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Abstract

Preference Approval Voting (PAV) and Fallback Voting (FV) are two
voting rules that combine approval and preferences. They were first
introduced by Brams and Sanver (2009). Under PAV, voters rank the
candidates and indicate which ones they approve of; with FV, they
rank only those candidates they approve of. In this paper, we supple-
ment the work of Brams and Sanver (2009) by exploring some other
normative properties of FV and PAV. We show among other that FV
and PAV satisfy and fail the same criteria; they possess two prop-
erties that AV does not: Pareto optimality and the fact of always
electing the absolute Condorcet winner when he exists. For three-
candidate elections and a very large electorate, we compare FV and
PAV to other voting rules by evaluating the probabilities of satisfy-
ing the Condorcet majority criteria. We find that PAV performs better
than the Borda rule. We also find that in terms of agreement, FV and
PAV are closer to scoring rules than to Approval voting. Our analysis
is performed under the Impartial Anonymous Culture assumption.
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2 Fallback Voting and Preference Approval Voting

1 Introduction

In the context of the election of a single winner, two major blocks or groups
of voting rules dominate both literature and practice. On the one hand, there
are scoring rules based on rankings and, on the other hand, rules based on
evaluation or approval. Scoring rules (SCR) most often require voters to rank
(all or some of) the candidates in contention; on the basis of these rankings,
points are awarded to candidates according to their positions. The total num-
ber of points received defines their score for the rule under consideration and
the winner is the candidate with the highest score. Among the best-known
SCR are the Plurality Rule (PR), the Negative Plurality Rule (NPR) and the
Borda Rule (BR). Popularized by Brams and Fishburn (1978), Approval Vot-
ing (AV) is today among the most popular voting rules: voters simply indicate
which of the candidates they consider as acceptable. Under AV, each voter is
then free to approve as many candidates as he wishes; the winner(s) is the
candidate(s) with the most approval. AV has been touted by some as a serious
alternative to SCR, and several organizations have since adopted it for their
decision-making processes (see Regenwetter and Tsetlin, 2004).

Many works have analyzed the virtues and weaknesses of both SCR and
AV; see for instance Felsenthal (2012) or the Handbook of Approval Voting
edited by Laslier and Sanver (2010). No consensus seems to emerge in the liter-
ature on a possible superiority of one rule over the others since the arguments
put forward in favour of one or the other rule being varied and numerous.
Brams and Sanver (2009) introduced two voting rules that seem to reconcile
ranking-based decisions with approval-based decisions:1 Preference Approval
Voting (PAV) and Fallback Voting (FV). Under PAV, voters rank all the run-
ning candidates and distinguish the ones they approve of from those they
disapprove of. When no candidate gets a majority of approvals (greater than
half of the number of voters), PAV picks the AV winner; when more than one
candidates are approved by more than half of the electorate,–PAV picks the
ones who is majority preferred among them –or, in case of a majority cycle
among these candidates, it picks the one with the highest number of approvals
among them. Under FV, voters first indicate all the candidates they approve
of (this can range from no candidates to all) and then they rank only these
candidates; each level of rankings (of the approved candidates) is considered
and if at a given level, a majority of voters agree on one highest-ranked candi-
date, this candidate is the FV winner. Notice that FV is called “Majoritarian
Approval Compromise” in Sanver (2010) and it is an adaptation of the Majori-
tarian Compromise of Sertel (1986); Sertel and Yilmaz (1999). The procedures
implemented under PAV or FV to determine the winner are defined in such a
way as to satisfy both the principle of the “most approved” and that of the
“most preferred”.

Brams and Sanver (2009) have highlighted several desirable properties and
drawbacks of FV and PAV. They showed among others that – FV, PAV,

1Notice that the first formal introduction of this framework in terms of ordinal versus cardinal
preferences is made in Sanver (2010).
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and AV may all give different winners for the same profile; – a unanimously
approved candidate may not be a FV or a PAV winner; – a least-approved
candidate may be a FV or PAV winner; – a PAV winner may be different from
winners under BR; – FV and PAV may fail to pick the Condorcet winner when
he exists. It is striking to note that since PAV and FV were introduced, almost
no work has been addressed on these rules as it was the case for AV or SCR.
Kamwa (2019) is the only paper to our knowledge that have paid a particular
attention at least to PAV; he investigated the propensity of PAV to elect the
Condorcet winner or the Condorcet loser2 In the first part of this paper, we
supplement the work of Brams and Sanver (2009) by exploring other proper-
ties of FV and PAV. So, we evaluate FV and PAV on the basis of some other
appealing properties of voting rules. We show among others that FV and PAV
are Pareto optimal, they always elect the Absolute Condorcet winner when
he exists;3; we determine the conditions under which these rules satisfy the
reinforcement criterion, and for which they are not vulnerable to the No-show
paradox. From our analysis, it appears that FV and PAV satisfy and fail the
same criteria and they meet some properties that AV fails.

A great deal of work has been done in recent years on the probabilities for
AV to elect the Condorcet Winner (or the Condorcet Loser) when he exists.
These works have not failed to make on this basis, comparisons between AV
and the three most popular SCR (PR, NPR and BR). We can quote in this
sense, the works of Diss et al. (2010); El Ouafdi et al. (2020); Gehrlein et al.
(2016); Gehrlein and Lepelley (1998, 2015). The second contribution of this
paper will go in a similar direction. This will give us the opportunity to con-
front AV, FV, PAV with each other and with the SCR. First, we evaluate
for voting situations with three candidates and an electorate tending to infin-
ity, the probabilities of agreement between AV, FV and PAV; this analysis is
extended to the three scoring rules PR, NPR and BR. We are also interested
in the probabilities of satisfaction or violation of the Condorcet criteria. The
fact that FV and PAV are based on the principle of the “most preferred” gives
them a certain advantage over AV in terms of electing the winner of Condorcet
when it exists. It will then be necessary here to be aware of the amplitude of
this advantage. To do so, our calculations assume the impartial and anonymous
culture assumption. This assumption will be defined later. Our computation
analysis teaches us that, for three-candidate elections, as FV and PAV com-
bine approvals and rankings, it tends in terms of agreement to bring them
closer to SCR than to AV; more, they perform better in terms of compliance
with the Condorcet criteria than some SCR.

The rest of the paper is organized as follows: Section 2 is devoted to basic
definitions. Section 3 presents our results on the properties of FV and PAV.
In Section 4, we provide our probabilistic results. Section 5 concludes.

2A Condorcet winner (resp. a Condorcet loser) is a candidate who defeats (resp. is defeated by)
each of the other candidates in pairwise comparisons.

3An absolute Condorcet winner is a candidate ranked first by more than half of the voters.
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2 Notation and definitions

Consider a set of n (n ≥ 2) non-abstaining individuals N = {1, 2, . . . , i, . . . , n}
who vote sincerely on C = {a, b, c, . . . ,m} a set of m (m ≥ 3) candidates. We
assume that they rank all the candidates strictly (i.e. without indifference)
while indicating which ones they approve of.4 So, if a voter approves a and rank
b ahead of a, this implies that he also approves b. For example, the ranking
a � b � c (or simply abc) means that a is ranked ahead of b which is ahead of
c and a and b are both approved while c is disapproved.

As voters inputs are both rankings and approvals, a voting situation is
therefore an κ-tuple π = (n1, n2, . . . , nt, . . . , nκ) that indicates the total num-

ber nt of voters for each of the κ admissible rankings on C such that
κ∑
t=1

nt = n;

given the assumptions made above, κ = (m + 1)!. Given π, we denote by
nab(π) (or simply nab), the number of voters who rank a before b. Candidate
a is majority preferred to b if nab > nba. We say that candidate a is the Con-
dorcet winner if nab > nba ∀b ∈ C \ {a}; candidate a is the Condorcet loser if
nab < nba ∀b ∈ C \ {a}. A candidate a an absolute Condorcet winner (resp.
an absolute Condorcet loser) if he is ranked first (resp. last) by more than half
of the voters.

Given the rankings and approvals of the voters, we denote by Sl(a, π) or
simply Sl(a), the total number of approval of candidate a when rankings of
level l are considered (l = 1, 2, . . . ,m); we say that candidate a is majority
approved at level l if Sl(a) > n

2 .

Let us now define each of the voting rules under consideration here.

Approval Voting (AV): Under this rule, voters can vote for (approve of) as
many candidates as they wish. We denote by AV(a, π) the total number of
approvals for candidate a given π. Candidate a is the AV winner if AV(a, π) >
AV(b, π) ∀b ∈ C \ {a}. Notice that AV(a, π) = Sm(a).

Preference Approval Voting (PAV): According to Brams and Sanver
(2009), PAV is determined by two rules and proceeds as follows:

Rule 1 : The PAV winner is the AV winner if
i. no candidate receives a majority of approval votes (i.e approved by more

than half of the electorate)
ii. exactly one candidate receives a majority of approval votes.

Rule 2 : In the case that two or more candidates receive a majority of
approval votes,
i. The PAV winner is the one among these candidates who is preferred by

a majority to every other majority-approved candidate.
ii. In the case of a cycle among the majority-approved candidates, then the

AV winner among them is the PAV winner.

4A voter may endorse as many candidates as he wishes; thus, he may endorse no candidate as
well as all the candidates in the race.
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Fallback Voting (FV): Following Brams and Sanver (2009), FV proceeds as
follows:

1. Voters indicate all candidates of whom they approve, who may range
from no candidate (which a voter does by abstaining from voting) to all
candidates. Voters rank only those candidates of whom they approve.

