom trawl 559 

fleet, which improved model outputs. This framework could be extended to more than two 560 

fleets and combined with other studies analyzing fleets structure (Pelletier and Ferraris, 561 

2000; Ferraris, 2002; Stephens and MacCall, 2004; Deporte et al., 2012; Winker et al., 562 

2013; Okamura et al., 2018).  563 

Challenges in modelling PS 564 

Still, modelling the spatial distribution of commercial fishing locations remains highly 565 

challenging (Hintzen, 2021; Hintzen et al., 2021). Our framework is shaped to integrate 566 

data from homogeneous fishing fleets supposed to share the same fishing behavior, which 567 

simplifies the modelling of the non-uniform spatial intensity of fishing for each fleet. We 568 

propose a parsimonious model where the dependence of the sampling intensity to the 569 

biomass is supposed to be linear in the log scale. This is a strong hypothesis and 570 

departure from this hypothesis may obviously exist in the truth. For instance, the intensity 571 

of PS could vary in space such as in Conn et al. (2017) who considered that the degree 572 
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of PS could change across the landscape. On the other hand, however, the log-log linear 573 

assumption is easy to implement in other software including the VAST R package used 574 

for operational assessments in some management regions (Thorson et al., 2019).   575 

Of course, many other factors may drive the spatial intensity of fishing, and those were 576 

simply captured in our model through an additional spatial random term. For instance, 577 

fishers’ behavior may depend on prior knowledge of fish spatial distribution, on information 578 

sharing within fishing cooperatives, on expected distribution of bycatch species, or 579 

logistical constraints (e.g., transit costs) (Salas and Gaertner, 2004; Haynie et al., 2009; 580 

Girardin et al., 2017). Targeting behavior may also be directed toward an assemblage of 581 

species rather than toward a single species (Bourdaud et al., 2019).  582 

The random effect should be able to capture additional variations whenever the departure 583 

from a continuous Gaussian random field is not too high. If not, for instance in the case of 584 

fishery closures where fishing activity suddenly drops to very low levels (as explored in 585 

simulation-estimation), the model may produce biased estimates due to model 586 

misspecification. We did not detect such misspecification in our case study, but we 587 

recommend that future analyses based on fishery-dependent data present a log-log plot 588 

between sampling intensity and predicted biomass density to diagnose strong departure 589 

from model hypothesis.  590 

Still, some non-spatial targeting has been reported from multi-species catch records 591 

(Stephens and MacCall, 2004; Okamura et al., 2018). Efforts to integrate these methods 592 

into spatio-temporal models are underway (Thorson et al., 2016), although these methods 593 

have not previously been extended to jointly analyzing multi-species fishery and survey 594 

data. 595 
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Relative contribution of scientific and commercial data 596 

Our analysis exemplifies that a key issue in such integrated modelling exercise is to get a 597 

sensible evaluation of the relative contribution of the different sources of data in 598 

estimation. In particular, critical issues with the IM are whether the different data sources 599 

provide eventually highly unbalanced quantity of information (then the inferences are fully 600 

dominated by one of the data sources; Fletcher et al., 2019) and whether they provide 601 

complementary or conflicting information to the final inferences (Saunders et al., 2019; 602 

Zipkin et al., 2019; Peterson et al., 2021). 603 

We implemented a likelihood ratio-test (Rufener et al., 2021) to check for model 604 

consistency between the IM and the scientific-based model. In most cases, models 605 

passed the consistency check successfully, although it was rejected in some cases. Some 606 

further analysis should investigate in detail the reasons of these inconsistencies as they 607 

could probably shed light on some new research avenues for model improvement. For 608 

instance, some neglected vessel effect (e.g., difference in catchability among vessels - 609 

Thorson and Ward, 2014) or some too simplistic representation of the sampling and/or 610 

the observation process of commercial data might partly explain these inconsistencies. 611 

