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Abstract— We propose a distributed hybrid observer for
a sensor network where the plant and local observers run
in continuous time and the information exchange among the
sensing nodes is sampled-data. Process disturbances, measure-
ment noise and communication noise are considered, and we
prove that under some necessary detectability assumptions the
observer gains can be tuned to guarantee exponential Input-to-
State Stability with a prescribed convergence rate. Simulations
illustrate the performance of the proposed observer.

Index Terms— Distributed estimation; Hybrid observer; Lin-
ear systems; Input-to-State Stability; Sensor network

I. INTRODUCTION

One of the most important tasks for a Wireless Sensor
Network (WSN) is state estimation, which finds important
applications in different applications areas such as robotics,
power systems, smart grids or traffic management, among
others. In distributed state estimation, each smart sensor (re-
ferred usually as agent) estimates the plant state with limited
locally available information, possibly coming from seldom
information exchange with neighboring agents. Perhaps the
most popular approach for this setting is the Distributed
Kalman Filter (DKF) [1]. DKF algorithms involve several
steps that typically include: i) prediction of prior states using
the system model, ii) correction based on local measurements
with a Kalman gain, and iii) information fusion from neigh-
boring agents based on consensus [2], [3], [4], diffusion [5],
or gossip-based algorithms [6]. An excellent review of these
techniques can be found in [7].

Unlike DKF, distributed Luenberger observers do not
use statistical noise/disturbance descriptions [8] and resort
to deterministic approaches. To solve the problem in a
distributed way, different state-based partitions have been
proposed. In [9], a new estimation structure based on the
observability canonical form is given, which depends on
locally measured outputs and an agent indexing or ordering.
An alternative subspace decomposition method, called multi-
hop decomposition, is proposed in [10], where each agent
constructs its own observability staircase form. These works
provide a fully distributed design for the estimator in discrete
time [8], [9], [10] or continuous time [10]. However, the case
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where the local measurements are available in continuous
time but the communication among the agents happens in
discrete time cannot be analyzed with these approaches. That
situation, which has been studied only in the centralized case
(see e.g. [11], [12], [13] and references therein), is certainly
relevant in practice. Indeed, on the one hand, requiring
continuous-time communication would be too stringent and,
on the other hand, designing sampled-data solutions with a
single sampling time forces the algorithm to run at the inter-
agent communication rate, typically much slower than the
rate at which the local outputs can be locally measured.

This paper develops a new hybrid distributed observer
exploiting the multi-hop decomposition [10] for linear plants
equipped with a sensor network. Each network node runs
locally a hybrid observer in continuous time for the locally
observable modes, exploiting the continuous availability of
locally measured outputs through continuous Luenberger-like
dynamics. Our work exploits the multi-hop decomposition in
[10] for the two-time-scale setting of fast local output injec-
tion and slow sampled-data inter-agent exchange, in addition
to rigorously characterizing the effect of (continuous-time)
process disturbance/sensor noise and (discrete-time) commu-
nication exchange disturbances. Using an ad-hoc Lyapunov
construction (different from [10]), we guarantee a prescribed
convergence rate and input-to-state stability (ISS) properties.

Notation: Scalar aij denotes the (i, j) entry of matrix
A. Given V ⊂ N and an ordered set Yi of matrices, for
decreasing values of i from top to bottom, we denote by
diag
i∈V

(Yi) a block diagonal matrix whose diagonal blocks are

Yi, while for the case where matrices Yi all have the same
number of columns, col

i∈V
(Yi), where V ⊂ N and Yi a matrix

vertically stacking Yi. We often denote (u, v) :=
[
u>, v>

]>
.

|x| :=
√
x>x is the Euclidean norm of vector x. ‖x‖∞

denotes the L-infinity norm of the signal x(·). Given two
sets V ⊂ N and E ⊂ V × V , G(V, E) is the (directed) graph
with nodes V and edges E . Finally, Ni denotes the set of
nodes j such that (j, i) is an edge of G(V, E), called in-
neighborhood of node i.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. System data

Consider a linear plant subject to an external disturbance
driven by the following equation

ẋ = Ax+ d0,

yi = Cix+ di, ∀i ∈ V := {1, . . . , p}
(1)



Fig. 1. Sample network with p = 6 sensors. Solid arrows are the locally
available continuous-time measurements yi, dashed lines are periodically
sampled information exchanges among the agents.

where x ∈ Rn is the plant state, d0 is some external
disturbance, matrices A, Ci, for all i ∈ V are constant
and known. Each sensor measures an output yi affected by
measurement noise di. As shown in Fig. 1, each output
measurement yi ∈ Rmi , with mi ≤ n, is available only
locally at the sensor’s location within our sensors network.
Each pair (Ci, A) is not necessarily detectable.

