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Distributed hybrid observer with prescribed convergence rate for a
linear plant subject to disturbances using multi-hop decomposition

Riccardo Bertollo1, Pablo Millán2, Luis Orihuela2, Alexandre Seuret3, Luca Zaccarian4

Abstract— With a continuous-time formulation of the multi-
hop decomposition, we propose a distributed hybrid observer
for a sensor network where the plant and local observers
run in continuous time and the information exchange among
the sensing nodes is sampled-data. Process disturbances, mea-
surement noise and communication noise are considered, and
we prove that under some necessary detectability assumptions
the observer gains can be tuned to guarantee exponential ISS
with a prescribeda convergence rate. Simulations illustrate the
performance of the proposed observer.

Index Terms— Distributed estimation; Hybrid observer; Lin-
ear systems; Input-to-State Stability; Sensor network

I. INTRODUCTION

The last two decades have witnessed the development
of the so-called smart sensors, that is, different types of
hardware with the ability of interacting with the environment
by measuring physical variables, processing information,
and communicating. When a number of these devices are
deployed around a physical, in general complex, large-scale
system to perform a collaborative monitoring task, this setup
is referred as a Wireless Sensor Network (WSN).

One of the most important tasks for a WSN is state
estimation, which finds important applications in different
areas such as robotics [1], power systems [2], smart grids [3],
or traffic management [4], among others. In distributed state
estimation, no central processing unit is assumed to gather
and process the information from the WSN, but each smart
sensor (referred usually as agent) is supposed to estimate
the state of the system with some limited locally available
information. This information typically consist of some local
measurements of the plant and of data exchanged with a sub-
set of the other agents, called neighbors. This configuration
leads to important advantages such as flexibility, scalability
or reconfigurability, but also poses important challenges in
terms of estimation analysis, distributed design, convergence
and performance.

Perhaps the most popular approach for this setting is
the Distributed Kalman Filter (DKF) [5]. DKF algorithms
involve several steps that typically include: i) prediction of
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prior states using the system model, ii) correction based on
local measurements with a Kalman gain, and iii) information
fusion from neighboring agents based on consensus [6], [7],
[8], diffusion [9], [10], or gossip-based algorithms [11]. An
excellent review of these techniques can be found in [12].

Unlike DKF, the so-called distributed Luenberger ob-
servers do not rely on the knowledge of the statistical
description of the noises or disturbances [13] and resort
to deterministic approaches. To solve the problem in a
distributed way, different state-based partitions have been
proposed. In [14], a new estimation structure based on the
observability canonical form is given, which depends on
locally measured outputs and an agent indexing or ordering.
An alternative subspace decomposition method, called multi-
hop decomposition, is proposed in [15], where each agent
constructs its own observability staircase form. These works
provide a fully distributed design for the estimator in discrete
time [13], [14], [15] or continuous time [15]. However,
situations in which local measurements are available in
continuous time but the intercommunication between agents
happens in discrete time cannot be analyzed with these
approaches.

This kind of continuous time observers in the presence of
sampled-data measurements has been widely studied over the
last two decades for the centralized case. Several observer
design strategies have been proposed in the literature see e.g.
[16], [17], [18] and references therein.

This paper develops a new hybrid distributed observer
built upon the multi-hop decomposition [15] for linear plants
equipped with a sensor network. Each network node runs
locally a hybrid observer in continuous time for the locally
observable modes, exploiting the continuous availability of
locally measured outputs through continuous Luenberger-like
dynamics. To reconstruct the whole plant state, neighboring
estimates are injected at sampled-data communication in-
stants and are used through the design of suitable consensus
matrices. Under a necessary assumption, the proposed design
guarantees a prescribed convergence rate and ISS with re-
spect to process disturbances, continuous-time measurement
noises and discrete-time communication noises.

