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Social unacceptability for simple voting
procedures

Ahmad Awde, Mostapha Diss, Eric Kamwa, Julien Yves Rolland and
Abdelmonaim Tlidi

Abstract A candidate is said to be socially acceptable if the number of voters who
rank her among the most preferred half of the candidates is at least as large as the
number of voters who rank her among the least preferred half (Mahajne and Volĳ,
2018). For every voting profile, there always exists at least one socially acceptable
candidate. This candidatemay not be elected by somewell-known voting rules, which
may even lead in some cases to the election of a socially unacceptable candidate, the
latter being a candidate such that the number of voters who rank her among the most
preferred half of the candidates is strictly less than the number of voters who rank
her among the least preferred half. In this paper, our contribution is twofold. First,
since the existence of a socially unacceptable candidate is not always guaranteed, we
determine the probabilities of the existence of such a candidate. Then, we evaluate
how often the Plurality rule, the Negative Plurality rule, the Borda rule and their
two-round versions can elect a socially unacceptable candidate. We perform our
calculations under both the Impartial Culture and the Impartial Anonymous Culture,
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two assumptions which are widely used when studying the likelihood of voting
events. Our results show that as the number of candidates increases, it becomes
almost assured to have at least one socially unacceptable candidate; in some cases,
the probability that half of the candidates in the running are socially unacceptable
approaches or even exceeds 50%. It also comes out that the extent to which a
socially unacceptable candidate is selected depends strongly on the voting rule, the
underlying distribution of voters’ preferences, the number of voters, and the number
of competing candidates.

Keywords: Voting, Social Unacceptability, Scoring Rules, Probability, Paradoxes.
JEL classification: D71, D72.

1 Introduction

Assuming that voters have strict rankings (without indifference) on all running
candidates, Mahajne and Volĳ (2018) introduce the concept of a socially acceptable
candidate, which is a candidate whom at least half of the voters rank higher than at
least half of the candidates in their rankings. They show that there always exists at
least one socially acceptable candidate for every preference profile; however, such a
candidate may not be elected under some scoring rules, with the exception of a new
scoring rule, the half accepted-half rejected (HAHR) rule. Furthermore, Mahajne
andVolĳ (2019) show that a socially acceptable candidate may not be a @−Condorcet
winner1 and they identify some restricted preference domains that guarantee that any
@−Condorcet winner is socially acceptable as a function of the threshold @. Diss and
Mahajne (2020) extend the concept of social acceptability to multi-winner elections,
i.e., when the goal is to select a given group of candidates, and perform the same
analysis as Mahajne and Volĳ (2019) in that context.

Among the wide range of existing voting rules, scoring rules and scoring runoff
rules are the most common in the literature and in practice. Under scoring rules,
each voter ranks all of the alternatives from her most preferred to her least preferred
candidate; then, points are awarded to candidates according to their position in
voters’ rankings. The score of a given candidate is defined by the total number of
points received by that candidate taking into account all of the voters; the overall
winner of the election is the candidate having the highest score. The most popular
scoring rules are the Plurality rule, the Negative Plurality rule and the Borda rule.
Although these rules are quite popular, they suffer from a number of limitations.
For an overview of these limitations, the reader can refer, among others, to the work
of Felsenthal (2012), Gehrlein and Lepelley (2017, 2011), Nurmi (1999) or to the
recent book by Diss and Merlin (2021).

It is well known from the debate between Borda (1781) and Condorcet (1785)
that scoring rules may lead to the Condorcet winner paradox, i.e., they may fail to

1 A @−Condorcet winner is a candidate who is preferred to each of the other candidates in pairwise
majority comparisons by a fraction @ of the total number of voters with 1/2 ≤ @ < 1.
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elect the Condorcet winner. When she exists, the Condorcet winner is a candidate
who is preferred to each of the other competitors by a majority of voters. Scoring
rules may also lead to the Condorcet loser paradox, as they may elect the Condorcet
loser, a candidate defeated in pairwise comparisons by each of the other candidates.
Even worse, a candidate ranked first by an absolute majority of the voters may not be
elected (the absolute majority winner paradox) whereas a candidate ranked last by an
absolute majority of the voters may be elected (the absolute majority loser paradox).2
Avoiding the aforementioned paradoxes can be considered as an attempt to guarantee
the election of a candidate supported by an “acceptable” majority of the electorate
or to avoid the victory of a candidate who would be supported by only a given
“minority”. Note that the existence of a Condorcet winner is not always guaranteed,
whereas this is always the case for at least one socially acceptable candidate.