B. Cross-sensors information exchange

In our solution each agent is equipped with a local
observer providing a state estimate x̂i, i ∈ V . Since each
measurement yi is not necessarily sufficient for the local
observer to reconstruct x, cross-sensors communication is
needed. We assume that the sensors V are connected through
a communication graph G = (V, E), wherein the exchange
of information is performed synchronously and periodically
with a period T > 0. The information exchange along each
edge of the graph (i, j) ∈ E is also affected by transmission
noise representing, e.g., small delays or quantization errors.
Summarizing, each sensor i ∈ V has access to two types of
measurements, namely

yi(t), ∀t ∈ R, (2)
yi,j(kT ) := x̂j(kT ) + wi,j(k), ∀k ∈ N,∀j ∈ Ni, (3)

where the second set of measurements is only available at
periodic instants of time (sampled-data) tk = kT .

In the previous equation wi,j is a (discrete-time) com-
munication disturbance affecting the information transmitted
from sensor j to sensor i. In the sequel, we will denote
with wi := col

j∈Ni
(wi,j) the collection of the communication

disturbances transmitted to sensor i, and we will collect
together all di and wi as follows

d := col
i∈{0,...,p}

(di) , w := col
i∈V

(wi) . (4)

C. Problem formulation

We design here a pool of distributed observers only using
the locally available information yi(t), yi,j(kT ). Due to the
disturbances acting on the plant and on the measurements,
an asymptotic state estimation is not achievable. Therefore
we establish an ISS bound from the disturbances (4) to the
estimation errors, as stated below.

Problem 1: Design a distributed hybrid or sampled-data
observer for system (1) such that, for a given exponential
rate α > 0, the following ISS property holds∣∣∣∣col
i∈V

(x̂i(t)− x(t))

∣∣∣∣ ≤ κe−αt
∣∣∣∣col
i∈V

(x̂i(0)− x(0))

∣∣∣∣
+ γC‖d‖∞ + γD‖w‖∞, ∀t ∈ R≥0,

(5)

where x̂i is the state estimate at the i-th node and κ, γC , γD
are some strictly positive, constant gains.

Remark 1: Considering (5) without noise we obtain a
standard Uniform Global Exponential Stability (UGES)
property for the estimation error. Property (5) implies ro-
bustness to small nonlinearities in the plant (included in d0)
and small delays in the communication (included in wi,j).
More general small nonlinear perturbations of plant (1) or
asynchronous communications are covered by the intrinsic
robustness results in [14, Ch. 7], enabled by the well-
posedness of our error dynamics. Quantitative robustness-in-
the-large characterizations are more challenging objectives
that will be the subject of future work.

III. CONTINUOUS-DISCRETE OBSERVER DESIGN

A. Multi-hop decomposition and necessary assumptions

The proposed distributed observer architecture relies on
the multi-hop decomposition presented in [10] for a discrete-
time setting and whose main definitions are easily extended
hereafter to the continuous-time case.

For the linear system (1), the %-hop output matrix, Ci,%,
of agent i ∈ V is recursively defined as Ci,0 := Ci and

Ci,% :=

[
Ci,%−1

col
j∈Ni

(Cj,%−1)

]
.

