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Uniform weak error estimates for an asymptotic
preserving scheme applied to a class of slow-fast

parabolic semilinear SPDEs
Charles-Edouard Bréhier

Abstract. We study an asymptotic preserving scheme for the temporal discretization of a
system of parabolic semilinear SPDEs with two time scales. Owing to the averaging princi-
ple, when the time scale separation ε vanishes, the slow component converges to the solution
of a limiting evolution equation, which is captured when the time-step size ∆t vanishes by
a limiting scheme. The objective of this work is to prove weak error estimates which are
uniform with respect to ε, in terms of ∆t: the scheme satisfies a uniform accuracy prop-
erty. This is a non trivial generalization of the recent article [10] in an infinite dimensional
framework. The fast component is discretized using the modified Euler scheme for SPDEs
introduced in the recent work [5]. Proving the weak error estimates requires delicate analysis
of the regularity properties of solutions of infinite dimensional Kolmogorov equations.

1. Introduction

Applied mathematicians need to face many challenges when they study multiscale sto-
chastic systems, which appear in all fields of science and engineering, whether one is interested
in theoretical understanding of the behavior of such systems, in their effective numerical
approximation, or in their applications for concrete models. We refer for instance to the
monograph [21] for a presentation of averaging and homogenization techniques applied to
multiscale stochastic systems, and to [4, 19] for a description of possible dynamical behaviors
in such problems.

In this work, we study a class of systems of parabolic semilinear stochastic partial differ-
ential equations (SPDEs) of type

(1)

$

’

&

’

%

BtXε
pt, ξq “ Bξ

`

apξqBξXε
pt, ξq

˘

` fpXε
pt, ξq,Yε

pt, ξqq

BtYε
pt, ξq “

1

ε
Bξ
`

apξqBξYε
pt, ξq

˘

`

c

2

ε
9W pt, ξq

where t P p0,8q, ξ P p0, 1q, 9W is space-time white noise, and the mappings a : r0, 1s Ñ
p0,8q and f : R2 Ñ R are assumed to be sufficiently smooth. In addition, homogeneous
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Dirichlet boundary conditions are applied, and (deterministic) initial values Xεp0, ¨q “ xε0p¨q,
Yεp0, ¨q “ yε0p¨q are given. The time scale separation parameter is denoted by ε.

Instead of considering the system (1), where the unknowns are random fields Xε,Yε :
r0, T s ˆ p0, 1q Ñ R, in the sequel, we consider systems of stochastic evolution equations
(SEEs) (see [15]) of type

(2)

$

&

%

dXε
ptq “ ´ΛXε

ptqdt` F pXε
ptq,Yε

ptqqdt

dYε
ptq “ ´

1

ε
ΛYε

ptqdt`

c

2

ε
dW ptq,

with initial values Xεp0q “ xε0 and Yεp0q “ yε0, where the unknowns Xε,Yε : r0, T s Ñ H
take values in an infinite dimensional Hilbert space H (with H “ L2p0, 1q to consider the
system (1)). We refer to Section 2.2 below for precise assumptions on the linear operator Λ
and the nonlinearity F . The second component in the system (2) is driven by a cylindrical
Wiener process.

When the time scale separation parameter ε vanishes, the slow component Xε converges
(in a suitable sense, under appropriate conditions) to the solution X of a deterministic
evolution equation

(3) dXptq “ ´ΛXptqdt` F pXptqq,
with initial value Xp0q “ x0 “ lim

εÑ0
xε0, where the effect of the fast component Yε is averaged

out:
F pxq “

ż

F px, yqdνpyq

where ν is a Gaussian distribution. This result, known as the averaging principle, has been
proved for SPDE systems (2) for the first time in [14]. We also refer to [12, 13] for similar
results, and to [6, 8] for results on the rate of convergence when εÑ 0 (in strong and weak
senses). This list of references on the averaging principle for SPDE systems is not exhaustive.
The system (2) considered in this work has a simplified structure compared with the systems
treated in the literature, which is crucial in the analysis performed in this article. First, the
evolution of the fast component Yε does not depend on the slow component Xε: one can
write Yεptq “ Ypt{εq (equality being understood in distribution), where Y is solution of a sto-
chastic evolution equation which does not depend on ε. Second, Yε is an infinite dimensional
Ornstein–Uhlenbeck process, in particular Yεptq is an H-valued Gaussian random variable
for all t ě 0. Note that the second condition is crucial for the arguments described below,
however the first condition may be relaxed by introducing coefficients depending on the slow
component in the evolution of the fast component. This generalization would require extra
technical arguments in the analysis and in the proof of the error estimates, and is left for
future work.

The objective of this article is to introduce and study an effective numerical scheme
which allows to approximate the slow component Xε in regimes where the time-scale sep-
aration parameter ε either vanishes, or has a fixed value. We only focus on the temporal
discretization, even if in practice the approximation of solutions of SPDEs also needs a spa-
tial discretization procedure (for instance using finite differences). Since the fast component
Yε evolves at the time scale t{ε, a careful construction is required to be able to choose a
time-step size ∆t which is independent of ε. If one is interested only in the regime where ε
vanishes, a popular method is the Heterogeneous Multiscale Method (HMM): see [1] for a
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general overview of this method, [17] for its description for the approximation of multiscale
stochastic differential equations, and [6, 8, 2] for its analysis and application to multiscale
SPDE systems. The idea of HMM is to discretize slow and fast components using coarse and
fine integrators respectively, depending on different time-step sizes. In addition, in HMM
the coarse discretization of the slow component is inspired by the averaging principle, where
the unknown averaged nonlinearity is approximated using the fine scheme. As a result, the
HMM scheme is efficient when ε is small, but not in the regime where the time scale separa-
tion parameter does not vanish. In this article, we are interested in a different methodology,
which allows to cover all regimes by a single numerical scheme, and where the time-step size
∆t can be chosen independently of ε.

We propose to discretize the system (2) by the following numerical scheme

(4)

$

’

&

’

%

Xε,∆t
n`1 “ A∆t

`

Xε,∆t
n `∆tF pXε,∆t

n ,Yε,∆t
n`1q

˘

Yε,∆t
n`1 “ A∆t

ε
Yε,∆t
n `

c

2∆t

ε
B∆t

ε
,1Γn,1 `

c

2∆t

ε
B∆t

ε
,2Γn,2,

where A∆t “ pI `∆tΛq´1, the linear operators B∆t{ε,1 and B∆t{ε,2 are chosen to satisfy (19),
and Γn,1,Γn,2 are independent cylindrical Gaussian random variables. We refer to Section 2.5
for details on the construction of the scheme (4). On the one hand, the slow component Xε

is discretized using a semi-implicit Euler scheme. On the other hand, the fast component Xε

is discretized using the modified Euler scheme for parabolic semilinear SPDEs introduced in
the recent work [5]. The construction of the scheme allows us to check that for any fixed
value of ε, Xε,∆t

N converges to XεpT q (with T “ N∆t) when ∆tÑ 0, and that the scheme is
asymptotic preserving, in the following sense. First, for any value of the time-step size ∆t
and all integers n ě 1, one has Xε,∆t

n Ñ X∆t
n when εÑ 0, determined by the limiting scheme

(5) X∆t
n`1 “ A∆tX∆t

n `∆tA∆tF pX∆t
n ,Λ

´ 1
2 Γnq

with initial value X∆t
0 “ x0 “ lim

εÑ0
Xε,∆t

0 . The last but not the least, the limiting scheme (5) is

consistent with the limiting evolution equation (3): one has X∆t
N Ñ XpT q when ∆t “ T {N Ñ

0. Note that the choice of the modified Euler scheme to discretize the fast component in
the scheme (4) is essential to obtain the last property: it is not satisfied when the standard
Euler scheme is used. We refer to Section 3 for rigorous statements of the properties above,
in particular about the need to consider convergence in distribution.

The asymptotic preserving property is written as the fact that the diagram

Xε,∆t
N

NÑ8
ÝÝÝÑ XεpT q

§

§

đ

εÑ0

§

§

đ

εÑ0

X∆t
N

NÑ8
ÝÝÝÑ XpT q

is commutative. Asymptotic preserving methods are popular in the field of numerical analysis
of multiscale PDEs, see for instance the recent review [18] and the references therein. In
recent years, they have been studied for stochastic systems, for instance in [3, 10].

The asymptotic preserving property for the scheme (21) is also proved in the manu-
script [5] in which the modified Euler scheme (used here to discretize the fast component
Yε) has been introduced and studied. In this article, we make a further major step in the
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analysis and prove a form of uniform accuracy property. The main result of this manuscript,
Theorem 3.4, can be written as follows: under appropriate regularity and growth conditions,
one has the uniform weak error estimates

(6) sup
εPp0,ε0q

ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpXε

pT qqs
ˇ

ˇ ď CκpT, ϕ, x0q∆t
1
3
´κ

where κ P p0, 1
3
q is an arbitrarily small positive auxiliary parameter, ϕ : H Ñ R is a mapping

of class C3 with bounded derivatives, and CκpT, ϕ, x0q P p0,8q.
The order of convergence 1{3 appearing in the right-hand side of the uniform weak error

estimates (6) may not be optimal. Indeed, for a fixed value of ε, the order of convergence
of the scheme (4) is at least 1{2 (see Proposition 3.6), and for the limiting scheme the order
of convergence is 1 (see Proposition 3.3). The reduction of the order of convergence is due
to the strategy of the proof, which consists in obtaining two different error estimates based
on the commutative diagram above. Obtaining a positive order of convergence is already a
non trivial challenge which is solved in this manuscript for the first time in the context of
stochastic PDEs. In order to prove the uniform weak error estimate (6), we follow the same
strategy as in [10] (where a reduction of the order of convergence is also obtained), which
deals with finite dimensional stochastic differential equations. Substantial modifications due
to the infinite dimensional setting are required. Precisely, the main difficulties appear for the
proof of a direct error estimate for the weak error, see Proposition 3.6. Compared with [10],
additional arguments concerning the regularity properties of the solutions of the associated
Kolmogorov equation need to be studied carefully, see Lemma 4.1 and Section 6.2.

The manuscript is organized as follows. First, the setting is described in Section 2.
Preliminary results on the SPDE system are recalled in Section 2.3 and the averaging prin-
ciple is discussed in Section 2.4. The numerical scheme studied in this work is presented
in Section 2.5. Then the main results of this work are stated in Section 3: the asymptotic
preserving property is studied in Section 3.1 and the main result, Theorem 3.4, is stated
in Section 3.2. The auxiliary error estimates required to prove Theorem 3.4 are stated in
Section 3.3. Section 4 provides the regularity properties of solutions of infinite dimensional
Kolmogorov equations, see Lemma 4.1 and Lemma 4.2. The reminder of the manuscript is
devoted to proving the error estimates, in Section 5 (results from Section 3.1) and Section 6
(results from Section 3.3).

2. Setting

2.1. Notation. The set of integers is denoted by N “ t1, . . .u.
Let H be a separable infinite dimensional Hilbert space, equipped with inner product

and norm denoted by x¨, ¨y respectively. Let also H “ H2 be the Hilbert space, with inner
product and norm as follows: for all px1, y1q, px2, y2q, px, yq P H, set

xpx1, y1q, px2, y2qyH “ xx1, x2y ` xy1, y2y

}px, yq}2H “ }x}
2
` }y}2.

The set of bounded linear operators from H to H is denoted by LpHq, this set is a Banach
space, with the norm } ¨ }LpHq defined by

}L}LpHq “ sup
xPHĂt0u

|Lx|

|x|
.
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The random variables and the stochastic processes considered in this article are defined
on a probability space denoted by pΩ,F ,Pq. This probability space is equipped with a
filtration

`

Ft

˘

tě0
which is assumed to satisfy the usual conditions. The expectation operator

is denoted by Er¨s.
Let

`

βj
˘

jPN denote a sequence of independent standard real-valued Wiener processes,
adapted to the filtration

`

Ft

˘

tě0
. The cylindrical Wiener process

`

W ptq
˘

tě0
on H is formally

defined as

(7) W ptq “
ÿ

jPN

βjptqej

where
`

ej
˘

jPN is an arbitrary complete orthonormal system of H.
The following terminology is used in the sequel: a random variable Γ is called a cylindrical

Gaussian random variable if
Γ “

ÿ

jPN

γjej,

where
`

γj
˘

jPN is a sequence of independent standard real-valued Gaussian random variables
(γj „ N p0, 1q for all j P N).