Simulations revealed that when scientific data and commercial data have balanced 612 

sample size, they both contribute to inference and the IM will provide better biomass 613 

predictions than models based on single-data set. As expected, when the sample size of 614 

commercial data far exceeds scientific data, inference about spatial patterns is mainly 615 

driven by the commercial data. In the three case studies, we used commercial data with 616 

sample sizes that far exceed the scientific one. In that case, scientific data have relatively 617 

limited weight in the final inference. Still, they bring valuable information in areas that are 618 

not sampled by the commercial fishery. Also, scientific data remain a critical component 619 
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in the analysis as they provide some reference data through a standardized sampling plan 620 

and a controlled protocol allowing then to assess for the IM consistency. It would be worth 621 

applying our framework to other case study that may consist in more balanced data sets, 622 

such as models seeking to combine scientific with onboard observer data (Rufener et al. 623 

2021), or in pelagic fisheries where acoustic surveys can provide continuous observations 624 

over the full domain. 625 

Our results also point out the importance of setting the reference level for the catchability 626 

coefficient with either the scientific or the commercial data. In particular, when the sample 627 

size of the commercial data far exceeds the scientific survey, fixing the reference level 628 

with scientific surveys generally results in higher imprecision, due to the smaller sample 629 

size. But still, in certain cases, the scientific data may provide absolute information on 630 

biomass and fixing the catchability factor associated with the survey data can result in an 631 

interpretable measure of index scale (Thorson et al., 2021). Hence, the choice of the 632 

reference level could be a matter of tradeoffs between precision of inferences and 633 

interpretation of the results in terms of scale. 634 

The limits of reallocated catch data 635 

Probably one of the major limits of our approach is that the actual framework ignores the 636 

uncertainty that arises from the procedure used to reallocate the catch declarations in 637 

space. Obtaining the spatialized CPUE inputs used in the model requires pre-treatment 638 

of the commercial catch declaration data to allocate declaration data to VMS positions 639 

(Hintzen et al., 2012). Raw data corresponds to fishing operations that are daily 640 

aggregated and reported at coarse administrative spatial units (0.5° latitude by 1° 641 

longitude rectangles). These declarations are then reallocated uniformly on all GPS 642 
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locations previously identified as fishing in the vessel path. This procedure has been 643 

demonstrated to be robust while being a fast and a pragmatic approach for reallocating 644 

landings to VMS pings (Gerritsen and Lordan, 2010; Murray et al., 2013). However, it 645 

implies strong hypotheses that may artificially increase or transform the information 646 

provided by the data. Typically, the uniform reallocation of catch declarations on all GPS 647 

positions identified as fishing may smooth the spatial signal, which could potentially 648 

explain the lack of species-habitat relationship obtained from the IM. The effect of such 649 

reallocation should be explored in further study to better understand its consequences on 650 

model predictions/estimates and further model development should investigate how to 651 

mitigate its consequences. 652 

Perspectives 653 

Our work raises some major challenges which all constitutes exciting tracks for future 654 

research.  655 

Data-weighting approaches could be explored further to better control the contribution of 656 

the two sources of data and eventually assess if increasing scientific data weight could 657 

improve model predictive capacity. Data-weighting methods intend to modify the relative 658 

influence of the data sources by assigning or estimating a weight for each data source 659 

(Francis, 2017; Punt, 2017; Wang and Maunder 2017; Punt et al., 2020). Only very few 660 

studies have already explored the potential for data weighting in the SDM context 661 

(Fletcher et al., 2019). Still, several questions regarding the weight specification remain 662 

open or largely debated. For instance, how to rigorously fix/estimate/interpret the weight? 663 

Also, when can we consider that a data-weighting approach is relevant or is it only a matter 664 

of model misspecification? Some theoretical and modelling development could be highly 665 
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valuable to provide a generic and rigorous formalization for either data weighting or model 666 

correction in the context of SDM (but see for instance the approach provided by Thorson 667 

et al. (2017b) for composition data in the context of stock assessment models). 668 

Another option would consist in developing an alternative observation model for the 669 

commercial CPUE in order to better capture the uncertainty associated with the 670 

reallocation procedure. As a general idea, an observation model could be developed to 671 

explicitly represent that CPUE are available at the scale of the daily fishing activity (the 672 

scale that corresponds to the catch declaration), rather than artificially reallocating 673 

uniformly catch declarations on related VMS pings. Doing so, the quantity of information 674 

provided by commercial data would be more representative of the information they really 675 

contain.  676 

Future work should also seek to better integrate the discrete-choice and econometric 677 

analyses emphasizing the complexity of the processes related to the choice of fishing 678 

locations. For instance, the sampling process could account for the pluri-specific nature 679 

of fisheries (Bourdaud et al., 2019) and additional factors other than fish distribution could 680 

be included to explain the variability of sampling intensity in space and time (Salas and 681 