In other words, Ci,% represents the outputs measured by
agent i and by all the agents j such that in G there exists a
(directed) path from j to i of length at most %. Consider now,
for any i ∈ V and any “hop” % ∈ {0, . . . , `i} of our multi-hop
decomposition, the pair (Ci,%, A), where `i ∈ N is specified
in Assumption 1 below. Based on the classical continuous-
time observability concept, we can define the observable and
unobservable sub-spaces of Rn related to (Ci,%, A), denoting
them by Oi,% and Oi,%, respectively. Then, we can define the
“innovation” matrix for agent i at hop % ∈ {0, . . . , `i} as the
matrix Wi,% whose columns generate the subspace of Rn
that is observable at hop % and unobservable at hop % − 1.
Namely, defining Oi,−1 := Rn, Wi,% is recursively defined
as an orthogonal matrix such that

Im (Wi,%) = Oi,%−1 ∩ Oi,%, % ∈ {0, . . . , `i}
Im (Wi,`i+1) = O`i .

(6)

It is immediate to verify that horizontally stacking matrices
Wi,% in (6), % ∈ {0, . . . , `i + 1}, provides an orthogonal
matrix Wi, whose image is Rn.

Remark 2: For linear systems, the observable sub-spaces
related to (Ci,%, A) are identical in the continuous-time
and discrete-time cases. Thus, the multi-hop decomposition
results in [10, Lemma 3-10] can and will be used hereafter.



Note that matrix Wi,`i+1 in (6) might be non-empty,
regardless of the value `i. For this reason, some assumption
on the unobservable modes is necessary for designing a
distributed observer that solves Problem 1. In particular,
given a desired exponential convergence rate α in (5), the
least conservative assumption is based on the definition of
collective α-detectability presented in [10].

Definition 1 (collective α-detectability [10]): Given α >
0, system (1) is collectively α-detectable with respect to G if,
for each i ∈ V , there exists `i ∈ N such that pair (Ci,`i , A)
is α−detectable.

Assumption 1: System (1) is collectively α-detectable
with α > 0 and `i in (6) is selected according to Definition 1.

Assumption 1 does not require any connectedness or
spanning tree assumption on graph G, which are typical
assumptions in distributed estimation. Such assumptions may
be conservative (see the example in [10, Figure 1]), while
it is immediate to see that Assumption 1 is necessary for
solving Problem 1.

B. Hybrid observer structure

Based on the multi-hop decomposition, each observer
located at node i ∈ V is defined by the impulsive system

˙̂xi = Ax̂i +Wi,0Li(yi − Cx̂i), t /∈ {kT, k ∈ N}, (7a)

x̂+
i = x̂i +

`i∑
%=1

∑
j∈Ni

Wi,%Ni,j,%W
>
j,%−1 (yi,j − x̂i) ,

t ∈ {kT, k ∈ N},

(7b)

where Wi,%, i ∈ V, % ∈ {0, . . . , `i} are defined in (6). The
architecture of observer (7) comprises three main parts:

1) a continuous-time copy of the observed plant,
2) a local output injection, which can be performed in

continuous time as well, since each sensor has access
to its own measurement in continuous time,

3) a consensus correction term, based on the information
coming from the neighbors of agent i. Due to the com-
munication scheme, this output injection corresponds
to an impulsive modification of x̂i in the subspace
generated by matrices Wi,%, % ∈ {1, . . . , `i}.

In (7), the information coming from the neighbors is not
available at all times, which makes the impulsive architecture
relevant in practical implementation.

Observer (7) requires selecting matrices Li and Ni,j,%, of
appropriate dimension, for all (i, j, %) in V×Ni×{0, . . . , `i}.
Their selection is addressed in Section III-D.

C. Stability guarantees

The following property presents sufficient conditions for
the observer in (7) to solve Problem 1. We will show in
Section III-D that, under the necessary Assumption 1, there
always exist observer gains satisfying this property.

Property 1: For each agent i, the local observer gains Li
are chosen so that

Ai,0 :=
(
W>i,0A− LiCi

)
Wi,0 (8)

is Hurwitz, with spectral abscissa α ≤ −α. The consensus
gains Ni,j,%, for all % ∈ {1, . . . , `i}, are chosen so that

Ai,% := e(W>i,%AWi,%)T
(
I −

( ∑
j∈Ni

Ni,j,%W
>
j,%−1

)
Wi,%

)
(9)

is Schur, with spectral radius β ∈ [0, e−αT ].
We are now in position to state the main result, which will
be proven in Section VI-C.