Some of the proofs below require tools from Malliavin calculus [20]. We do not give
precise definitions, instead let us state the notation used in this article and quote the most
useful results. If Θ is an H-valued random variable, Dh

sΘ P H is the Malliavin derivative of
Θ at time s in direction h P H. For instance, this means that

Dh
s

`

ż T

0

LptqdW ptq
˘

“ Lpsqh

if t P r0, T s ÞÑ Lptq P LpHq is an adapted process. In addition, if Θ is Ft-measurable, then
Dh
sΘ “ 0 for all s ą t. The Malliavin derivative satisfies a chain rule property: if Φ : H Ñ H

is of class C1 with bounded derivative, then for all s ě 0 and h P H one has

Dh
sφpΘq “ DφpΘq.Dh

sΘ.

The same type of notation and results are satisfied for R-valued random variables θ. Finally,
one has the following integration by parts formula, which is essential for the proof of weak
error estimates, see [16]: if θ is R-valued random variable and if pt, sq ÞÑ φpt, sq P R is a
given deterministic function, for all j P N, one has

(8) E
“

θ

ż t

0

φpt, sqdβjpsq
‰

“

ż t

0

ErDej
s θφpt, sqdβjpsqs.

Finally, introduce the following notation. If ϕ : H Ñ R is a mapping of class C3 with
bounded derivatives of order 1, 2, 3, set

~ϕ~1 “ sup
x,hPH

|Dϕpxq.h|

|h|
,

~ϕ~2 “ ~ϕ~1 ` sup
x,h1,h2PH

|D2ϕpxq.ph1, h2q|

|h1||h2|
,

~ϕ~3 “ ~ϕ~2 ` sup
x,h1,h2,h3PH

|D3ϕpxq.ph1, h2, h3q|

|h1||h2||h3|
.
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If φ : H Ñ R is a function of class C2, for all h, k P H and px, yq P H, the following
notation is used below:

Dxφpx, yq.h “ Dφpx, yq.ph, 0q

Dyφpx, yq.h “ Dφpx, yq.p0, hq

D2
xφpx, yq.ph, kq “ D2φpx, yq.

`

ph, 0q, pk, 0q
˘

D2
yφpx, yq.ph, kq “ D2φpx, yq.

`

p0, hq, p0, kq
˘

DxDyφpx, yq.ph, kq “ D2φpx, yq.
`

ph, 0q, p0, kq
˘

.

Similar notation is used for third order derivatives below.
In this work, the values of constants C P p0,8q (which may depend on auxiliary param-

eters) appearing in the error estimates may vary from line to line. All the constants are
independent of the time scale separation parameter ε and of the time-step size ∆t.

2.2. Assumptions. The stochastic evolution equations considered in this work are
driven by an unbounded self-adjoint linear operator ´Λ : DpΛq Ă H Ñ H, which is as-
sumed to satisfy the following conditions.

Assumption 1. There exists a complete orthonormal system
`

ej
˘

jPN of H and a non-
decreasing sequence

`

λj
˘

jPN of positive real numbers, such that

Λej “ λjej

for all j P N. In addition, it is assumed that there exists cΛ P p0,8q that λj „ cΛj
2 when

j Ñ 8.

The self-adjoint unbounded linear operator ´Λ generates a semigroup which is denoted
by

`

e´tΛ
˘

tě0
. Precisely, for all t ě 0 and x P H, set

e´tΛx “
ÿ

jPN

e´tλjxx, ejyej.

In addition, for all α P r´1, 1s, define the self-adjoint linear operators Λα such that

Λαej “ λαj ej

for all j P N. Equivalently,
Λαx “

ÿ

jPN

λαj xx, ejyej.

If α P r´1, 0s, Λα is a bounded linear operator from H to H and the expression above is
well-defined for all x P H. For all α P r0, 1s, introduce the notation

|x|α “
`

ÿ

jPN

λ2α
j xx, ejy

2
˘

1
2 P r0,8s,

then Λα is an unbounded self-adjoint linear operator with domain DpΛαq “ Hα, defined by

Hα
“ tx P H; |x|α ă 8u.

Finally, let us recall two standard inequalities: for all α P r0, 1s, there exists Cα P p0,8q such
that for all t P p0,8q and all x P H, one has

(9) |e´tΛx| ď Cαt
´α
|Λ´αx|
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and for all x P Hα one has

(10) |
`

e´tΛ ´ I
˘

x| ď Cαt
α
|x|α.

Let us now state the regularity and growth assumptions for the nonlinear operator F .

Assumption 2. Let F : H Ñ H be a mapping of class C3, with bounded derivatives of
order 1, 2, 3.

Note that in particular F is globally Lipschitz continuous: there exists CF P p0,8q such
that for all px1, y1q, px2, y2q P H, one has

|F px2, y2q ´ F px1, y1q| ď CF
`

|x2 ´ x1| ` |y2 ´ y1|
˘

.

Assumption 3. For all ε P p0, ε0q, let xε0 P H and yε0 P H, satisfying the following
conditions: there exists x0 P H such that

(11) |xε0 ´ x0| Ñ
εÑ0

0.

Moreover, there exists κ0 P p0, 1q, such that for all κ P r0, κ0s, there exists Cκ P p0,8q such
that x0 P H

κ
2 and

(12) sup
εPp0,ε0q

`

|Λ
κ
2 xε0| ` |Λ

κ
2 yε0|

˘

ď Cκ
`

1` |Λ
κ
2 x0|

˘

.

2.3. SPDE system. In this work, we study the behavior of a class of numerical methods
applied to the following stochastic evolution equations system, both for fixed ε P p0, ε0q and
in the regime εÑ 0:

(13)

$

&

%

dXε
ptq “ ´ΛXε

ptqdt` F pXε
ptq,Yε

ptqqdt

dYε
ptq “ ´

1

ε
ΛYε

ptqdt`

c

2

ε
dW ptq,

with initial values Xεp0q “ xε0 and Yεp0q “ yε0, which satisfy Assumption 3. In the sys-
tem above, the linear operator Λ satisfies Assumption 1, the nonlinear operator F satisfies
Assumption 2 and the cylindrical Wiener process

`

W ptq
˘

tě0
is given by (7).

The following result is a standard well-posedness statement for the system (13), see for
instance [15].

Proposition 2.1. Let Assumptions 1 and 2 be satisfied. For all ε P p0, ε0q, the sys-
tem (13) admits a unique global mild solution

`

Xεptq,Yεptq
˘

tě0
, with initial values Xεp0q “ xε0

and Yεp0q “ yε0: for all t ě 0,

(14)

$

’

’

’

&

’

’

’

%

Xε
ptq “ e´tΛxε0 `

ż t

0

e´pt´sqΛF pXε
psq,Yε

psqqds

Yε
ptq “ e´

t
ε
Λyε0 `

c

2

ε

ż t

0

e´
t´s
ε

ΛdW psq.

If Assumption 3 is satisfied, one has the following moment bounds properties, uniformly
with respect to ε P p0, ε0q: for all T P p0,8q,

(15) sup
εPp0,ε0q

´

sup
0ďtďT

Er|Xε
ptq|2s ` sup

tě0
Er|Yε

ptq|2s
¯

ă 8.
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2.4. The averaging principle. Let us describe the behavior of the solution of the
system (13) when ε Ñ 0. Note that the parameter ε introduces a time-scale separation
in the evolution of the two components. On the one hand, the fast component Yε is an
H-valued Ornstein–Uhlenbeck process, and one has the equality in distribution

`

Yε
ptq

˘

tě0
“
`

e´
t
ε
Λyε0 ` Yp

t

ε
q
˘

tě0
,

where the Ornstein–Uhlenbeck process Y is the solution of the stochastic evolution equation

dYptq “ ´ΛYptqdt`
?

2dW ptq,

with initial value Yp0q “ 0. It is straightforward to check that the H-valued process Y is
ergodic and that its unique invariant distribution is the Gaussian distribution ν “ N p0,Λ´1q.
In addition, for all t P p0,8q, Yεptq converges in distribution to ν when εÑ 0. On the other
hand, the component Xε evolves slowly, and the behavior of the fast component implies that
an averaging principle holds: when ε Ñ 0, Xε converges (in various suitable senses) to the
solution X of an evolution equation where the effect of the fast component has been averaged
out, with a nonlinearity depending on the the Gaussian distribution ν.

In order to state a rigorous version of the averaging principle, introduce the nonlinear
operator F : H Ñ H defined as follows: for all x P H, set

(16) F pxq “

ż

F px, yqdνpyq “ EνrF px,Yqs “ ErF px,Λ´
1
2 Γqs,

where Γ is a cylindrical Gaussian random variable. Observe that if F satisfies Assumption 2,
then the mapping F : H Ñ H is of class C3, with bounded derivatives of order 1, 2, 3. In
particular, F is globally Lipschitz continuous.

The asymptotic behavior of the slow component Xε in (13) is described by the solution
of the averaged equation:

(17)
dXptq
dt

“ ´ΛXptq ` F pXptqq,

with initial value Xp0q “ x0 “ lim
εÑ0

xε0 (see Assumption 3). The deterministic evolution
equation (17) admits a unique global mild solution: for all t ě 0,

Xptq “ e´tΛx0 `

ż t

0

e´pt´sqΛF pXpsqqds.

One has the following convergence result.

Proposition 2.2. Let Assumptions 1, 2 and 3 be satisfied. Then for all t ě 0, Xεptq
converges to Xptq when εÑ 0, in the mean-square sense.

In addition, one has the following weak error estimate: for all κ P p0, κ0q and T P p0,8q,
there exists CκpT q P p0,8q such that for any function ϕ : H Ñ R of class C3 with bounded
derivatives of order 1, 2, 3 and all ε P p0, ε0q one has

(18)
ˇ

ˇErϕpXε
pT qqs ´ ErϕpXpT qqs

ˇ

ˇ ď CκpT q~ϕ~3ε
1´κ

`

1` |Λ
κ
2 x0|

2
˘

.

For the mean-square convergence result, see for instance [6, 14]. The weak error esti-
mate (18) is obtained in [6, 8] (under weaker regularity conditions on ϕ). It is also retrieved
in this article as a consequence of the auxiliary error estimates stated and proved below.
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2.5. Numerical scheme. Let us introduce the notation required to define the numerical
scheme studied in this work. The time-step size is denoted by ∆t. Without loss of generality,
it is assumed that there exists a fixed time T P p0,8q such that ∆t “ T {N for some integer
N P N. In the sequel, the limit ∆t Ñ 0 is considered by letting N Ñ 8 with T fixed. In
addition, it is assumed that ∆t P p0,∆t0q. To simplify the notation, let τ “ ∆t

ε
.

Let A∆t “ pI ` ∆tΛq´1, and introduce also linear operators Aτ , Bτ,1 and Bτ,2 assumed
to satisfy (see [5, Section 2])

(19) Aτ “ pI ` τΛq´1, Bτ,1 “
1
?

2
pI ` τΛq´1, Bτ,2B‹τ,2 “

1

2
pI ` τΛq´1,

where L‹ is the adjoint of a linear operator L.
Note that }A∆t}LpHq ď 1 for all ∆t P p0,∆t0q. In addition, one has the following property:

for all α P r0, 1s, there exists Cα P p0,8q such that for all ∆t P p0,∆t0q and n P t1, . . . , Nu,
one has

(20) }ΛαAn
∆t}LpHq ď

Cα
pn∆tqα

.

Let
`

Γn,1
˘

ně0
and

`

Γn,2
˘

ně0
be two independent sequences of independent cylindrical

Gaussian random variables. Then the scheme is defined as follows: for all n ě 0, set

(21)

$

’

&

’

%

Xε,∆t
n`1 “ A∆t

`

Xε,∆t
n `∆tF pXε,∆t

n ,Yε,∆t
n`1q

˘

Yε,∆t
n`1 “ A∆t

ε
Yε,∆t
n `

c

2∆t

ε
B∆t

ε
,1Γn,1 `

c

2∆t

ε
B∆t

ε
,2Γn,2,

with initial values Xε,∆t
0 “ xε0 and Yε,∆t

0 “ yε0.
On the one hand, in the scheme (21), the slow component of (13) is discretized using a

linear implicit Euler scheme: the definition can be rewritten as

Xε,∆t
n`1 “ Xε,∆t

n ´ τΛXε,∆t
n`1 ` τF pXε,∆t

n ,Yε,∆t
n`1q,

which means that the linear part is discretized implicitly, whereas the nonlinearity part is
discretized explicitly with respect to the slow component Xε and implicitly with respect to
the fast component Yε. This choice is motivated by the analysis of the scheme when εÑ 0.