2. The highest-ranked candidate of all voters is considered. If a majority of
voters agree on one highest-ranked candidate, this candidate is the FV
winner. The procedure stops, and we call this candidate a level 1 winner.

3. If there is no level 1 winner, the next-highest ranked candidate of all voters
is considered.5 If a majority of voters agree on one candidate as either their
highest or their next-highest ranked candidate, this candidate is the FV
winner. If more than one candidate receives majority approval, then the
candidate with the largest majority is the FV winner. The procedure stops,
and we call this candidate a level 2 winner.

4. If there is no level 2 winner, the voters descend - one level at a time - to
lower and lower ranks of approved candidates, stopping when, for the first
time, one or more candidates are approved of by a majority of voters, or
no more candidates are ranked. If exactly one candidate receives majority
approval, this candidate is the FV winner. If more than one candidate
receives majority approval, then the candidate with the largest majority is
the FV winner. If the descent reaches the lowest rank of all voters and no
candidate is approved of by a majority of voters, the candidate with the
most approval is the FV winner.

Since the second part of the paper will have to include the three most popular
scoring rules, we agree to define them at the outset here.

Plurality rule (PR): This rule picks the candidate who is the most ranked
at the top. If we denote by PR(a, π) the Plurality score of candidate a.
Notice that PR(a, π) = S1(a). Candidate a is the PR winner if PR(a, π) >
PR(b, π) ∀b ∈ C \ {a}.

Negative Plurality rule (NPR): under this rule, the winner is the candi-
date with the lowest number of last places in the voters’ rankings; If we denote
by NPR(a, π) the number of last places (Negative Plurality score) of candidate
a, this candidate is the NPR winner if NPR(a, π) < NPR(b, π) ∀b ∈ C \{a}.

Borda rule (BR): BR gives K − t points to a candidate each time she is
ranked t-th; BR(a, π) the Borda score of a candidate is the sum of the points
received. Candidate a is the BR winner if BR(a, π) > BR(b, π) ∀b ∈ C \ {a}.

In the context of a single winner, it can happen under AV, PR, NPR or
BR that several candidates obtain the same score; in such a case, the use of a
tie-break rule is necessary. In this paper, the setting is such that we will not
need to use a tie-break rule.

5Notice that we stop going down when reaching the approval line of a voter which may be
differently placed among different voters.
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We can now review the properties of FV and PAV.

3 Normative properties of FV and PAV

As mentioned above, Sanver (2010) and Brams and Sanver (2009) have identi-
fied a number of properties of FV and PAV. They showed that these rules are
monotonic, more precisely, they are approval-monotonic and rank-monotonic.
A voting rule is approval-monotonic (resp. rank-monotonic) if a class of voters,
by approving of a new candidate (resp. by raising a candidate in their rank-
ing) - without changing their approval of other candidates - never hurts and
may help this candidate get elected. In this section, we review other properties
that FV and PAV may fulfill or fail.

3.1 Condorcet principle

We know that AV may fail to pick the (absolute) Condorcet winner when he
exists (Felsenthal, 2012). According to Brams and Sanver (2009), FV and PAV
may fail to elect the Condorcet winner when he exists; through Propositions
1 and 2, we refine this result.

Proposition 1 When AV selects the Condorcet winner, this candidate is also the
PAV winner but the reverse is not always true.

Proof By definition, PAV always elects the AV winner under Rule 1; this may not
be the case under Rule 2. So, for the proof, we only need to focus on Rule 2. Assume
that candidate a is both the Condorcet winner and the AV winner. Let us also
assume that candidate b (b 6= a) is the PAV winner under Rule 2; this means that (i)
AV(b, π) > n

2 > AV(a, π) or (ii) AV(a, π) > n
2 and AV(b, π) > n

2 . It is obvious that
(i) clearly contradicts that a is the AV winner. By definition, b cannot win under (ii)
since nab > nba, so a wins. Thus, if AV selects the Condorcet winner, this is also the
case for PAV. Let us exhibit a profile to show that the reverse is not always true.
Consider the following profile with 3 candidates and 11 voters:

5 : a � b � c 5 : b � a � c 1 : c � a � b

With this profile, it easy to see that b is the AV winner while a is both the Condorcet
winner and the PAV winner. �

Proposition 2 FV and PAV always elect the absolute Condorcet winner when he
exists.

Proof Assume that candidate a is the Absolute Condorcet winner. As he is ranked
first by more than half of the voters, AV(a, π) > n

2 and nab > nba for all b ∈ C \{a}.
Under PAV, if a is the only one to be majority approved, he is obviously elected; if
there are more candidates majority approved, a is elected since he is the Condorcet
winner. So, PAV always elects the Absolute Condorcet winner. Since a is the absolute
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Condorcet winner we get S1(a) > n
2 : by definition, he is the FV winner. So, FV

always elects the Absolute Condorcet winner. �

The fact is that when there is an absolute Condorcet winner, this candidate
is the winner under both FV, PAV and PR. As will be noted in the rest of
the paper, FV and PAV will be insensitive to certain paradoxes on the domain
where there is an absolute Condorcet winner. The story is quite different on
the domain where there is an (absolute) Condorcet loser. We know that AV
can elect the (Absolute) Condorcet loser (see Felsenthal, 2012). We also know
from Kamwa (2019) that PAV may pick the Condorcet loser when he exists. To
our knowledge, nothing is known concerning FV. Propositions 3 tell us more
on this.

Proposition 3 FV and PAV may elect the (absolute) Condorcet loser when he exists.
When PAV elects the (absolute) Condorcet loser, this candidate is also the AV win-
ner but the reverse is not true. When FV elects the absolute Condorcet loser, this
candidate is also the AV winner but the reverse is not always true.

Proof Consider the following profile with 3 candidates and 11 voters.

5 : a � b � c 3 : b � c � a 3 : c � b � a

With this profile it is easy to see that a is the Absolute Condorcet loser and that he
is both the AV winner, the FV winner and the PAV winner. So, FV and PAV may
elect the (absolute) Condorcet loser when he exists.

By definition, PAV can elect a (absolute) Condorcet loser only under Rule 1; as
Rule 1 of PAV is equivalent to AV, it follows that for a given profile, if PAV elects
the (absolute) Condorcet loser, he is also the AV winner. In the following profile, a
is both the Absolute Condorcet loser and the AV winner but b is the PAV winner.

5 : a � b � c 3 : a � c � b 5 : b � c � a 4 : c � b � a

Assume that candidate a is the Absolute Condorcet loser; it follows that Sl(a) <
n
2 for 1 ≤ l ≤ m − 1. Candidate a cannot be the FV winner on this range. He can
only be elected at l = m; if so, this means that he gets the highest score of AV, then
he is also the AV winner. The above profile is sufficient to show that the reverse is
not true since a is both the absolute Condorcet loser and the AV winner while c is
the FV winner. �

3.2 Efficient compromise

The efficient compromise axiom was introduced by Özkal-Sanver and Sanver
(2004) as a trade-off between the quantity and quality of support that an

candidate may receive; the quantity refers to the number of voters supporting
a candidate, and the quality of support is defined in terms of a candidate’s
rank in the order of voters’ preferences. According to Merlin at al. (2019),
at any profile, the efficient compromises are candidates receiving the highest
quantity of support at some efficient level of quality. A voting rule is said to
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satisfy the efficient compromise if and only if it always picks efficient compro-
mises. Following Özkal-Sanver and Sanver (2004), the Plurality rule meets
the efficient compromise; this is also the case for the q-Approval Fallback Bar-
gaining6 for any q ∈ {1, 2, . . . , n} while the Borda rule and all the Condorcet
consistent rules does not. More, Merlin at al. (2019) showed that if the set of
efficient compromise contains only one candidate, all the scoring rules will pick
this candidate. Proposition 4 tells us that AV and PAV may fail the efficient
compromise axiom except on the domain where there is a absolute majority
winner.

Proposition 4 FV, PAV and AV does not satisfy the efficient compromise axiom.
FV and PAV always meet the efficient compromise axiom over the domain where
there is an absolute Condorcet winner.

Proof To show that FV, PAV and AV does not meet the efficient compromise, let us
consider the following profile7 with four candidates {a, b, c, d} and seven voters;

1 : a � b � d � c 2 : a � c � d � b 2 : b � c � d � a
1 : c � b � d � a 1 : d � c � b � a

With this profile, the reader can check that {a, c, d} is the set of efficient com-
promises while b is the winner under both AV, FV and PAV.
Notice that an absolute Condorcet winner exists he is also an efficient compromise.
As already pointed above, when there is an absolute Condorcet winner, both FV and
PAV are equivalent to PR; since PR meet the efficient compromise, it will pick the
absolute Condorcet winner, as does FV and PAV. �

3.3 Socially (un)acceptability

In the search for a certain consensus around a candidate, Mahajne and Volij
(2018) have introduced the concept of social acceptability. They say that a
candidate is socially acceptable if the number of voters who rank him among
their most preferred half of the candidates is at least as large as the number of
voters who rank him among the least preferred half. Mahajne and Volij (2018)
showed that there always exist at least one socially acceptable candidate in
any profile; and they show that there exists a unique scoring rule that always
elects such a candidate, the Half Accepted-Half Rejected rule (HAHR).8 In
contrast to a socially acceptable candidate, a candidate is said to be socially
unacceptable if the number of individuals who rank him among their least
preferred half of the candidates is at least as large as the number of voters
who rank him among the most preferred half.