Theorem 1: Given α > 0, if the gains of observer (7)
satisfy Property 1, then this observer solves Problem 1.

D. Feasibility guarantees and design guidelines

Following [10, Th.14], we show next that Assumption 1 is
not only necessary, but also sufficient for solving Problem 1.

Theorem 2: Under Assumption 1, there always exist gains
Li and Ni,j,% satisfying Property 1.

Proof: The existence of matrices Li is trivial, as (8)
considers only the locally observable modes. Concerning the
matrices Ni,j,%, we can rewrite each matrix Ai,% in (9) as

Ai,% = Ei,% −N i,%Ci,%,

where Ei,% := eW
>
i,%AWi,%T , N i,% := Ei,% col

j∈Ni

(
N>i,j,%

)>
and

Ci,% := col
j∈Ni

(
W>j,%−1

)
Wi,%. Using this structure, we know

from linear systems theory that, if the pair
(
Ci,%, Ei,%

)
is

observable, then it is possible to find N i,% that places the
eigenvalues of Ai,% anywhere in the unit circle. Note also that
any selection of N i,% corresponds to a unique selection of
the gains Ni,j,% for all j ∈ Ni, because Ei,% is non singular
for any T > 0. We then complete the proof by showing
observability of

(
Ci,%, Ei,%

)
.

According to the PBH test for observability (see [15,
Th.15.9]), the pair

(
Ci,%, Ei,%

)
is observable if and only if

rank
([

Ei,%−λI
Ci,%

])
= ni,%, ∀λ ∈ C, where the size ni,% of

Ei,% corresponds to the number of columns of Wi,%. In turn,
this test is true if Ci,% is full column rank. From item (iii) of
[10, Lemma 3] we know that the image of Wi,% is a subset
of the sum of the images of Wj,%−1, j ∈ Ni, or equivalently

Wi,% = col
j∈Ni

(
W>j,%−1

)>
Q, (10)

where Q is some selection matrix. Since Wi,% is full
column rank by definition, we may use (10) to obtain
Q>Ci,% = Q> col

j∈Ni

(
W>j,%−1

)
Wi,% = W>i,%Wi,%, which

implies rank
(
Ci,%

)
≥ rank

(
Q>Ci,%

)
= ni,%, and since

Ci,% has exactly ni,% columns, the equality is immediately
obtained, thus concluding the proof.

Remark 3: A good practical rule is to tune the observer
gains so that α � −α while β is closer to e−αT . Then
the local observation errors converge to zero faster than the
consensus errors, thus improving the transient behaviour.

IV. ERROR DYNAMICS

Define the estimation error of each agent as

ei := x− x̂i, i ∈ V, (11)



and apply the multi-hop decomposition to the error dynam-
ics, which yields, for each i ∈ V and each % ∈ {0, . . . , `i+1}

εi,% := W>i,%ei −→ ei :=

`i+1∑
r=0

Wi,rεi,r. (12)

Define also the index sets

V% := {i ∈ V : `i + 1 ≥ %} , % ∈ {0, . . . , `}, (13)

where ` := max
i
{`i + 1}. Then, for each % ∈ {0, . . . `}, we

can denote with ε% the vector obtained by stacking all the
transformed error coordinates at hop %, and with ε the vector
obtained stacking all the ε%, namely

ε% := col
i∈V%

(εi,%) , ε := col
%∈{0,...,`}

(ε%) ∈ Rnε . (14)

Given these definitions, the error dynamics can be de-
scribed by means of a hybrid dynamical system. To this
end, we augment the error state ε with a timer element τ ,
which will be used to trigger periodic jumps, representing
the sampled-data exchange of information. In particular, we
prove in the sequel that the error dynamics results in[

ε̇
τ̇

]
=

[
Aεε+Rd

1

]
, (ε, τ) ∈ C,[

ε+

τ+

]
=

[
Jεε+ Sw

0

]
, (ε, τ) ∈ D,

(15)

where the state evolves in X := Rnε × [0, T ] and the flow
and jump sets are defined as

C := X, D := {(ε, τ) ∈ X : τ = T} . (16)

The matrices in (15) are defined as

Aε :=


A`

A`−1 ?