On the other hand, the fast component is discretized using the modified Euler scheme
introduced in the recent work [5]: we refer to this preprint for the construction and the
properties of this scheme, below we only recall the notation required in the analysis of
the scheme (21). Some properties of the scheme (21) are in fact already studied in [5,
Section 9.1]. As explained in [10] (SDE case) and [5] SPDE case), discretizing the fast
component using the standard linear implicit Euler scheme would not be appropriate in the
regime ε Ñ 0. The main advantage of the modified Euler scheme is the preservation of the
invariant distribution ν, for any choice of the time-step size ∆t. The main tool to analyze
the modified Euler scheme is the interpretation as the accelerated exponential Euler scheme
applied to a modified stochastic evolution equation (see [5, Section 3.3]): using the notation
τ “ ∆t

ε
and tτn “ nτ , one has the equality in distribution

`

Yε,∆t
n

˘

ně0
“
`

Yτ
n

˘

ně0
,

9



where

(22) Yτ
n`1 “ e´τΛτYτ

n `
?

2

ż tτn`1

tτn

e´pt
τ
n`1´tqΛτQ

1
2
τ dW psq,

with initial value Yτ
0 “ yε0 “ Yε,∆t

0 . The linear operators Λτ , Qτ and Q
1
2
τ are defined by the

following expressions:

(23)

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Λτx “
ÿ

jPN

λτ,jxx, ejyej

Qτx “
ÿ

jPN

qτ,jxx, ejyej

Q
1
2
τ x “

ÿ

jPN

?
qτ,jxx, ejyej,

where the eigenvalues are defined for all j P N and τ P p0,8q by

(24)

$

’

’

&

’

’

%

λτ,j “
logp1` τλjq

τ
P p0, λjq

qτ,j “
logp1` τλjq

τλj
P p0, 1q.

The auxiliary process defined by (22) satisfies Yτ
n “ Yτ ptτnq for all n ě 0, where the process

`

Yτ ptq
˘

tě0
is the mild solution of the modified stochastic evolution equation

(25) dYτ
ptq “ ´ΛτYτ

ptqdt`
?

2Q
1
2
τ dW ptq.

Let α P r0, 1s and set

Cα “ sup
zPp0,8q

z´α|
logp1` zq

z
´ 1| ă 8.

One then obtains the following bonds (see [5, Section 5.1]): for all τ P p0,8q and j P N,

(26)

#

0 ď λj ´ λτ,j ď Cατ
αλ1`α

j

0 ď 1´ qτ,j ď Cατ
αλαj ,

which are used below to analyze the error.
Let us provide two results on the numerical scheme (21) which are used below to prove

the main result of this article.

Lemma 2.3. Let Assumption 3 be satisfied. Then one has

(27) sup
εPp0,ε0q,∆tPp0,∆t0q

sup
ně0

Er|Yε,∆t
n |

2
s ă 8.

Moreover, for all T P p0,8q, there exists CpT q P p0,8q such that for all ε P p0, ε0q and
∆t “ T {N P p0,∆t0q, one has

(28) sup
0ďnďN

Er|Xε,∆t
n |

2
s ď CpT qp1` |x0|

2
q.

10



Proof of Lemma 2.3. Let us first prove the inequality (27). One has, for all n ě 0,
the equality in distribution

Yε,∆t
n “ Yτ

n “ Yτ
ptτnq “ e´t

τ
nΛτyε0 `

?
2

ż tτn

0

e´pt
τ
n´tqΛτQ

1
2
τ dW ptq.

On the one hand, for all n ě 0 and ∆t P p0,∆t0q, one has

sup
εPp0,ε0q

|e´t
τ
nΛτyε0| ď sup

εPp0,ε0q

|yε0| ă 8,

owing to Assumption 3, since λτ,j ě 0 for all j P N and τ P p0,8q.
On the other hand, using Itô’s isometry formula, it is straightforward to check that one

has

Er
ˇ

ˇ

?
2

ż tτn

0

e´pt
τ
n´tqΛτQ

1
2
τ dW psq|

2
s ď

ż

|y|2dνpyq “
ÿ

jPN

1

λj
ă 8.

This concludes the proof of the inequality (27). Let us now prove the inequality (28). Since
F is globally Lipschitz continuous (Assumption 2) and since }A∆t}LpHq ď 1, for all n ě 0,
one has

|Xε,∆t
n`1| ď |Xε,∆t

n | `∆t|F pXε,∆t
n ,Yε,∆t

n`1q|

ď p1` C∆tq|Xε,∆t
n | ` C∆tp1` |Yε,∆t

n`1|q.

Since sup
εPp0,ε0q

|xε0| ď Cp1`|x0|q owing to Assumption 3, the inequality (28) is then obtained by

a straightforward argument, using the inequality (27) proved above. The proof of Lemma 2.3
is thus completed. �

Lemma 2.4. For all κ P p0, 1q and T P p0,8q, there exists CκpT q P p0,8q such that for
all ε P p0, ε0q and ∆t “ T {N P p0,∆t0q, for all n P t1, . . . , Nu, one has

(29)
`

Er|Λ1´κXε,∆t
n |

2
s
˘

1
2 ď

CκpT q

pn∆tq1´κ
p1` |x0|q.

Moreover, all κ P p0, κ0q and T P p0,8q, there exists CκpT q P p0,8q such that for all
ε P p0, ε0q and ∆t “ T {N P p0,∆t0q, one has

(30) sup
0ďnďN

`

Er|Λ
κ
2 Xε,∆t

n |
2
s
˘

1
2 ď CκpT qp1` |Λ

κ
2 x0|q.

Finally, for all n P t1, . . . , Nu, one has

(31)
`

Er|Xε,∆t
n`1 ´ Xε,∆t

n |
2
s
˘

1
2 ď

CκpT q

pn∆tq1´κ
∆t1´κp1` |x0|q

and for all n P t0, . . . , Nu, one has

(32)
`

Er|Λ´1`κ
`

Xε,∆t
n`1 ´ Xε,∆t

n

˘

|
2
s
˘

1
2 ď CκpT q∆t

1´κ
p1` |x0|q.

Proof of Lemma 2.4. Using the inequality (20), the identity

Xε,∆t
n “ An

∆tx
ε
0 `∆t

n´1
ÿ

`“0

An´`
∆t F pX

ε,∆t
` ,Yε,∆t

` q,
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the moment bound (29) for Λ1´κXε,∆t
n is obtained as follows: for all n P t1, . . . , Nu, one has

`

Er|Λ1´κXε,∆t
n |

2
s
˘

1
2 ď

Cκ
pn∆tq1´κ

|x0| `∆t
n´1
ÿ

`“0

Cκ
`

pn´ `q∆t
˘1´κ

`

Er|F pXε,∆t
` ,Yε,∆t

` q|
2
s
˘

1
2

ď
Cκ

pn∆tq1´κ
|x0| `∆t

n´1
ÿ

`“0

Cκ
`

pn´ `q∆t
˘1´κ p1` |x0|q

ď
CκpT q

pn∆tq1´κ
p1` |x0|q.

The moment bound (30) is proved using in addition the condition |Λ
κ
2 x0| ď |Λ

κ0
2 x0| ă 8

from Assumption 3 for all n P t0, . . . , Nu, one has

`

Er|Λ
κ
2 Xε,∆t

n |
2
s
˘

1
2 ď |Λ

κ
2 xε0| `∆t

n´1
ÿ

`“0

Cκ
`

pn´ `q∆t
˘
κ
2

`

Er|F pXε,∆t
` ,Yε,∆t

` q|
2
s
˘

1
2

ď |Λ
κ
2 xε0| `∆t

n´1
ÿ

`“0

Cκ
`

pn´ `q∆t
˘
κ
2

p1` |x0|q

ď CκpT qp1` |Λ
κ
2 x0|q.

Let us now prove the inequality (31). Using the inequality

}Λ´αpA∆t ´ Iq}LpHq ď Cα∆tα,

with Cα P p0,8q, and the definition (21) of the scheme, one has

|Xε,∆t
n`1 ´ Xε,∆t

n | “
ˇ

ˇpA∆t ´ IqXε,∆t
n `∆tA∆tF pXε,∆t

n ,Yε,∆t
n`1

ˇ

ˇ

ď |pA∆t ´ IqXε,∆t
n | `∆t|F pXε,∆t

n ,Yε,∆t
n`1q|

ď Cκ∆t
1´κ
|Λ1´κXε,∆t

n | `∆t
`

1` |Xε,∆t
n | ` |Yε,∆t

n`1|
˘

.

Using the moment bounds (28) and (27) from Lemma 2.3 and the moment bound (29) proved
above, one then obtains the inequality (31).

Finally, to obtain the inequality (32), note that

|Λ´1`κ
`

Xε,∆t
n`1 ´ Xε,∆t

n

˘

| ď |Λ´1`κ
pA∆t ´ IqXε,∆t

n | `∆t|F pXε,∆t
n ,Yε,∆t

n`1q|

ď Cκ∆t
1´κ
|Xε,∆t

n | `∆t
`

1` |Xε,∆t
n | ` |Yε,∆t

n`1|
˘

.

Using the moment bounds (28) and (27) from Lemma 2.3, one then obtains the inequal-
ity (32).

The proof of Lemma 2.4 is completed. �

3. Main results

3.1. Asymptotic preserving property. Introduce the limiting scheme defined as fol-
lows: for all ∆t “ T {N P p0,∆t0q and n P t0, . . . , N ´ 1u, set

(33) X∆t
n`1 “ A∆tX∆t

n `∆tA∆tF pX∆t
n ,Λ

´ 1
2 Γnq

with initial value X∆t
0 “ x0.
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Lemma 3.1. For all T P p0,8q, there exists CpT q P p0,8q such that for all ∆t “ T {N P

p0,∆t0q, one has

(34) sup
0ďnďN

Er|X∆t
n |

2
s ď CpT qp1` |x0|

2
q.

Proof of Lemma 3.1. Since F is globally Lipschitz continuous (Assumption 2), for all
n ě 0, one has

|X∆t
n`1| ď |X∆t

n | `∆t|F pX∆t
n ,Λ

´ 1
2 Γnq|

ď p1` C∆tq|X∆t
n | ` C∆tp1` |Λ´

1
2 Γn|q.

Using the property

Er|Λ´
1
2 Γn|

2
s “

ÿ

jPN

1

λj
ă 8,

the inequality (34) is obtained by a straightforward argument. This concludes the proof of
Lemma 3.1. �

The fact that (33) defines the limiting scheme associated with the scheme (21) when
εÑ 0 for fixed time-step size ∆t is justified by Proposition 3.2.

Proposition 3.2. Let ϕ : H Ñ R be a globally Lipschitz continuous function. For all
T P p0,8q, ∆t P p0,∆t0q and n P t0, . . . , Nu, one has

(35) lim
εÑ0

ErϕpXε,∆t
n qs “ ErϕpX∆t

n qs.

In addition, the limiting scheme (33) is consistent with the limiting evolution equa-
tion (17), as justified by Proposition 3.3 below.

Proposition 3.3. For all κ P p0, 1q and T P p0,8q, there exists CκpT q P p0,8q such
that for any function ϕ : H Ñ R of class C2 with bounded first and second order derivatives,
for all ∆t P p0,∆t0q, one has

(36)
ˇ

ˇErϕpX∆t
N qs ´ ϕpXpT qq

ˇ

ˇ ď CκpT q~ϕ~2∆t1´κp1` |x0|
2
q.

Combining Propositions 3.2 and 3.3 shows that the scheme (21) is asymptotic preserving.
The proofs of Propositions 3.2 and 3.3 are postponed to Section 5.1 and Section 5.2

respectively. In fact, those two results are reformulations of [5, Theorem 91], and the proofs
are given to make the presentation of the analysis of the scheme (21) self-contained. In
addition, Proposition 3.3 is employed in the proof of the main result of this article.

3.2. Uniform weak error estimates. The main result of this article is Theorem 3.4,
which gives uniform weak error estimates for the numerical scheme.

Theorem 3.4. For all κ P p0, κ0q and T P p0,8q, there exists CκpT q P p0,8q such that
for any function ϕ : H Ñ R of class C3 with bounded derivatives of order 1, 2, 3, for all
∆t “ T {N P p0,∆t0q and ε P p0, ε0q, one has

(37)
ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpXε

pT qqs
ˇ

ˇ ď CκpT q∆t
1
3
´κ
~ϕ~3

`

1` |Λ
κ0
2 x0|

2
˘

.

The proof of Theorem 3.4 is given in Section 3.4 below, as a consequence of several
auxiliary error estimates stated in Section 3.3 below, which are proved in Section 6 using
non-trivial arguments and lengthy computations.
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3.3. Auxiliary error estimates. The proof of Theorem 3.4 is based on using several
auxiliary error estimates.