Gaertner, 2004; Haynie et al., 2009; Girardin et al., 2017). 682 

Finally, including a temporal dimension in the model and fitting a longer time series looks 683 

a fruitful research avenue. Moving to spatio-temporal modelling that would consider 684 

temporal autocorrelation in the spatial distribution may be methodologically challenging 685 

(Cameletti et al., 2013), but represents an exciting step towards a better understanding of 686 

the seasonal spatial distribution of fish resources. Indeed, commercial data are often 687 

available all along the year, when scientific surveys most often occur once or twice a year. 688 

Combining scientific and catch declarations data within an integrated spatio-temporal 689 



32 
 

framework built at an infra-annual time step (e.g., season, month) would allow to 690 

complement the gap of information to investigate fish spatio-temporal distribution at a finer 691 

temporal scale than what is possible using scientific data only (Bourdaud et al., 2017; 692 

Pinto et al., 2019; Rufener et al., 2021). It would offer new opportunities to interpret 693 

seasonal patterns of distribution (Kai et al., 2017), identify fish functional habitats such as 694 

spawning areas (Paradinas et al., 2015; Delage and Le Pape, 2016), and provide the 695 

required knowledge for protecting those habitats (Schmitten, 1999; Erisman et al., 2020). 696 

SUPPLEMENTARY MATERIAL 697 

All the supplementary material documents are available at the ICESJMS online version of 698 

the manuscript. They provide additional information on the modelling framework (SM1), 699 

material and methods for simulations (SM2) and case studies (SM3), results for 700 

simulations (SM4) and case studies (SM5). 701 
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FIGURES AND TABLES 719 

 720 

 721 

Figure 1.  Diagram of the spatial integrated model including preferential sampling for 722 
commercial data. Locations of scientific trawls do not contribute directly to the likelihood. 723 
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 724 

Figure 2.  Maps of simulated commercial sampling points obtained for three values of 725 
preferential sampling (b=0, b=1, b=3). Blue scale: values of the simulated biomass field. 726 

Dots: fishing points.  For 𝑏 = 0,the targeting metric  𝑇(𝑥) = 1. For 𝑏 = 1, 727 
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𝑎𝑟𝑔 𝑚𝑎𝑥
௫

𝑇(𝑥) = 12, 𝑞ହ%{𝑇(𝑥)} = 0.4  . For 𝑏 = 3, 𝑎𝑟𝑔 𝑚𝑎𝑥
௫

𝑇(𝑥) = 80, 𝑞ହ%{𝑇(𝑥)} =728 

0.002 (SM 1.3).    729 

  730 
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 731 

 732 

Figure 3.  Map of scientific samples (black dot) and commercial sampling distribution 733 
(red color scale – unit: fishing hours). Note that all scientific hauls last around 30 734 

minutes. Black lines - limits of the spatial domains covered by the scientific survey 735 
(Orhago and EVHOE) that delineate the study area. Left – Hake, November 2014 736 

(EVHOE; commercial data from otter bottom trawls targeting demersal species 737 
OTB_DEF). Middle – Sole, November 2017 (Orhago; commercial data from otter bottom 738 

trawls targeting demersal species OTB_DEF). Right – squid, year 2015 (EVHOE; 739 
commercial data from otter bottom trawls targeting cephalopods OTB_CEP).  740 
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 742 

Figure 4.  Performance metrics obtained for various commercial and scientific data 743 
sample size. Column: intensity of the preferential sampling in simulated data. x-axis: 5 744 

combinations of commercial and scientific sample size. ‘com’ stands for commercial, ‘sci’ 745 
stands for scientific, S stands for small sample size (50), M stands for medium sample 746 

size (400), L stands for large sample size (3000). Colors: model configurations. 747 
Integrated_q.com: integrated model with catchability fixed to 1 for commercial data; 748 

Integrated_q.sci: integrated model with catchability fixed to 1 for scientific data. Boxplots 749 
represent the variability among the 100 replicates.  750 
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   752 

