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On sparsity and clustering properties by OWL penalized
estimator

Xavier Dupuis∗ Patrick J.C. Tardivel∗

Abstract

The Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR) and the related
Ordered Weighted ℓ1 (OWL) penalized estimator have the particularity to exhibit some null com-
ponents (sparsity) and some components equal in absolute value (clustering). Recently introduced,
the notion of OWL pattern allows to derive theoretical properties on sparsity and clustering by
OSCAR and OWL penalized estimator. Specifically, the OWL pattern of a given vector provides:
the sign of its components (positive, negative or null), the clusters (indices of components equal
in absolute value) and the hierarchy between the clusters. In this article we give some conditions
under which OWL estimator recovers the OWL pattern of an unknown parameter of regression
coefficients. Finally, numerical experiments illustrate that when some columns of the design are al-
most equal, OWL estimator outperforms LASSO estimator for recovering the unknown parameter
of regression coefficients.

Keywords : OSCAR, OWL estimator, ordered weighted ℓ1 norm, OWL pattern recovery

1 Introduction
Let us consider the linear regression model

Y = Xβ + ε,

where X ∈ Rn×p, β ∈ Rp and ε is a random noise having iid N (0, σ2) components. Octagonal
Shrinkage and Clustering Algorithm for Regression (OSCAR) (Bondell and Reich, 2008) is a penalized
estimator solution of the following optimization problem:

Argmin
b∈Rp

1

2
∥Y −Xb∥22 + γ1∥b∥1 + γ2

∑
1≤i<j≤p

max{|bi|, |bj |}, where γ1 > 0, γ2 ≥ 0.

In the acronym OSCAR, the letter C, as "Clustering", refers to the fact that some components of this
estimator can be equal in absolute value. This property can be intuitively illustrated by drawing ellipses
representing level curves of the function b ∈ Rp 7→ ∥Y −Xb∥22 together with balls of the penalty term
b ∈ Rp 7→ γ1∥b∥1 + γ2

∑
1≤i<j≤p max{|bi|, |bj |} (see Figure 2 in Bondell and Reich (2008)). Clustering

property is a specificity of OSCAR (and the related OWL estimator) and this property no longer holds
when γ2 = 0. Indeed in this case, the penalty term is γ1∥.∥1 thus OSCAR coincides with the Least
Absolute Shrinkage and Selection Operator (LASSO) (Chen and Donoho, 1994; Tibshirani, 1996).
LASSO, as well as OSCAR, exhibits some null components (Tibshirani, 2013; Osborne et al., 2000;
Schneider and Tardivel, 2020) but LASSO does not exhibit clusters. Note that contrarily to fused
LASSO (Tibshirani et al., 2005), a cluster for OSCAR does not have, in broad generality, adjacent
components.
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Since the seminal article of Bondell and Reich (2008), OSCAR estimator have been extended by
the penalized estimator: Pairwise Absolute Clustering and Sparsity (PACS) Sharma et al. (2013).
Other extensions of OSCAR are derived in Zeng and Figueiredo (2014); Negrinho and Martins (2014);
Bogdan et al. (2015). In these articles OSCAR is generalized as a penalized estimator, based on the
Ordered Weighted ℓ1 norm (OWL norm), solution of the following optimization problem:

Argmin
b∈Rp

1

2
∥Y −Xb∥22 + γ

p∑
i=1

wi|b|↓i where γ > 0, w1 > 0 and w1 ≥ · · · ≥ wp ≥ 0. (1)

For OSCAR, w1, . . . , wp is an arithmetic sequence but sequences which are not arithmetic are also
relevant. For instance, for the Sorted L One Penalized Estimation (SLOPE) (Bogdan et al., 2015) an
appropriate sequence is wi = σz(1 − iα

2p ), i = 1, . . . , p where z(·) represents a quantile of the N (0, 1)
distribution. This last sequence, related to the Benjamini-Hochberg multiple testing procedure, allows
to derive a procedure based on SLOPE controlling the false discovery rate when the design X is
orthogonal (Bogdan et al., 2015). From now on, we call OWL estimator an estimator solution of the
problem (1)

1.1 OWL pattern
The notion of OWL pattern first introduced by Schneider and Tardivel (2020) allows to describe the
structure induced of an OWL estimator by extracting from a given vector:

1. the sign of the components (positive, negative or null),

2. the clusters (indices of components equal in absolute value),

3. the hierarchy between the clusters.

More precisely an OWL pattern is a vector in Zp coding points 1), 2) and 3) as defined hereafter.

Definition 1 (OWL pattern (Schneider and Tardivel, 2020)). We say that a vector m = (m1, . . . ,mp) ∈
Zp is an OWL pattern, if either m = 0, or if {j ∈ {1, . . . , p} : |mj | = l} ≠ ∅ for all l ∈ {1, . . . , ∥m∥∞}.
We denote the set of all OWL patterns of dimension p by Powl

p . Moreover, for any x ∈ Rp, we denote
by powl(x) the unique OWL pattern for which the following statements hold:

1) sign(powl(x)) = sign(x) (sign preservation),

2) |xi| = |xj | =⇒ |powl(x)i| = |powl(x)j | (clusters preservation),

3) |xi| > |xj | =⇒ |powl(x)i| > |powl(x)j | (hierarchy preservation).

Example 1. For x = (4.7,−4.7, 0, 1.8, 4.7,−1.8) we have powl(x) = (2,−2, 0, 1, 2,−1). For z =
(1.2,−2.3, 3.5, 1.2, 2.3,−3.5) we have powl(z) = (1,−2, 3, 1, 2,−3).

Hereafter we remind an important proposition related to the notion of OWL pattern and to sub-
differential of the OWL norm.

Proposition 1 (Theorem 4 in Schneider and Tardivel (2020)). Let w = (w1, . . . , wp) where w1 >
· · · > wp > 0 and x, z ∈ Rp. We have powl(x) = powl(z) if and only if ∂∥.∥w

(x) = ∂∥.∥w
(z).

From now on, we always assume that w1 > · · · > wp > 0 so that the OWL pattern characterizes the
sub-differential of the OWL norm. Given X ∈ Rn×p, Y ∈ Rn and β ∈ Rp, we aim at recovering powl(β)

with a solution β̂ of (1). Pattern recovery by OWL estimator refers to the event powl(β̂) = powl(β) and
accessibility, defined hereafter, is a key concept related to this event (a similar notion of accessibility
by LASSO is given in Sepehri and Harris (2017)).
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Definition 2 (Accessible OWL pattern). Let X ∈ Rn×p, w = (w1, . . . , wp). We say that m ∈ Powl
p is

an accessible OWL pattern if one may pick Y ∈ Rn, γ > 0 and β̂ solution of (1) for which powl(β̂) = m.

Accessible OWL patterns have been characterized analytically and geometrically in Theorem 5 in
Schneider and Tardivel (2020). Specifically, one may pick Y ∈ Rn, γ > 0 and β̂ solution of (1) for
which powl(β̂) = m if and only if one of the following statements holds:

Analytical characterization: for all z ∈ Rp such that Xz = Xm we have ∥z∥w ≥ ∥m∥w.

Geometrical characterization: the vector space row(X) := {X ′z : z ∈ Rn} intersects the subdif-
ferential ∂∥.∥w

(m).