Notation: We use aij to denote the element in the i-th row
and j-th column of matrix A. We use X = col

i∈V
(Yi), where

V ⊂ N and Yi is a collection of matrices with the same
number of columns, to denote that X is a block column
vector obtained by vertically stacking Yi, for decreasing
values of i from top to bottom; we use X = diag

i∈V
(Yi), where

V ⊂ N and Yi is a collection of matrices, to denote that X is



a block diagonal matrix whose diagonal blocks are Yi, with
decreasing values of i from top-left to bottom-right. We use
(u, v) to denote the vector

[
u>, v>

]>
. |x| :=

√
x>x denotes

the Euclidean norm of vector x. ‖x‖∞ denotes the L-infinity
norm of the signal x. Given two sets V ⊂ N and E ⊂ V×V ,
G(V, E) is the (directed) graph with nodes V and edges E .
Finally, Ni denotes the set of nodes j such that (j, i) is an
edge of G(V, E), called in-neighborhood of i.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

A. System data

Consider a linear plant subject to an external disturbance
driven by the following equation

ẋ = Ax+ d0,

yi = Cix+ di, ∀i ∈ V := {1, . . . , p}
(1)

where x ∈ Rn is the plant state, d0 is some external
disturbance, matrices A, Ci, for all i ∈ V are assumed to
be constant and known. Each sensor measures an output yi
affected by measurement noise di.
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ẋ = Ax+ d0

x̂6

x̂1

x̂4

x̂3

x̂2

x̂5

y2 = C2x+ d2

y4,3

t = kT

Fig. 1. Sketch of the system architecture for a set of p = 6 sensors. The
continuous arrows represent the continuous-time measurement yi available
at a sensor’s location, while the dashed lines depicts the exchange of
information among the agents through a communication graph, that is
performed only at periodic and synchronous sampling instants tk = kT .

As shown in Figure 1, each output measurement yi ∈
Rmi , with mi ≤ n, is available only locally at the sensor’s
location within our sensors network. Each pair (Ci, A) is not
necessarily observable or detectable.

B. Cross-sensors information exchange

In our solution each sensor or agent is equipped with a
local observer whose state estimate is denoted as x̂i, i ∈ V .
Since each measurement yi is not necessarily sufficient for
the local observer to reconstruct the whole state, some cross-
sensors communication is needed. In this paper, we assume
that the sensors V are connected through a communication
graph G = (V, E), wherein continuous communication is
impossible and the exchange of information among the
network is only performed synchronously and periodically
with a period T > 0. We also assume that the information
exchange along each edge of the graph (i, j) ∈ E can

be affected by transmission noise that can represent, for
example, small delays or quantization errors. More formally,
this means that each sensor i ∈ V has access to two types
of measurements, namely

yi(t) ∀t ∈ R (2)
yi,j(kT ) := x̂j(kT ) + wi,j(k) ∀k ∈ N,∀j ∈ Ni (3)

where the second set of measurements is only available at
periodic instants of time (sampled-data) tk = kT .

In the previous equation wi,j is a (discrete-time) com-
munication disturbance affecting the information transmitted
from sensor j to sensor i. In the sequel, we will denote
with wi := col

j∈Ni
(wi,j) the collection of the communication

disturbances transmitted to sensor i, and we will collect
together all di and wi as follows

d := col
i∈{0,...,p}

(di) , w := col
i∈V

(wi) . (4)

C. Problem formulation

The goal of this paper is the design of a distributed pool
of observers, located at each sensor, which only uses the
available information yi(t), yi,j(kT ). Due to the presence of
disturbances acting on the plant and on the measurements, it
is likely that an exact estimation of the state is not achievable.
Nevertheless, an ISS bound from the disturbances to the
estimation errors can be derived. This corresponds to the
following problem.

Problem 1: Design a distributed hybrid or sampled-data
observer for system (1) such that, for a given exponential
rate α > 0, the following ISS property holds∣∣∣∣col
i∈V

(x̂i(t)− x(t))

∣∣∣∣ ≤ κe−αt
∣∣∣∣col
i∈V

(x̂i(0)− x(0))

∣∣∣∣
+ γC‖d‖∞ + γD‖w‖∞, ∀t ∈ R≥0.

(5)

where x̂i is the state estimate at the i-th node and κ, γC , γD
are some strictly positive, constant gains.

Note that considering (5) without noise we obtain a
standard UGES property for the estimation error.