As mentioned above, a socially acceptable candidate may not win under some
scoring rules; these rules may in some cases instead select a socially unacceptable
candidate. Note that unlike the assured existence of at least one socially accept-
able candidate for any preference profile, the existence of a socially unacceptable
candidate is not always guaranteed. If there is at least one socially unacceptable can-
didate, the fact is that a majority consensus leans in favor of the socially acceptable
candidate(s) over the socially unacceptable candidate(s). It therefore appears that
in such a case the election of a socially unacceptable candidate corresponds to an
undesirable scenario. Since such scenarios can occur under some scoring rules, our
goal in this paper is to find out if this is frequent or not. More exactly, we evaluate
the probability that the Plurality rule, the Negative Plurality rule, the Borda rule,
and their two-round versions select a socially unacceptable candidate. Prior to that,
we determine the probabilities of existence of socially unacceptable candidates. We
focus on elections with a number of candidates in the set {3, 4, 5, 6, 10, 15} for some
values of the number of voters between 10 and 100000. We perform our analysis by
running simulations under both the Impartial Culture and the Impartial Anonymous
Culture, which are two widely used assumptions when studying the likelihood of
voting events. We will say more about these assumptions in the sequel.

Our results show that as the number of candidates increases, it becomes almost
assured to have at least one socially unacceptable candidate; in some case, the proba-
bility that half of the candidates in the running are socially unacceptable approaches
or even exceeds 50%. It also turns out that the extent to which a socially unacceptable
candidate is selected depends strongly on the voting rule, the underlying distribu-
tion of voters’ preferences, the number of voters, and the number of competing
candidates.

The rest of the paper is organized as follows: Section 2 is devoted to definitions
and to the basic notations that sets the framework for our analysis; in this section, we
say a few words on our simulation methodology. We present our probability results
in Section 3 for each of the two preference models under consideration. Section 4
concludes.

2 See for instance, Diss et al. (2018).
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2 Definitions

2.1 Preferences and social unacceptability

Let � = {01, . . . , 0 } be a set of  ( ≥ 3) candidates and # = {1, . . . , =} a set of
= (= ≥ 2) voters. We denote by R the set of binary relations on �, and P the subset of
complete, transitive, and antisymmetric binary relations on �. A preference profile
is a mapping c = (�1, . . . , �=) of preference relations on � to the voters in # .
For each voter, 8 ∈ # , �8 represents 8’s preference relation over the candidates in
�. We denote by P= the set of preference profiles. A voting situation is a  !-tuple
=̃ = (=1, =2, . . . , = !) that indicates the total number =C of voters casting each of the
 ! complete linear orders such that

∑ !
C=1 =C = =.

Let c ∈ P= be a preference profile, for any subset � ⊆ P of preference relations,
`c (�) = |{8 ∈ # :�8∈ �}| is the number of voters whose preferences are in �. For
any preference profile c ∈ P=, the rank of a candidate 0 in the preference relation �
is defined as follows: A0=:� (0) =  − |{0′ ∈ � : 0 � 0′}|. Candidates whose ranks
in the preference relation � are less than ( + 1)/2 are said to be placed above the
line, those whose ranks in the preference relation � are greater than ( + 1)/2 are
said to be placed below the line, and those whose ranks in the preference relation �
are equal to ( + 1)/2 are said to be placed on the line. In the preference ranking
01 � 02 � 03 � 04 � 05, for instance, candidates 01 and 02 are above the line while
candidates 04 and 05 are below the line, and candidate 03 is ranked on the line. It
is obvious that there are no candidates on the line when the number of candidates is
even.