It follows from the definition that when powl(β) is not accessible then OWL estimator cannot recover
the pattern of β and thus the event powl(β̂) = powl(β) has a null probability. However, accessibility of
powl(β) does not mean that the probability of pattern recovery is large. In this article we introduce
a stronger condition on β than accessibility called noiseless pattern recovery. Actually, Theorem 3
proves that i) this condition is necessary for a probability of pattern recovery larger than 1/2 and ii)
under this condition, the probability that OWL estimator recovers powl(β) can be arbitrarily close to
1 as soon as gaps between unique absolute values of β are large.

In the following example, when the design matrix X is orthogonal, one illustrates that OWL
estimator may have some null components and some clusters.

Example 2. When X ′X = I, one may also explicitly compute the OWL estimator β̂. Indeed β̂ is
the image of β̂ols = X ′Y by the the proximal operator of the OWL norm and this operator has a
closed form formula (Bogdan et al., 2015; Tardivel et al., 2020; Dupuis and Tardivel, 2022). This
explicit expression gives an analytical way to learn that OWL estimator is sparse and has clusters.
The orthogonal projection of the ordinary least squares estimator β̂ols onto the signed permutahedron
P±(w) := conv{σ1wπ(1), . . . , σpwπ(p) : σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp} is equal to β̂ols − β̂ (see Lemma
2 in Minami (2020) or Proposition 3 in Schneider and Tardivel (2020)). This result illustrated on
Figure 1 provides a geometrical way to learn that OWL estimator is sparse and has clusters (a similar
figure is reported in Tardivel et al. (2020); Skalski et al. (2022) or, for LASSO, in Ewald and Schneider
(2020)).

The particular setup where X is orthogonal is a case study to illustrate pattern recovery properties
by OWL estimator (Skalski et al., 2022). However, our article is not restricted to the orthogonal case
and we do not consider any restriction on the design matrix X. Theorem 1 gives a characterization of
pattern recovery by OWL estimator. This characterization provides some properties on the probability
of pattern recovery by OWL estimator. The structure of the article is given hereafter:

Section 2: The main concepts to study pattern recovery by OWL estimator are introduced.

Section 3: Theorem 1 provides a characterization of pattern recovery by OWL estimator.

Section 4: Theorem 2 provides a characterization of pattern recovery by OWL estimator in the
noiseless case (when ε = 0).

Section 5: Theorem 3 provides a sharp upper bound for the probability of pattern recovery by OWL
estimator in the noisy case (when ε ̸= 0).

Section 6: A testing procedure for the null hypothesis "all regression coefficients are equal in absolute
value" is derived from OWL estimator. A numerical comparison between LASSO and OWL
estimator is also performed.

All the proofs are postponed to the Appendix.
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Figure 1: This figure represents the OWL estimator β̂ (illustrated by black arrows) depending on the
localization of β̂ols in the particular case where X ′X = I, w = (3, 1) and γ = 1. When β̂ols is the pink
point located on the area labelled by (1, 0) then the first component of β̂ is positive and the second is
null. When β̂ols is the yellow point located on the area labelled by (−1, 1) then both components of
β̂ are equal in absolute value; the first component is negative and the second is positive. When β̂ols

is the red point located on the area labelled by (1, 2) then both components of β̂ are positive and the
first component is smaller than the second. The red polytope is the signed permutahedron P±(w) and
labels Powl

2 = {(0, 0),±(1, 0),±(0, 1),±(1, 1),±(1,−1),±(2, 1),±(2,−1),±(1, 2),±(1,−2)} associated
to areas of this figure correspond to OWL patterns in R2.

2 Notions related to clustering properties by OWL estimator

2.1 Pattern matrix Um.

Definition 3 (Pattern matrix). Let m ̸= 0 be an OWL pattern in Rp with k = ∥m∥∞ non-null clusters.
The pattern matrix Um ∈ Rp×k is defined as follows:

∀i ∈ {1, . . . , p},∀j ∈ {1, . . . , k}, (Um)ij = sign(mi)1(|mi|=k+1−j).

Example 3. Let p = 6, m = (3,−1, 2, 2,−3, 0) and |m|↓ = (3, 3, 2, 2, 1, 0). Then

Um =


1 0 0
0 0 −1
0 1 0
0 1 0
−1 0 0
0 0 0

 , U|m|↓ =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 0

 .

Denote by Rk+ the cone {x ∈ Rk | x1 > . . . > xk > 0}. It is clear by Definition 3 that we have

powl(x) = m ⇐⇒ x ∈ UmRk+. (2)
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2.2 Clustered matrix X̃m and clustered parameter w̃m

Definition 4. Let X ∈ Rn×p, w = (w1, . . . , wp) and m ∈ Powl
p . The clustered matrix is defined by

X̃m = XUm. The clustered parameter is defined by w̃m = (U|m|↓)
′w.

Thus an OWL pattern m leads naturally to reduce the dimension of the design matrix X as follows:

• A null component mi = 0 leads to discard the column Xi from the design matrix X.

• A cluster K ⊂ {1, . . . , p} of m (indices of elements of m equal in absolute value) leads to substitute
the family of columns (Xi)i∈K by a single column defined by the signed sum:

∑
i∈K

sign(mi)Xi.

Example 4. Let X,m and w as follows:

X =

 1 −1 2 3
−2 1 0 2
1 0 −2 3

 ,m = (1, 2,−2, 0) and w = (w1, w2, w3, w4).

Then the clustered matrix and the clustered parameter are given hereafter:

X̃m =

−3 1
1 −2
2 1

 and w̃m =

(
w1 + w2

w3

)
.

2.3 Dual OWL norm, signed permutahedron P±(w) and sub-differential
The OWL norm is defined as follows:

∀x ∈ Rp, ∥x∥w =

p∑
i=1

wi|x|↓i,

where |x|↓1 ≥ · · · ≥ |x|↓p are the sorted components of x with respect to the absolute value. The dual
OWL norm has an explicit expression given in Zeng and Figueiredo (2014); Negrinho and Martins
(2014); Bogdan et al. (2015) and reminded hereafter:

∀x ∈ Rp, ∥x∥∗w = max

{
|x|↓1
w1

,

∑2
i=1 |x|↓i∑2
i=1 wi

, . . . ,

∑p
i=1 |x|↓i∑p
i=1 wi

}
.

The unit ball of the dual OWL norm, also called signed permutahedron Schneider and Tardivel (2020);
Negrinho and Martins (2014); Godland and Kabluchko (2020), can be written as a V-polytope as
follows:

P±(w) := conv{(σ1wπ(1), . . . , σpwπ(p))
′ : σ1, . . . , σp ∈ {−1, 1}, π ∈ Sp}.

Geometrical descriptions of the sub-differential of the OWL norm at x ∈ Rp have been given in the
particular case where x1 ≥ · · · ≥ xp ≥ 0. In this setup, the sub-differential is a cartesian product of
permutahedra when xp > 0 or a cartesian product of permutahedra with a signed permutahedron when
xp = 0 (Tardivel et al., 2020; Dupuis and Tardivel, 2022; Schneider and Tardivel, 2020). Proposition
2 provides an analytic descriptions of the sub-differential of the OWL norm.

Proposition 2. Let x ∈ Rp and m = powl(x) then, we have the following equalities:

∂∥.∥w
(x) = {v ∈ Rp : ∥z∥w ≥ ∥x∥w + v′(z − x) ∀z ∈ Rp},

= {v ∈ Rp : ∥v∥∗w ≤ 1 and v′x = ∥x∥w},
= {v ∈ Rp : ∥v∥∗w ≤ 1 and U ′

mv = w̃m} .