. . .
0 A1

A0

 , Jε :=


∆`

∆`−1 ?

. . .
0 ∆1

∆0

 ,
(17)

R := col
%∈{0,...,`}

(R%) , S := col
%∈{0,...,`}

(S%) , (18)

where ? represents some possibly non-zero terms. Using the
definition of V% in (13) and adopting the convention that the
unobservable modes of node i correspond to Ni,j,`i+1 := 0
for all j ∈ Ni, the entries of (17)-(18) are given by

A% :=


diag
i∈V

(
W>i,0AWi,0 − LiCiWi,0

)
, if % = 0,

diag
i∈V%

(
W>i,%AWi,%

)
, if % ∈ {1, . . . , `},

(19a)

R% :=


[
diag
i∈V

(−Li)
∣∣ col
i∈V

(
W>i,0

)]
, if % = 0,[

0
∣∣ col
i∈V%

(
W>i,%

)]
, if % ∈ {1, . . . , `},

(19b)

∆% :=


I, if % = 0,

diag
i∈V%

(
I −

( ∑
j∈Ni

Ni,j,%W
>
j,%−1

)
Wi,%

)
,

if % ∈ {1, . . . , `}.

(19c)

S% :=

0, if % = 0,

col
i∈V%

(Si,%) , if % ∈ {1, . . . , `}, (19d)

Si,% = −
[
0 col

j∈Ni

(
Wj,%−1N

>
i,j,%

)>
0
]
, (19e)

where the only non-zero element of the block vector Si,%
is in position i. We can finally state the following lemma,
whose proof can be found in the appendix.

Lemma 1: Consider the transformed error coordinates in
(12), the vector ε defined in (14) and the noise vectors d and
w in (4). Then, ε evolves according to (15)-(19).
Note that the flow and jump sets in (16) overlap on their
boundaries. This is typical in well-posed hybrid systems
[14, Ch. 6] where C and D are closed. Well-posedness
ensures robustness of stability [14, Ch. 7], and even though
having overlapping C and D might generate non-unique
solutions, this is not a concern in the hybrid framework where
Lyapunov-based proofs apply to all solutions. Moreover,
uniqueness of solutions can be proved for the system (15)-
(19) and a similar situation occurs in the famous bouncing
ball example [14, Ex 1.1].

V. NUMERICAL SIMULATIONS

Consider the continuous-time system (1) with

A =

[
0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

]
, Ci = e>i , i ∈ {1, . . . , 4} ,

where ei represents the i-th vector of the Euclidean basis, i.e.
a vector with all zeros and a one in position i. The agents
are interconnected with a directed ring graph, i.e. agent 1
sends information to agent 2, 2 to 3, and so on.

Fig. 2. Evolution of the estimates of agent 3, compared with the plant
states.

We report the simulation results for the proposed observer
hereafter. For this simulation, we selected T = 0.1s and α =
1. The observer gains were chosen so that Property 1 was
satisfied with α = −5α and β = e−αT . The disturbances d
and w were simulated as random signals, with ‖d‖∞ = 0.04
and ‖w‖∞ = 0.02. In Figure 2, we can see the comparison
among the state estimates of agent 3 and the plant states.
We can see that the estimates of the locally observable
modes, namely x̂3,3 and x̂3,4, converge continuously to the
corresponding plant states. On the other hand, convergence
of the locally unavailable states x̂3,1 and x̂3,2 is achieved
through the jumps emerging from the periodic information
exchange with the neighbouring agents.



Fig. 3. Evolution of the estimation error norms: comparison between the
nominal case (opaque line) and the system in presence of timer jittering
(transparent line).

Fig. 4. Evolution of the estimation error norms: comparison between
the nominal case (opaque line) and the system in presence of transmission
delays (transparent line).