6q-Approval Fallback Bargaining winners are the candidates receiving the support of q voters
at the highest possible quality.

7This profile is adapted from Özkal-Sanver and Sanver (2004).
8For m even, HAHR is equivalent to m

2 -approval rule.
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Proposition 5 AV, FV and PAV may not select a socially acceptable candidate and
they may select socially unacceptable candidate. Following Proposition 2, over the
domain where there is an absolute Condorcet winner, FV and PAV always select a
socially acceptable candidate and never select a socially unacceptable candidate.

Proof Consider the following profile with 3 candidates and 6 voters.

2 : a � c � b 1 : a � b � c 1 : b � a � c 2 : c � b � a

In this profile, a is a socially acceptable candidate while b is socially unacceptable
and he is the winner under both AV, FV and PAV.

It is obvious that, when he exists, an absolute Condorcet winner is also a socially
acceptable candidate. By Proposition 2, FV and PAV always select this candidate.
Such a candidate cannot be socially unacceptable; he is still elected in presence of a
socially unacceptable candidate. But, this may not be the case for AV: to see this,
just add a voter with a � b � c ; it follows that a is the absolute majority winner
and therefore socially acceptable but the AV winner is b. �

3.4 Cancellation property

Before going further, let us raise a point about PAV. By definition, Rule 2
of PAV relies on pairwise comparisons to decide the winner; what if all the
majority duels between the majority-approved candidates end up in tie? In
such a case, should all candidates be declared elected, or only the one(s) with
the highest AV score? This situation does not seem to have been taken into
account by Brams and Sanver (2009). In such a scenario, not choosing all
the candidates involved implies a violation of the cancellation criterion. The
cancellation condition requires that when all the majority comparisons end
up in a tie, all the candidates should be selected (Young, 1974). It should be
admitted that it is a bit difficult to apply the cancellation property to AV,
because this rule does not fundamentally depend on rankings. Proposition 6
tells us that when FV and PAV fail the cancellation criterion; this also the
case of AV when it is based on rankings.

Proposition 6 AV, FV and PAV do not meet the cancellation property.

Proof Consider the following profile with 3 candidates and 4 voters.

2 : a � b � c 2 : c � b � a

We can see in this profile that all the pairwise comparison end up in ties while
candidate b is the winner of both AV, FV and PAV. So, AV, FV and PAV fail the
cancellation property. �

3.5 Pareto optimality

In a given voting situation, candidate a Pareto dominates candidate b if if all
the voters strictly prefer a to b. A candidate is said to be Pareto-optimal if
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there is no another candidate that dominates him. According to Felsenthal
(2012), it is not tolerable the election of a candidate a when there is another
candidate b that all voters rank before him. Felsenthal (2012) drives the point
home by arguing that a voting rule that can elect a Pareto dominated candidate
should be disqualified no matter how low the frequency. A voting rule meets
the Pareto criterion if for all voting profile it never elects a Pareto dominated
candidate. According to Felsenthal (2012), AV may elect a Pareto dominated
candidate. This is not the case for FV and PAV following Proposition 7.

Proposition 7 FV and PAV meet the Pareto criterion.

Proof Given π, assume that a is the PAV winner and that he is Pareto-dominated by
b. As b Pareto-dominates a, if a voter approve a this is also the case for b; it follows
that AV(b, π) ≥ AV(a, π) and b is majority preferred to a since nba = n. If a wins
under Rule 1i of PAV, this means that AV(b, π) < AV(a, π) < n

2 which contradicts
AV(b, π) ≥ AV(a, π). If a wins under Rule 1ii of PAV, this leads to AV(a, π) > n

2
and AV(b, π) < n

2 which contradicts AV(b, π) ≥ AV(a, π). If a wins under Rule 2 of
PAV, the following three cases can be considered : (i) AV(a, π) > n

2 , AV(b, π) > n
2

and nab > nba or (ii) AV(a, π) > n
2 > AV(b, π), AV(c, π) > n

2 and nac > nca
for c ∈ C \ {a, b} or (iii)AV(a, π) > AV(b, π) > n

2 . It turns out that (i) contradicts
nba = n while (ii) and (iii) contradicts AV(b, π) ≥ AV(a, π). Thus, b cannot win:
PAV meets the Pareto criterion.

Given π, assume that a is the FV winner and that he is Pareto-dominated by
b. By definition, as b Pareto-dominates a we get S1(b) > S1(a), and Sl(b) ≥ Sl(a)
for all l > 1. Candidate a wins at a level l implies that n

2 > Sl(a) > Sl(b) or

Sl(a) > n
2 > Sl(b) or Sl(a) > Sl(b) > n

2 ; these conditions all contradict that

Sl(b) ≥ Sl(a). So, b cannot be the winner: FV never elects a Pareto dominated
candidate. �

3.6 The reinforcement condition

According to the reinforcement condition9 (Myerson, 1995) when an electorate
is divided in two disjoints groups of voters N1 (|N1| = n1) and N2 (|N2| = n2)
such that N1 ∩N2 = ∅ and N1 ∪N2 = N (|N | = n1 +n2 = n), and the winner
is the same for each group, this outcome will remain unchanged when both
groups of voters are merged. It is known that AV, PR, NPR and BR meet the
reinforcement condition (see Felsenthal, 2012). Proposition 8 tells us that FV
and PAV does not meet the reinforcement condition and it characterizes when
this is (not) the case.

Proposition 8 Assume that an electorate is divided in two disjoints groups of voters
N1 and N2 such that the winner is the same for each groups.

9This condition is also known as the Separability axiom in Smith (1973) or the Consistency
axiom in Young (1975).
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� Considering that PAV is defined by four rules (Rule 1i, Rule 1ii, Rule 2i
and Rule 2ii), it always meets the criterion if the winner in each of the two
groups of voters is determined by Rule 1i or Rule 1ii; this is also the case
when the winner is determined in on group by Rule 1i and in the other group
by Rule 1ii. In the other cases, PAV may fail the reinforcement condition.

� FV meets reinforcement condition if the winner in each group is determined
at the same level of rankings. In the other cases, it may fail the reinforcement
condition.

Proof See Appendix �

3.7 Homogeneity

Given the voting outcome on a voting profile, if duplicating this profile λ times
(λ > 1, λ ∈ N) changes the result, we say that the homogeneity property is
not satisfied. The violation of the homogeneity property is a major challenge
for collective decision rules (Nurmi, 2004). It is obvious that AV is homoge-
neous since duplicating a population also duplicates the approvals in the same
magnitude. Proposition 9 tells us what about FV and PAV.

Proposition 9 FV and PAV are homogeneous.

Proof Suppose we duplicate a profile π, λ times. On the resulting profile, given a
candidate x, we have Sl(x, λπ) = λSl(x, π), AV(x, λπ) = λAV(x, π) and nxy(λπ) =
λnxy(π). It then follows that if a candidate wins under FV at level l in π, he also wins
at the same level in λπ; we reach the same conclusion with PAV. Thus, duplicating
a profile does not change the outcome under FV and PAV. �

3.8 The No-show paradox and the truncation paradox

The No-Show paradox describes a situation under which some voters may do
better to abstain than to vote since abstaining may result in the victory of
a more preferable or desirable candidate (Doron and Kronick, 1977; Fishburn
and Brams, 1983). The Plurality rule, the Borda rule and Approval voting are
among the few voting rules not vulnerable to the No-Show paradox (Felsen-
thal, 2012). It is known that the vulnerability of a voting rule to the No-Show
paradox leads to its vulnerability to the truncation paradox but the reverse
is not always true Nurmi (1987). The Truncation paradox occurs when some
voters may reach a more preferred outcome by submitting a sincere but incom-
plete ranking (Fishburn and Brams, 1983, 1984). According to Brams (1982),
AV is sensitive to the Truncation paradox; this is also the case for NPR and
BR but not for PR.10 Proposition 10 characterizes the vulnerability of FV and
PAV to the No-Show paradox.

10For more details on the truncation paradox and its occurrence under the scoring rules, we
refer to Kamwa (2019); Kamwa and Moyouwou (2021).
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Proposition 10 PAV is vulnerable to the No-show paradox only when the winner is
determined by Rule 2i. FV is not vulnerable to the No-show paradox only when the
winner is determined at level l = 1 or l = m. Thus, FV and PAV are vulnerable to
the Truncation paradox.

Proof See Appendix. �

3.9 Independence of clones

Following Tideman (1987), a proper subset of two or more candidates, S, is a
set of clones if no voter ranks any candidate outside of S as either tied with
any element of S or between any two elements of S. A voting rule is said to be
independent of clones if and only if the following two conditions are met when
clones are on the ballot:

1. A candidate that is a member of a set of clones wins if and only if some
member of that set of clones wins after a member of the set is eliminated
from the ballot.

2. A candidate that is not a member of a set of clones wins if and only if that
candidate wins after any clone is eliminated from the ballot.

Tideman (1987) shows that AV is not generally independent of clones.
Nonetheless, he points out that applying the concept of clones to AV is some-
what problematic because clones are defined in terms voters’ rankings. This
problem does not arise with FV and PAV, which are defined in terms of rank-
ings. As Tideman (1987) points out, when talking about clones in an approval
setting, it is obvious to assume that if a voter approves a candidate a and not
his clone b, that voter will approve b if a comes to withdraw; based on this,
he showed that AV is not independent of clones. Since there are situations in
which FV or PAV coincide with AV, it follows that in these situations FV and
PAV may be vulnerable to cloning.