 753 

 754 

Figure 5. Performance metrics obtained in different data and model configurations. Red 755 
points: mean value. 1௦௧ column: no discrepancy between simulation and estimation. 2ௗ 756 

column: commercial data do not cover a 9 x 9 zone of the grid. 3ௗ column: b is 757 
arbitrarily fixed to 0 in the estimation models. 4௧ column: data simulated with a random 758 

effect 𝜂 in the sampling intensity process. In all configurations, simulations are 759 
conducted for three levels of preferential sampling (x-axis: b = 0, b = 1, b = 3). Colors: 760 
data sources used in the integrated model for inferences. Integrated_q.com: integrated 761 

model with catchability fixed with commercial data. Boxplots represent the variability 762 
among the 100 replicates. 763 
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 765 

Figure 6.  Prediction of the relative biomass for each case study. 1௦௧ column: model 766 
fitted to scientific data only; 2ௗ column: integrated model accounting for PS; 3ௗ 767 
column: commercial-based model accounting for PS. When the model is fitted to 768 

scientific data only, relative biomass is rescaled with the relative catchability parameter 769 
estimated within the integrated model so that all maps are in the same scale.  770 
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43 
 

Figure 7. Comparison of relative difference in biomass spatial predictions (calculated as 773 
(Sb_fix(x) – Sb_est(x))/Sb_est(x)) in space (left) and of total biomass (sum on the spatial 774 

domain; right) obtained with the integrated models from the 3 case studies when 775 
accounting or not for preferential sampling. b_est: PS is estimated. b_fix: PS is not 776 

accounted for.  777 

 778 
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Table 1: Simulations 779 

General simulations description 

Biomass field 

Depends on one continuous covariate (𝛤ௌ) and one random spatial effect (𝛿).                                                Simulated within a 25 x 25 grid. 
Both are simulated independently through a GRF with Matérn covariance function.  
Their range (𝜌) and marginal variance are fixed respectively to 10 and 1.  
n.b. the marginal variance quantifies the variability of the spatial process. For more details on marginal variance parameterization, see Lindgren et al. (2011). 

Scientific data Random stratified plan within 4 strata (see Figure S2.1)                         Catchability fixed to 1                         Simulated with 10% of zeroes (𝜉 = 0) 

Commercial data 

Simulated according to three PS levels (i.e. three values for 𝑏 - see Figure 2).  
- 𝑏 = 0: commercial sampling is not preferential; 
- 𝑏 = 1: preferential sampling is moderate, commercial vessels mainly target areas where fish biomass is high; 
- 𝑏 = 3: commercial sampling is highly preferential and vessels strongly target zones where biomass is high.  

𝜂 is set to 0 for Q1, Q2, Q3. For Q4, 𝜂 is set to tailor the sole case study. 
The range of 𝜂 is set to 40 (4 times the range of 𝛿), the marginal variance is set to 5 (5 times the marginal variance of 𝛿). 
Catchability fixed to 1                             Simulated with 30 % of zero when PS is null (𝜉 = −1) 

 Simulation scenarios Model configurations 

 

𝒃 
Scientific 

sample size 
Commercial 
samples size 

Coverage of the 
study area 

Additional  
random effect 
in sampling 
intensity (𝜼) 

Data sources 
considered in the 

model 
PS estimated 

Fixed 
catchability 

Question 1: How do each data 
source contribute to inferences?   

0,1,3 50 50, 400,  3000 Full No Scientific only, 
commercial only, both 

yes Scientific or 
Commercial 

0,1,3 50, 400,  
3000 

3000 Full No Scientific only, 
commercial only, both 

yes Scientific or  
Commercial 

Question 2: How does a partial 
coverage of the study area by the 
commercial data affect the quality 
of the estimation? 

0,1,3 50 3000 No fishing in a 9x9 
cells box 

No Scientific only, 
commercial only, both 

yes Commercial 

Question 3: What is the cost of 
ignoring PS in estimation when 
sampling is preferential? 

0,1,3 50 3000 Full No Scientific only, 
commercial only, both 

no (𝑏 fixed at 
0) 

Commercial 

Question 4: How does the 
estimation perform when 
additional processes other than 
PS drive the fishing locations? 

0,1,3 50 3000 Full Yes Scientific only, 
commercial only, both 

yes Commercial 

780 
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