When x ̸= 0, the smallest affine space containing ∂∥.∥w
(x) is given by

aff(∂∥.∥w
(x)) = {v ∈ Rp : U ′

mv = w̃m} . (3)
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2.4 Characterization of OWL estimator
OWL estimator is a minimizer of the following optimization problem:

SX,γ∥.∥w
(Y ) := Argmin

b∈Rp

1

2
∥Y −Xb∥22 + γ

p∑
i=1

wi|b|↓i where γ > 0. (4)

In this article we do not assume that SX,γ∥.∥w
(Y ) contains a unique element and potentially

SX,γ∥.∥w
(Y ) can be a non-trivial compact and convex set. Note however that cases in which SX,γ∥.∥w

(Y )
is not a singleton are pathological. Indeed, the set of matrices X ∈ Rn×p for which there exists a Y ∈ Rn

where SX,γ∥.∥w
(Y ) is not a singleton is negligible for the Lebesgue measure (Schneider and Tardivel,

2020). Clearly, the OWL estimator satisfies the following characterization:

β̂ ∈ SX,γ∥.∥w
(Y ) ⇔ 1

γ
X ′(Y −Xβ̂) ∈ ∂∥.∥w

(β̂).

3 Characterization of pattern recovery by OWL estimator

Given X ∈ Rn×p, y ∈ Rn, w = (w1, . . . , wp), γ > 0, m ∈ Powl
p , where m ̸= 0 and β̂ ∈ SX,γ∥.∥w

(y)

we want to characterize the equality powl(β̂) = m. Such a characterization will be useful to provide
a necessary and sufficient condition for pattern recovery by OWL estimator in the noiseless case in
Section 4, as well as an upper bound on the probability of pattern recovery by OWL estimator in the
noisy case in Section 5. Let us begin with the following statements:

Cone condition: The fitted value Xβ̂ lies in cone(X̃m) := {X̃mα : α ∈ Rk+}.

Indeed, X̃m = XUm and β̂ = Umz for some z ∈ Rk+.

Sub-differential condition: 1
γX

′(y −Xβ̂) ∈ ∂∥.∥w
(β̂) = ∂∥.∥w

(m).

It follows from the characterization of an OWL estimator and Proposition 1.

Based on the facts above, we derive in Theorem 1 a characterization of pattern recovery by OWL
estimator. From now on A+ denotes the Moore-Penrose pseudo-inverse of a matrix A.

Theorem 1. Let y ∈ Rp, γ > 0, w = (w1, . . . , wp), m ̸= 0 ∈ Powl
p be an OWL pattern having

k := ∥m∥∞ clusters, k ≥ 1. Let Um and X̃m := XUm be, respectively, the corresponding pattern
matrix and clustered matrix. Let cone(X̃m) = {X̃mα : α ∈ Rk+} and P̃m := (X̃ ′

m)+X̃ ′
m = X̃mX̃+

m be
the projector onto col(X̃m). Then, the following conditions:{

ξ := P̃my − γ(X̃ ′
m)+w̃m ∈ cone(X̃m) (cone condition)

ζ := X ′(X̃ ′
m)+w̃m + 1

γX
′(I − P̃m)y ∈ ∂∥.∥w

(m) (sub-differential condition)

⇔

{
ξ ∈ cone(X̃m) (cone condition)
∥ζ∥∗w ≤ 1 and X̃ ′

m(X̃ ′
m)+w̃m = w̃m (sub-differential condition)

are equivalent to the existence of β̂ ∈ SX,∥.∥w
(y) for which powl(β̂) = m.

Remark 1. Clearly when the characterization given in Theorem 1 occurs then, by construction, m is
an accessible OWL pattern. The sub-differential condition, X ′[(X̃ ′

m)+w̃m + 1
γ (I − P̃m)y] ∈ ∂∥.∥w

(m)

implying that row(X) intersects ∂∥.∥w
(m), corroborates this fact.
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4 Pattern recovery by OWL estimator in the noiseless case
The notion of pattern recovery in the noiseless case were recently defined in Tardivel et al. (2021) for
a broad class of estimators including LASSO, generalized LASSO, clustered LASSO, OSCAR, CAPS,
OWL estimator... Hereafter, we remind the notion of pattern recovery in the noiseless case by OWL.

Definition 5 (Noiseless pattern recovery). Let X ∈ Rn×p, w = (w1, . . . , wp) and β ∈ Rp. We say that
OWL estimator recovers the pattern of β in the noiseless case (ε = 0) when

∃γ > 0 ∃β̂ ∈ SX,γ∥.∥w
(Xβ) such that powl(β̂) = powl(β). (5)

Example 5. We give two illustrations of noiseless pattern recovery by OWL estimator in the particular
case where w = (4, 2), β = (5, 0), β̄ = (5, 3) and X ∈ Rn×2 such that

X ′X :=

(
1 0.6
0.6 1

)
.

Figure 2 left (resp. right) illustrates that pattern recovery by OWL estimator does not occur (resp.
occurs) for β (resp. for β̄). Note that, in this setup, clearly the OWL estimator is unique (since
ker(X) = {0}); we denote by β̂(γ) the unique element of SX,γ∥.∥w

(Xβ) and the OWL solution path
refers to the function γ > 0 7→ β̂(γ).

Figure 2: On the left the signal is β = (5, 0). Based on this figure one may observe that the pattern of β
cannot be recovered by OWL estimator in the noiseless case (despite the fact that β̂(γ) tends to β when
γ tends to 0). Indeed, for γ ∈ (0, γ1) (where γ1 ≈ 1) we have powl(β̂(γ)) = (2, 1); when γ ∈ [γ1, γ2)

(where γ2 ≈ 1.33) we have powl(β̂(γ)) = (1, 1) and when γ > γ2 then β̂(γ) = 0. Consequently, for
every γ > 0 we have powl(β̂(γ)) ̸= powl(β) = (1, 0). On the right the signal is β̄ = (5, 3). Based on this
figure one may observe that powl(β̄) is recovered by OWL estimator in the noiseless case. Indeed, for
γ ∈ (0, γ1) (where γ1 ≈ 0.4) we have powl(β̂(γ)) = (2, 1) = powl(β̄).

Theorem 2. Let X ∈ Rn×p, w = (w1, . . . , wp) and β ∈ Rp where powl(β) = m ̸= 0. A necessary
and sufficient condition for noiseless pattern recovery by OWL estimator is ∥X ′(X̃ ′

m)+w̃m∥∗w ≤ 1 and
X̃ ′

m(X̃ ′
m)+w̃m = w̃m (or equivalently X ′(X̃ ′

m)+w̃m ∈ ∂∥.∥w
(m)). Moreover, when this is the case, there

exists γ0 > 0 such that for all γ ∈ (0, γ0) there exists β̂ ∈ SX,γ∥.∥w
(Xβ) for which powl(β̂) = m.

Note that when SX,γ∥.∥w
(Xβ) has a unique element, denoted by β̂(γ), then limγ→0 powl(β̂(γ)) =

powl(β) is equivalent to the pattern recovery of β in noiseless case by OWL estimator.

Remark 2. By definition, when the pattern recovery in the noiseless case occurs then the accessibility
condition occurs for m. The condition X ′(X̃ ′

m)+w̃m ∈ ∂∥.∥w
(m), implying that row(X) intersects

∂∥.∥w
(m), corroborates this fact. This fact can be also deduced from Theorem 5 in Vaiter et al. (2015).
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Remark 3. Theorem 2 for OWL estimator is the analog of Theorem 7.1 in Bühlmann and Van
De Geer (2011) dealing with support recovery by LASSO in the noiseless case (see also Theorem 2 in
Fuchs (2004)). Actually, the inequality ∥X ′(X̃ ′

m)+w̃m∥∗w ≤ 1 and X̃ ′
m(X̃ ′

m)+w̃m = w̃m is similar to the
irrepresentability condition for LASSO (Fuchs, 2004; Zhao and Yu, 2006; Zou, 2006). This similarity
is clear when ker(X̃m) = {0} since in this setup, X̃ ′

m(X̃ ′
m)+ is the identity matrix, X ′(X̃ ′

m)+ =

X ′X̃m(X̃ ′
mX̃m)−1 and consequently the noiseless pattern recovery by OWL estimator is equivalent to

∥X ′X̃m(X̃ ′
mX̃m)−1w̃m∥∗w ≤ 1.