In Figures 3-5, the evolution of the error estimates in
the nominal case is compared with three different non-ideal
cases. In Figure 3, we show the result of a simulation with
timer jittering, i.e. each agent is governed by its own timer
state, and the information is transmitted when the value of the
timer is in the interval [T−ετ , T+ετ ]. In this simulation, we
selected ετ = T/10 = 10−2s. Figure 4 shows the estimation
errors in the presence of communication delays, in particular
the update of each agent happens with a fixed delay of
δ = 5 · 10−3s. Lastly, in Figure 5 we compare the nominal
case with the system affected by nonzero norm-bounded

Fig. 5. Evolution of the estimation error norms: comparison between
the nominal case (opaque line) and the system in presence of generic
disturbances d and w, as discussed in this paper (transparent line).

Gaussian selections of d and w, as per our main assumption;
the selected values of the infinity norms are the same as the
ones used for the simulation that produced Figure 2.

VI. PROOF OF THEOREM 1
A. Nonsmooth Lyapunov function

Consider the Lyapunov function candidate

V (ε, τ) :=

√
ε>P (τ)ε :=

√
ε>eA

>
ε (T−τ)P eAε(T−τ)ε, (20)

with P >0 and Aε defined in (17) and introduce the attractor

A := {(ε, τ) ∈ X : ε = 0} , (21)

Notice that V is smooth outside A, so we can define its
gradient ∇V (ε, τ) for all (ε, τ) ∈ X \ A.

B. Properties of V and some useful results

We will now present some properties of triangular and
exponential matrices, needed to prove the main stability
result. Their proofs are trivial applications of linear algebra
concepts, thus they are not reported.

Lemma 2: Consider A,B ∈ Rn×n. The following holds
(i) if A,B are upper triangular, then AB is also upper

triangular, and (ab)ii = aiibii;
(ii) if A is upper triangular and B = eAt, then B is also

upper triangular, and bii = eaiit

(iii) if λ is an eigenvalue of A, eλt is an eigenvalue of eAt.

Next, we prove some properties of V which will be used to
prove the main theorem in the next section.

Proposition 1: There exist positive scalars c1, c2, M , cC ,
cD and η≤e−αT such that Lyapunov function (20) verifies

(i) c1|ε| ≤ V (ε, τ) ≤ c2|ε|, for all (ε, τ) ∈ X ,
(ii) |∇εV (ε, τ)| ≤M, for all (ε, τ) ∈ X \ A,

(iii) V̇ ≤ cC |d|, for all (ε, τ) ∈ C \ A,
(iv) V + ≤ −ηV + cD|w|, for all (ε, τ) ∈ D \ A.

Proof: We prove the statements one by one.
Proof of (i): Since P is positive definite, we have√
λm

∣∣∣eAε(T−τ)ε
∣∣∣ ≤ V (ε, τ) ≤

√
λM

∣∣∣eAε(T−τ)ε
∣∣∣ , (22)

where λm and λM are the minimum and maximum eigenval-
ues of P , respectively. Recalling that, for any non singular
matrix T ∈ Rm×m and any vector y ∈ Rm, we have

|Ty| = |T
−1||Ty|
|T−1|

≥ |T
−1Ty|
|T−1|

=
1

|T−1|
|y|,

from (22) we can obtain

c1|ε| :=
√
λmϑ1|ε| ≤ V (ε, τ) ≤

√
λMϑ2|ε| =: c2|ε|,

where ϑ1 := min
τ∈[0,T ]

1

|eAε(τ−T )| and ϑ2 := max
τ∈[0,T ]

∣∣eAε(T−τ)
∣∣ ,

are both strictly positive, because of continuity and since the
matrix exponential is always invertible.

Proof of (ii): From the explicit calculation of the deriva-
tives we get, for all (ε, τ) ∈ X \ A,

|∇εV (ε, τ)| =
2
∣∣Pε∣∣

2
√
ε>Pε

=

√
ε>P

2
ε

ε>Pε
≤ λMϑ2√

λmϑ1

=: M.



Proof of (iii): Computing the evolution of V along flows
of the solutions to (15)-(16) we get

V̇ = 〈∇εV (ε, τ), Aεε+Rd〉+ 〈∇τV (ε, τ), 1〉

=
2ε>PAεε

2
√
ε>Pε

+ 〈∇εV (ε, τ), Rd〉 − 2ε>PAεε

2
√
ε>Pε

≤M |R||d| =: cC |d|, ∀(ε, τ) ∈ C \ A.