III. CONTINUOUS-DISCRETE OBSERVER DESIGN

A. Multi-hop decomposition and necessary assumptions

The proposed distributed observer architecture relies on
the multi-hop decomposition presented in [15] for a discrete-
time setting and whose main definitions are easily extended
hereafter to the continuous-time case.

For the linear system (1), the %-hop output matrix, Ci,%,
of agent i ∈ V is recursively defined as Ci,0 := Ci and

Ci,% :=

[
Ci,%−1

col
j∈Ni

(Cj,%−1)

]
.

In other words, Ci,% represents the outputs measured by
agent i and by all the agents j such that in G there exists a
(directed) path from j to i of length at most %.

Consider now, for any i ∈ V and any “hop” % ∈
{0, . . . , `i} of our multi-hop decomposition, the pair
(Ci,%, A), where `i ∈ N is specified in Assumption 1 below.



Based on the classical continuous-time observability concept,
we can define the observable and unobservable sub-spaces
of Rn related to (Ci,%, A), denoting them by Oi,% and Oi,%,
respectively. Then, we can define the “innovation” matrix
for agent i at hop % ∈ {0, . . . , `i} as the matrix Wi,% whose
columns generate the subspace of Rn that is observable at
hop % and unobservable at hop % − 1. Namely, defining
Oi,−1 := Rn, Wi,% is recursively defined as an orthogonal
matrix such that

Im (Wi,%) = Oi,%−1 ∩ Oi,%, % ∈ {0, . . . , `i}
Im (Wi,`i+1) = O`i .

(6)

It is immediate to verify that horizontally stacking matrices
Wi,% in (6), % ∈ {0, . . . , `i + 1}, provides an orthogonal
matrix Wi, whose image is Rn.

Remark 1: For linear systems, the observable sub-spaces
related to a pair (Ci,%, A) are identical in the continuous-time
and discrete-time cases. Thus, the multi-hop decomposition
results presented in [15, Lemma 3-10] can and will be used
for the next developments.

Note that matrix Wi,`i+1 in (6) might be non-empty,
regardless of the value `i. For this reason, some assumption
on the unobservable modes is necessary for designing a
distributed observer that solves Problem 1. In particular,
given a desired exponential convergence rate α in (5), the
least conservative assumption is based on the definition of
collective α-detectability presented in [15].

Definition 1: [15] Given α > 0, system (1) is collectively
α-detectable with respect to G if, for each i ∈ V , there
exists a number of hops `i ∈ N such that pair (Ci,`i , A)
is α−detectable.

Assumption 1: Given α > 0, system (1) is collectively
α-detectable. Moreover, `i in (6) is selected according to
Definition 1.

Assumption 1 does not require any connectedness or
spanning tree assumption on graph G, which are typical
assumptions in distributed estimation. Such assumptions may
be conservative (see the example in [15, Figure 1]), while
it is immediate to see that Assumption 1 is necessary for
solving Problem 1.

B. Hybrid observer structure

Based on the multi-hop decomposition, each observer
located at node i ∈ V is defined by the sampled-data system

˙̂xi = Ax̂i +Wi,0Li(yi − Cx̂i), t /∈ {kT, k ∈ N}, (7a)

x̂+
i = x̂i +

`i∑
%=1

∑
j∈Ni

Wi,%Ni,j,%W
>
j,%−1 (yi,j − x̂i) ,

t ∈ {kT, k ∈ N},

(7b)

where Wi,%, i ∈ V, % ∈ {0, . . . , `i} are defined in (6).
The architecture of observer (7) comprises three main

parts:

1) a copy of the observed plant, which evolves in contin-
uous time.

2) a local output injection, which can also be performed
in continuous time, since each sensor has access to its
own measurement in continuous time.

3) a consensus correction term, based on the information
coming from the neighbors of agent i. Since the esti-
mates provided by the other sensors/observers are only
received periodically, this output injection corresponds
to an impulsive modification of the state x̂i of the i-th
observer in the subspace generated by matrices Wi,%,
% ∈ {1, . . . , `i}.

The novelty in this model is given by the fact that the
information coming from the neighbors is not available at all
times, which makes the sampled-data architecture relevant in
practical implementation.