Proposition 11 FV and PAV are not independent of clones. Nonetheless, they are
independent of clones on the domain where there is an absolute Condorcet winner.

Proof To show that FV and PAV are not independent of clones, let us consider the
following profile:

4 : a � b � c 3 : b � c � a 2 : c � b � a

In this profile, candidate a is both the AV, FV and PAV winner. Candidates b and
c are clones; if one of them withdraws, the other becomes the winner for each rule
given that if a voter approves candidate b and not his clone c, that voter will approve
c if b comes to withdraw. So, FV and PAV are not independent of clones.

Now, let assume that there is absolute Condorcet winner, say a; following Propo-
sition 2, this candidate is elected by both FV and PAV. The withdrawal of one or
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more candidates (clones) does not change a’s status as the absolute Condorcet win-
ner; Proposition 2 applies and a remains the winner. Thus, over the domain where
there is an absolute Condorcet winner, FV and PAV are independent of clones. �

3.10 Independence criterion and Spoiler effect

According to Sanver (2010), a social choice satisfies independence if and only
if it does not admit any spoiler; a spoiler is a candidate x /∈ C such that its
presence as an alternative can change the social choice without x being chosen.
Sanver (2010) showed that – under FV, for any number of voters, there may
be a spoiler who is approved by only one voter; – under PAV, a candidate is a
spoiler only if he is socially qualified as good.

Proposition 12 (Sanver, 2010) AV satisfies independence while PAV and FV fail
it.

The independence criterion as introduced by Sanver (2010) obviously refers
us to the spoiler effect even though these two concepts differ in their definitions.
In single-winner elections, the spoiler effect occurs if the removal of a non-
winning candidate (called a spoiler) changes the election result (Kaminski,
2018; Miller, 2017): a spoiler turns a winner into a non-winner and a non-
winner into a winner. The independence criterion assumes that the spoiler is a
new candidate (introduced without any chance of winning) while the classical
conception of the spoiler assumes that it is an element of the original set of
candidates. It is therefore obvious that a conjunction of Propositions 11 and
12 leads to Proposition 13.

Proposition 13 AV, PAV and FV are sensitive to the spoiler effect.

We are now going to summarize all the above results in Table 1. In this
table, we recap our findings about PAV, AV and FV as well as those of Brams
and Sanver (2009) and Sanver (2010); besides FV and PAV, we include PR,
NPR and BR. The fact that these rules satisfy or does not meet one of the
criteria retained here comes from results of the literature (see Nurmi, 1987,
1999; Felsenthal, 2012). In this table, a “Yes” means that the voting rule meets
the supposed criterion and a “No” if it does not.

On the basis of the normative criteria used in our analysis, it appears FV
and PAV satisfy and fail the same criteria; they possess two properties that
AV does not: Pareto optimality and the fact of always electing the absolute
Condorcet winner when he exists. AV for its part, meets two criteria that FV
and PAV do not: reinforcement and non-vulnerability to the No-show paradox.
Approval-based rules, compared to score-based rules, satisfy fewer criteria.
Another way to compare these sets of rules would be to check the frequencies
for the criteria they violate. This is what we try to do in the next section with
particular attention to the Condorcet criteria.
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Table 1 Normative properties of the rules

Rules
Criteria AV FV PAV PR NPR BR
Condorcet winner No No No No No No
Absolute Condorcet winner No Yes Yes Yes No No
Condorcet loser No No No No No Yes
Absolute Condorcet loser No No No No Yes Yes
Pareto optimality No Yes Yes Yes Yes Yes
Efficient compromise No No No Yes No No
Social acceptability No No No No No No
Social unacceptability No No No No No No
Cancellation No No No No No Yes
Reinforcement Yes No No Yes Yes Yes
Homogeneity Yes Yes Yes Yes Yes Yes
No-Show Yes No No Yes Yes Yes
Truncation No No No Yes No No
Monotonicity Yes Yes Yes Yes Yes Yes
Independent of clones No No No No No No
Independence criterion Yes No No No No No
Spoiler effect No No No No No No

4 computational analysis

Our aim in this section is to evaluate, for voting situations with three can-
didates and an electorate tending to infinity, the probabilities of some voting
events. We investigate the agreement between AV, FV and PAV. We are also
interested in the probabilities of satisfaction or violation of the Condorcet cri-
teria. We extend our analysis to the three popular scoring rules (PR, NPR
and BR) and consider comparisons with FV and PAV. This extension is jus-
tified by the fact that we have pointed out above that in some configurations,
FV is very close to PR. For our computations, we assume the impartial and
anonymous culture assumption that we will present later.

Before going further, we need to present the rankings and approvals in
the particular case of three candidates. For the sake of simplicity, we rule
out the possibilities of approving nothing; so, given his ranking, a voter may
approve at least one candidate and at most all the running candidates. So,
given C = {a, b, c}, the 18 possible types of preferences on C are reported in
Table 2. Then, a voting situation is the 18-tuple π = (n1, n2, . . . , nt, . . . , n18)

such that
∑18

t=1 nt = n.

Table 2 The 18 types of rankings and approvals on C = {a, b, c}

a � b � c (n1) a � b � c (n7) a � b � c (n13)
a � c � b (n2) a � c � b (n8) a � c � b (n14)
b � a � c (n3) b � a � c (n9) b � a � c (n15)
b � c � a (n4) b � c � a (n10) b � c � a (n16)
c � a � b (n5) c � a � b (n11) c � a � b (n17)
c � b � a (n6) c � b � a (n12) c � b � a (n18)

Given the labels of Table 2, the approval scores Sl(.) at level l are provided
in Table 3; with three candidates, l varies from 1 to 3.
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Table 3 The approval scores Sl(.)

Candidates

a b c

S1(.) n1 + n2 + n7 + n8 + n13 + n14 n3 + n4 + n9 + n10 + n15 + n16 n5 + n6 + n11 + n12 + n17 + n18

S2(.)
n1 + n2 + n7 + n8 + n9 n3 + n4 + n7 + n9 + n10 n5 + n6 + n8 + n10 + n11

+n11 + n13 + n14 + n15 + n17 +n12 + n13 + n15 + n16 + n18 +n12 + n14 + n16 + n17 + n18

S3(.)
n1 + n2 + n7 + n8 + n9 + n11 n3 + n4 + n7 + n9 + n10 + n12 n5 + n6 + n8 + n10 + n11 + n12

+n13 + n14 + n15 + n16 + n17 + n18 +n13 + n14 + n15 + n16 + n17 + n18 +n13 + n14 + n15 + n16 + n17 + n18

Notice that S3(a) = AV(a, π). Candidate a is the AV winner if the
conditions described by Eq. 1 are met.{

S3(a) > S3(b)
S3(a) > S3(c)

(1)

Recall that S1(.) = PR(., π). We provide in Table 4, the scores of the
candidates under NPR and BR.11

Table 4 Scores of the candidates under NPR and BR

Candidates

a b c

NPR(., π) n4 + n6 + n10 + n12 + n16 + n18 n2 + n5 + n8 + n11 + n14 + n17 n1 + n3 + n7 + n9 + n13 + n15

BR(., π)
2(n1 + n2 + n7 + n8 + n13 + n14) 2(n3 + n4 + n9 + n10 + n15 + n16) 2(n5 + n6 + n11 + n12 + n17 + n18)
+n3 + n5 + n9 + n11 + n15 + n17 +n1 + n6 + n7 + n12 + n13 + n18 +n2 + n4 + n8 + n10 + n14 + n16

Given π, if candidate a is the FV winner, the following scenarios are
possible:

� Candidate a is the only majority approved candidate at l = 1; this is fully
described by Eq 2.

� No one wins at l = 1 and a is the only candidate majority approved at l = 2.
In this case, we get Eq 3.

� No one wins at l = 1 and a with b (or c) are majority approved at l = 2; a
gets more approvals than b (or c) at this stage. This situation is characterized
by Eq 4 or Eq 5.

� No one wins at l = 1 and a, b and c are majority approved at l = 2. At this
stage, a gets more approvals than b and c. In this case, we get Eq 6.

� There is no winner at both l = 1 and l = 2 and a is the only candidate who
is majority approved at l = 3. This situation is characterized by Eq 7.

� There is no winner at l = 1 and l = 2: a with b (or c) are majority approved
at l = 3. In this case, we get Eq. 8 or Eq 9.

11With three candidates, Borda rule gives 2 to a candidate each times he is ranked first, 1 point
when he is second and 0 when he is ranked last.
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� No candidate is majority approved at l = 1, 2 but they are all majority
approved at l = 3; a gets more approvals than b and c. This situation is
characterized by Eq 10.

� No candidate is majority approved at l = 1, 2, 3 and a gets more approvals
than b and c. This situation is characterized by Eq. 11.