Proof of (iv): For the evolution of V across jumps of the
solutions to (15)-(16), denoting g(ε, τ) := (Jεε+ Sw, 0),
we have

V + := V (g(ε, w)) = V (g(ε, 0)) + V (g(ε, w))− V (g(ε, 0)).

Whenever the line segment Γ := {γg(ε, w) + (1 −
γ)g(ε, 0), γ ∈ [0, 1]} does not pass through the origin, we
can use the mean value theorem to rewrite V + as

V + = V (g(ε, 0)) + 〈∇V (ξ), g(ε, w)− g(ε, 0)〉 , (23)

for some ξ ∈ Γ. If instead 0 ∈ Γ, then we can use a similar
argument based on perturbations and converging sequences.
Using (23), we obtain

V + = V (Jεε, 0) + 〈∇εV (ξ), Sw〉+ 〈∇τV (ξ), 0〉

=

√
ε>J>ε eA

>
ε TPeAεTJεε+ 〈∇εV (ξ), Sw〉 . (24)

Consider the first term in the last line of (24). Since both
Aε and Jε are block upper triangular, items (i) and (ii) of
Lemma 2 ensure that eAεTJε also is block upper triangular.
Moreover, the blocks on the main diagonal of eAεTJε are
given by eA%T∆%, for all % ∈ {0, . . . , `}. Since these are in
turn block diagonal matrices, we conclude that the eigenval-
ues of eAεTJε are given by the union of the eigenvalues of
the following matrices, issued from (19),

e(W>i,0AWi,0−LiCiWi,0)T , ∀i ∈ V,

e(W>i,%AWi,%)T

(
I −

( ∑
j∈Ni

Ni,j,%W
>
j,%−1

)
Wi,%

)
,

∀i ∈ V, % ∈ {1, . . . , `i},
e(W>i,`i+1AWi,`i+1)T , ∀i ∈ V.

These correspond to the eigenvalues of

• eAi,0T for all i ∈ V ,
• Ai,% for all i ∈ V, % ∈ {1, . . . , `i},
• e(W>i,`i+1AWi,`i+1)T for all i ∈ V .

In view of Property 1, item (iii) of Lemma 2 and Assump-
tion 1, we conclude that eAεTJε has spectral radius η ≤
max{eαT , β, e−αT } = e−αT < 1, which is equivalent to the
existence of P > 0 such that J>ε eA

>
ε TP eAεTJε < η2P (see

for example [15, Th. 8.4]). Then, (24) becomes

V +≤ η
√
ε>Pε+M |S||w| = ηV +M |S||w| = η V +cD|w|,

for all (ε, τ) ∈ D \ A.

C. Proof of Theorem 1

We will use a proof technique similar to the one in [16,
Theorem 1], which needs to be carefully revisited in some
of its parts, as the conditions are slightly different. For
each solution ξε to (15)-(16), we can use items (iii), (iv) of
Proposition 1 to integrate the value of v(t, k) = V (ξε(t, k))
as follows

v(t, k) ≤ v(tk, k) + cC(t− tk)‖d‖∞
≤ (ηv (tk, k − 1) + cD|w|) + cCT‖d‖∞
≤ η (v (tk−1, k − 1) + cCT‖d‖∞) + cD‖w‖∞ + cCT‖d‖∞
≤ η (ηv (tk−1, k − 2) + cD‖w‖∞)

+ cD‖w‖∞ + (1 + η) cCT‖d‖∞,

where {tk} is the sequence of jump times of ξε, and we
used the fact that 0 ≤ (t− tk) ≤ T for all (t, k) ∈ dom ξε.
Iterating this process, we obtain

V (ξε(t, k))≤ηkV(ξε(0, 0))+
k−1∑
h=0

ηhcD‖w‖∞+

k∑
h=0

ηhTcC‖d‖∞.

(25)

Recalling that η ≤ e−αT , we have ηk = eαT e−α(k+1)T ≤
eαT e−αt, which, together with item (i) of Proposition 1
applied to (25), yields

|ε(t, k)| ≤ c2
c1

eαT e−αt|ε(0, 0)|+ TcC‖d‖∞
c1 (1− η)

+
cD‖w‖∞
c1 (1− η)

.