Example 6. Some examples are reported hereafter:

Example from Figure 2 (left): We observe on the left picture in Figure 2 that the noiseless pat-
tern recovery does not occur when β = (5, 0). To corroborate this fact, let us check that
∥X ′(X̃ ′

m)+w̃m∥∗w > 1 where m = powl(β) = (1, 0). Let X = (X1|X2) then X̃m = X1 (thus
X̃ ′

mX̃m = 1) and w̃m = w1 = 4 therefore

∥X ′(X̃ ′
m)+w̃m∥∗w = ∥X ′X̃m(X̃ ′

mX̃m)−1w̃m∥∗w = ∥4X ′XU(1,0)∥∗w = ∥(4, 2.4)∥∗w = 6.4/6 > 1.

Example from Figure 2 (right): We observe on the right picture in Figure 2 that the noiseless
pattern recovery does not occur when β̄ = (5, 3). To corroborate this fact, let us check that
∥X ′(X̃ ′

m)+w̃m∥∗w ≤ 1 and X̃ ′
m(X̃ ′

m)+w̃m = w̃m. Since powl(β̄) = (2, 1) = m, we have X̃m = X

and w̃m = w. In particular ker(X̃m) = {0} and X̃ ′
m(X̃ ′

m)+ = I. Finally

∥X ′(X̃ ′
m)+w̃m∥∗w = ∥X ′X(X ′X)−1w∥∗w = ∥w∥∗w = 1 ≤ 1.

Orthogonal case: Let X ∈ Rn×p such that X ′X = I, w = (w1, . . . , wp), |β1| = · · · = |β| > 0 and
thus powl(β) = (σ1, . . . , σp) = m for some σ1, . . . , σp ∈ {−1, 1}p. Then w̃m =

∑p
i=1 wi and

consequently

∥X ′(X̃ ′
m)+w̃m∥∗w = ∥X ′X̃m(X̃ ′

mX̃m)−1w̃m∥w

= ∥X ′XUm (U ′
mX ′XUm)−1︸ ︷︷ ︸

=1/p

w̃m∥∗w =

∥∥∥∥(σ1

∑p
i=1 wi

p
, . . . , σp

∑p
i=1 wi

p

)∥∥∥∥∗
w

.

Since (σ1

∑p
i=1 wi/p, . . . , σp

∑p
i=1 wi/p) is the isobarycenter of the sub-differential ∂∥.∥w

(β) =
conv{(σ1wπ(1), . . . , σpwπ(p)) : π ∈ Sp} (which is a face of the signed permutahedron), we deduce
that ∥X ′(X̃ ′

m)+w̃m∥∗w = 1. More generally, in the orthogonal case, for an arbitrary β ∈ Rp

X ′(X̃ ′
m)+w̃m is the isobarycenter of the set ∂∥.∥w

(β) where m = powl(β). Consequently, the
noiseless pattern recovery by OWL estimator occurs for β.

Strongly correlated covariates: Let X = (X1| . . . |Xp) ∈ Rn×p and w = (w1, . . . , wp) such that:

• columns are normalized: ∥X1∥2 = · · · = ∥Xp∥2 = 1;
• r columns of X are equal (for some r ≤ p) and without loss of generality we set X1 = · · · =
Xr.

• |X ′
jX1| < rwj/

∑r
i=1 wi for all j > r.

A similar setup in which “covariates are strongly correlated” is given in Figueiredo and Nowak
(2016) (see Figure 1). Let β ∈ Rp having r non-null components such that β1 = · · · = βr > 0

(thus m has r non-null components and m1 = · · · = mr = 1). We have X̃m = rX1 and
w̃m = w1 + · · ·+ wr and consequently:

∥X ′(X̃ ′
m)+w̃m∥∗w = ∥X ′X̃m(X̃ ′

mX̃m)−1w̃m∥∗w ≤

∥∥∥∥∥∥∥∥
∑r

i=1 wi

r
, . . . ,

∑r
i=1 wi

r︸ ︷︷ ︸
r components

, wr+1, . . . , wp


∥∥∥∥∥∥∥∥
∗

w

= 1.
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Thus the noiseless pattern recovery occurs for β which corroborates Figure 1 in Figueiredo and
Nowak (2016).

Pathological example (the null matrix): We provide very general statements since we do not as-
sume that ker(X̃m) = {0}. For instance, one may consider the pathological example where X is
the zero matrix of dimension n× p and where β ∈ Rp with β ̸= 0 (thus m = powl(β) ̸= 0). Clearly
the pattern of β cannot be recovered in the noiseless case by OWL estimator and this fact is con-
firmed by Theorem 2. Indeed, in this setup X̃m is the null matrix, thus ∥X ′(X̃ ′

m)+w̃m∥∗w = 0 ≤ 1

but 0 = X̃ ′
m(X̃ ′

m)+w̃m ̸= w̃m.

Pathological example (with non-uniqueness): In some particular cases OWL estimator can re-
cover powl(β) ∈ Powl

p in the noiseless case even if ker(X̃m) ̸= {0}. For instance, let X ∈
R1×2,W ∈ R2 and β ∈ R2 such that

X :=
(
8 4

)
, w := (4, 2) and powl(β) := (2, 1) = m.

Note that Um = I2 so that X̃m = X (thus clearly ker(X̃m) ̸= {0}) and w̃m = w. We check that
∥X ′(X̃ ′

m)+w̃m∥∗w = ∥w̃m∥∗w = 1 and X̃ ′
m(X̃ ′

m)+w̃m = w̃m. Indeed, X ′(X̃ ′
m)+ = X̃ ′

m(X̃ ′
m)+ is

the projection on col(X̃ ′
m) and clearly w̃m ∈ col(X̃ ′

m). Thus the noiseless pattern recovery occurs
namely, for γ > 0 small enough one may pick β̂ ∈ SX,γ∥.∥w

(Xβ) such that powl(β̂) = powl(β).
Note that this example is rather pathological since SX,γ∥.∥w

(Xβ) is not reduced to a singleton.
Indeed for h ∈ ker(X) small enough we have both X(β̂+h) = Xβ̂ and powl(β̂+h) = powl(β̂) and
thus β̂ + h ∈ SX,γ∥.∥w

(Xβ).