S1(a) > n

2
S1(b) < n

2
S1(c) < n

2

(2)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(a) > n
2

S2(b) < n
2

S2(c) < n
2

(3)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(b) > n
2

S2(c) < n
2

S2(a) > S2(b)

(4)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(b) < n
2

S2(c) > n
2

S2(a) > S2(c)

(5)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(b) > n
2

S2(c) > n
2

S2(a) > S2(b)
S2(a) > S2(c)

(6)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(a) < n
2

S2(b) < n
2

S2(c) < n
2

S3(a) > n
2

S3(b) < n
2

S3(c) < n
2

(7)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(a) < n
2

S2(b) < n
2

S2(c) < n
2

S3(b) > n
2

S3(c) < n
2

S3(a) > S3(b)

(8)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(a) < n
2

S2(b) < n
2

S2(c) < n
2

S3(b) < n
2

S3(c) > n
2

S3(a) > S3(c)

(9)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(a) < n
2

S2(b) < n
2

S2(c) < n
2

S3(a) > n
2

S3(a) > S3(b)
S3(a) > S3(c)

(10)



S1(a) < n
2

S1(b) < n
2

S1(c) < n
2

S2(a) < n
2

S2(b) < n
2

S2(c) < n
2

S3(a) < n
2

S3(a) > S3(b)
S3(a) > S3(c)

(11)

If we assume that candidate a is the PAV winner, the following five scenarios
are possible:

� no candidate gets a majority of approvals and a gets the highest number of
approvals; this is fully described by Eq. 12.

� only a gets a majority of approvals; in this case, we get Eq. 13.
� a and b (or c) get a majority of approvals and a is majority preferred to b

(or to c); this leads to Eq. 14 (or Eq. 15).
� all the three candidates get a majority of approvals and amajority dominates
b and c; this is described by Eq. 16.

� all the three candidates get a majority of approvals, there is a majority cycle
and a gets the highest number of approvals; we thus get Eq. 17 or 18.
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 S3(a) < n
2

S3(a) > S3(b)
S3(a) > S3(c)

(12)

 S3(a) > n
2

S3(b) < n
2

S3(c) < n
2

(13)


S3(a) > n

2
S3(b) > n

2
S3(c) < n

2
nab > nba

(14)


S3(a) > n

2
S3(b) < n

2
S3(c) > n

2
nac > nca

(15)


S3(a) > n

2
S3(b) > n

2
S3(c) > n

2
nab > nba
nac > nca

(16)



S3(a) > S3(b)
S3(a) > S3(c)
S3(b) > n

2
S3(c) > n

2
nab > nba
nbc > ncb
nca > nac

(17)

S3(a) > S3(b)
S3(a) > S3(c)
S3(b) > n

2
S3(c) > n

2
nba > nab
nac > nca
ncb > nbc

(18)

When computing the likelihood of voting events, the impartial and anony-
mous culture (IAC) assumption introduced by Kuga and Nagatani (1974) and
Gehrlein and Fishburn (1976) is one of the most widely used assumptions in
social choice theory literature. Under this assumption, all voting situations are
equally likely to be observed; it follows that the probability of a given event is
calculated according to the ratio between the number of voting situations in
which the event occurs and the total number of possible voting situations. For
a given voting event, the number of voting situations can be reduced to the
solutions of a finite system of linear constraints with rational coefficients. The
appropriate mathematical tools to find these solutions are the Ehrhart poly-
nomials.For a non-exhaustive overview of these techniques and algorithms, we
refer to the recent books by Diss and Merlin (2021) and Gehrlein and Lepelley
(2011, 2017). As in this paper we deal with situations where the number of
voters tends to infinity, finding the limiting probabilities under IAC is reduced
to the computation of volumes of convex polytopes (Bruns and Söger, 2015;
Schürmann, 2013). For our computations, we use the software Normaliz (Bruns
and Ichim, 2018; Bruns et al., 2019).12 It should be noted that the calculations
are relatively simple to implement under Normaliz because it is enough to
enter the conditions describing an event and the algorithm returns the volume
of the corresponding polytope which is the probability of this event.

12To more on Normaliz, we refer the reader to the paper of Bruns and Söger (2015) or the
website dedicated to this algorithm, https://www.normaliz.uni-osnabrueck.de.

https://www.normaliz.uni-osnabrueck.de
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4.1 Agreement between the rules

As we recalled above, Brams and Sanver (2009) showed that both PAV and
FV can (for the same voting profile) elect a different candidate than the AV
winner or even more so the least-approved candidate. Brams and Sanver (2009)
also shows that for the same preference profile AV, FV and PAV can elect
completely different candidates. Our goal here is to determine the frequencies
with which each of these events can occur.13

First of all, let us look at situations where two rules coincide. Let us take
the case where FV and AV agree on candidate a as the winner. We denote
by P (AV = FV = a) the limiting probability of this event. This probability
is in fact equal to a sum of volumes of polytopes to take into account the
different scenarios that can occur under FV as described above. For example,
the case where the winner of AV is the same as the winner of FV at level
l = 1 is described by the inequalities of Eq. 1 and 2; we denote this volume
obtained by V1∩2(π). In a similar way, we determine the volumes V1∩j(π) for
j = 3, 4, . . . , 11. Thus, we obtain

P (AV = FV = a) =

j=11∑
2

V1∩j(π)

=
3864518350115

15850845241344

We can therefore deduce P(FV = AV ) the probability of agreement
between AV and FV as follows

P(FV = AV ) = 3P (FV = AV = a) =
3864518350115

5283615080448

Note that the calculation of (FV = PAV = a) requires to review 7× 10 =
70 possible configurations; among these configurations only 29 are possible
because of the incompatibilities between the conditions. Proceeding in a similar
way and including the scoring rules in our analysis, we obtain:

13For reasons of space, we cannot present the detailed calculations here. These calculation
details are available upon request.
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P(FV = PAV ) = 20645280898898557
28682781685383168 ; P(PAV = AV ) = 405549109

603979776 ;

P(FV = PR) = 858426742033860211
1299967445355724800 ; P(PAV = PR) = 15393646886073191531

19258776968232960000 ;

P(FV = NPR) = 29078653154282273
41085390865563648 ; P(PAV = NPR) = 3367171932047414983

5135673858195456000 ;

P(FV = BR) = 356641532074024159
462316319539200000 ; P(PAV = BR) = 2966266305301241

3424565329920000 ;

P(AV = PR) = 590913882103
979552051200 ; P(AV = BR) = 23515466951

36578304000 ;

P(AV = NPR) = 5661560137
9795520512 ; P(NPR = BR) = 20645280898898557

28682781685383168 ;

P(PR = BR) = 54057569
68024448 ; P(PR = NPR) = 4615849949

8707129344 ;

Table 5 Limiting probabilities of agreement

FV PAV AV PR NPR BR
FV 1 0.7474874 0.7314156 0.6603448 0.7077614 0.7714232
PAV 0.7474874 1 0.6714614 0.7993055 0.6556436 0.8661731
AV 0.7314156 0.6714614 1 0.6032491 0.5779744 0.6428802
PR 0.6603448 0.7993055 0.6032491 1 0.5301230 0.7946785
NPR 0.7077614 0.6556436 0.5779744 0.5301230 1 0.7197796
BR 0.7714232 0.8661731 0.6428802 0.7946785 0.7197796 1

We summarize our results in Table 5. It turns out that among the rules
under consideration, BR is the one with the highest probability of agreement
with each of the other rules. In at least 66% of the cases, FV agrees with each
of the other rules and it tends to agree more with PAV (74.75%) than with AV
(73.14%) , more with NPR (70.77%) than with PR (66.03%). PAV tends to
more agree with PR (79.93%) than with AV (67.15%) or with NPR (65.56%).
Not surprisingly, AV tends to agree more with FV and PAV than with scoring
rules. Regarding scoring rules, PR and BR tend to agree the most with PAV.
The general observation is therefore that as FV and PAV combine approvals
and rankings it tends, in terms of agreement, to bring them closer to scoring
rules than to AV.

Using the same approach as above, we were able to determine P(FV =
AV = PAV ) the limiting probability that AV, FV, and PAV agree on the
same profile.

P(FV = AV = PAV ) =
38878305102793

66045188505600
≈ 0.5886621870

Thus, for the same voting profile, PAV, AV and FV elect the same winner
in about 58.86% of cases; they therefore diverge in about 41.13% of cases.
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4.2 FV and PAV may pick the least-approved candidate

Let us now look at the cases where FV and PAV can elect the least-approved
candidate. Let us assume on π that candidate a is the least approved; this
leads to Eq. 19. {

S3(a) < S3(b)
S3(a) < S3(c)

(19)

As pointed out by Brams and Sanver (2009), a least-approved candidate
may be a PAV winner under rule 2i; in our framework, this event is fully
characterized by the inequalities of Eq. 15 and 19. We then need to compute
the volume V15∩19(π) that we multiply by 3 to find P(PAV = LAV ) the
limiting probability that PAV elects a least approved candidate as follows:

P(FV = LAV ) = 3V15∩19(π) =
6095207

75497472
≈ 0.0807339

So, it is thus in nearly 8.07% of cases that PAV can lead to the election of a
least approved candidate. What about FV? Since at level l = m, Sl(.) is equal
to the AV score, it is obvious that FV cannot elect a least approved candidate
at this level. It follows then that with three candidates, FV can elect a least
approved candidate only at l = 1 or l = 2; this corresponds to Eq. 2 to 6.
Thus, P(FV = LAV ) the limiting probability that FV elects a least approved
candidate is computed as follows:

P(FV = LAV ) = 3
( 6∑
j=2

V19∩j(π)
)

=
262005663203

5283615080448
≈ 0.04958833

FV would therefore be almost half as likely to elect a least approved candi-
date than PAV. This result would tend to confirm the fact that in terms of
agreement, AV coincides more with FV than PAV.