Let us first introduce the following auxiliary scheme: for all ∆t “ T {N P p0,∆t0q, x P H
and n P t0, . . . , N ´ 1u, set

(38) X∆t;x

n`1 “ A∆tX
∆t;x

n `∆tA∆tF pX
∆t;x

n q

with initial value X∆t;x

0 “ x P H. The scheme (38) is the standard linear implicit Euler
scheme applied to the limiting evolution equation (17). One has the following convergence
result.

Proposition 3.5. For all κ P p0, κ0q and T P p0,8q, there exists CκpT q P p0,8q such
that for all ∆t P p0,∆t0q one has

(39)
ˇ

ˇX∆t;x0

n ´ Xpn∆tq
ˇ

ˇ ď CκpT q∆t
1´κ
p1`

1

pn∆tq1´κ
|x0|q.

Even if Proposition 3.5 is a standard result in the numerical analysis of parabolic evolution
equations, its proof is given in Section 6.1 for completeness. Note that the initial value x0 is
only assumed to satisfy x0 P H in this statement.

Proposition 3.6 provides a weak error estimate where the right-hand side is allowed to
depend on ε. This result provides the consistency of the scheme (21) for the approximation
of XεpT q for any value of ε P p0, ε0q. The order of convergence with respect to ∆t is equal to
1{2.

Proposition 3.6. For all κ P p0, κ0q and T P p0,8q, there exists CκpT q P p0,8q such
that for any function ϕ : H Ñ R of class C3 with bounded derivatives of order 1, 2, 3, for all
∆t “ T {N P p0,∆t0q and ε P p0, ε0q, one has

(40)
ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpXε

pT qqs
ˇ

ˇ ď CκpT q
´

`∆t

ε

˘
1
2
´κ
`

∆t

ε

¯

~ϕ~3

`

1` |Λ
κ
2 x0|

2
˘

.

The proof of Proposition 3.6 is the most delicate part of the analysis in this article.
Finally, Proposition 3.7 is a variant of Proposition 2.2 in discrete-time, and is related to

Proposition 3.2 above.

Proposition 3.7. For all κ P p0, κ0q and T P p0,8q, there exists CκpT q P p0,8q such
that for any function ϕ : H Ñ R of class C2 with bounded first and second order derivatives,
for all ∆t “ T {N P p0,∆t0q and ε P p0, ε0q, one has

(41)
ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpX∆t

N qs
ˇ

ˇ ď CκpT q
` ε

∆tκ
`∆t1´κ

˘

~ϕ~2p1` |x0|
2
q.

See [10, Lemma 5.4] for a similar statement in the finite dimensional SDE case. Note
that the right-hand side of (41) goes to infinity when ∆t Ñ 0, but the upper bound is
sufficient for the proof of Theorem 3.4. Having ε instead of ε

∆tκ
would not change the result.

The presence of ∆tκ, with arbitrarily small κ P p0, κ0q is due to arguments on the analysis
of parabolic semilinear evolution equations.

3.4. Proof of Theorem 3.4. The proof of Theorem 3.4 is a straightforward conse-
quence of auxiliary weak error estimates which have been stated above. Let us first obtain
the weak error estimate (18) as a straightforward consequence of the results stated above.
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Proof of the inequality (18). The weak error in the right-hand side of (18) can be
decomposed as

ˇ

ˇErϕpXε
pT qqs ´ ErϕpXpT qqs

ˇ

ˇ ď
ˇ

ˇErϕpXε
pT qqs ´ ErϕpXε,∆t

N qs
ˇ

ˇ

`
ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpX∆t

N qs
ˇ

ˇ

`
ˇ

ˇErϕpX∆t
N qs ´ ErϕpXpT qqs

ˇ

ˇ,

where the value of ∆t “ T {N in the right-hand side of the inequality above is arbitrary.
Since the value of the left-hand side is independent of ∆t, choosing N “ ε´2 ` 1 and using
the inequalities (40), (41) and (36) from Propositions 3.6, 3.7 and 3.3 respectively gives the
inequality (18). �

Proof of Theorem 3.4. The weak error ErϕpXε,∆t
N qs ´ ErϕpXεpT qqs can be treated

using two different strategies.
On the one hand, one has the inequality (40) from Proposition 3.6:

ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpXε

pT qqs
ˇ

ˇ ď CκpT q
´

`∆t

ε

˘
1
2
´κ
`

∆t

ε

¯

~ϕ~3

`

1` |Λ
κ
2 x0|

2
˘

.

On the other hand, one has
ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpXε

pT qqs
ˇ

ˇ ď
ˇ

ˇErϕpXε,∆t
N qs ´ ErϕpX∆t

N qs
ˇ

ˇ

`
ˇ

ˇErϕpX∆t
N qs ´ ϕpXpT qq

ˇ

ˇ

`
ˇ

ˇϕpXpT qq ´ ErϕpXε
pT qqs

ˇ

ˇ

ď CκpT q
` ε

∆tκ
`∆t1´κ

˘

~ϕ~2p1` |x0|
2
q

` CκpT q~ϕ~2∆t1´κp1` |x0|
2
q

` CκpT q~ϕ~3ε
1´κ

`

1` |Λ
κ
2 x0|

2
˘

,

using the inequalities (41), (36) and (18) from Propositions 3.7, 3.3 and 2.2 respectively.
Using the first inequality when ∆t

1
3 ď ε and the second inequality when ε ď ∆t

1
3 , one

then obtains the inequality (37). Since the parameter κ P p0, κ0q is arbitrarily small, the
proof of Theorem 3.4 is thus completed. �

Remark 3.8. If the fast component Yε of the SPDE system (13) is discretized using the
accelerated exponential Euler scheme, one obtains the scheme

(42)

$

’

&

’

%

Xε,∆t
n`1 “ A∆t

`

Xε,∆t
n `∆tF pXε,∆t

n ,Yε,∆t
n`1q

˘

Yε,∆t
n`1 “ e´

∆t
ε

ΛYε,∆t
n `

c

2

ε

ż tn`1

tn

e´
tn`1´t

ε dW psq,

with initial values Xε,∆t
0 “ xε0 and Yε,∆t

0 “ yε0.
The result of Theorem 3.4 is valid also for the scheme (42). In fact, the proof of Propo-

sition 3.6 would be simpler for that scheme: for instance the error terms e1,ε,∆t
n and e2,ε,∆t

n

defined by (78) and (79) below would vanish. We thus focus only on the analysis of the
scheme (21).

Note that the scheme (42) can be applied only if the eigenvalues λj and eigenfunctions
ej of the linear operator Λ (see Assumption 2) are known (in which case it is appropriate to
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use a spectral Galerkin discretization in space). On the contrary, the scheme (21), based on
the modified Euler scheme introduced in [5], can be applied without this knowledge, and it is
appropriate to combine it with a finite difference discretization in space.

It thus remains to establish all the auxiliary results used in the proof of Theorem 3.4
above.

4. Regularity estimates for solutions of Kolmogorov equations

Let ϕ : H Ñ R be a continuous mappping. The weak error analysis requires to study the
regularity and growth properties of the auxiliary mappings pt, x, yq P r0, T sˆH ÞÑ uεpt, x, yq
and pn, xq P t0, . . . , Nu ˆH ÞÑ u∆t

n pxq defined by
uεpt, x, yq “ Ex,yrϕpXε

ptqqs,(43)

u∆t
n pxq “ ϕpX∆t;x

n q,(44)

where
`

Xεptq,Yεptq
˘

tPr0,T s
is the mild solution of (13) with initial values Xεp0q “ x and

Yεp0q “ y (this is the meaning of the notation Ex,yr¨s in (43)), and where
`

X∆t;x

n

˘

n“0,...,N
is

the solution of (38).
The function uε is solution of the Kolmogorov equation

(45)

Btu
ε
pt, x, yq “ xDxu

ε
pt, x, yq,´Λx` F px, yqy

`
1

ε

´

´xDyu
ε
pt, x, yq,Λyy `

ÿ

jPN

D2
yu

ε
pt, x, yq.pej, ejq

¯

,

with initial value uεp0, x, yq “ ϕpxq. We refer to the monograph [11] for results on infinite
dimensional Kolmogorov equations. In this section, it would be convenient to introduce a
spectral Galerkin approximation procedure to justify all the computations. This is a standard
tool, and to simplify the notation this is omitted in the sequel. All the upper bounds are
understood to hold uniformly with respect to the auxiliary approximation parameter.

Let us first state regularity results for the mapping uε.

Lemma 4.1. For all T P p0,8q and κ P p0, 1s, α P r0, 1q, α1, α2 P r0, 1q such that
α1 ` α2 ă 1, there exist CκpT q, CαpT q, Cα1,α2pT q P p0,8q such that for all ε P p0, ε0q and
all ϕ : H Ñ R of class C3 with bounded derivatives of order 1, 2, 3, one has the following
inequalities.

(1) For all t P p0, T s, x, y P H and h P H, one has

(46) |xDxu
ε
pt, x, yq, hy| `

1

ε
|xDyu

ε
pt, x, yq, hy| ď

CαpT q

tα
~ϕ~1|Λ

´αh|.

(2) For all t P p0, T s, x, y P H and h1, h2 P H, one has

(47)
|D2

xu
ε
pt, x, yq.ph1, h2

q| `
1

ε1´α1
|DxDyu

ε
pt, x, yq.ph1, h2

q| `
1

ε
|D2

yu
ε
pt, x, yq.ph1, h2

q|

ď
Cα1,α2pT q

tα1`α2
~ϕ~2}Λ

´α1h1
||Λ´α2h2

|.

(3) For all t P p0, T s, x, y P Hκ and h P Hκ, one has

(48) |BtxDxu
ε
pt, x, yq, hy| ď

1

ε

CκpT q

t1´κ
~ϕ~3p1` |Λ

κx| ` |Λκy|q|Λκh|.
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Lemma 4.1 is a variant of [10, Lemma 5.5] (SDE case), with a more precise analysis of
the dependence with respect to the parameter ε of the derivatives with respect to the variable
y. In addition, in order to obtain the optimal weak order of convergence with respect to ∆t
(with fixed ε) in Proposition 3.6, one needs to choose α, α1, α2 ą 0. The bounds of type (46)
and (47) are specific to the parabolic semilinear evolution equations setting, and are related
to the smoothing inequality (9). We refer for instance [9] and [16] for similar results (with
fixed ε) and their use to prove weak error estimates.

Let us now provide regularity results for the mappings u∆t
n defined by (44).

Lemma 4.2. For all T P p0,8q and κ P p0, 1s, there exists CκpT q P p0,8q such that for
all ∆t P p0,∆t0q, all x, y P H, all h, k P H, all n P t1, . . . , Nu, and all ϕ : H Ñ R of class
C2 with bounded derivatives of order 1, 2, one has

|xDu∆t
n pxq, hy| ď

CκpT q

pn∆tq1´κ
~ϕ~1

`

∆t|h| ` |Λ´1`κh|
˘

(49)

|D2u∆t
n pxq.ph, kq| ď

CκpT q

pn∆tq1´κ
~ϕ~2

`

∆t|h| ` |Λ´1`κh|
˘

|k|(50)

|xDu∆t
n`1pxq ´Du

∆t
n pxq, hy| ď

CκpT q∆t
1´κ

pn∆tq1´κ
~ϕ~2p1` |x|q|h|.(51)

Note that with κ “ 1, the inequalities (49) and (50) provide the following result:

(52) sup
0ď∆tď∆t0

sup
0ďnďN

~un~2 ď CpT q~ϕ~2.

Lemma 4.2 is a variant of [10, Lemma 5.7] (SDE case), where like in Lemma 4.1 one needs
1´κ ‰ 0. The proof employs the discrete time version (20) of the smoothing inequality (9).
See also [7, Lemma 7.2] for a variant of Lemma 4.2 (analysis of HMM schemes in the SPDE
case).

The proof of Lemma 4.1 is given in Section 4.1, whereas the proof of Lemma 4.2 is given
in Section 4.2.