Lastly, we note that

|ε|2 =
∑
i∈V

`i+1∑
%=0

|W>i,%ei|2 =
∑
i∈V

e>i Wi

`i+1∑
%=0

(
Qi,%Q

>
i,%

)
W>i ei,

where each Qi,% selects unique columns of Wi, because of
the orthogonality of the multi-hop decomposition, therefore

it is immediate to verify that
`i+1∑
%=0

Qi,%Q
>
i,% = I . This implies

|ε|2 =
∑
i∈V

e>i WiW
>
i ei = | col

i∈V
(ei)|2. Therefore, we showed

that (5) holds with

γC :=
TcC

c1 (1− η)
=

TM |R|√
λmϑ1(1− η)

=
λMϑ2

λmϑ2
1

T |R|
1− η

,

γD :=
cD

c1 (1− η)
=
λMϑ2

λmϑ2
1

|S|
1− η

, κ :=
c2
c1

eαT ,

which completes the proof.

VII. CONCLUSIONS

In this work we exploited a continuous-time formulation
of the multi-hop decomposition to construct a novel dis-
tributed continuous-discrete observer. The hybrid nature of
the proposed observer allowed us to analyze a scenario where
the plant and the local observers work in continuous time,
while the information exchange happens only periodically.
Disturbances acting on the plant, on the measurements and
on the communication, were also considered. Under some
necessary collective detectability assumptions, we showed
that it is possible to tune the observer gains to ensure



exponential ISS from the noises to the estimation error,
with a prescribed exponential convergence rate. Simulations
were included to show the effectiveness of the proposed
estimation algorithm. The extension of the proposed al-
gorithm to aperiodic/asynchronous communications, time-
varying connection graphs or nonlinear plant dynamics are
interesting directions for future work. Another interesting
possibility to explore is the online adaptation of the sampling
period, in order to trade-off estimation performance and
energy consumption.

APPENDIX: PROOF OF LEMMA 1

We start by writing the flow and jump dynamics of the
error coordinates. From (1) and (7), these are given by

ėi = ẋ− ˙̂xi = Ax+ d0 −Ax̂i −Wi,0Li (yi − ŷi)
= (A−Wi,0LiCi) ei + d0 −Wi,0Lidi

e+
i = x+ − x̂+

i

= x− x̂i −
`i∑
%=1

∑
j∈Ni

Wi,%Ni,j,%W
>
j,%−1 (yi,j − x̂i) .

Then, we can use (12) to obtain

ε̇i,% = W>i,%A

%∑
r=0

Wi,rεi,r −W>i,%Wi,0LiCi

%∑
r=0

Wi,rεi,r,

+W>i,% (d0 −Wi,0Lidi)

ε+
i,% = εi,% −W>i,%

`i∑
r=1

∑
j∈Ni

Wi,rNi,j,r

W>j,r−1 (x̂j − x̂i + wi,j) .

Now, as highlighted in Remark 2, we can apply the results in
[10, Lemma 3] and [10, Lemma 10], thus the flow dynamics
in the previous equation becomes

ε̇i,0 =
(
W>i,0A− LiCi

)
Wi,0εi,0 +W>i,0d0 − Lidi,

ε̇i,% = W>i,%A

%∑
r=0

Wi,rεi,r +W>i,%d0,

while the jump dynamics gives

ε+
i,0 = εi,0,

ε+
i,% = εi,% −

∑
j∈Ni

Ni,j,%W
>
j,%−1 (x̂j − x̂i + wi,j)

= εi,% −
∑
j∈Ni

Ni,j,%W
>
j,%−1

( %∑
r=0

Wi,rεi,r

−Wj,%−1εj,%−1 + wi,j

)
= εi,% −

%∑
r=0

∑
j∈Ni

Ni,j,%W
>
j,%−1Wi,rεi,r

+
∑
j∈Ni

Ni,j,%εj,%−1 −
∑
j∈Ni

Ni,j,%W
>
j,%−1wi,j ,

which correspond to (15) when expressed in matrix form.
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