We can now define the concept of social (un)acceptability as introduced by
Mahajne and Volĳ (2018) for single-winner elections.

Definition 1 Let c ∈ P= be a profile of preference relations, and let 0 ∈ � be a given
candidate. We say that 0 is socially unacceptable with respect to c if the number
of voters that place her below the line is strictly greater than the number of voters
that place her above the line, otherwise 0 is called socially acceptable. Formally, 0
is socially unacceptable with respect to c if and only if

`c

({
�: A0=:� (0) < ( + 1)/2

})
< `c

({
�: A0=:� (0) > ( + 1)/2

})
.

For illustration, let us consider the following simple example.

Example 1 Consider an election such that � = {01, 02, 03, 04} and # = {1, . . . , 7}
with the following rankings:

01 �1 02 �1 03 �1 04, 01 �2 02 �2 04 �2 03, 01 �3 03 �3 04 �3 02,
02 �4 03 �4 01 �4 04, 02 �5 04 �5 01 �5 03, 03 �6 04 �6 01 �6 02,
04 �7 03 �7 01 �7 02.

In this election, 01 and 04 are socially unacceptable candidates since they are ranked
below the line by four voters while only three voters rank them above the line; 02
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and 03 are socially acceptable candidates since they are ranked above the line by four
voters while only three voters rank them below the line. Notice that if we erase �4
in the above preference profile, we end up with a profile where there is no socially
unacceptable candidate.

2.2 Voting rules

Given a preference profile c ∈ P=, a scoring voting rule is characterized by a
list ( = {(1, (2, . . . , ( } meaning that each voter 8 ∈ # assigns (C points to the
candidate that is ranked C-th in her preference relation with C = 1, . . . ,  . The
scoring rule associated with the list ( chooses the candidate(s) having the maximum
total score. The well-known scoring rules under consideration in this paper are the
following:

Plurality rule (PR): The Plurality score of a given candidate is the total number
of voters who rank this candidate at the top of their rankings. In other words, the
Plurality rule corresponds to the list ( = (1, 0, . . . , 0, 0).

Negative Plurality rule (NPR): This rule picks the candidate with the lowest
number of last places in voters’ rankings; then, the vector of scores is given
by ( = (1, 1, . . . , 1, 0).

Borda rule (BR): This rule gives  − C points to a candidate each time she is
ranked C-th; given the vector of scores ( = ( − 1,  − 2, . . . , 1, 0), the Borda
score of a candidate is the sum of the points received.

We also consider a runoff version of each of the above scoring rules. Runoff
rules are variously defined. Some will eliminate candidates one by one and others
by blocks. In the case of a one-by-one elimination, the candidate with the lowest
score is eliminated in each round; this is for example the case with the Baldwin
rule (Baldwin, 1926) which at each round eliminates the candidate with the lowest
Borda score. For block eliminations, the candidate(s) whose score does not meet a
given threshold are eliminated in each round; this is the case for the Nanson rule
(Nanson, 1883) or Kim-Roush voting rule (Kim and Roush, 1996).3 For simplicity,
we define runoff rules here as involving only two rounds: only the two candidates
with the highest scores in the ?rst round qualify for the second round. The winner
will therefore be the candidate who wins the majority duel that governs the second
round. The runoff rules that we consider in the paper at hand are therefore defined
as follows:

Plurality with runoff (PRR): A majority duel pits the two candidates with the
highest plurality scores against each other and the one who wins this duel is
declared the winner.

3 At each round of the Nanson rule, all the candidates with less than the average Borda score are
eliminated. The Kim-Roush voting rule eliminates those candidates having a score higher than the
average Negative Plurality score.
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Negative Plurality with runoff (NPRR): The two candidates who have been
ranked last by the voters the fewest times in their rankings find themselves in
a majority duel in the second round. The winner of this duel is declared the
winner of NPRR.