The distributed observer tuning requires selecting matrices
Li and Ni,j,%, of appropriate dimensions, for all (i, j, %) in
V × Ni × {0, 1, . . . , `i}. The design of these gains will be
addressed in the sequel.

C. Stability guarantees

We now present a tuning method for the observer gains to
solve Problem 1.

The following property presents sufficient conditions for
the observer in (7) to solve Problem 1. We will show in
Section III-D that, under the necessary Assumption 1, there
always exist gains satisfying this property.

Property 1: For each agent i, the local observer gains Li
are chosen so that

Ai,0 :=
(
W>i,0A− LiCi

)
Wi,0 (8)

is Hurwitz, with spectral abscissa α ≤ −α. Moreover, for
every % ∈ {1, . . . , `i}, the consensus gains Ni,j,% are chosen
so that

Ai,% := e(W>i,%AWi,%)T
(
I −

( ∑
j∈Ni

Ni,j,%W
>
j,%−1

)
Wi,%

)
(9)

is Schur, with spectral radius β ∈ [0, e−αT ].
We now state the main result of this work, which will be

proven in Section V-C.
Theorem 1: Given α > 0, if the gains of observer (7)

satisfy Property 1, then this observer solves Problem 1.

D. Feasibility guarantees and design guidelines

Inspired by the proof of [15, Th.14], we show next that
Assumption 1 is not only necessary, but also sufficient for
solving Problem 1.

Theorem 2: Under Assumption 1, it is always possible to
select matrices Li and Ni,j,% satisfying Property 1.

Proof: The existence of matrices Li is trivial, as (8)
considers only the locally observable modes.

Concerning the matrices Ni,j,%, we can rewrite each matrix
Ai,% in (9) as

Ai,% = Ei,% −N i,%Ci,%,



where

Ei,% := eW
>
i,%AWi,%T ,

N i,% := Ei,% col
j∈Ni

(
N>i,j,%

)>
,

Ci,% := col
j∈Ni

(
W>j,%−1

)
Wi,%.

Using this structure, we know from linear systems theory
that, if the pair

(
Ci,%, Ei,%

)
is observable, then it is possible

to find N i,% that places the eigenvalues of Ai,% anywhere
in the unit circle. Note also that any selection of N i,%

corresponds to a unique selection of the gains Ni,j,% for all
j ∈ Ni, because Ei,% is invertible for any T > 0. We then
complete the proof by showing observability of

(
Ci,%, Ei,%

)
.

According to the PBH test for observability (see [19,
Theorem 15.9]), the pair

(
Ci,%, Ei,%

)
is observable if and

only if

rank

([
Ei,% − λI
Ci,%

])
= ni,%, ∀λ ∈ C, (10)

where the size ni,% of Ei,% corresponds to the number of
columns of Wi,%. In turn, (10) is true if Ci,% is full column
rank. From item (iii) of [15, Lemma 3] we know that the
image of Wi,% is a subset of the sum of the images of
Wj,%−1, j ∈ Ni, or equivalently

Wi,% = col
j∈Ni

(
W>j,%−1

)>
Q, (11)

where Q is some selection matrix. Since Wi,% is full
column rank by definition, we may use (11) to obtain
Q>Ci,% = Q> col

j∈Ni

(
W>j,%−1

)
Wi,% = W>i,%Wi,%, which

implies rank
(
Ci,%

)
≥ rank

(
Q>Ci,%

)
= ni,%, and since

Ci,% has exactly ni,% columns, the equality is immediately
obtained, thus concluding the proof.

Remark 2: While Theorem 1 ensures that, under Assump-
tion 1, any choice of the observer gains satisfying the bounds
in Proposition 1 solves Problem 1, a good practical rule is to
tune the observer gains so that α� −α while β is closer to
e−αT . This way, observers make local errors converge to zero
faster than consensus errors, which improves the transient
behaviour.