4.3 A unanimously approved candidate may not win
under FV or PAV

As Brams and Sanver (2009) notes, there may be times when FV and PAV
do not elect a unanimously approved candidate. This marks another point
of dissonance between these rules and AV. By definition, this can only occur
with PAV under Rule 2i. Let us assume on C = {a, b, c} that b is unanimously
approved. In our framework, this is tantamount to:

n1 + n2 + n5 + n6 + n8 + n11 = 0 (20)
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If b and c are both unanimously approved, we get

n10 + n12 + n13 + n14 + n15 + n16 + n17 + n18 = n (21)

Given Eq. 20, situations where a is the PAV winner while b (resp. c) is
unanimously approved occur when Eq. 14 or 16 (resp. Eq. 15 or 16) hold. The
case where both b and c are unanimously approved while a is the PAV winner
can only occur if Eq. 16 holds. Then, P(PAV 6= Uap) the limiting probability
that PAV fails to elect a unanimously approved candidate is computed as
follows:

P(PAV 6= Uap) = 3

[
2

(
V20∩14(π) + V20∩16(π)

)
− V21∩16(π)

]
= 3

[
2

(
5

512
+

313

4096

)
− 7

64

]
=

387

2048
≈ 0.1889648

FV may fail to pick a unanimous approved candidate, when Eq. 2 or 4 or
5 or 6. Then, P(FV 6= Uap) the limiting probability that FV fails to elect a
unanimously approved candidate is computed as follows:14

P(PAV 6= Uap) = 3

(
2

6∑
j=2

V20∩j(π)−
6∑
j=2

V21∩j(π)

)

= 3

[
2

(
67

2048
+ 0 +

2573

262144
+

3

2048
+

36212845

1719926784

)
−
(

1

16
+ 0 +

9

2048
+

9

2048
+

5635

186624

)]
=

12304397

143327232
≈ 0.08584828

From the above, we note that in almost 18.89% of the cases, PAV may not
elect a unanimously approved candidate while this is the case in only 8.58%
of the cases for FV.

4.4 The election of the Condorcet winner

According to Ju (2010) and Xu (2010), when voters have dichotomous pref-
erences, AV always elects the Condorcet winner when he exists. This is not
always the case as voters have rather strict preferences or when indifference
are allowed as shown by Diss et al. (2010); Gehrlein and Lepelley (1998, 2015);
Kamwa (2019). Considering three-candidate elections with a certain degree of

14We notice that there is an incompatibility between Eq. 20 (or Eq. 21) and the conditions of
Eq. 3. So, with these conditions FV does not fail to pick a unanimous approved candidate.
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indifference under the extended impartial culture condition,15 Diss et al. (2010)
and Gehrlein and Lepelley (2015) conclude that: AV is more likely to elect
the Condorcet winner than both PR and NPR; BR performs better than AV.
Gehrlein and Lepelley (2015) and El Ouafdi et al. (2020) reach a quite similar
conclusion when considering the extended impartial anonymous culture con-
dition.16 When it comes to electing the Absolute Condorcet winner when he
exists, El Ouafdi et al. (2020) shows in their framework that AV does less well
than BR but better than NPR.17

Almost nothing is known about the propensity of FV and PAV to elect
the Condorcet winner when it exists. Kamwa (2019) investigates the limiting
Condorcet efficiency of PAV in three-candidate elections while assuming the
extended impartial culture condition; he find that PAV tends to performs bet-
ter than AV. Considering the framework developed in this paper, our objective
in this section is to compute the Condorcet efficiency of AV, FV, PAV, PR,
NPR and BR. Then, we will look at their propensity to elect the Absolute
Condorcet winner when it exists.

Recall that candidate a is the Condorcet winner if he is majority preferred
to both b and c; using our notation, this is equivalent to Eq. 22.{

nab > nba
nac > nca

(22)

Using the conditions of Eq. 22, Normaliz gives us the probability P (a = CW )
that a is the winner of Condorcet over π.

P (a = CW ) =
20129

65536

In the same way, we determined the probability that a is the Absolute
Condorcet winner (i.e. S1(a) > n

2 ):

P (a = ACW ) =
4701

65536

We therefore deduce P(CW ) the existence probability of the Condorcet
winner and P(ACW ) that of the Absolute Condorcet winner:

P(CW ) = 3P (a = CW ) =
60387

65536
≈ 0.9214325

P(ACW ) = 3P (a = ACW ) =
14103

65536
≈ 0.2151947

15Under the impartial culture condition (Guilbaud, 1952) it is assumed that each voter chooses
his preference (randomly and independently) on the basis of a uniform probability distribution
across all strict orders. The extended impartial culture condition allows dichotomous preferences
with complete indifference between two or more candidates.

16The extended anonymous impartial culture condition allows dichotomous preferences with
complete indifference between two or more candidates.

17Recall that PR always elects the Absolute Condorcet winner when he exists.
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To determine CE(R) the Condorcet efficiency of a given rule R, the methodol-
ogy is the following: we determine the volume of the polytope describing the
situation in which a is the Condorcet winner and the winner of R; this volume
will then be divided by P (a = CW ) to obtain the desired probability. This
procedure allows us to obtain :

CE(AV ) = 7491383
11594304 ; CE(PAV ) = 69380155

226492416 ;

CE(FV ) = 77089920161
330225942528 ; CE(BR) = 39814829

44022123 ;

CE(PR) = 8906796973
10697375889 ; CE(NPR) = 14904579328717

21908225820672 ;
Proceeding as in the case of the Condorcet efficiency, we determine ACE(R)

the probability that the rule R elects the Absolute Condorcet winner when he
exists. It is known that PR always elects the the Absolute Condorcet winner
when he exists. Following Prop. 2, this is also the case for FV and PAV; so,
ACE(PR) = ACE(FV ) = ACE(PAV ) = 1. For the other rules, we get:

ACE(AV ) = 13158985
16246656 ; ACE(NPR) = 700614205919

959348790144 ; ACE(BR) = 10223639
10281087 ;

The second and fourth columns of Table 6 allow a better visualization of
the results obtained in terms of (Absolute) Condorcet efficiency.

Table 6 Voting rules and the limiting probabilities of the Condorcet principle

CE(R) CL(R) ACE(R) ACL(R)
AV 0.6461261 0.0898578 0.8099504 0.0293452
FV 0.7600535 0.0300712 1 0.0001114
PAV 0.9973310 0.0001028 1 0.0000249
PR 0.8326151 0.0340336 1 0.0139566
NPR 0.6803188 0.0359394 0.7303018 0
BR 0.9044277 0 0.9944123 0

It turns out that PAV is the best performing rule in terms of Condorcet
efficiency; it is followed by BR. FV performs better than AV but worse than
PR. It turns out that AV is in our framework, the rule with the lowest Con-
dorcet efficiency; here it therefore does worse than the scoring rules. The fact
that AV performs worse than PR and NPR here contrasts with what Diss et
al. (2010); Gehrlein and Lepelley (2015) and El Ouafdi et al. (2020) achieve
in their different settings. As to elect the Absolute Condorcet winner when he
exists, AV performs worse than BR but better than NPR. This conclusion is
in agreement with what El Ouafdi et al. (2020) obtains in their setting.

To refine the comparisons, we could better assess how each of the above
probabilities react to the proportion α = n1+n2+n3+n4+n5+n6

n of voters who
approve only one candidate. When α = 1, AV and PR are equivalent. For some
values of α, we report in Table 7 the probabilities CE(R,α) and ACE(R,α) as
functions of α.

As can be seen in Table 7, the probabilities evolve well as a function of α.
We note that for α = 1, CE(AV, 1) = CE(FV, 1) = CE(PAV, 1) = CE(PR, 1)
and ACE(AV, 1) = 1. So, if the electorate is made only of voters who approves
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Table 7 Some computed values of CE(R,α), ACE(R,α), CL(R,α) and ACL(R,α)

α

Rules 0 1/4 1/3 1/2 2/3 3/4 1

CE(R,α)

AV 0.5384051 0.5916563 0.6396992 0.7544142 0.8361545 0.8590698 0.8814815

FV 0.7818569 0.7379713 0.7497197 0.8356119 0.8517430 0.8648282 0.8814815

PAV 1 0.9999867 0.9998151 0.9911858 0.9297356 0.8965582 0.8814815

PR 0.8484781 0.8330283 0.8276168 0.8376708 0.8620404 0.8713166 0.8814815

NPR 0.6639015 0.6798728 0.6855510 0.6750562 0.6493909 0.6397497 0.6296296

BR 0.9061312 0.9045864 0.9037684 0.9050865 0.9089313 0.9101536 0.9111111

ACE(R,α)

AV 0.5482718 0.7196296 0.8260673 0.9647654 0.9961465 0.9989699 1

FV 1 1 1 1 1 1 1

PAV 1 1 1 1 1 1 1

PR 1 1 1 1 1 1 1

NPR 0.6786731 0.7309078 0.7398935 0.7234537 0.6791482 0.6578623 0.6080247

BR 0.9856676 0.9946450 0.9948858 0.9941102 0.9911774 0.9877319 0.9629629

CL(R,α)

AV 0.1291352 0.1080288 0.0907788 0.0552262 0.0360703 0.0322064 0.0296296

FV 0.0266157 0.0314631 0.0306498 0.0533053 0.0315597 0.0315432 0.0296296

PAV 0 0.0000000 0.0000000 0.0000345 0.0122605 0.0265217 0.0296296

PR 0.0328691 0.0338361 0.0347429 0.0333069 0.0299841 0.0293066 0.0296296

NPR 0.0348903 0.0357271 0.0365456 0.0352852 0.0324935 0.0318894 0.0314815

BR 0 0 0 0 0 0 0

ACL(R,α)

AV 0.0506465 0.0380844 0.0294946 0.0135855 0.0091007 0.0104586 0.0246913

FV 0 0 0 0 0.0065876 0.0101787 0.0246912

PAV 0 0 0 0 0.0025317 0.0089947 0.0246913

PR 0.0191904 0.0136628 0.0145583 0.0134981 0.0116721 0.0124432 0.0246913

NPR 0 0 0 0 0 0 0

BR 0 0 0 0 0 0 0

exactly on candidates, PR,AV, PAV and FV performs the same on the (Abso-
lute) Condorcet winner criterion. PAV seems to dominate all other rules in
terms of Condorcet efficiency for 0 ≤ α < 3/4; for 3/4 ≤ α ≤ 1, BR domi-
nates. PR tends to dominate FV for 0 ≤ α < 1/2 while we get the reserve
for 1/2 ≤ α ≤ 1. PR also dominates AV for all α; AV is also dominated by
NPR for 0 ≤ α < 1/2. As to elect the absolute Condorcet winner, AV tends
to dominate NPR for α ≥ 1/3 and it dominates BR for α ≥ 2/3.