Borda with runoff (BRR): The winner under this rule is the candidate who wins
the majority duel between the two candidates with the highest Borda scores in the
first round.

Note that Mahajne and Volĳ (2018) introduced a scoring rule, called the half
accepted-half rejected (HAHR), which always selects a socially acceptable candidate
(and never selects a socially unacceptable candidate). HAHR assigns 1 point to the
candidates placed above the line, −1 point to candidates below the line, and a score
of 0 to the candidate (if there is one) on the line. Given a ranking C in a voter’s
preference relation, HAHR is formally defined by the scores (C defined as follows:

(C =


1 if C <  +1

2
0 if C =  +1

2
−1 if C >  +1

2

The HAHR winner is the candidate with the highest total score. Notice that given
a scalar U and V, a 1× matrix of ones, the scoring rules associated with the scores
(C and with the scores U(C + V define one and the same rule. It then follows that for  
even, HAHR is equivalent to the well-known  

2 -approval rule, i.e., each voter casts
a vote for half of the competing candidates. For the particular case of  = 3, HAHR
is equivalent to the BR.

To motivate our subject, let us reconsider the preferences of Example 1. One
can check in this example that candidate 01 who is socially unacceptable is elected
under each of our scoring rules and also under the two-round rules. Thus, our voting
rules in this example elect a socially unacceptable candidate even though there are
two socially acceptable candidates. Example 1 can be used to construct profiles with
any number of candidates such that our voting rules elect a socially unacceptable
candidate.

2.3 Probability models and simulation methodology

2.3.1 Probability models

When computing theoretical probabilities of voting events, assumptions are needed
on the distribution of voting situations or profiles. This is made through statistical
models. In this paper, we address our subject by assuming the following two models
which are among the most common in the literature: the Impartial Culture (IC) and
the Impartial Anonymous Culture (IAC).
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IC was first introduced in the social choice literature by Guilbaud (1952); this
model assumes that every preference profile is equally likely to occur; each voter
chooses her preference according to a uniform probability distribution and gives a
probability of 1

 ! for each ranking to be chosen independently. The likelihood of a
given voting situation =̃ = (=1, =2, . . . , = !) is given by =!∏ !

8=1 =8!
× ( !)−=.

IAC was introduced by Kuga and Nagatani (1974) and Gehrlein and Fishburn
(1976); this model assumes that all voting situations with = voters are equally likely
to be observed. Under this model, the likelihood of a given voting event is equal to
the ratio between the number of voting situations in which the event may occur over
the total number of possible voting situations. The total number of possible voting
situations with  candidates is given by the polynomial

(=+ !−1
 !−1

)
. To determine the

number of voting situations associated with a given voting event, several techniques,
mathematical tools and algorithms have been proposed. We can quote in this sense,
the work of Barvinok (1994), Barvinok and Pommersheim (1999), Bruns and Ichim
(2018), Bruns et al. (2019), Bruns and Söger (2015), Cervone et al. (2005), Clauss
and Loechner (1998), Huang and Chua (2000), Schürmann (2013), Verdoolaege et
al. (2004), Wilson and Pritchard (2007).

The two models have been used over time in an impressive number of works.
For a non-exhaustive overview of the use and technical developments around these
two models, the reader can refer to the recent books by Diss and Merlin (2021) and
Gehrlein and Lepelley (2017, 2011). Note that the techniques and algorithms men-
tioned above have a limit, namely the number of candidates. They are adapted for
calculations involving at most four candidates; depending on the case, the calculation
time can be quite variable (from one second to almost weeks). Since our analysis
involves voting situations with more than four candidates, we have opted for simula-
tions to get around these limitations. We present in the following the methodology
that supports these simulations.