4.1. Proof of Lemma 4.1. Recall the notation H “ H ˆH. For all h “ phx, hyq P H,
one has the following expression for the first-order derivatives:

Duεpt, x, yq.h “ Dxu
ε
pt, x, yq.hx `Dyu

ε
pt, x, yq.hy

“ Ex,yrDϕpXε
pt, x, yqq.ηε,hx ptqs

where t P r0, T s ÞÑ ηhptq “ pηε,hx ptq, η
ε,h
y ptqq P H is solution of

$

’

’

&

’

’

%

dηε,hx ptq

dt
“ ´Ληε,hx ptq `DxF pXε

ptq,Yε
ptqq.ηε,hx ptq `DyF pXε

ptq,Yε
ptqq.ηε,hy ptq

dηε,hy ptq

dt
“ ´

1

ε
Ληε,hy ptq,

with initial values ηε,hx p0q “ hx and ηε,hy p0q “ hy.
17



For all h1 “ ph1
x, h

1
yq P H and h2 “ ph2

x, h
2
yq P H, one has the following expression for the

second-order derivatives:

D2uεpt, x, yq.ph1,h2
q “ D2

xu
ε
pt, x, yq.ph1

x, h
2
xq `D

2
yu

ε
pt, x, yq.ph1

y, h
2
yq

`DxDyu
ε
pt, x, yq.ph1

x, h
2
yq `DyDxu

ε
pt, x, yq.ph1

y, h
2
xq

“ Ex,yrDϕpXε
ptqq.ζε,h

1,h2

x ptqs ` Ex,yrD2ϕpXε
ptqq.pηε,h

1

x ptq, ηε,h
2

x ptqqs,

where t P r0, T s ÞÑ ζε,h
1,h2
ptq “ pζε,h

1,h2

x ptq, ζε,h
1,h2

y ptqq P H is solution of

$

’

’

’

’

’

&

’

’

’

’

’

%

dζε,h
1,h2

x ptq

dt
“ ´Λζε,h

1,h2

x ptq `DxF pXε
ptq,Yε

ptqq.ζε,h
1,h2

x ptq `DyF pXε
ptq,Yε

ptqq.ζε,h
1,h2

y ptq

`D2F pXε
ptq,Yε

ptqq.pηε,h
1

ptq, ηε,h
2

ptqq

dζε,h
1,h2

y ptq

dt
“ 0,

with initial values ζε,h1,h2

x p0q “ ζε,h
1,h2

y p0q “ 0. In the expressions above, the fact that the
initial value “ uεp0, x, yq “ ϕpxq is independent of y is used.

Proof of the inequality (46). Let α P r0, 1q.
Observe that for all t ě 0, one has ηhy ptq “ e´

t
ε
Λhy. As a consequence, using the semigroup

property and the smoothing inequality (9), for all t P p0,8q, one obtains

(53) |ηε,hy ptq| ď Cα
εα

tα
|e´

t
2ε

Λhy| ď Cαe
´
λ1t
2ε
εα

tα
|Λ´αhy|.

Introduce an auxiliary process defined by η̃ε,hx ptq “ ηε,hx ptq ´ e´tΛhx for all t ě 0. Using
the mild formulation

ηε,hx ptq “ e´tΛhx `

ż t

0

e´pt´sqΛDxF pXε
psq,Yε

psqq.ηε,hx psqds

`

ż t

0

e´pt´sqΛDyF pXε
psq,Yε

psqq.ηε,hy psqds,

one obtains, for all t P r0, T s,

η̃ε,hx ptq “

ż t

0

e´pt´sqΛDxF pXε
psq,Yε

psqq.η̃ε,hx psqds

`

ż t

0

e´pt´sqΛDxF pXε
psq,Yε

psqq.e´sΛhxds

`

ż t

0

e´pt´sqΛDyF pXε
psq,Yε

psqq.e´
s
ε
Λhyds.

18



Since the mappings DxF and DyF are bounded (Assumption 2), using the smoothing in-
equality (9) and the bound above, one then has

|η̃ε,hx ptq| ď C

ż t

0

|η̃ε,hx psq|ds` C

ż t

0

|e´sΛhx|ds` C

ż t

0

|e´
s
ε
Λhy|ds

ď C

ż t

0

|η̃hx psq|ds` Cα

ż t

0

s´αds|Λ´αhx| ` Cα

ż t

0

e´
λ1s
2ε
εα

sα
|Λ´αhy|ds

ď C

ż t

0

|η̃hx psq|ds` CαpT q
`

|Λ´αhx| ` ε|Λ
´αhy|

˘

with CαpT q “
şT

0
s´αds `

ş8

0
e´

λ1s
2 s´αds ă 8, by a straightforward change of variables

argument in the integral.
Applying Gronwall’s inequality, one then obtains

sup
0ďtďT

|η̃ε,hx ptq| ď CαpT q
`

|Λ´αhx| ` ε|Λ
´αhy|

˘

,

with CαpT q P p0,8q, independent of ε P p0, ε0q. Therefore, for all t P p0, T s, one obtains the
inequality

(54) |ηε,hx ptq| ď CαpT q
` 1

tα
|Λ´αhx| ` ε|Λ

´αhy|
˘

.

Since Dϕ is bounded, one finally obtains the inequality

|Duεpt, x, yq.h| ď CκpT q~ϕ~1

` 1

tα
|Λ´αhx| ` ε|Λ

´αhy|
˘

,

for all t P p0, T s. Considering the cases h “ phx, hyq “ ph, 0q and h “ phx, hyq “ p0, hq then
concludes the proof of the inequality (46). �

Proof of the inequality (47). Let α1, α2 P r0, 1q be such that α1 ` α2 ă 1.
Observe that ζh1,h2

y ptq “ 0 for all t ě 0, and that, using a mild formulation, one has, for
all t ě 0,

ζε,h
1,h2

x ptq “

ż t

0

e´pt´sqΛDxF pXε
psq,Yε

psqq.ζε,h
1,h2

x psqds

`

ż t

0

e´pt´sqΛD2F pXε
psq,Yε

psqq.pηε,h
1

psq, ηε,h
2

psqqds.
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Using the inequalities (54) and (53), one then obtains

|ζε,h
1,h2

x ptq| ď C

ż t

0

|ζε,h
1,h2

x psq|ds` C

ż t

0

|ηε,h
1

psq||ηε,h
2

psq|ds

ď C

ż t

0

|ζε,h
1,h2

x psq|ds

` Cα1,α2pT q

ż t

0

´

s´α1 |Λ´α1h1
x| `

`

ε`
εα1

sα1
e´

λ1s
2ε

˘

|Λ´α1h1
y|

¯

´

s´α2 |Λ´α2h2
x| `

`

ε`
εα2

sα2
e´

λ1s
2ε

˘

|Λ´α2h2
y|

¯

ds

ď C

ż t

0

|ζε,h
1,h2

x psq|ds

` Cα1,α2pT q
´

|Λ´α1h1
x||Λ

´α2h2
x| ` ε|Λ

´α1h1
y||Λ

´α2h2
y|

¯

` Cα1,α2pT q
´

ε1´α1 |Λ´α1h1
x||Λ

´α2h2
y| ` ε

1´α2 |Λ´α1h1
y||Λ

´α2h2
x|

¯

,

where Cα1,α2pT q P p0,8q is independent of ε P p0, ε0q, using change of variables arguments
in the integrals, like in the proof of the inequality (46) above.

Applying Gronwall’s lemma then yields the inequality

sup
0ďtďT

|ζε,h
1,h2

x ptq| ď Cα1,α2pT q
´

|Λ´α1h1
x||Λ

´α2h2
x| ` ε|Λ

´α1h1
y||Λ

´α2h2
y|

¯

` Cα1,α2pT q
´

ε1´α1 |Λ´α1h1
x||Λ

´α2h2
y| ` ε

1´α2 |Λ´α1h1
y||Λ

´α2h2
x|

¯

,

for all t P r0, T s. Using that inequality and (54), one then obtains

|D2uεpt, x, yq.ph1,h2
q| ď ~ϕ~1|ζ

ε,h1,h2

x ptq| ` ~ϕ~2|η
ε,h1

x ptq||ηε,h
2

x ptq|

ď Cα1,α2pT q~ϕ~1

´

|Λ´α1h1
x||Λ

´α2h2
x| ` ε|Λ

´α1h1
y||Λ

´α2h2
y|

¯

` Cα1,α2pT q~ϕ~1

´

ε1´α1 |Λ´α1h1
x||Λ

´α2h2
y| ` ε

1´α2 |Λ´α1h1
y||Λ

´α2h2
x|

¯

` CκpT q~ϕ~2

` 1

tα1
|Λ´α1h1

x| ` ε|Λ
´α1h1

y|
˘` 1

tα2
|Λ´α2h2

x| ` ε|Λ
´α2h2

y|
˘

.

Let h, k P H. Considering the case with h1 “ ph1, 0q and h2 “ ph2, 0q, one obtains

|D2
xu

ε
pt, x, yq.ph1, h2

q| “ |D2uεpt, x, yq.pph1, 0q, ph2, 0qq|

ď
Cα1,α2pT q

tα1`α2
~ϕ~2|Λ

´α1h1
||Λ´α2h2

|.

Similarly, considering the case with h1 “ ph1, 0q and h2 “ p0, h2q, one obtains

|DxDyu
ε
pt, x, yq.ph1, h2

q| “ |D2uεpt, x, yq.pph1, 0q, p0, h2
qq|

ď ε1´α1
Cα1,α2pT q

tα1
~ϕ~2|Λ

´α1h1
||Λ´α2h2

|,
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and considering the case with h1 “ p0, h1q and h2 “ p0, h2q, one obtains

|D2
yu

ε
pt, x, yq.ph1, h2

q| “ |D2uεpt, x, yq.pp0, h1
q, p0, h2

qq|

ď εCα1,α2pT q~ϕ~2|Λ
´α1h1

||Λ´α2h2
|.

The proof of the inequality (47) is thus completed. �

Proof of the inequality (48). Using the fact that uε solves the Kolmogorov equa-
tion (45), one has

BtxDxu
ε
pt, x, yq, hy “ xDxBtu

ε
pt, x, yq, hy

“ xDxu
ε
pt, x, yq,´Λh`DxF px, yq.hy

`D2
xu

ε
pt, x, yq.p´Λx` F px, yq, hq

´
1

ε
DxDyu

ε
pt, x, yq.ph,Λyq `

1

ε

ÿ

jPN

DxD
2
yu

ε
pt, x, yq.ph, ej, ejq.

Using the inequality (46), one obtains the upper bound

(55) |xDxu
ε
pt, x, yq,´Λh`DxF px, yq.hy| ď

CκpT q

t1´κ
~ϕ~1|Λ

κh|.

Using the inequality (47) and the linear growth property of F , one obtains the upper bounds

(56) |D2
xu

ε
pt, x, yq.p´Λx` F px, yq, hq| ď

CκpT q

t1´κ
~ϕ~2p1` |Λ

κx| ` |y|q|h|

and

(57) |DxDyu
ε
pt, x, yq.ph,Λyq| ď

CκpT q

t1´κ
~ϕ~2|Λ

κy||h|.

In order to deal with the last term in the expression above, one needs to prove the following
upper bound: for all t P p0, T s, x, y P H and h1,h2,h3 P H, one has

(58) |D3uεpt, x, yq.ph1,h2,h3
q| ď

CκpT q

t1´κ
|h1
|p|Λ´1`κh2

x| ` |Λ
´1`κh2

y|q|h
3
|,

with h2 “ ph2
x, h

2
yq. The proof of the auxiliary inequality (58) is similar to the proofs of

the inequalities (46) and (47), but there is a crucial difference which makes the arguments
simpler: the inequality (58) states bounds which are uniform with respect to ε, whereas for
the two other inequalities the dependence with respect to ε is made more explicit. A version
of (58) with a similar analysis of the dependence with respect to ε may be obtained but is
useless for the proof of the inequality (48) and is therefore omitted.

Let us give the proof of the auxiliary inequality (58). One has the expression

D3uεpt, x, yq.ph1,h2,h3
q “ Ex,yrDϕpXε

ptqq.ξε,h
1,h2,h3

x ptqs

` Ex,yrD2ϕpXε
ptqq.pηε,h

1

x ptq, ζε,h
2,h3

x ptqqs

` Ex,yrD2ϕpXε
ptqq.pηε,h

2

x ptq, ζε,h
3,h1

x ptqqs

` Ex,yrD2ϕpXε
ptqq.pηε,h

3

x ptq, ζε,h
1,h2

x ptqqs

` Ex,yrD3ϕpXε
ptqq.