IV. ERROR DYNAMICS

Define the estimation error of each agent as

ei := x− x̂i, i ∈ V, (12)

and apply the multi-hop decomposition to the error dynam-
ics, which yields, for each i ∈ V and each % ∈ {0, . . . , `i+1}

εi,% := W>i,%ei −→ ei :=

`i+1∑
r=0

Wi,rεi,r. (13)

Define also the index sets

V% := {i ∈ V : `i + 1 ≥ %} , % ∈ {1, . . . , `}, (14)

where ` := max
i
{`i + 1}. Then, for each % ∈ {1, . . . `}, we

can denote with ε% the vector obtained by stacking all the

transformed error coordinates at hop %, and with ε the vector
obtained stacking all the ε%, namely

ε% := col
i∈V%

(εi,%) , ε := col
%∈{0,...,`}

(ε%) ∈ Rnε . (15)

Given these definitions, the error dynamics can be de-
scribed by means of a hybrid dynamical system. To this
end, we augment the error state ε with a timer element τ ,
which will be used to trigger periodic jumps, representing
the sampled-data exchange of information. In particular, we
prove in the sequel that the error dynamics results in[

ε̇
τ̇

]
=

[
Aεε+Rd

1

]
, (ε, τ) ∈ C,[

ε+

τ+

]
=

[
Jεε+ Sw

0

]
, (ε, τ) ∈ D,

(16)

where the state evolves in X := Rnε × [0, T ] and the flow
and jump sets are defined as

C := X, D := {(ε, τ) ∈ X : τ = T} . (17)

The matrices in (16) are defined as

Aε :=


A`

A`−1 ?

. . .
0 A1

A0

 , Jε :=


∆`

∆`−1 ?

. . .
0 ∆1

∆0

 ,
(18)

R := col
%∈{0,...,`}

(R%) , S := col
%∈{0,...,`}

(S%) , (19)

where ? represents some possibly non-zero terms. Using the
definition of V% in (14) and adopting the convention that the
unobservable modes of node i correspond to Ni,j,`i+1 := 0
for all j ∈ Ni, the entries of (18)-(19) are given by

A% :=


diag
i∈V

(
W>i,0AWi,0 − LiCiWi,0

)
, if % = 0,

diag
i∈V%

(
W>i,%AWi,%

)
, if % ∈ {1, . . . , `},

(20a)

R% :=


[
diag
i∈V

(−Li)
∣∣ col
i∈V

(
W>i,0

)]
, if % = 0,[

0
∣∣ col
i∈V%

(
W>i,%

)]
, if % ∈ {1, . . . , `},

(20b)

∆% :=


I, if % = 0,

diag
i∈V%

(
I −

( ∑
j∈Ni

Ni,j,%W
>
j,%−1

)
Wi,%

)
,

if % ∈ {1, . . . , `}.

(20c)

S% :=

0, if % = 0,

col
i∈V%

(Si,%) , if % ∈ {1, . . . , `}, (20d)

Si,% = −
[
0 col

j∈Ni

(
Wj,%−1N

>
i,j,%

)>
0
]
, (20e)

where the only non-zero element of the block vector Si,%
is in position i. We can finally state the following lemma,
whose proof is reported in the appendix.

Lemma 1: Consider the transformed error coordinates in
(13), the vector ε defined in (15) and the noise vectors d and
w in (4). Then, ε evolves according to (16)-(20).



V. PROOF OF THEOREM 1

A. Nonsmooth Lyapunov function

Consider, for some P = P> > 0 to be specified later, the
Lyapunov function candidate

V (ε, τ) :=

√
ε>P (τ)ε :=

√
ε>eA

>
ε (T−τ)P eAε(T−τ)ε,

(21)

with Aε defined in (18). Introduce the attractor

A := {(ε, τ) ∈ X : ε = 0} , (22)

and notice that V is smooth outside Aε, so we can define its
gradient ∇V (ε, τ) for all (ε, τ) ∈ C \ A.

B. Properties of V and some useful results

We will now present some properties of triangular and
exponential matrices, needed to prove the main stability
result. Their proofs are trivial applications of linear algebra
concepts, thus they are not reported.