4.5 The election of the Condorcet loser

Let us assume on C = {a, b, c} that a is the Condorcet loser (resp. the absolute
Condorcet loser); using the labels of Table 2, this is equivalent to Eq. 23 (resp.
Eq. 24). {

nab < nba
nac < nca

(23) NPR(a, π) >
n

2
(24)
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For our voting situations with three candidates, P(CL) the existence prob-
ability of the Condorcet loser and P(ACL) that of the Absolute Condorcet
loser are as follows: P(CL) = P(CW ) and P(ACL) = P(ACW ).

We know from Prop. 3 that FV and PAV may elect the (Absolute) Con-
dorcet loser when he exists. When a voting rule may elect a Condorcet loser
(resp. a Absolute Condorcet loser), it said vulnerable to the Borda paradox
(Absolute Majority Loser Paradox). By definition, a (Absolute) Condorcet
loser when he exists, can never be elected under rule 2 of PAV; this can only be
the case under Rule 1. With FV, the Condorcet loser cannot be elected at level
l = 1 and the the Absolute Condorcet loser can only be elected at level l = 3.
We follow the same methodology as for the Condorcet efficiency to determine
CL(.) (resp. ACL(.)) the limiting probability of electing the Condorcet loser
(resp. the Absolute Condorcet loser) when he exists. From our computations,
we get:18

CL(AV ) = 1041839
11594304 ; ACL(AV ) = 476761

16246656 ;

CL(FV ) = 1016677891
110075314176 ; ACL(FV ) = 10859

97479936 ;

CL(PAV ) = 14311
452984832 ; ACL(PAV ) = 809

32493312 ;

CL(PR) = 364069916
10697375889 ; ACL(PR) = 104603503

7494912423 ;

CL(NPR) = 787367474789
21908225820672 ;

It emerges that in our analytical framework, AV is the rule most likely to
elect the loser Condorcet when it exists; it does less well than PR and NPR.
This result contrasts with what El Ouafdi et al. (2020) or Gehrlein et al.
(2016) achieve in their respective frameworks. With a limiting probability of
nearly 0.01%, PAV performs significantly better than FV whose probability is
raised to nearly 3%. Regarding the election of an Absolute Condorect loser,
our results show that AV is among our rules the most likely to elect such a
candidate; PAV performs better than FV which performs better than PR.

We were willing, as we did in the previous section, to refine our findings
based on α the proportion of voters who approve of exactly one candidate.
The probabilities CL(R,α) and ACL(R,α) that we obtained in this regard are
provided in Table 7.

For any value of α, NPR appears to be the rule most likely to elect the
Condorcet loser. It appears that CL(AV,α) decreases with α while CL(PAV, α)
increases with α. CL(FV, α) tends to increase for α going from 0 to reach its
maximum at α = 1/2 then decreases. CL(PR,α) and CL(NPR,α) tend to
grow for 0 ≤ α < 1/2 then to decrease for 1/2 ≤ α < 1. For α = 1, we find that
AV, PR, FV and PAV have the same probability to elect the Condorcet loser.

For 0 ≤ α ≤ 1/2, AV appears to be the rule most likely to elect an absolute
Condorcet loser; over this interval, ACL(AV,α) tends to decrease with α. We
also note that for 0 ≤ α ≤ 1/2, FV and PAV never elect an absolute Condorcet

18The computation details are available upon request.
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loser. For 1/2 < α < 1, PR is the most likely to elect an absolute Condorcet
loser; it is followed by AV while PAV performs better than FV. For α = 1,
AV, FV, PAV and PR have the same probability (about 2.47%) of electing the
absolute Condorcet loser.

5 Concluding remarks

The first objective of this paper was to supplement the analysis of Brams and
Sanver (2009) regarding the normative properties of FV and PAV. This is how
we managed to show that – FV and PAV are Pareto optimal as they never elect
a Pareto dominated candidate; –they are homogeneous; –FV and PV always
elect the absolute Condorcet winner when it exists; –on the domain where there
is an absolute Condorcet winner, these rules always elect a socially acceptable
candidate, they never elect a socially unacceptable candidate and they are
resistant to manipulation by clones. Nonetheless, these rules do not meet the
cancellation property, the reinforcement criterion and they are vulnerable to
the No-show paradox and to the truncation paradox. We managed to find some
condition under which these rules always meet the reinforcement criterion or
are not sensitive to the No-show paradox. It turns out that FV and PAV
satisfy and fail the same criteria; they possess two properties that AV does
not: Pareto optimality and the fact of always electing the absolute Condorcet
winner when he exists. AV for its part, meets two criteria that FV and PAV
do not: reinforcement and non-vulnerability to the No-show paradox.

Even if by definition, there is a certain advantage of FV and PAV over
AV regarding the respect of the majority criteria, we wanted to measure the
extent of this advantage. Thus, for voting situations with three candidates, we
calculated the probabilities that these rules would elect the (absolute) Con-
dorcet winner or the (absolute) Condorcet loser. Our analysis shows that in
terms of the election of the Condorcet winner, PAV performs better than BR
who dominates FV. When it comes to electing the absolute Condorcet win-
ner, PAV and FV dominate BR, AV and PR. To prevent the election of an
(absolute) Condorcet loser, FV and PAV perform better than AV and PR.

Our analysis shows that FV and PAV tend to deliver on the promise of
being rules that could reconcile the advocates of score rules with those of
approval voting. FV and PAV share the simplicity that characterizes AV, and
with scoring rules they share the constraint of ranking candidates, which can
be a daunting task when there is a large number of candidates.

Appendices

A.Proof of Proposition 8

Assume that an electorate is divided in two disjoints groups of voters N1

(|N1| = n1) and N2 (|N2| = n2) such that N1 ∩ N2 = ∅ and N1 ∪ N2 = N
(|N | = n1 + n2 = n).
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A.1. PAV and the reinforcement criterion

Since AV meets the reinforcement condition and that it is equivalent to Rule
1 of PAV, it follows that PAV meets the reinforcement condition if the winner
in each group is elected by one by Rule 1i or 1ii. To complete the proof, let us
show that this is no longer the case in the other configurations. So, consider
the following profiles

Profile 1
1 : a � b � c
3 : b � a � c
2 : c � b � a

Profile 2
1 : a � b � c; 2 : a � c � b;
1 : c � a � b; 2 : c � b � a;
1 : b � c � a;

Profile 3
2 : a � b � c; 2 : c � a � b;
1 : b � c � a; 1 : b � c � a

Profile 4
1 : a � c � b
1 : b � c � a
2 : c � a � b

Profile 5
1 : a � c � b
1 : b � a � c
1 : c � a � b

Profile 6
2 : a � b � c;
1 : b � c � a;
1 : b � c � a;
2 : c � a � b;

Profile 7
2 : a � c � b; 1 : b � a � c;
2 : b � a � c; 1 : b � c � a
3 : c � b � a

It is easy to check that a is elected in each of the seven profiles: through Rule
1ii in Profile 1, through Rule 2i in Profiles 2, 4 and 5, through Rule 2ii in
Profiles 3, 6 and 7. When Profiles 1 and 2 are merged, b wins; this is also the
case when Profiles 1 and 3 are merged. When Profiles 2 and 3 or Profiles 4
and 5 or Profiles 6 and 7 are merged, c wins. It follows from the profiles above
that if a candidate wins with Rule 1 (1i or 1ii) in one group of voters and with
Rule 2 (2i or 2ii) in an other group, he may not win when both groups are
merged. We reach the same conclusion if a candidate wins with Rule 2i in one
group of voters and with Rule 2ii in an other group, or when a candidate wins
through Rule 2i (resp. 2ii) in both groups of voters.

We can give a summary that reflects whether or not the criterion is met as
follows:

N2

Rule 1i Rule 1ii Rule 2i Rule 2ii

N
1

Rule 1i yes yes no no

Rule 1ii yes yes no no

Rule 2i no no no no

Rule 2ii no no no no

Thus, PAV always meets the criterion if the winner in each of the two groups
of voters is determined by Rule 1i or Rule 1ii or both. In the other cases, PAV
may fail the reinforcement condition.