`

ηε,h
1

x ptq, ηε,h
2

x ptq, ηε,h
3

x ptqq
˘

s,
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where t P r0, T s ÞÑ ξε,h
1,h2,h3

ptq “ pξε,h
1,h2,h3

x ptq, ξε,h
1,h2,h3

y ptqqH is solution of
$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dξε,h
1,h2,h3

x ptq

dt
“ ´Λξε,h

1,h2,h3

x ptq `DF pXε
ptq,Yε

ptqq.ξε,h
1,h2,h3

ptq

`D2F pXε
ptq,Yε

ptqq.pηε,h
1

ptq, ζε,h
2,h3

ptqq

`D2F pXε
ptq,Yε

ptqq.pηε,h
2

ptq, ζε,h
3,h1

ptqq

`D2F pXε
ptq,Yε

ptqq.pηε,h
3

ptq, ζε,h
1,h2

ptqq

`D3F pXε
ptq,Yε

ptqq.pηε,h
1

ptq, ηε,h
2

ptq, ηh
3

ptqq,

dξε,h
1,h2,h3

y ptq

dt
“ 0,

with initial values ξε,h1,h2,h3

x p0q “ 0 and ξε,h1,h2,h3

y p0q “ 0.
In the proofs of the inequalities (46) and (47), the following auxiliary results have been

obtained (where the dependence with respect to ε is not indicated): for all t P p0, T s, x, y P H
and h “ phx, hyq,k P H, one has

|ηε,hptq| ď CκpT qt
´1`κ

|Λ´1`κh|

|ζε,h,kptq| ď CκpT qp|Λ
´1`κhx| ` |Λ

´1`κhy|q|k|.

Using a mild formulation for ξε,h1,h2,h3

x ptq, the boundedness of the derivatives of F of order
1, 2, 3 (Assumption 2), the two upper bounds above (and versions using symmetries with
respect to permutations of h1, h2 and h3), and Gronwall’s lemma, one obtains the upper
bound

sup
0ďtďT

|ξε,h
1,h2,h3

x ptq| ď CκpT q|h
1
|p|Λ´

1
2
´κh2

x| ` |Λ
´ 1

2
´κh2

y|q|h
3
|.

Using the expression for D3uεpt, x, yq.ph1,h2,h3q above and the upper bounds, the proof of
the auxiliary inequality (58) is completed.

We are now in position to conclude the proof of the inequality (48): using the auxiliary
inequality (58), the last term satisfies the following upper bound:

(59)
ˇ

ˇ

ÿ

jPN

DxD
2
yu

ε
pt, x, yq.ph, ej, ejq

ˇ

ˇ ď
CκpT q

t1´κ
~ϕ~3|h|

ÿ

jPN

λ´1`κ
j ď

CκpT q

t1´κ
~ϕ~3|h|.

Gathering the four upper bounds (55), (56), (57) and (59) and using the expression of
BtxDxu

εpt, x, yq, hy then gives the inequality (48). �

4.2. Proof of Lemma 4.2. Before proceeding with the proofs of the regularity esti-
mates stated in Lemma 4.2, note that the mapping u∆t

n : H Ñ R is of class C2: this is proved
by recursion using the expression

(60) u∆t
n`1pxq “ u∆t

n pA∆tx`∆tA∆tF pxqq,

with the initial value u∆t
0 “ ϕ being of class C2.

In addition, using the identity

u∆t
n`1pxq “ ϕpA∆tX

∆t;x

n `∆tA∆tF pX
∆t;x

n qq,
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a recursion argument proves the following expressions: for all x, h, k P H, and n P t0, . . . , Nu,
one has

xDu∆t
n pxq, hy “ xDϕpX

∆;x

n q, η∆t;x,h
n y(61)

D2u∆t
n pxq.ph, kq “ D2ϕpX∆t;x

n q.pη∆t;x,h
n , η∆t;x,k

n q ` xDϕpX∆t;x

n q, ζ∆t;x,h,k
n y,(62)

where the auxiliary sequences
`

η∆t;x,h
n

˘

ně0
and

`

ζ∆t;x,h
n

˘

ně0
are defined by

η∆t;x,h
n`1 “ A∆tη

∆t;x,h
n `∆tA∆tDF pX

∆t;x

n q.η∆t;x,h
n

(63)

ζ∆t;x,h
n`1 “ A∆tζ

∆t;x,h,k
n `∆tA∆tDF pX

∆t;x

n q.ζ∆t;x,h,k
n `∆tA∆tD

2F pX∆t;x

n q.pη∆t;x,h
n , η∆t;x,k

n q,

(64)

with initial values η∆t;x,h
0 “ h and ζ∆t;x,h,k

0 “ 0.

Proof of the inequality (49). Introduce the auxiliary variable η̃∆t;x,h
n “ η∆t;x,h

n ´

An
∆th for all n P t0, . . . , Nu. Using the inequality (20), one obtains

|xDu∆t
n pxq, hy| ď

ˇ

ˇxDϕpX∆t;x

n q,An
∆thy

ˇ

ˇ`
ˇ

ˇxDϕpX∆t;x

n q, η̃∆t;x,h
n y

ˇ

ˇ

ď
Cκ~ϕ~1

pn∆tq1´κ
|Λ´1`κh| ` ~ϕ~1|η̃

∆t;x,h
n |.

Observe that the auxiliary sequence
`

η̃∆t;x,h
n

˘

ně0
satisfies for all n ě 0

η̃hn`1 “ A∆tη̃
h
n `∆tA∆tDF pX

∆t;x

n q.η̃hn `∆tA∆tDF pX
∆t;x

n q.pAn
∆thq,

with η̃∆t;x,h
0 “ 0. As a consequence, one obtains the equality

η̃∆t;x,h
n “ ∆t

n´1
ÿ

`“0

An´`
∆t DF pX

∆t;x

` q.η̃∆t;x,h
` `∆t

n´1
ÿ

`“0

An´`
∆t DF pX

∆t;x

` q.pA`
∆thq,

which gives, using the inequality (20), for all n P t1, . . . , Nu

|η̃∆t;x,h
n | ď C∆t

n´1
ÿ

`“0

|η̃∆t;x,h
` | ` C∆t

n´1
ÿ

`“0

|A`
∆th|

ď C∆t
n´1
ÿ

`“0

|η̃∆t;x,h
` | ` C∆t|h| `∆t

n´1
ÿ

`“1

Cκ
p`∆tqh

|Λ´1`κh|

ď C∆t
n´1
ÿ

`“0

|η̃∆t;x,h
k | ` C∆t|h| ` CκpT q|Λ

´1`κh|.

Applying the discrete Gronwall inequality yields

|η̃∆t;x,h
n | ď CκpT qp∆t|h| ` |Λ

´1`κh|q
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for all n P t0, . . . , Nu, and finally one obtains the inequality

|xDu∆t
n pxq, hy| ď

Cκ~ϕ~1

pn∆tq1´κ
|Λ´1`κh| ` ~ϕ~1|η̃

∆t;x,h
n |

ď
Cκ~ϕ~1

pn∆tq1´κ
|Λ´1`κh| ` CκpT q~ϕ~1p∆t|h| ` |Λ

´1`κh|q

which concludes the proof of the inequality (49). �

Proof of the inequality (50). Using the identity η∆t;x,h
n “ An

∆th ` η̃∆t;x,h
n for all

n P t0, . . . , Nu and the inequality above, one obtains
ˇ

ˇD2u∆t
n pxq.ph, kq| ď ~ϕ~1|ζ

∆t;x,h,k
n | ` ~ϕ~2|η

∆t;x,h
n ||η∆t;x,k

n |

ď ~ϕ~1|ζ
∆t;x,h,k
n | ` CκpT q~ϕ~2

CκpT q

pn∆tq1´κ
~ϕ~1

`

∆t|h| ` |Λ´1`κh|
˘

|k|.

It remains to give an upper bound for |ζ∆t;x,h,k
n |: for all n P t0, . . . , Nu, one has

ζ∆t;x,h,k
n “ ∆t

n´1
ÿ

`“0

An´`
∆t DF pX

∆t;x

` q.ζ∆t;x,h,k
` `∆t

n´1
ÿ

`“0

An´`
∆t D

2F pX∆t;x
` q.pη∆t;x,h

` , η∆t;x,k
` q.

Since F : H Ñ R is of class C2 with bounded first and second order derivatives, one obtains

|ζ∆t;x,h,k
n | ď C∆t

n´1
ÿ

`“0

|ζ∆t;x,h,k
` | ` C∆t

n´1
ÿ

`“0

|η∆t;x,h
` ||η∆t;x,k

` |

ď C∆t
n´1
ÿ

`“0

|ζh,k` | ` C∆t|h||k| `∆t
n´1
ÿ

`“1

CκpT q

p`∆tq1´κ
|Λ´1`κh||k|

ď C∆t
n´1
ÿ

`“0

|ζh,k` | ` CκpT qp∆t|h| ` |Λ
´1`κh|q|k|

for all n P t0, . . . , Nu. The discrete Gronwall inequality then yields

sup
0ďnďN

|ζ∆t;x,h,k
n | ď CκpT qp∆t|h| ` |Λ

´1`κh|q|k|.

Gathering the estimates then concludes the proof of the inequality (50). �

Proof of the inequality (51). Using the identity (60), for all x, h P H and for all
n P t1, . . . , Nu, one obtains the equality

xDu∆t
n`1pxq, hy “ xDu

∆t
n

`

A∆tx`∆tA∆tF pxq
˘

,A∆th`∆tA∆tDF pxq.hy.

As a consequence, one has the inequality
ˇ

ˇxDu∆t
n`1pxq ´Du

∆t
n pxq, hy

ˇ

ˇ ď
ˇ

ˇxDu∆t
n pA∆tx`∆tA∆tF pxqq ´Du

∆t
n px`∆tA∆tF pxqq, hy

ˇ

ˇ

`
ˇ

ˇxDu∆t
n px`∆tA∆tF pxqq ´Du

∆t
n pxq, hy

ˇ

ˇ

`
ˇ

ˇxDu∆t
n pA∆tx`∆tA∆tF pxqq, pA∆t ´ Iqhy

ˇ

ˇ

`
ˇ

ˇxDu∆t
n pA∆tx`∆tA∆tF pxqq,∆tA∆tDF pxq.hy

ˇ

ˇ

and it remains to prove upper bounds for the four terms appearing in the right-hand side
above. Let κ P p0, 1s.
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‚ Using the inequality (50), for the first term, one obtains
ˇ

ˇxDu∆t
n pA∆tx`∆tA∆tF pxqq ´Du

∆t
n px`∆tA∆tF pxqq, hy

ˇ

ˇ

ď
CκpT q

pn∆tq1´κ
~ϕ~2

`

∆t|pA∆t ´ Iqx| ` |Λ
´1`κ

pA∆t ´ Iqx|
˘

|h|

ď
CκpT q∆t

1´κ

pn∆tq1´κ
~ϕ~2|x||h|.

‚ Using the inequality (52) – or the inequality (50) with κ “ 1 – and the global Lipschitz
continuity of F , for the second term, one obtains

ˇ

ˇxDu∆t
n px`∆tA∆tF pxqq ´Du

∆t
n pxq, hy

ˇ

ˇ ď CpT q~ϕ~2∆t|F pxq||h|

ď CpT q∆t~ϕ~2p1` |x|q|h|.

‚ Using the inequality (49), for the third term, one obtains
ˇ

ˇxDu∆t
n pA∆tx`∆tA∆tF pxqq, pA∆t ´ Iqhy

ˇ

ˇ

ď
CκpT q

pn∆tq1´κ
~ϕ~1

`

∆t|pA∆t ´ Iqh| ` |Λ
´1`κ

pA∆t ´ Iqh|
˘

ď
CκpT q∆t

1´κ

pn∆tq1´κ
~ϕ~1|h|.

‚ Using the inequality (52) – or the inequality (49) with κ “ 1 – and the global Lipschitz
continuity of F , for the fourth term, one obtains

ˇ

ˇxDu∆t
n pA∆tx`∆tA∆tF pxqq,∆tA∆tDF pxq.hy

ˇ

ˇ ď CpT q~ϕ~1∆t|A∆tDF pxq.h|

ď CpT q∆t~ϕ~1p1` |x|q|h|.

Gathering the estimates for the fourth terms considered above, one obtains the upper bound

ˇ

ˇxDu∆t
n`1pxq ´Du

∆t
n pxq, hy

ˇ

ˇ ď
CκpT q∆t

1´κ

pn∆tq1´κ
~ϕ~2p1` |x|q|h|,

which concludes the proof of the inequality (51). �

5. Proof of the asymptotic preserving property

This section is devoted to the proof of Propositions 3.2 and 3.3 stated in Section 3.1.
The arguments are the same as in the proof of [5, Theorem 9.1], however they are also given
here to make the presentation self-contained.