2.3.2 Simulation methodology

Simulations under IC and IAC models have been produced using a handcrafted
Python framework.4 The simulation method has been based on the PrefLib code by
Mattei and Walsh (2013): a reference library on preference data and algorithms for
computational social choice. IC and IAC models have been extracted with modifi-
cations restricted to the random number generator. We then added the evaluations
required for the socially unacceptable observations. A thorough selection has been
performed to certify that no pre-existing preference data is used by any included
algorithms. As such, the Python simulations are only based on random generation
of preferences following IC or IAC models. The 128-bit implementation of the
O’Neill’s permutation congruential generator has been used as a pseudo-random

4 Code base is available at
https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code

https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code


8 A. Awde, M. Diss, E. Kamwa, J.Y. Rolland and A. Tlidi

generator (O’Neill, 2014) producing double-precision floating-point numbers with
a period of 2128.

The simulations proceed as follows: A number of candidates  , a number of
voters = and a model (IC or IAC) is selected. A number I of preferences is produced
randomly (the specific number can be different, as discussed below). Storing selected
candidates and preferences, the set of socially unacceptable candidates selected for
different values of the input parameters can be built. For each simulation, the results
of the six voting rules described in Section 2.2 are investigated and the probabilities
of observing the different cardinal values is computed. Results are discussed in
Section 3.

Due to the formulation of the algorithms, and the intrinsic behaviour of IC and
IAC models, computation time increases sharply with values of  and =. As for the
number I of generations, this is the main contributor in the computation times and
its value restricts the maximum precision that can be expected for the probabilities
of interest. To assess that dependency, we used the case of the IC model,  = 10
candidates, = = 100 voters and computed a test probability for increasing values of
I preference generations. The variable tested is the probability to observe a set of
socially unacceptable candidates selected with a cardinal value of 5. The results of
this numerical calibration are shown in table 1.5

The effect of I on computation time is linear, as expected for a single threaded
implementation. Following those observations and due to time constraints, it has
been decided to restrict some cases of the parametric study to a lower value of
I.6 Concerning precision, if I = 1000000 is taken as a reference, a reduction of
generations by a factor of 10 leads to a relative difference of only 0.06% and a factor
of 100 scales to a relative difference of 0.13%. The same study applied to other
values of = and  shows similar results.

Table 1 Computation times C (in seconds) and precision of the simulations over the number I of
preferences generated.

I 10 100 1000 10000 100000 1000000
log(C) −0.62 0.34 1.32 2.32 3.32 4.56
�rel 21.26% 28.61% 3.41% 0.13% 0.06% —

In regards of computational resources, memory consumption is not a factor in
these CPU-bound simulations, neither are the memory bus speed or width. It is to be
noted, however, that as of now no optimization aiming for a reduction of computation
times has been implemented in the Python framework. Computations for this study
have been performed on two infrastructures: the LmB local computing facilities

5 Precision is expressed as relative error �rel to the most precise case, in percentages.
6All simulations for = 15 aswell as the specific case of IACmodel, = = 100000 and ∈ {6, 10}
have been performed with a limited I = 100000 generations.
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(Intel Xeon CPU - 3.20GHz) and supercomputer facilities of the Mésocentre de
calcul de Franche-Comté (Intel Xeon CPU - 2.67GHz).

3 Results

3.1 The existence probability of socially unacceptable candidates

It is useful to note that with  candidates in the running, the number of socially
unacceptable candidates can vary from 0 to  − 1. Since there is always at least one
socially acceptable candidate, it is therefore impossible to have a voting situation
in which all candidates are socially unacceptable. In this section, we investigate the
proportion of voting situations inwhich one ormore socially unacceptable candidates
exist.

Considering voting situationswith a number of candidates ∈ {3, 4, 5, 6, 10, 15},
we were able to compute the probabilities of existence of socially unacceptable
candidates as a function of the number of unacceptable socially acceptable candidates
for some values of the number of voters = between 10 and 100000. Given  , let
us denote by \ ( ) the number of socially unacceptable candidates that exists. For
space constraints, detailed results of numerical probabilities are provided in online
supplementary material.7 Figures 1 and 2 present in a synthetic way the results that
we obtain under both IAC and IC. For better readability, the colors indicate in each
case the number of socially unacceptable candidates.