5 Pattern recovery in the noisy case
Very recently, Tardivel et al. (2021) have shown that pattern recovery in the noiseless case is a nec-
essary condition for pattern recovery by penalized estimators (including LASSO, generalized LASSO,
clustered LASSO, OSCAR, PACS, OWL estimator...) with a probability larger than 1/2 when ε is
no longer 0 (see Theorem 2 in Tardivel et al. (2021)). In this section we focus on a sufficient condi-
tion for pattern recovery by OWL estimator rather than on necessary conditions. The sub-differential
condition, given in Theorem 1, is related to the following Gaussian vector:

ζγ := X ′(X̃ ′
m)+w̃m +

1

γ
X ′(I − P̃ )Y = X ′(X̃ ′

m)+w̃m +
1

γ
X ′(I − P̃ )ε. (6)

This condition naturally leads to introduce the probability Pε(∥ζγ∥∗w) ≤ 1) as an upper bound on the
probability of pattern recovery by OWL estimator. Point 1 in Theorem 3 establishes this upper bound
and this result implies that when the noiseless recovery condition does not hold for OWL estimator
the probability of pattern recovery is smaller than 1/2. Point 2 shows that the probability of pattern
recovery matches with the upper bound when gaps between unique absolute value of β are large enough
(i.e. when r tends to +∞ in Theorem 3). Based on point 2, one easily observes that OWL estimator
can recover the pattern with a probability arbitrarily close to 1 provided that the noiseless recovery by
OWL estimator holds. In particular, point 3 shows that the probability of pattern recovery by OWL
estimator may tend to 1 when the noiseless recovery condition occurs.

Theorem 3. Let Y = Xβ + ε where X ∈ Rn×p, β ∈ Rp, β ̸= 0 with powl(β) = m, ε has a N (0, σ2I)
distribution and w = (w1, . . . , wp).

1. Upper bound: Let γ > 0 be a fixed scaling parameter and ζγ be the Gaussian vector described
in (6). Then, we have the following upper bound for the probability of pattern recovery by OWL
estimator:

Pε(∃β̂ ∈ SX,γ∥.∥w
(Y ) such that powl(β̂) = m) ≤

{
Pε (∥ζγ∥∗w ≤ 1)

0 if X̃ ′
m(X̃ ′

m)+w̃m ̸= w̃m

.

9



2. Sharpness of the upper bound: To prove the sharpness of the upper bound we consider a se-
quence of signals (β(r))r≥1 with pattern m:

β(r) = Ums(r) with s(r) ∈ Rk+ and k = ∥m∥∞,

whose strength is increasing in the following sense:

∆(r) = min
1≤i<k

(s
(r)
i − s

(r)
i+1) −→

r→+∞
∞, with the convention s

(r)
k+1 = 0.

Let Y (r) = Xβ(r) + ε. The previous upper bound is asymptotically reached when r tends to +∞:

lim
r→+∞

Pε

(
∃β̂ ∈ SX,γ∥.∥w

(Y (r)) such that powl(β̂) = m
)
=

{
Pε (∥ζγ∥∗w ≤ 1)

0 if X̃ ′
m(X̃ ′

m)+w̃m ̸= w̃m

.

3. Pattern recovery with a probability tending to 1: Let Y (r) = Xβ(r) + ε as above and in
addition limr→+∞ γr = +∞ and limr→+∞ γr/∆r = 0. If X ′(X̃ ′

m)+w̃m ∈ ri(∂∥.∥w
(m)), then

lim
r→+∞

Pε(∃β̂ ∈ SX,γr∥.∥w
(Y ) such that powl(β̂) = m) = 1.

Remark 4. Some consequences of Theorem 3 are listed hereafter:

• Because the unit ball of the dual OWL norm is convex, when ∥X ′(X̃ ′
m)+w̃m∥∗w > 1 then, inde-

pendently on γ > 0, the probability on pattern recovery is smaller than 1/2 namely

Pε(∃β̂ ∈ SX,γ∥.∥w
(Y ) such that powl(β̂) = m) ≤ 1/2.

This inequality corroborates Theorem 2 in Tardivel et al. (2021). For LASSO, a similar inequality
on the probability of sign recovery is given in Wainwright (2009).

• When P̃ = X̃mX̃+
m ̸= I and X ′(X̃ ′

m)+w̃m ∈ ri(∂∥.∥w
(m)) (thus X̃ ′

m(X̃ ′
m)+w̃m = w̃m) the function

B : γ > 0 7→ Pε (∥ζγ∥∗w ≤ 1)

is continuous, increasing and satisfies limγ→0 B(γ) = 0 and limγ→+∞ B(γ) = 1. Consequently,
one may select γ so that the probability of pattern recovery by OWL estimator is upper bounded
by η for η < 1 arbitrarily close to 1 (a similar sharp upper bound for sign recovery by LASSO is
given in Tardivel and Bogdan (2022)).

6 Numerical experiments

6.1 Testing procedure when the design is orthogonal

Based on OWL estimator β̂ (which is uniquely defined when X is orthogonal) we would like to test:

H0 : |β1| = · · · = |βp| = ∥β∥∞ vs H1 : ∃i ∈ {1, . . . , p}, |βi| < ∥β∥∞.

Given a sequence w1 > · · · > wp > 0, we reject the null hypothesis when |β̂(γα)|↓1 > |β̂(γα)|↓p,
where γα > 0 is an appropriately chosen scaling parameter allowing to control the type I error at level
α ∈ (0, 1).

Selecting γα based on the sharp upper bound: According to Example 6 (item entitled “Orthog-
onal case”), when X is orthogonal we have X ′(X̃ ′

m)+w̃m ∈ ri(∂∥.∥w
(powl(β))) and thus, by Theorem 3

10



one may select γα in order to fix the sharp upper bound Pε(∥Sγα
∥∗w ≤ 1) at level 1 − α. Note that

under the null hypothesis (and when β ̸= 0) we have powl(β) = (sign(β1), . . . , sign(βp)) ∈ {−1, 1}p and
one may select γα > 0 independently of β ∈ Rp for which |β1| = · · · = |βp|. Indeed, P(∥ζγ∥∗w ≤ 1) =
P(∥Dζγ∥∗w ≤ 1) where D is the diagonal matrix diag(sign(β1), . . . , sign(βp)). Consequently, without
loss of generality, to select γα > 0, one may consider the particular case where powl(β) = (1, . . . , 1). In
Theorem 3, ζγ is a Gaussian vector having a N (X ′(X̃ ′

m)+w̃m, σ2

γ2X
′(I − X̃mX̃+

m)X) distribution. In
the particular setup where X ′X = I and powl(β) = (1, . . . , 1) we have

X ′(X̃ ′
m)+w̃m =

(
1

p

p∑
i=1

wi, . . . ,
1

p

p∑
i=1

wi

)
and X ′(I−X̃mX̃+

m)X =


1− 1/p −1/p . . . −1/p

−1/p
. . . . . .

...
...

. . . . . . −1/p
−1/p . . . −1/p 1− 1/p

 .

Since the distribution of ζγ is given, one may pick γα > 0 for which Pε(∥Sγα∥∗w ≤ 1) = 1− α. Accord-
ing to Theorem 3, under the null hypothesis and when ∥β∥∞ tends to +∞, we have P(powl(β̂(γα)) ̸=
powl(β)) = α and thus the type I error is asymptotically controlled at level α by the above procedure.

Prescription for the sequence w1 > · · · > wp > 0: The above procedure can be run with any
arbitrary sequence for which w1 > · · · > wp > 0. Hereafter we suggest a sequence for this proce-
dure. Let Z be a standard Gaussian vector having a N (0, σ2Ip) distribution, let Z↓1 ≥ · · · ≥ Z↓p
be the components of Z ordered by decreasing values and |Z|↓p be the smallest components of Z in
absolute value. For any i ∈ {1, . . . , p}, we set wi = σE(Z↓i − Z↓p + |Z|↓p). The Cesàro sequence
( 1i
∑i

j=1(|β̂ols|↓j−γwj))1≤i≤p is closely related to the explicit expression of OWL estimator β̂(γ) when
X is orthogonal (Dupuis and Tardivel, 2022; Tardivel et al., 2020). Intuitively, under the null hypoth-
esis, when γ is larger than 1 the Cesàro sequence tends to be increasing, implying |β̂(γ)|↓p = |β̂(γ)|↓1.
Thus one may control the type I error at prescribed level α ∈ (0, 1) by choosing appropriately a scaling
parameter γ slightly larger than 1.