5.1. Proof of Proposition 3.2.

Proof of Proposition 3.2. It is convenient to employ the following interpretation of
the modified Euler scheme (see [5, Section 3.2]): if

`

Γn
˘

ně0
is a sequence of independent

cylindrical Gaussian random variables, one has the equality in distribution

B∆t
ε
,1Γn,1 ` B∆t

ε
,2Γn,2 “ B∆t

ε
Γn
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for all n ě 0, where the self-adjoint linear operator B∆t
ε
“ Bτ is defined by

Bτx “
ÿ

jPN

a

2` λjτ
?

2 p1` λjτq
xx, ejyej

for all x P H, and satisfies the identity

B2
τ “ B2

τ,1 ` Bτ,2B‹τ,2 “
1

2

`

A2
τ `Aτ

˘

“
1

2
p2I ` τΛqpI ` τΛq´2.

As a consequence, one has the equality in distribution
`

Xε,∆t
n ,Yε,∆t

n

˘

ně0
“
`

X̂ε,∆t
n , Ŷε,∆t

n

˘

ně0

where the scheme
`

X̂ε,∆t
n , Ŷε,∆t

n

˘

ně0
is defined by

(65)

$

’

&

’

%

X̂ε,∆t
n`1 “ A∆t

`

X̂ε,∆t
n ` τF pX̂ε,∆t

n , Ŷε,∆t
n`1q

˘

Ŷε,∆t
n`1 “ A∆t

ε
Ŷε,∆t
n `

c

2∆t

ε
B∆t

ε
Γn,

with initial values X̂ε,∆t
0 “ xε0 “ Xε,∆t

0 and Ŷε,∆t
0 “ yε0 “ Yε,∆t

0 . In particular, one has

ErϕpXε,∆t
n qs “ ErϕpX̂ε,∆t

n qs.

Since the function ϕ is assumed to be globally Lipschitz continuous, it suffices to prove that,
for all n P t0, . . . , Nu, one has

Er|X̂ε,∆t
n ´ X∆t

n |s Ñ
εÑ0

0.

Note that for all n P t0, . . . , Nu, one has the identities

X̂ε,∆t
n “ An

∆tx
ε
0 `∆t

n´1
ÿ

`“0

An´`
∆t F pX̂

ε,∆t
` , Ŷε,∆t

``1 q,

X∆t
n “ An

∆tx0 `∆t
n´1
ÿ

`“0

An´`
∆t F pX

∆t
` ,Λ

´ 1
2 Γ`q.

Therefore, for all n P t0, . . . , Nu, one has

Er|X̂ε,∆t
n ´ X∆t

n |s ď |x
ε
0 ´ x0| `∆t

n´1
ÿ

`“0

Er|F pX̂ε,∆t
` , Ŷε,∆t

``1 q ´ F pX̂
ε,∆t
` ,Λ´

1
2 Γ`q|s

ď |xε0 ´ x0| `∆t
n´1
ÿ

`“0

Er|F pX̂ε,∆t
` , Ŷε,∆t

``1 q ´ F̂ pX
∆t
` , Ŷ

ε,∆t
``1 q|s

`∆t
n´1
ÿ

`“0

Er|F pX∆t
` , Ŷ

ε,∆t
``1 q ´ F pX

∆t
` ,Λ

´ 1
2 Γ`,2q|s

ď |xε0 ´ x0| ` C∆t
n´1
ÿ

`“0

Er|X̂ε,∆t
` ´ X∆t

` |s ` C∆t
n´1
ÿ

`“0

Er|Ŷε,∆t
``1 ´ Λ´

1
2 Γ`|s,

using the global Lipschitz continuity property of F (Assumption 2).
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Using a straightforward recursion argument (see details below), note that it suffices to
check the following claim: for all ` ě 0, one has

Er|Yε,∆t
``1 ´ Λ´

1
2 Γ`|

2
s Ñ
εÑ0

0.

By the definition of the scheme (65), one has

Ŷε,∆t
``1 ´ Λ´

1
2 Γ` “ A∆t

ε
Ŷε,∆t
` `

´

c

2∆t

ε
B∆t

ε
´ Λ´

1
2

¯

Γ`.

On the one hand, using the moment bound

sup
εPp0,ε0q,∆tPp0,∆t0q

sup
`ě0

Er|Ŷε,∆t
` |

2
s “ sup

εPp0,ε0q,∆tPp0,∆t0q

sup
`ě0

Er|Yε,∆t
` |

2
s ă 8,

see the inequality (27) from Lemma 2.3, one obtains

Er|A∆t
ε
Ŷε,∆t
` |s ď

C

1` λ1
∆t
ε

Ñ
εÑ0

0.

On the other hand, one has

Er|
`

c

2∆t

ε
B∆t

ε
´ Λ´

1
2

˘

Γ`|
2
s “

ÿ

jPN

`

c

2∆t

ε

b

2` λj
∆t
ε

?
2p1` λj

∆t
ε
q
´

1
a

λj

˘2

“
ÿ

jPN

1
`

b

2∆t
ε

?
2`λj

∆t
ε?

2p1`λj
∆t
ε
q
` 1?

λj

˘2

`

∆t
ε
p2` λj

∆t
ε
q

p1` λj
∆t
ε
q2
´

1

λj

˘2

ď
ÿ

jPN

λj
1

`

λjp1` λj
∆t
ε
q2
˘2

ď
ÿ

jPN

1

λjp1` λj
∆t
ε
q4

Ñ
εÑ0

0.

As a consequence, one obtains

lim sup
εÑ0

Er|X̂ε,∆t
n ´ X∆t

n |s ď C∆t
n´1
ÿ

`“0

lim sup
εÑ0

Er|X̂ε,∆t
` ´ X∆t

` |s,

for all n P t0, . . . , Nu. Since X̂ε,∆t
0 ´ X∆t

0 “ xε0 ´ x0 Ñ
εÑ0

0 owing to Assumption 3, it is then
straightforward to conclude that

lim sup
εÑ0

Er|X̂ε,∆t
n ´ X∆t

n |s “ 0

for all n P t0, . . . , Nu. As explained above, this yields

lim
εÑ0

ErϕpXε,∆t
n qs “ lim

εÑ0
ErϕpX̂ε,∆t

n qs “ ErϕpX∆t
n qs

and concludes the proof of (35) and of Proposition 3.2. �
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5.2. Proof of Proposition 3.3.

Proof. Let ϕ : H Ñ R be a mapping of class C2, with bounded first and second order
derivatives, and let ∆t “ T {N P p0,∆t0q. Then the weak error in the left-hand side of (36)
can be decomposed as follows:

ˇ

ˇErϕpX∆t
N qs ´ ErϕpXpT qqs

ˇ

ˇ ď
ˇ

ˇϕpX∆t

N q ´ ϕpXpT qq
ˇ

ˇ`
ˇ

ˇErϕpX∆t
N qs ´ ϕpX

∆t

N q
ˇ

ˇ,

where X∆t

N “ X∆t;x0

N is obtained by using the auxiliary scheme (38), with initial value given
by X∆t

0 “ X∆t
0 “ x0.

On the one hand, using the error estimate (39) from Proposition 3.5 for the auxiliary
scheme, one has

ˇ

ˇϕpX∆t

N q ´ ϕpXpT qq
ˇ

ˇ ď ~ϕ~1|X
∆t

N ´ XpT q|
ď CκpT q∆t

1´κ
p1` |x0|q.

On the other hand, the second error term can be written as follows, in terms of the
auxiliary mappings u∆t

n given by (44), using a telescoping sum argument: one has

ErϕpX∆t
N qs ´ ϕpX

∆t

N q “ Eru∆t
0 pX∆t

N qs ´ Eru∆t
N pX∆t

0 qs

“

N´1
ÿ

n“0

`

Eru∆t
N´n´1pX∆t

n`1qs ´ Eru∆t
N´npX∆t

n qs
˘

“

N´1
ÿ

n“0

`

Eru∆t
N´n´1pA∆tX∆t

n `∆tA∆tF pX∆t
n ,Λ

´ 1
2 Γnqqs

´ Eru∆t
N´n´1pA∆tX∆t

n `∆tA∆tF pX∆t
n qqs

˘

.

Owing to Lemma 4.2, for all n P t0, . . . , N ´ 1u, the mapping u∆t
n is of class C2 and has a

bounded first and second order derivatives. By a Taylor expansion argument, one obtains

Eru∆t
N´n´1pA∆tX∆t

n `∆tA∆tF pX∆t
n ,Λ

´ 1
2 Γnqqs “ Eru∆t

N´n´1pA∆tX∆t
n `∆tA∆tF pX∆t

n qqs

`∆tErxDu∆t
N´n´1pA∆tX∆t

n q,A∆tF pX∆t
n ,Λ

´ 1
2 Γnq ´A∆tF pX∆t

n qys ` r
∆t
n

where

|r∆t
n | ď C~u∆t

N´n´1~2∆t2Er|F pX∆t
n ,Λ

´ 1
2 Γnq ´ F pX∆t

n q|
2
s

ď CpT q∆t2~ϕ~2p1` Er|X∆t
n |

2
sq

ď CpT q∆t2~ϕ~2p1` |x0|
2
q.

using the inequality (52), the Lipschitz continuity of F , the moment bound (34) and the
bound Er|Λ´ 1

2 Γn|s “
ş

|y|dνpyq ă 8. Moreover, by the definition (16) of the nonlinearity
F , and since the random variables X∆t

n and Γn are independent, a conditional expectation
argument yields the identity

(66) ErxDu∆t
N´n´1pA∆tX∆t

n q,A∆tF pX∆t
n ,Λ

´ 1
2 Γnq ´A∆tF pX∆t

n qys “ 0

for all n P t0, . . . , N ´ 1u. As a consequence, one obtains

(67)
ˇ

ˇErϕpX∆t
N qs ´ ϕpX

∆t

N q
ˇ

ˇ ď CpT q∆t~ϕ~2p1` |x0|
2
q.
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Gathering the error estimates then concludes the proof of the inequality (36) and of Propo-
sition 3.3. �

Note that the most fundamental argument in the proof of Proposition 3.3 is the iden-
tity (66). It explains both why the limiting scheme (33) is consistent with the averaged
equation (17), and why it convergence in distribution is considered.

6. Proofs of the error estimates

6.1. Proof of Proposition 3.5. As already explained in Section 3.3, the proof of
Proposition 3.5 is given below even if it is a standard result in numerical analysis of parabolic
semilinear evolution equations. Providing a detailed proof allows us to exhibit the absence
of regularity requirement for the initial value x0. In the proofs, to simplify notation, let
Xn “ Xn

∆t;x0 .
Before proceeding with the proof, let us state auxiliary bounds for the solutions of the

averaged equation (17) and of the auxiliary scheme (38).

Lemma 6.1. For all T P p0,8q and κ P p0, 1q, there exists CκpT q P p0,8q such that for
all 0 ă t1 ă t2 ď T , one has

(68) |Xpt2q ´ Xpt1q| ď CκpT qpt2 ´ t1q
1´κ
p1` t´1`κ

1 |x0|q.

Moreover, there exists C P p0,8q such that for all n P N and ∆t P p0,∆t0q, one has

(69) |X∆t

n | ď eCn∆t
p1` |x0|q.

Proof of Lemma 6.1. Let us first prove the inequality (68). Since F is globally Lips-
chitz continuous, for all t ě 0, one has

|Xptq| ď |e´tΛx0| `

ż t

0

|e´pt´sqΛF pXpsqq|ds

ď |x0| ` C

ż t

0

p1` |Xpsq|qds.

Applying Gronwall’s lemma, one then obtains for all t ě 0

|Xptq| ď eCtp1` |x0|q.

Let κ P p0, 1q, using the inequality (9), one then has for all t ą 0

|Λ1´κXptq| ď |Λ1´κe´tΛx0| `

ż t

0

|Λ1´κe´pt´sqΛF pXpsqq|ds

ď Cκt
´1`κ

|x0| ` Cκ

ż t

0

pt´ sq´1`κdseCtp1` |x0|q

ď CκpT qp1` t
´1`κ

|x0|q.
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For all 0 ă t1 ă t2 ď T , using the inequality (9), one then has

|Xpt2q ´ Xpt1q| ď |pe´pt2´t1qΛ ´ IqXpt1q| `
ż t2

t1

|e´pt2´tqΛXptqq|dt

ď CκpT qpt2 ´ t1q
1´κ
|Λ1´κXpt1q| ` pt2 ´ t1q

`

1` sup
0ďtďT

|Xptqq|
˘

ď CκpT qpt2 ´ t1q
1´κ
p1` t´1`κ

1 |x0|q.