Lemma 2: Consider A,B ∈ Rn×n. The following holds
(i) if A,B are upper triangular, then AB is also upper

triangular, and (ab)ii = aiibii;
(ii) if A is upper triangular and B = eAt, then B is also

upper triangular, and bii = eaiit

(iii) if λ is an eigenvalue of A and B = eAt, then eλt is an
eigenvalue of B.

Next, we prove some properties of V which will be used
to prove the main theorem in the next section.

Proposition 1: Consider the Lyapunov function in (21).
There exist positive constants c1, c2,M, cC , cD and η ≤
e−αT such that

(i) c1|ε| ≤ V (ε, τ) ≤ c2|ε|, for all (ε, τ) ∈ Xε,
(ii) |∇εV (ε, τ)| ≤M, for all (ε, τ) ∈ X \ A,

(iii) V̇ ≤ cC |d|, for all (ε, τ) ∈ C \ A,
(iv) V + ≤ −ηV + cD|w|, for all (ε, τ) ∈ D \ A.

Proof: We prove the statements one by one.
Proof of (i): Since P is positive definite, we have√
λm

∣∣∣eAε(T−τ)ε
∣∣∣ ≤ V (ε, τ) ≤

√
λM

∣∣∣eAε(T−τ)ε
∣∣∣ , (23)

where λm and λM are the minimum and maximum eigen-
values of P , respectively. Recalling that, for any invertible
matrix T ∈ Rm×m and any vector y ∈ Rm, we have

|Ty| = |T
−1||Ty|
|T−1|

≥ |T
−1Ty|
|T−1|

=
1

|T−1|
|y|,

from (23) we can obtain

c1|ε| :=
√
λmϑ1|ε| ≤ V (ε, τ) ≤

√
λMϑ2|ε| =: c2|ε|,

where ϑ1 := min
τ∈[0,T ]

1

|eAε(τ−T )| and ϑ2 := max
τ∈[0,T ]

∣∣eAε(T−τ)
∣∣ ,

are both strictly positive, because of continuity and since the
matrix exponential is always invertible.

Proof of (ii): From the explicit calculation of the deriva-
tives we get, for all (ε, τ) ∈ X \ A,

|∇εV (ε, τ)| =
2
∣∣Pε∣∣

2
√
ε>Pε

=

√
ε>P

2
ε

ε>Pε
≤ λMϑ2√

λmϑ1

=: M.

Proof of (iii): Computing the evolution of V along flows
of the solutions to (16)-(17) we get

V̇ = 〈∇εV (ε, τ), Aεε+Rd〉+ 〈∇τV (ε, τ), 1〉

=
2ε>PAεε

2
√
ε>Pε

+ 〈∇ε(ε, τ), Rd〉 − 2ε>PAεε

2
√
ε>Pε

≤M |R||d| =: cC |d|, ∀(ε, τ) ∈ C \ A.
Proof of (iv): For the evolution of V across jumps of the

solutions to (16)-(17), denoting g(ε, τ) := (Jεε+ Sw, 0),
we have

V + := V (g(ε, w)) = V (g(ε, 0)) + V (g(ε, w))− V (g(ε, 0)).

Whenever the line segment Γ := {γg(ε, w) + (1 −
γ)g(ε, 0), γ ∈ [0, 1]} does not pass through the origin, we
can use the mean value theorem to rewrite V + as

V + = V (g(ε, 0)) + 〈∇V (ξ), g(ε, w)− g(ε, 0)〉 , (24)

for some ξ ∈ Γ. If instead 0 ∈ Γ, then we can use a similar
argument based on perturbations and converging sequences.
Using (24), we obtain

V + = V (Jεε, 0) + 〈∇εV (ξ), Sw〉+ 〈∇τV (ξ), 0〉

=

√
ε>J>ε eA

>
ε TPeAεTJεε+ 〈∇εV (ξ), Sw〉 . (25)

Let us consider the first term in the last line of (25). Since
both Aε and Jε are block upper triangular, using items (i)
and (ii) of Lemma 2 we conclude that eAεTJε is block upper
triangular as well. Moreover, we know that the blocks on the
main diagonal of eAεTJε are given by eA%T∆%, for all % ∈
{0, . . . , `}. Since these are in turn block diagonal matrices,
we conclude that the eigenvalues of eAεTJε are given by the
union of the eigenvalues of the following matrices, issued
from (20),

e(W>i,0AWi,0−LiCiWi,0)T , ∀i ∈ V,

e(W>i,%AWi,%)T

(
I −

( ∑
j∈Ni

Ni,j,%W
>
j,%−1

)
Wi,%

)
,

∀i ∈ V, % ∈ {1, . . . , `i},
e(W>i,`i+1AWi,`i+1)T , ∀i ∈ V.