Type I error: When the number of regression coefficients is p = 100, the standard error of the
noise is σ = 1 and α = 0.05, Figure 3 report the type I error as a function of ∥β∥∞ ∈ [0, 20].

Power: Under the alternative hypothesis, we report in Figure 4 the power (the probability to reject
the null hypothesis) of the above procedure in the particular case where

|β|↓1 = · · · = |β|↓k = c > |β|↓k+1 = · · · = |β|↓p = 0.8c, (7)

as a function of c > 0.

Mean squared error of the mean-clustered estimator: When one knows for instance that
βi1 = · · · = βil , it is intuitive to estimate the common value of these regression coefficients by averag-
ing component of the ordinary least squares estimator over this cluster as follows: (β̂ols

i1
+ · · ·+ β̂ols

il
)/l.

OWL estimator may identify some components of β equal in absolute value leading to introduce the
mean-clustered estimator defined hereafter. Let β̂(γα) be an OWL estimator penalized estimator and
m̂ = powl(β̂(γα)) be its pattern; then one defines the mean-clustered estimator as follows:

∀i ∈ {1, . . . , p} β̂mc
i :=

{
1

#{j:m̂j=0}
∑

j:m̂j=0 β̂
ols
j if m̂i = 0

sign(m̂i)
#{j:|m̂j |=l}

∑
j:|m̂j |=l |β̂ols

j | if |m̂i| = l > 0
.

In Figure 4 we also report the mean square error of the mean-clustered estimator as a function of
c > 0. Let us first remind that E(∥β̂ols − β∥22) = p and the James-Stein estimator, defined by
β̂js := β̂ols − (p− 2)β̂ols/∥β̂ols∥22, satisfies E(∥β̂js − β∥22) ≤ E(∥β̂ols − β∥22) = p (James and Stein, 1992).
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Figure 3: This picture reports the type I error (on the y-axis) of the testing procedure as a function
of ∥β∥∞ (on the x-axis). Each point from this plot is obtained via 100000 simulations. Theoretically,
under the null hypothesis and when ∥β∥∞ is infinitely large, the type I error is controlled at level
α = 0.05. This curve corroborates this fact. Moreover, it seems the type I error is controlled at level
α = 0.05 for any value of ∥β∥∞ ≥ 0.

Note that the OWL estimator performs poorly for the mean squared error and thus E(∥β̂(γα)− β∥22)
is not reported on Figure 4.

6.2 Noiseless recovery curves and accessibility curves
Numerical experiments where some columns of the design matrix are almost identical were already
performed in the literature (Figueiredo and Nowak, 2016). In this particular setup, OWL estimator
outperform LASSO for estimating β as illustrated in Figure 1 in Figueiredo and Nowak (2016). Our
numerical experiments support these findings.

Hereafter Mr(a, b) denotes a r × r matrix whose diagonal coefficients are all equal to a and non-
diagonal coefficients are all equal to b. For these numerical experiments, we consider the following
setting:

1- Distribution of the design: X = (X1| . . . |Xp) ∈ Rn×p, where n = 50 and p = 150, is a Gaussian
matrix having iid N (0,Σ) rows and Σ is block diagonal as described hereafter:

Σ = diag(Mr(1, ρ), . . . ,Mr(1, ρ)︸ ︷︷ ︸
k blocks

, Ip−kr).

Note that when ρ is close to 1 then, for some i ∈ {0, . . . , k − 1}, columns Xir+1, . . . , X(i+1)r are
almost all equal. In particular we take ρ = 0.99 and r = 10.

2- OWL pattern: Within a cluster (a set of columns which are almost all equal), we consider that
the components of m := powl(β) are equal and more precisely we consider the following setting:

m1 = · · · = mr︸ ︷︷ ︸
=k

> mr+1 = · · · = m2r︸ ︷︷ ︸
=k−1

> · · · > m(k−1)r+1 = · · · = mkr︸ ︷︷ ︸
=1

> mkr+1 = · · · = mp = 0,

12



Figure 4: The picture on the left reports the power (on the y-axis) of the testing procedure as a
function of the value c given in (7). One may observe that, approximately, the power is 1 when c > 10
and the power is smaller than 1 when c < 10. The picture on the right reports the mean squared
error as a function of c of the mean-clustered estimator, the ordinary least squared estimator and the
James-Stein estimator. Note that the mean-clustered estimator outperforms both the ordinary least
squares estimator as well as the James-Stein estimator. One may observe that the curve is increasing
when c < 10 and is slightly decreasing when c > 10. Thus, the mean squared error starts to decrease
when the power of the procedure is 1, namely when components of the OWL estimator cannot be all
equal in absolute value.

3- Sequence w: We take the sequence w = (w1, . . . , wp) as in the in the testing procedure when
σ = 1. Namely, for any i ∈ {1, . . . , p}, we set wi = E(Z↓i − Z↓p + |Z|↓p).

For OWL estimator, the noiseless recovery condition as well as the accessibility condition depends on
β through powl(β) ∈ Powl

p . When powl(β) = m for some m ∈ Powl
p and when X is a random matrix,

the probability that β satisfies the noiseless recovery condition and the probability that β satisfies the
accessibility condition are respectively given hereafter:{

PX(∥X ′(X̃ ′
m)+w̃m∥∗w ≤ 1)

X̃ ′
m(X̃ ′

m)+w̃m = w̃m

and PX(min{∥γ∥w : Xγ = Xm} = ∥m∥w).

In practice, in these numerical experiments, the condition X̃ ′
m(X̃ ′

m)+w̃m = w̃m (or equivalently, w̃m ∈
row(X̃m)) always occurs. For LASSO, the noiseless sign recovery condition (more famously known as
the irrepresentability condition) as well as the accessibility condition depends on β through sign(β) ∈
{−1, 0, 1}p. Note that when powl(β) = m then sign(β) = sign(m). When X is a random matrix, the
probability that β satisfies the noiseless sign recovery condition and the probability that β satisfies the
accessibility condition are respectively given hereafter:

PX(∥X ′(X ′
I)

+sign(mI)∥∞ ≤ 1) and PX(min{∥γ∥1 : Xγ = Xsign(m)} = ∥sign(m)∥1),

where I = supp(m) and XI is the matrix whose columns are (Xi)i∈I ,
Figure 5 provides these probabilities as a function of the number of clusters k when ρ = 0.99.
We consider a linear regression model Y = Xβ + ε where X is a random matrix as in 1), ε has iid

N (0, 1) entries and β has 40 non-null components as follows:

β1 = · · · = β10︸ ︷︷ ︸
=80

> β11 = · · · = β20︸ ︷︷ ︸
=60

> β21 = · · · = β30︸ ︷︷ ︸
=40

= β31 = · · · = β40︸ ︷︷ ︸
=20

. (8)

13



Figure 5: When X ∈ R50×150 is a random matrix described in 1), these curves provide the probability
that the noiseless recovery condition occurs and the probability that the accessibility condition occurs
as a function of k (the number of clusters) for both LASSO and OWL estimator when ρ = 0.99. One
may notice that noiseless recovery curves are below accessibility curves; these observations comply with
theoretical property: noiseless recovery condition implies accessibility condition. Note that accessibility
curves for OWL estimator are above accessibility curves for LASSO. This suggest that, potentially,
OWL estimator is a better estimator than LASSO for pattern recovery in the particular setting where
some columns are almost equal.