A.2. FV and the reinforcement criterion

Assume that candidate a is the FV winner at level l in both groups N1 and N2.
Let us denote by Slj(a) the l-level score of a in group j (j = 1, 2). We distinguish
two cases: (i) at l, a is the only majority approved in each group. This means
for all other candidate b, we get Sl1(a) > n1

2 ≥ Sl1(b) and Sl2(a) > n2

2 ≥ Sl2(b).
Consider the profile obtained when both populations are merged and assume
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that b wins at a given level r. It is obvious that we get a contradicts for r ≥ l
since Sl1(a) + Sl2(a) > n

2 ≥ Sl1(b) + Sl2(b). Since it is assume that a is the
only majority approved in each group at l, it follows that for all r < l, we get
Srj (a) ≤ nj

2 < Slj(a) and Srj (b) ≤ Slj(b) ≤
nj

2 . Therefore, when both groups are
merged, it is impossible at level r for b to be majority approved or to score
more than a. So, if a is the only majority approved in each group at a given
level l, he remains elected when both groups are merged.

(ii) at l, a has the greatest score among the majority approved candidates
in each group. This means that Sl1(a) > Sl1(b) > n1

2 ≥ Sl1(c) and Sl2(a) >
Sl2(b) > n2

2 ≥ Sl2(c). What we have in (i) implies that c can never win when
the two groups merge.

To complete the proof, let us use some profile to show that when a same FV
winner is determined in two group at two different levels, he may not remains
elected when both groups merge.

Profile 1
2 : a � b � c
1 : a � b � c
2 : b � c � a

Profile 2
1 : a � b � c; 1 : b � c � a;
2 : a � b � c; 1 : c � b � a;
2 : b � a � c;

In Profile 1, a win at the first level since S1(a) = 3, S1(b) = 2 and S1(c) = 0;
he also win with Profile 2 at level 2 since S1(a) = S1(b) = 3, S1(c) = 1,
S2(a) = 5, S2(b) = 4 and S2(c) = 1. When both profile are merged, b wins
since S1(a) = 6, S1(b) = 5, S1(c) = 1, S2(a) = 8, S2(b) = 18 and S2(c) = 1.
So, FV may fail the reinforcement criterion when the winner in both group is
elected at two different level of preferences.

B. Proof of Proposition 10

B.1. PAV is vulnerable to the No-show paradox only when
the winner is determined by Rule 2i.

It is well known that AV is not vulnerable to the No-show paradox (see Felsen-
thal, 2012); as rule 1 of PAV is equivalent to AV under, it follows that under
Rule 1, PAV is is not vulnerable to the No-show paradox.

Consider a voting situation where a is PAV winner. Assume a group of β
voters (β ≥ 1) who decide to not show up in order to favor a more preferred
candidate b. Obviously, if these voters do not approve of a in the original
profile, the maneuver is futile. Thus, suppose that these voters approve a in
the original profile. When they abstain, the AV score of each candidate they
approved decreases by β. Let us discuss each of the possible configurations.

Consider the configuration where candidate a was the winner under Rule
2i. First, let us assume that b was not among the majority approved candidates
(AV(b, π) < n

2 ) and that he wins after abstention. After abstention, AV(b, π)−
β < n−β

2 ; b cannot win if AV(a, π)−β > n−β
2 ; if AV(b, π)−β < n−β

2 , b wins if
AV(b, π)−β > AV(a, π)−β which is equivalent to AV(b, π) > AV(a, π): this
contradicts AV(a, π) > n

2 . So, it not possible to favor b. Let us now assume
that b was among the majority approved candidates (AV(b, π) > n

2 ) and that
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he wins after abstention. It is obvious after abstention that b cannot win if
AV(a, π)− β > n−β

2 . After abstention, if AV(a, π)− β < n−β
2 , two cases are

possible:

� If AV(a, π) > AV(b, π), it is not possible to favor b; let us show how. Given
AV(a, π) > AV(b, π), if AV(b, π) − β > n−β

2 and b wins, this means that

AV(b, π) > AV(a, π); we get a contradiction. For AV(b, π)−β < n−β
2 , b wins

if AV(b, π)−β > AV(a, π)−β which is tantamount to AV(b, π) > AV(a, π):
a contradiction.

� If AV(a, π) < AV(b, π),

– it is possible to favor b since it possible to get AV(b, π) − β > n−β
2 such

that b wins as illustrated by the following profile with 3 candidates and
19 voters.

1 : a � b � c 6 : b � a � c 3 : c � a � b
4 : a � b � c 3 : b � a � c 2 : c � a � b

In this profile, AV(a, π) = 10, AV(b, π) = 13 and AV(c, π) = 5. Candi-
dates a an db are majority approved and a wins since nab = 10 > nba = 9.
Assume that the 3 voters with b � a � c abstain. In the new profile
π′ with 16 voters, the scores are AV(a, π′) = 7, AV(b, π′) = 10 and
AV(c, π′) = 5: b wins since he now the only majority approve candidates.

– it is possible to favor b since it possible to get AV(b, π) − β < n−β
2 such

that b wins as illustrated by the following profile with 3 candidates and
18 voters.

1 : a � b � c 3 : b � a � c 5 : c � a � b
4 : a � b � c 4 : b � a � c 1 : c � a � b

In this profile, AV(a, π) = 10, AV(b, π) = 11 and AV(c, π) = 6. Candi-
dates a and b are majority approved and a wins since nab = 11 > nba = 7.
Assume that the 4 voters with b � a � c abstain. In the new profile π′ with
14 voters, the scores are AV(a, π′) = 6, AV(b, π′) = 7 and AV(c, π′) = 6:
no candidate is majority approved then b wins since he get the highest
AV score.

Consider now the configuration where candidate a was the winner under
Rule 2ii. If b was not among the majority approved candidates, the same
reasoning as above applies and b cannot win after abstention. Let us assume
that b was among the majority approved candidates; as a wins, this means
that he has the greatest AV scores among the majority approved (AV(a, π) >
AV(b, π)). Candidate b may win after abstention if the new scores are such
that n−β

2 < AV(a, π)−β < AV(b, π)−β or AV(a, π)−β < n−β
2 < AV(b, π)−

β; in each case, these conditions lead to AV(a, π) < AV(b, π) which is a
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contradiction. Thus, PAV is vulnerable to the No-show paradox only when the
winner is determined by Rule 2i.

B.2. FV is not vulnerable to the No-show paradox only when
the winner is determined at level l = 1 or l = m.

Given that a FV winner is determined at l = 1, any abstention of voters who
do not rank this winner first does not affect the approval of the level l = 1.
So, for l = 1, the no-show paradox never occurs.

Let us assume that a is the FV winner at level l = m and that a group of
β voters try to favor a more preferred candidate b by abstaining. Assume at
l = m that a is the only majority approved, this means that Sm(a) > n

2 >
Sm(b); after abstention, we may get i) Sm(a)− β > n

2 and Sm(b)− β < n
2 or

ii)Sm(a)− β < n
2 and Sm(b)− β < n

2 . Candidate a remains the winner under
i); candidate b wins under ii) if Sm(a) − β < Sm(b) − β which is equivalent
to Sm(a) < Sm(b): this contradicts that a was the only majority approved.
Let us now assume that a and b are among the majority approved; since a
wins, this means that Sm(a) > Sm(b) > n

2 . After truncation, we can get
Sm(a) − β > Sm(b) − β > n

2 or n
2 > Sm(a) − β > Sm(b) − β; in each case,

b cannot be the winner. It follows that FV is not sensitive to the No-show
paradox when the winner is determined at level l = 1 or l = m.

Now, let us assume that a is the FV winner at level l (l 6= 1,m) and
consider the following profile with 12 voters and 3 candidates.

2 : a � b � c; 1 : a � c � b;
4 : b � a � c; 2 : b � c � a;
1 : c � a � b; 1 : c � b � a;
1 : c � b � a;

With this profile, no candidate wins at l = 1 since S1(a) = S1(c) = 3 and
S1(b) = 6; at l = 2, S2(a) = 8, S2(b) = 7 and S2(c) = 4: candidate a wins.
Assume that the 4 voters with b � a � c abstain. In the new profile, we get:
S1(a) = S1(c) = 3, S1(b) = 2 at l = 1 and no one wins; S2(a) = S2(c) = 4 and
S2(b) = 3 and no one wins. At l = 3, S3(a) = S3(c) = 4 and S3(b) = 5 and
b wins; by abstaining, the 4voters have favored b who is preferred to a. Thus,
FV is vulnerable to the no-show paradox when the winner is determined at
level of approval l 6= 1 and l 6= m.

Since the vulnerability of a voting rule to the No-show paradox leads to
its vulnerability to the truncation paradox, FV and PAV would therefore be
vulnerable to the truncation paradox. Preference truncation is efficient under
FV and PAV only if it consists, as shown by Brams and Sanver (2009), in a
contraction of the set of approved candidates.
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Merlin V., Özkal-Sanver I. and Sanver M.R. (2019) Compromise rules revisited.
Group Decision and Negotiation 28(1):63-78.

Miller N.R. (2017) Closeness matters: monotonicity failure in IRV elections
with three candidates. Public choice 173(1): 91–108.

Myerson R.B. (1995) Axiomatic derivation of scoring rules without the
ordering assumption. Social Choice and Welfare 12: 59-74.

Nurmi H.(2004) A comparison of some distance-based choice rules in ranking
environments. Theory and Decision 57: 5-24.

Nurmi H. (1999) Voting Paradoxes and How to Deal with Them. Springer-
Verlag.

Nurmi H.(1987) Comparing Voting Systems D. Reidel Publishing Company.
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