These correspond to the eigenvalues of
• eAi,0T for all i ∈ V ,
• Ai,% for all i ∈ V, % ∈ {1, . . . , `i},
• e(W>i,`i+1AWi,`i+1)T for all i ∈ V .

In view of Property 1, item (iii) of Lemma 2 and Assump-
tion 1, we can then conclude that eAεTJε has spectral radius
η ≤ max{eαT , β, e−αT } = e−αT < 1. From basic linear
systems theory (see for example [19, Theorem 8.4]) we know
that this fact is equivalent to the existence of a solution P
to the discrete-time Lyapunov inequality

J>ε eA
>
ε TP eAεTJε < η2P.

Using this fact in (25), we obtain

V + ≤ η
√
ε>Pε+M |S||w| = ηV +M |S||w|

=: η V + cD|w|, for all (ε, τ) ∈ Dε \ Aε.



C. Proof of Theorem 1

We will use a proof technique similar to the one in [20,
Theorem 1], which needs to be carefully revisited in some
of its parts, as the conditions are slightly different. For
each solution ξε to (16)-(17), we can use items (iii), (iv) of
Proposition 1 to integrate the value of v(t, k) = V (ξε(t, k))
as follows

v(t, k) ≤ v(tk, k) + cC(t− tk)‖d‖∞
≤ (ηv (tk, k − 1) + cD|w|) + cCT‖d‖∞
≤ η (v (tk−1, k − 1) + cCT‖d‖∞)

+ cD‖w‖∞ + cCT‖d‖∞
≤ η (ηv (tk−1, k − 2) + cD‖w‖∞)

+ cD‖w‖∞ + (1 + η) cCT‖d‖∞,

where {tk} is the sequence of jump times of ξε, and we
used the fact that 0 ≤ (t− tk) ≤ T for all (t, k) ∈ dom ξε.
Iterating this process, we obtain

V (ξε(t, k)) ≤ ηkV (ε(0, 0))

+

k−1∑
h=0

ηhcD‖w‖∞ +

k∑
h=0

ηhTcC‖d‖∞.
(26)

Recalling that η ≤ e−αT , we can write

ηk = eαT e−α(k+1)T ≤ eαT e−αt. (27)

Applying (27) and item (i) of Proposition 1 to (26), we get

|ε(t, k)| ≤ c2
c1

eαT e−αt|ε(0, 0)|+ TcC‖d‖∞
c1 (1− η)

+
cD‖w‖∞
c1 (1− η)

.

Lastly, we note that

|ε|2 = ε>ε =
∑
i∈V

`i+1∑
%=0

e>i Wi,%W
>
i,%ei

=
∑
i∈V

e>i Wi

`i+1∑
%=0

(
Qi,%Q

>
i,%

)
W>i ei

where each Qi,% selects unique columns of Wi, because of
the orthogonality of the multi-hop decomposition, therefore

it is immediate to verify that
`i+1∑
%=0

Qi,%Q
>
i,% = I . This implies

|ε|2 =
∑
i∈V

e>i WiW
>
i ei =

∣∣∣∣col
i∈V

(ei)

∣∣∣∣2 .
Therefore, we showed that (5) holds with

κ :=
c2
c1

eαT

γC :=
TcC

c1 (1− η)
=

TM |R|√
λmϑ1(1− η)

=
λMϑ2

λmϑ2
1

T |R|
1− η

,

γD :=
cD

c1 (1− η)
=
λMϑ2

λmϑ2
1

|S|
1− η

,

thus completing the proof.