First of all, we point out some general observations that emerge from our calcu-
lations. Whether under IC or IAC, the probabilities show similarities in their trend.
Under both models, we notice that as = increases, the probabilities tend to decrease
for values of \ ( ) such that \ ( ) <  

2 and tend to increase when \ ( ) >  
2 . For

given  and \ ( ), the existence probabilities tend to decrease as the size = of the
electorate increases. We also observe that for any given value of  ∈ {3, 4, 5, 15}
and =, the probabilities tend to increase for a \ ( ) lower than \ ( )★ = b  2 c the
value for which the probability of existence is maximum, and then decrease beyond
that.8 We have a similar pattern for  ∈ {6, 15} except that \ ( )★ is sometimes
\ ( )★ =  

2 − 1 or \ ( )★ =  
2 . More precisely, when  = 6, we get \ ( )★ = 2

when = ∈ {10, 20} while \ ( )★ = 3 for the other values of =; for  = 10, we get
\ ( )★ = 4 when = ∈ {10, 20, 50} and \ ( )★ = 5 for the other values of =. We also
notice that for an even number of candidates, the probability of existence evolves
both with the parity of the number of voters and with the parity of the number of
socially unacceptable candidates.

7 This supplementary material is available at https://plmlab.math.cnrs.fr/jrolland/
social-unacceptability-freezed-code/-/blob/master/Supplementary_materials/
tables.pdf.
8 b  2 c is the least integer greater than or equal to

 
2 .

https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code/-/blob/master/Supplementary_materials/tables.pdf
https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code/-/blob/master/Supplementary_materials/tables.pdf
https://plmlab.math.cnrs.fr/jrolland/social-unacceptability-freezed-code/-/blob/master/Supplementary_materials/tables.pdf
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Fig. 1 Existence probability of socially unacceptable candidates under IAC model.
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Fig. 2 Existence probability of socially unacceptable candidates under IC model.
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We now turn to some probabilities that the reader will find online through the
link provided above. If we look at the case of three-candidate elections ( = 3), we
find that with ten voters there is about a 1.1% chance under IAC and about a 2.65%
chance under IC that no socially unacceptable candidate exists. Thus, with such an
electorate, there is a nearly 97% chance that there is at least one socially unacceptable
candidate. This last conclusion is valid for all other values of = that we consider. We
also note that for  = 3, with at least 50 voters, we reach and even exceed the 40%
chance that 2 of the 3 candidates are socially unacceptable. For  ∈ {4, 6, 10}, there
is at least a 98% chance that there is at least one socially unacceptable candidate;
furthermore, for = ∈ {15, 25, 55, 105, 1005, 100000} the existence probabilities are
very low or even zero. For  = 15, our results indicate that there are always at least
3 (2 for some values of =) socially unacceptable candidates; this number is at most
12 (11 for some values of =) under IAC and at most 13 (or even 11 or 12 for some
values of =) under IC.

In sum, it seems to emerge from our calculations that for voting situations with
less than ten candidates, half of the candidates in contention may (in nearly 50% of
the cases or even more) be socially unacceptable; also, as the number of candidates
increases, it becomes almost assured to have at least one socially unacceptable
candidate.

3.2 The probability that some voting rules select a socially
unacceptable candidate

The existence probabilities obtained in the previous section led us to the conclusion
that the existence of at least one socially unacceptable candidate is almost assured for
the studied voting situations. Earlier, we argued that the election of a socially unac-
ceptable candidate is problematic because of the consensus on her status compared
to that of a socially acceptable candidate. It was therefore important to verify whether
the election of a socially unacceptable candidate is a rare oddity or not. As such, we
computed the probabilities that a socially unacceptable candidate would be elected
under PR, NPR, BR, PRR, NPRR and BRR introduced and defined above. Figures
3 and 4 show the variation of these probabilities under IAC and IC, respectively.