We illustrate, in Figure 6, performance of OWL estimator as well as LASSO for recovering the param-
eter of regression coefficients β

7 Appendix

7.1 Proof of Proposition 2
Let w = (w1, . . . , wp) where w1 > · · · > wp. Before starting the proof of Proposition 2, we remind the
following facts:

Facts on permutahedron: The permutahedron is the following polytope

P (w) := conv{(wπ(1), . . . , wπ(p)) : π ∈ Sp}.

1) The codimension of the permutahedron P (w) is 1 (see for instance Ziegler (2012) page 24).

2) Given z ∈ P (w) we have z1 + · · ·+ zp = w1 + · · ·+ wp.

Facts on the OWL norm and on the dual OWL norm: Let π ∈ Sp, σ1, . . . , σp ∈ {−1, 1} and
let us define the following orthogonal transformation:

∀z ∈ Rp, ϕ(z) = (σ1zπ(1), . . . , σpzπ(p)).

The following identities are straightforward.

∥z∥w = ∥ϕ(z)∥w ∀z ∈ Rp and ∥z∥∗w = ∥ϕ(z)∥∗w ∀z ∈ Rp.
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Figure 6: The picture on the left illustrates performance of OWL estimator for recovering β as described
in (8). Note that the number of non-null clusters is k = 4 and thus according to Figure 5 the
noiseless recovery condition does not hold thus OWL estimator cannot recover exactly the pattern of
β. However, the accessibility occurs thus OWL estimator may separate clusters (see Tardivel et al.
(2021) for additional details). Indeed, for each i ∈ {1, . . . , 150} the probability that β̂i lies into the
blue band is 0.95 thus OWL estimator is a quite accurate estimator of β. The right picture illustrates
that LASSO fails to recover β in this setting.

Proof. According to Hiriart-Urruty and Lemaréchal (2004) page 180 we have

∂∥.∥w
(x) := {v ∈ Rp : ∥z∥w ≥ ∥x∥w + v′(z − x) ∀z ∈ Rp} = {v ∈ Rp : ∥v∥∗w ≤ 1 and v′x = ∥x∥w}.

The second expression tells us that ∂∥.∥w
(x) is a face of the unit ball for the dual norm. Once we will

have established (3), which gives its affine envelope, the last expression of ∂∥.∥w
(x) as the intersection

of the ball and its affine envelope will follow. Let us first establish (3) in the particular case where
components of x are non-negative and non-increasing. Let 1 ≤ k1 < · · · < kl ≤ p be a subdivision of
{1, . . . , p} where kl is the number of non-null components of x and such that

x1 = · · · = xk1
> xk1+1 = · · · = xk2

> · · · > xkl−1+1 = · · · = xkl
> 0.

Since components of x are non-increasing, the sub-differential of ∂∥.∥w
(x) is easy to describe as follows

(Tardivel et al., 2020; Dupuis and Tardivel, 2022; Schneider and Tardivel, 2020):

∂∥.∥w
(x) =

{
P (w1, . . . , wk1)× · · · × P (wkl−1+1, . . . , wkl

) if kl = p

P (w1, . . . , wk1
)× · · · × P (wkl−1+1, . . . , wkl

)× P±(wkl+1 . . . wp) if kl < p
.

Since the codimension of the signed permutahedron is 0 and the codimension of the permutahedron is
1 we have

codim(∂∥.∥w
(x)) = codim(P (w1, . . . , wk1)) + · · ·+ codim(P (wkl−1+1, . . . , wkl

)) = l.

Moreover when v ∈ ∂∥.∥w
(x) then, according to the above fact 2), v lies on the following affine space

describe hereafter:
v1 + · · ·+ vk1 = w1 + · · ·+ wk1 = (w̃m)1
...
vkl−1+1 + · · ·+ vkl

= wkl−1+1 + · · ·+ wkl
= (w̃m)l

⇔ U ′
mv = w̃m

The codimension of the affine space: {z ∈ Rp : U ′
mz = w̃m} is l = dim(∂∥.∥w

(x)) which concludes the
proof when x has non-increasing and non-negative components.
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Now, let us prove this proposition for the general case. Let x ∈ Rp and π ∈ Sp such that |xπ(1)| ≥
· · · ≥ |xπ(p)|. Let ϕ be the following orthogonal transformation:

∀z ∈ Rp : ϕ(z) = (sign(xπ(1))zπ(1), . . . , sign(xπ(p))zπ(p)) = (sign(mπ(1))zπ(1), . . . , sign(mπ(p))zπ(p)).

Note that, by construction, |x|↓ = ϕ(x) and clearly |m|↓ = ϕ(m). Using facts on the OWL norm and
on the dual OWL norm (described above), one may deduce the following equivalences:

v ∈ ∂∥.∥w
(x) ⇔ ∥v∥∗w ≤ 1 and v′x = ∥x∥w

⇔ ∥ϕ(v)∥∗w ≤ 1 and ϕ(v)′ϕ(x) = ∥ϕ(x)∥w
⇔ ϕ(v) ∈ ∂∥.∥w

(|x|↓).

Thus, according to the beginning of the proof, ϕ(v) lies onto the affine space {z ∈ Rp : U ′
|m|↓z = w̃m}.

Clearly, because m = powl(x) and by definition of π we have |mπ(1)| ≥ · · · ≥ |mπ(p)|. Let 1 ≤ k1 <
· · · < kl ≤ p be a subdivision of {1, . . . , p} where kl is the number of non-null components of m and
such that

|mπ(1)| = · · · = |mπ(k1)|︸ ︷︷ ︸
=l

> |mπ(k1+1)| = · · · = |mπ(k2)|︸ ︷︷ ︸
=l−1

> · · · > |mπ(kl−1+1)| = · · · = |mπ(kl)|︸ ︷︷ ︸
=1

> 0.

Consequently, we have the following equivalences:
(ϕ(v))1 + · · ·+ (ϕ(v))k1 = w1 + · · ·+ wk1 = (w̃m)1
...
(ϕ(v))kl−1+1 + · · ·+ (ϕ(v))kl

= wkl−1+1 + · · ·+ wkl
= (w̃m)l

⇔


sign(mπ(1))vπ(1) + · · ·+ sign(mπ(k1))vπ(k1) = (w̃m)1
...
sign(mπ(kl−1+1))vπ(kl−1+1) + · · ·+ sign(mπ(kl))vπ(kl) = (w̃m)l

⇔


∑

i:|mi|=l sign(mi)vi = (w̃m)1
...∑

i:|mi|=1 sign(mi)vi = (w̃m)l

⇔ U ′
mv = w̃m

Finally, {z ∈ Rp : U ′
mz = w̃m} is the smallest affine space containing ∂∥.∥w

(x) since the codimension
of {z ∈ Rp : U ′

mz = w̃m} is equal to l = codim(∂∥.∥w
(x)) = codim(∂∥.∥w

(|x|↓)).

7.2 Proof of Theorem 1
Proof. First, according to Proposition 2, one may deduce that

ζ := X ′(X̃ ′
m)+w̃m +

1

γ
X ′(I − P̃m)y ∈ ∂∥.∥w

(m)

⇔ ∥ζ∥∗w ≤ 1 and U ′
mX ′(X̃ ′

m)+w̃m︸ ︷︷ ︸
=X̃′

m(X̃′
m)+w̃m

+
1

γ
UmX ′(I − P̃m)y︸ ︷︷ ︸

=0

= w̃m

⇔ ∥ζ∥∗w ≤ 1 and X̃ ′
m(X̃ ′

m)+w̃m = w̃m.