VI. NUMERICAL SIMULATIONS

In order to illustrate the proposed observer, we simulate
the continuous-time system (1), selecting

A =

[
0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0

]
, Ci = e>i , i ∈ {1, . . . , 4} ,

where ei represents the i-th vector of the Euclidean basis, i.e.
a vector with all zeros and a one in position i. The agents
are interconnected with a directed ring graph, i.e. agent 1
sends information to agent 2, 2 to 3, and so on.

Fig. 2. Evolution of the estimates of agent 3, compared with the plant
states (top); evolution of the norm of the estimation error for each of the
agents (bottom).

Figure 2 shows the simulation results for the proposed
observer. For this simulation, we selected T = 0.1s and
α = 1. The observer gains were chosen so that Property 1
was satisfied with α = −5α and β = e−αT . The noises d
and w were simulated as random signals, with ‖d‖∞ = 0.04
and ‖w‖∞ = 0.02.

In the first plot, we can see the comparison among the state
estimates of agent 3 and the plant states. We can see that the
estimates of the locally observable modes, namely x̂3 and x̂4,
converge continuously to the corresponding plant states. On
the other hand, convergence of the locally unavailable states
x̂1 and x̂2 is achieved through the jumps emerging from the
periodic information exchange with the neighbouring agents.
The second plot shows the evolution of the error norm for
each agent: all the error norms converge to a neighborhood
of the origin, thus highlighting the ISS property proven for
the proposed observer.

VII. CONCLUSIONS

In this work we exploited a continuous-time formulation
of the multi-hop decomposition to construct a novel dis-



tributed continuous-discrete observer. The hybrid nature of
the proposed observer allowed us to analyze a scenario where
the plant and the local observers work in continuous time,
while the information exchange happens only periodically.
Disturbances acting on the plant, on the measurements and
on the communication, were also considered. Under some
necessary collective detectability assumptions, we showed
that it is possible to tune the observer gains to ensure
exponential ISS from the noises to the estimation error, with
a prescribed exponential convergence rate. Simulations were
included to show the effectiveness of the proposed estimation
algorithm.

APPENDIX: PROOF OF LEMMA 1
We start by writing the flow and jump dynamics of the

error coordinates. From (1) and (7), these are given by

ėi = ẋ− ˙̂xi = Ax+ d0 −Ax̂i −Wi,0Li (yi − ŷi)
= (A−Wi,0LiCi) ei + d0 −Wi,0Lidi

e+
i = x+ − x̂+

i

= x− x̂i −
`i∑
%=1

∑
j∈Ni

Wi,%Ni,j,%W
>
j,%−1 (yi,j − x̂i) .

Then, we can use (13) to obtain

ε̇i,% = W>i,%A

%∑
r=0

Wi,rεi,r −W>i,%Wi,0LiCi

%∑
r=0

Wi,rεi,r,

+W>i,% (d0 −Wi,0Lidi)

ε+
i,% = εi,% −W>i,%

`i∑
r=1

∑
j∈Ni

Wi,rNi,j,r

W>j,r−1 (x̂j − x̂i + wi,j) .

Now, as highlighted in Remark 1, we can apply the results in
[15, Lemma 3] and [15, Lemma 10], thus the flow dynamics
in the previous equation becomes

ε̇i,0 =
(
W>i,0A− LiCi

)
Wi,0εi,0 +W>i,0d0 − Lidi,

ε̇i,% = W>i,%A

%∑
r=0

Wi,rεi,r +W>i,%d0,

while the jump dynamics gives

ε+
i,0 = εi,0,

ε+
i,% = εi,% −

∑
j∈Ni

Ni,j,%W
>
j,%−1 (x̂j − x̂i + wi,j)

= εi,% −
∑
j∈Ni

Ni,j,%W
>
j,%−1

( %∑
r=0

Wi,rεi,r

−Wj,%−1εj,%−1 + wi,j

)
= εi,% −

%∑
r=0

∑
j∈Ni

Ni,j,%W
>
j,%−1Wi,rεi,r

+
∑
j∈Ni

Ni,j,%εj,%−1 −
∑
j∈Ni

Ni,j,%W
>
j,%−1wi,j ,

which correspond to (16) when expressed in matrix form.
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