Tables 2 and 3 provide the amplitudes of variation of the probabilities for each
value of  under each model; for a given  , the amplitude of variation measures
the difference between the highest and lowest probability. These tables show that for
each value of  , the amplitudes are more pronounced under IC than under IAC. It
appears that NPR is the rule, under IAC, which for  ∈ {5, 6, 10, 15} presents the
highest amplitudes of variation; it is also the case under IC for  ∈ {4, 5, 6, 10, 15}.
Except for  = 4, the amplitudes are the lowest with BR. For  = 4, the amplitudes
are lowest under IAC with NPRR and under IC with PRR.

The first observation that emerges under both IC and IAC is that for all values of
 and =, NPR appears among the voting rules to be the most likely to lead to the
election of a socially unacceptable candidate; it is followed by PR, which dominates
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Number of candidates

Rules 3 4 5 6 10 15

PR 0.0124 0.0786 0.0128 0.1109 0.0887 0.0600
BR 0 0.0342 0.0056 0.0240 0.0114 0.0025
NPR 0.0048 0.0742 0.0761 0.1456 0.3572 0.6448
PRR 0.0250 0.0303 0.0392 0.0338 0.0434 0.0426
BRR 0.0144 0.0324 0.0142 0.0296 0.0164 0.0036
NPRR 0.0121 0.0278 0.0341 0.0374 0.0303 0.0510

Table 2 Amplitudes of variation of the probabilities under IAC model.

Number of candidates

Rules 3 4 5 6 10 15

PR 0.0345 0.0922 0.0208 0.1114 0.0907 0.0567
BR 0 0.0405 0.0057 0.0241 0.0114 0.0021
NPR 0.0256 0.0980 0.0812 0.1497 0.3567 0.6425
PRR 0.0379 0.0284 0.0406 0.0328 0.0444 0.0413
BRR 0.0249 0.0377 0.0148 0.0296 0.0164 0.0034
NPRR 0.0328 0.0449 0.0407 0.0385 0.0307 0.0500

Table 3 Amplitudes of variation of the probabilities under IC model.

NPRR, and then PRR. BR stands out as the rule least likely to lead to the election of
a socially unacceptable candidate. Let us take a closer look at the behavior of each
of our rules by stressing the salient points.

With PR, for each value of  , the probabilities tend to evolve according to the
parity of the number of voters. More precisely, except for  = 3 or  = 5, they tend
to increase with even = and to decrease with odd =. For  = 3, the probabilities
increase from 4.4% under IAC (5.9% under IC) with = = 10 to nearly 5.5% under
IAC (9.4% under IC) with = = 100000. For  = 5, we notice that the probabilities
increase for = ∈ {10, 20, 15, 25} under IAC and start decreasing for the other values
of = whereas under IC we note a growth according to the parity of =. If we consider
large values of =, the probabilities under PR tend to increase with  : we go from
5.5% under IAC (9.4% under IC) for  = 3 to nearly 30% (under IAC and IC) for
 = 15. Thus, with PR, an increase in the number of candidates in the running can
translate into a greater possibility of electing a socially unacceptable candidate.

Under BR, the evolution of probabilities follows an almost similar pattern under
IAC and IC. The zero probabilities for  = 3 are well in line with the fact that BR
never elects a socially unacceptable candidate since it is equivalent to HAHR. For
 = 4, the probabilities tend to increase when = is even and to decrease when =
is odd. For the other values of  , the probabilities all tend to increase according
to the parity of =. We also note that it is for  = 4 that the probabilities are the
highest under BR. We cannot clearly say, as we did with PR, how the probabilities
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evolve when we increase  . The fact is that when we go from  = 4 to  = 5,
the probabilities tend on average to decrease significantly; they tend on average to
increase significantly when we go from  = 5 to  = 6 and then we note a decrease
with  = 10 and  = 15.

The pattern of probabilities obtained with NPR differs for some values of  
depending on whether one is under IAC or IC. For instance, when  = 3, while the
probabilities decrease with the parity of = under IC, they tend under IAC to decrease
with = even and to increase for = odd; when  = 4, the probabilities decrease with
the parity of = under IAC while they tend under IC to decrease with = odd and to
increase for = even. When  = 10, the probabilities decrease with the parity of =
under IAC while under IC they tend to increase with the parity of =. Even if the
probabilities tend on average to increase when going from  = 3 to  = 4, and
to decrease slightly when going from  = 4 to  = 5, the tendency that seems to
emerge is the following: the more the number of candidates increases, the more the
possibility of electing a socially unacceptable candidate increases. For all values of
= considered, the probabilities seem the highest for  = 15: we approach 98% for
= = 10 and 31% for = = 100000.