Necessity. Let us assume that there exists β̂ ∈ SX,γ∥.∥w
(y) such that powl(β̂) = m. Consequently,

β̂ = Umz for some z ∈ Rk+ and thus Xβ̂ lies in cone(X̃m). Since β̂ is an OWL estimator and

16



according to Proposition 1 we have 1
γX

′(y−Xβ̂) ∈ ∂∥.∥w
(β̂) = ∂∥.∥w

(m). We want to deduce Xβ̂ from
this.
By Proposition 2, multiplying by U ′

m, we get 1
γ X̃

′
m(y−Xβ̂) = w̃m. We multiply this equality by (X̃ ′

m)+

and use the fact that P̃m = (X̃ ′
m)+X̃ ′

m is the projector onto col(X̃m). We have Xβ̂ ∈ cone(X̃m) so
that P̃mXβ̂ = Xβ̂. We get

(X̃ ′
m)+X̃ ′

mXβ̂ = P̃my − γ(X̃ ′
m)+w̃m ⇒ Xβ̂ = P̃my − γ(X̃ ′

m)+w̃m

and the cone condition is proven.
Now, replacing the term Xβ̂ by P̃my−γ(X̃ ′

m)+w̃m in 1
γX

′(y−Xβ̂) gives the sub-differential condition:

∂∥.∥w
(m) ∋ 1

γ
X ′(y −Xβ̂) =

1

γ
X ′(y − (P̃my − γ(X̃ ′

m)+w̃m)) = X ′(X̃ ′
m)+w̃m +

1

γ
X ′(I − P̃m)y.

Sufficiency. Let us assume that the sub-differential condition and the cone condition occur. Then, by
the cone condition, one may pick z ∈ Rk+ for which

X̃mz = P̃my − γ(X̃ ′
m)+w̃m.

Moreover, by definition of Um, powl(Umz) = m. Let us prove that Umz ∈ SX,γ∥.∥W
(y). Clearly, the

following equalities occur

1

γ
X ′(y −XUmz) =

1

γ
X ′(y − (P̃my − γ(X̃ ′

m)+w̃m))

= X ′(X̃ ′
m)+w̃m +

1

γ
X ′(I − P̃m)y ∈ ∂∥.∥w

(m) = ∂∥.∥w
(Umz)

where, at the end, we applied the sub-differential condition. Thus Umz ∈ SX,γ∥.∥w
(y).

7.3 Proof of Theorem 2
Proof. Consider the sub-differential condition from Theorem 1 when y = Xβ. As β = Umz for some
z ∈ Rk+, we have Xβ = X̃mz ∈ col(X̃m) so that (I − P̃ )Xβ = 0. Thus, in the noiseless case, the sub-
differential condition is equivalent to X ′(X̃ ′

m)+w̃m ∈ ∂∥.∥w
(m) or equivalently ∥X ′(X̃ ′

m)+w̃m∥∗w ≤ 1

and X̃ ′
m(X̃ ′

m)+w̃m = w̃m and the first statement follows from Theorem 1.
For the second statement, by Theorem 1, it remains to show that for y = Xβ the cone condition

P̃mXβ − γ(X̃ ′
m)+w̃m ∈ cone(X̃m) occurs for γ > 0 small enough. We have P̃mXβ = Xβ = X̃mz ∈

cone(X̃m). Note that (X̃ ′
m)+w̃m ∈ col(X̃m). Thus

z := P̃mXβ︸ ︷︷ ︸
=X̃mz∈cone(X̃m)

−γ (X̃ ′
m)+w̃m︸ ︷︷ ︸

∈col(X̃m)

∈ col(X̃m)

Since cone(X̃m) is open in col(X̃m), one may deduce that for γ small enough, we have z ∈ cone(X̃m).

7.4 Proof of Theorem 3
Proof. 1 Note that (I−P̃m)Y = (I−P̃m)ε (since (I−P̃m)(Xβ) = 0). Consequently the sub-differential
condition event may be rewritten as follows:{

X ′(X̃ ′
m)+w̃m +

1

γ
X ′(I − P̃m)Y ∈ ∂∥.∥w

(m)

}
=

{
X ′(X̃ ′

m)+w̃m +
1

γ
X ′(I − P̃m)ε ∈ ∂∥.∥w

(m)

}
.
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Note that the probability of pattern recovery by OWL estimator is smaller than the probability of the
sub-differential condition event and consequently

Pε(∃β̂ ∈ SX,γ∥.∥w
(Y ) such that powl(β̂) = powl(β)) ≤

{
Pε(∥ζγ∥∗w) ≤ 1) if X̃ ′

m(X̃ ′
m)+w̃m = w̃m

0 if X̃ ′
m(X̃ ′

m)+w̃m ̸= w̃m

.

2: According to Theorem 1, pattern recovery by OWL estimator is equivalent to have simultaneously
the cone condition and the sub-differential condition. The upper bound coincides with the probability
of the sub-differential condition. Thus to prove that this upper bound is sharp, it remains to show that
the probability of the cone condition tends to 1 when r tends to +∞. Let us assume that ε is a random
vector defined on the probability space (Ω,A,P) and let us consider a particular observation ε(ω) for
some ω ∈ Ω (thus Y (r)(ω) = Xβ(r)+ ε(ω)). Since P̃ = X̃mX̃+

m and since (X̃ ′
m)+ = X̃m(X̃ ′

mX̃m)+, one
may rewrite the cone condition as follows:

P̃mY (r)(ω)− γ(X̃ ′
m)+w̃m = X̃ms(r) + X̃mX̃+

mε(ω)− γX̃m(X̃ ′
mX̃m)+w̃m

= X̃m(s(r) + X̃+
mε(ω)− γ(X̃ ′

mX̃m)+w̃m).

Note that by assumption on ∆(r) we have that:

• the vector s(r)/∆(r) is (component-wise) larger or equal than(k, . . . , 1);

• limr→+∞ X̃+
mε(ω)/∆(r) = 0 and limr→+∞ γ(X̃ ′

mX̃m)+w̃m/∆(r) = 0.

Consequently, for r ≥ r0(ω) large enough we have

P̃mY (ω)− γ(X̃ ′
m)+w̃m ∈ cone(X̃m).

Since this fact is true for all ω, one may deduce that

lim
r→+∞

Pε(P̃mY − γ(X̃ ′
m)+w̃m ∈ cone(X̃m)) = 1.

3: In the proof of 2, we see that the probability of the cone condition tends to 1 when limr→+∞ γr =
+∞ and when limr→+∞ γr/∆

(r) = 0. Thus it remains to prove that the probability of the sub-
differential condition tends to 1 when X ′(X̃ ′

m)+w̃m ∈ ri(∂∥.∥w
(m)). Let us point out the following

asymptotic result:

X ′(X̃ ′
m)+w̃m +

1

γr
X ′(I − P̃m)ε

P−→
r→+∞

X ′(X̃ ′
m)+w̃m. (9)

Note by Proposition 2 that X ′(X̃ ′
m)+w̃m + 1

γr
X ′(I − P̃m)ε ∈ aff(∂∥.∥w

(m)). When X ′(X̃ ′
m)+w̃m ∈

ri(∂∥.∥w
(m)), one may deduce by (9) the following limit:

lim
r→+∞

Pε

(
X ′(X̃ ′

m)+w̃m +
1

γr
X ′(I − P̃m)ε ∈ ∂∥.∥w

(m)

)
= 1.
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