In contrast to one-shot scoring rules, each of the runoff rules has, for a given  ,
a very similar behavior under IAC and IC: the probabilities obtained under each of
these models are quite close. Under BRR, Tables 2 and 3 indicate that the variation
of amplitudes of probabilities is highest for  = 4 and lowest when  = 15. The
probabilities tend to increase with the parity of = for each value of  : for all values
of =, the probabilities are higher when  = 4 where they average around 6% and
they are lower when  = 15 where they average around 0.5%. Also, given =, the
probabilities tend to evolve with the parity of  . With  = 4, the probabilities grow
from about 3.3% with 10 voters to nearly 7% with 100000 voters; when  = 15,
they grow from about 0.19% with 10 voters to nearly 0.5% with 100000 voters. As
for the variation of the amplitudes of the probabilities, it is the highest for  = 4 and
lowest when  = 15.

With PRR, when  = 3 or 6, the probabilities seem to increase for odd = and to
decrease for even =. For other values of , they simply tend to increase with the parity
of =. They also tend on average to increase with  . We note that the probabilities are
on average highest for  = 15 where they grow from almost 14.7% with 10 voters to
about 16.9% with 100000 voters. The probabilities are lowest for  = 3 where we
reach a little over 4% with 100000 voters. As can be seen from Tables 2 and 3, with
PRR, variation in amplitude tends to increase with the value of  , with a notable
anomaly on  = 3 for the IC model.
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Fig. 3 Probability that some voting rules elect a socially unacceptable candidate under IAC model.
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Fig. 4 Probability that some voting rules elect a socially unacceptable candidate under IC model.
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Under IC, the probabilities with NPRR show a pattern of evolution quite close to
what we have with PRR. The observation is the same under IAC except for  = 3
where the pattern is quite close to that of BRR. However, the probabilities are still
higher than with BRR. From the similarity in the pattern of evolution of probabilities
between NPRR and PRR, it is only for  = 10 and  = 15 that NPRR has higher
probabilities than PRR. We notice with NPRR that except for  = 15 where the
probabilities decrease with the parity of =, the probabilities tend to increase with the
parity of = for all other values of  . Also, given =, they tend to increase with  .

To summarize, it appears that – for the rules under consideration – the probabilities
of electing a socially unacceptable candidate tend to evolve both with the size of the
electorate (notably its parity) and the number of candidates; BR stands out as the
least likely to elect a socially unacceptable candidate.

4 Concluding remarks

The objective of this paper is, on the one hand, to account for the probabilities of
the existence of socially unacceptable candidates. On the other hand, to determine
the propensities of some popular scoring rules to elect such candidates when they
exist. Using simulations under IAC and IC, we investigated voting situations with
a number of candidates between 3 and 15 candidates and an electorate between 10
and 100000 voters. Our analysis reveals under both IC and IAC that the probability
of existence tends to decrease as the size of the electorate increases. Furthermore,
there is a high probability that in some cases nearly half of the candidates will be
socially unacceptable. As for the propensity of the voting rules to elect a socially
unacceptable candidate, the Negative Plurality rule emerges as the most likely while
the Borda rule is the least likely. In addition, the probabilities tend to evolve according
to the parity of the number of voters.

This paper has then allowed us to highlight another property of the Borda rule
and of its two-round version. They are the least likely to elect a socially unacceptable
candidate when she exists compared to the other scoring rules and their two-round
versions considered in the paper at hand. Note that a possible extension of this paper
could therefore be to question the variation of our probabilities when the socially
unacceptable candidate that is elected is a Condorcet winner (resp. a Condorcet
loser) given that such a candidate exists.
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