This concludes the proof of the inequality (68). Let us now prove the inequality (69). Since
F is globally Lipschitz continuous, for all n ě 0, one has

|Xn`1| ď |A∆tXn| `∆t|A∆tF pXnq| ď p1` C∆tq|Xn| ` C∆t.

The inequality (69) then follows from a straightforward argument. The proof of Lemma 6.1
is thus completed. �

We are now in position to prove Proposition 3.5.

Proof of Proposition 3.5. For all n ě 0, with the notation tn “ n∆t, one has

Xn “ An
∆tx0 `∆t

n´1
ÿ

`“0

An´`
∆t F pX`q

Xpn∆tq “ e´tnΛx0 `

ż tn

0

e´ptn´tqΛF pXptqqdt.

For all n P t0, . . . , Nu, set en “ |Xn ´ Xpn∆tq|. Using the expressions above, the error en
can be decomposed as follows: for all n P t0, . . . , Nu

en ď ep1qn ` ep2qn ` ep3qn ` ep4qn ` ep5qn ,

where

ep1qn “
ˇ

ˇpAn
∆t ´ e

´n∆tΛ
qx0|

ep2qn “ ∆t
n´1
ÿ

`“0

ˇ

ˇAn´`
∆t

`

F pX`q ´ F pXpt`qq
˘ˇ

ˇ

ep3qn “ ∆t
n´1
ÿ

`“0

ˇ

ˇ

`

An´`
∆t ´ e

´ptn´t`qΛ
˘

F pXpt`qq
ˇ

ˇ

ep4qn “

ż tn

0

ˇ

ˇ

`

e´ptn´t`qΛ ´ e´ptn´tqΛ
˘

F pXpt`qq
ˇ

ˇdt

ep5qn “

n´1
ÿ

`“0

ż t``1

t`

ˇ

ˇe´ptn´tqΛ
`

F pXpt`qq ´ F pXptqq
˘
ˇ

ˇdt.

‚ Recall the inequality

(70) sup
nPN

sup
zPp0,8q

n
ˇ

ˇ

1

p1` zqn
´ e´nz

ˇ

ˇ ă 8.
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As a consequence, for all κ P p0, 1q, there exists Cκ such that one obtains

ep1qn “
ˇ

ˇpAn
∆t ´ e

´n∆tΛ
qx0| ď

Cκ
n
|x0| ď Cκ

∆t1´κ

pn∆tq1´κ
|x0|

for all n P t1, . . . , Nu.
‚ Using the global Lipschitz continuity property of F , one obtains

ep2qn “ ∆t
n´1
ÿ

`“0

ˇ

ˇAn´`
∆t

`

FpX`q ´ F pXpt`qq
˘
ˇ

ˇ

ď C∆t
n´1
ÿ

`“0

|X` ´ Xpt`q|

ď C∆t
n´1
ÿ

`“0

e`.

‚ To deal with the third term, using the inequality (70): one has

ep3qn “ ∆t
n´1
ÿ

`“0

ˇ

ˇ

`

An´`
∆t ´ e

´ptn´t`qΛ
˘

F pXpt`qq
ˇ

ˇ

ď C∆t
n´1
ÿ

`“0

1

pn´ kq
|F pX`q|

ď Cκ∆t
1´κ∆t

n´1
ÿ

`“0

1
`

pn´ kq∆t
˘1´κ

`

1` sup
`“0,...,N

|X`|
˘

ď CκpT q∆t
1´κ

`

1` |x0|
˘

,

using the global Lipschitz continuous property of F , and the bound (69) from Lemma 6.1.
‚ To deal with the fourth term, the identity e´ptn´t`qΛ´e´ptn´tqΛ “ e´ptn´tqΛpe´pt´t`qΛ´Iq

is combined with the inequalities (9) and (10), one has

ep4qn “

ż tn

0

ˇ

ˇ

`

e´ptn´t`qΛ ´ e´ptn´tqΛ
˘

F pXpt`qq
ˇ

ˇdt

ď Cκ

ż tn

0

pt´ t`q
1´κ

ptn ´ tq1´κ
|F pXpt`qq|dt

ď Cκ∆t
1´κ

ż T

0

1

t1´κ
dt
`

1` sup
`“0,...,N

|X`|
˘

ď CκpT q∆t
1´κ

`

1` |x0|
˘

using the global Lipschitz continuous property of F , and the bound (69) from Lemma 6.1.
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‚ To deal with the fifth term, using the global Lipschitz continuity property of F and
the inequality (68), one has

ep5qn “

n´1
ÿ

`“0

ż t``1

t`

ˇ

ˇe´ptn´tqΛ
`

F pXpt`qq ´ F pXptqq
˘
ˇ

ˇdt

ď C
n´1
ÿ

`“0

ż t``1

t`

|Xpt`q ´ Xptq|dt

ď CκpT q
n´1
ÿ

`“1

ż t``1

t`

pt´ t`q
1´κ
p1` t´1`κ

` |x0|qdt

` C∆tp1` sup
0ďtďT

|Xptq|q

ď CκpT q∆t
1´κ
p1`∆t

n´1
ÿ

`“0

1

p`∆tq1´κ
|x0| ` C∆tp1` |x0|q

ď CκpT q∆t
1´κ
p1` |x0|

˘

.

‚ Gathering the estimates then gives

en ď ∆t
n´1
ÿ

`“0

e` ` CκpT q∆t
1´κ
p1`

1

pn∆tq1´κ
|x0|q,

and applying the discrete Gronwall lemma then concludes the proof of the inequality (39). �

6.2. Proof of Proposition 3.6.

Proof of Proposition 3.6. Recall that the mapping uε is defined by (43), and is the
solution of the Kolmogorov equation (45) with initial value uεp0, x, yq “ ϕpxq. Without loss
of generality, it is assumed that ~ϕ~3 ď 1 to simplify notation. Recall also that T “ N∆t.
The weak error is written and then decomposed as follows, using a standard telescoping sum
argument:

ErϕpXε,∆t
N qs ´ ErϕpXε

pT qqs “ Eruεp0,Xε,∆t
N ,Yε,∆t

N qs ´ EruεpT,Xε,∆t
0 ,Yε,∆t

0 qs

“

N´1
ÿ

n“0

`

EruεpT ´ tn`1,Xε,∆t
n`1,Y

ε,∆t
n`1qs ´ EruεpT ´ tn,Xε,∆t

n ,Yε,∆t
n qs

˘

“

N´1
ÿ

n“0

`

EruεpT ´ tn`1,Xε,∆t
n`1,Y

ε,∆t
n`1qs ´ EruεpT ´ tn`1,Xε,∆t

n ,Yε,∆t
n`1qs

˘

`

N´1
ÿ

n“0

`

EruεpT ´ tn`1,Xε
n,Y

ε,∆t
n`1qs ´ EruεpT ´ tn,Xε

n,Yε,∆t
n qs

˘

.

On the one hand, using a Taylor expansion argument and Lemma 4.1, one has

EruεpT ´ tn`1,Xε,∆t
n`1,Y

ε,∆t
n`1qs “ EruεpT ´ tn`1,Xε,∆t

n ,Yε,∆t
n`1qs

` ErxDxu
ε
pT ´ tn`1,Xε,∆t

n ,Yε,∆t
n`1q,X

ε,∆t
n`1 ´ Xε,∆t

n ys ` rε,∆tn ,
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where, owing to the regularity estimate (47) from Lemma 4.1, for all n P t0, . . . , N ´ 2u, one
has

|rε,∆tn | ď
CκpT q

pT ´ tn`1q
1´κ
~ϕ~2E

“

|Λ´1`κ
pXε,∆t

n`1 ´ Xε,∆t
n q||Xε,∆t

n`1 ´ Xε,∆t
n |

‰

.

When n “ 0, using the inequality (32) from Lemma 2.4 and the moment bound (28) from
Lemma 2.3, one obtains

|rε,∆t0 | ď CκpT q~ϕ~2∆t1´κp1` |x0|
2
q.

When n P t1, . . . , N ´ 2u, using the inequalities (31) and (32) from Lemma 2.4, one obtains

|rε,∆tn | ď
CκpT q

pn∆tq1´κpT ´ tn`1q
1´κ
~ϕ~2∆t2p1´κqp1` |x0|

2
q.

The case n “ N ´ 1 is treated differently: using the regularity estimate (47) with κ “ 1 and
the inequality (31) from Lemma 2.4 one has

|rε,∆tN´1| ď CpT q~ϕ~2Er|Xε,∆t
N ´ Xε,∆t

N´1|
2
s

ď
CκpT q

`

pN ´ 1q∆t
˘1´κ~ϕ~2∆t1´κp1` |x0|

2
q

ď CκpT q~ϕ~2∆t1´κp1` |x0|
2
q,

using the lower bound pN ´ 1q∆t “ T ´∆t ě T ´∆t0.
Gathering the estimates, one obtains

(71)
N´1
ÿ

n“0

|rε,∆tn | ď CκpT q~ϕ~2∆t1´2κ
p1` |x0|

2
q.

On the other hand, introduce the auxiliary process
`

Ỹε,∆tptq
˘

tě0
defined as the solution

of the stochastic evolution equation

(72) dỸε,∆t
ptq “ ´

1

ε
Λ∆t

ε
Ỹε,∆t

ptqdt`

c

2

ε
Q

1
2
∆t
ε

dW ptq,

with initial value Ỹε,∆tp0q “ yε0, where the linear operators Λτ and Qτ with τ “ ∆t{ε are given
by (23). By construction, one checks that for all n P N one has the equality in distribution

(73) Ỹε,∆t
ptnq “ Yε,∆t

n .

The equality above is based on the interpretation of the modified Euler scheme as the ac-
celerated exponential Euler scheme applied to a modified stochastic evolution equation, see
Section 2.5 and [5, Section 3.3] for details. More precisely, one has Ỹε,∆tptq “ Yτ p t

ε
q for all

t ě 0 and Ỹε,∆t
n “ Yε,∆t

n “ Yτ
n “ Yτ ptτnq, with tτn “

n∆t
ε
“ tn

ε
, where the processes

`

Yτ ptq
˘

tě0

and
`

Yτ
n

˘

ně0
are defined by (25) and (22) respectively.

Owing to Assumption 3, for all κ P p0, κ0q, one has

(74) sup
εPp0,ε0q

sup
∆tPp0,∆t0q

sup
tě0

Er|Λ
κ
2 Ỹε,∆t

ptq|2s ă 8.

The proof is a consequence of Itô’s isometry formula and straightforward computations,
see [5, Lemma 5.3] for details.
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The mild solution of the auxiliary stochastic evolution equation (72) has the expression

(75) Ỹε,∆t
ptq “ e

´ t
ε
Λ ∆t

ε yε0 `

c

2

ε

ż t

0

e
´ t´s

ε
Λ ∆t

ε Q
1
2
∆t
ε

dW psq,

for all t ě 0.
As a consequence of the equality (73) and using Itô’s formula, one obtains

EruεpT ´ tn`1,Xε,∆t
n ,Yε,∆t

n`1qs ´ EruεpT ´ tn,Xε,∆t
n ,Yε,∆t

n qs

“ EruεpT ´ tn`1,Xε,∆t
n , Ỹε,∆t

ptn`1qqs ´ EruεpT ´ tn,Xε,∆t
n , Ỹε,∆t

ptnqqs

“ ´

ż tn`1

tn

ErBtuεpT ´ t,Xε,∆t
n , Ỹε,∆t

ptqqsdt

´
1

ε

ż tn`1

tn

ErxDyu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq,Λ∆t

ε
Ỹε,∆t

ptqysdt

`
1

ε

ż tn`1

tn

ÿ

jPN

ErD2
yu

ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq.

`

Q∆t
ε
ej, ej

˘

sdt.

Since uε solves the Kolmogorov equation (45), one obtains the following decomposition
of the error terms

(76) EruεpT ´tn`1,Xε,∆t
n`1,Y

ε,∆t
n`1qs´EruεpT ´tn,Xε,∆t

n ,Yε,∆t
n qs “ e0,ε,∆t

n `e1,ε,∆t
n `e2,ε,∆t

n `rε,∆tn ,

where the error terms e0,ε,∆t
n , “ e1,ε,∆t

n and “ e2,ε,∆t
n for n P t0, . . . , N ´ 1u are defined by

(77)
e0,ε,∆t
n “ ErxDxu

ε
pT ´ tn`1,Xε,∆t

n ,Yε,∆t
n`1q,X

ε,∆t
n`1 ´ Xε,∆t

n ys

´

ż tn`1

tn

ErxDxu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq,´ΛXε,∆t

n ` F pXε,∆t
n , Ỹε,∆t

ptqqysdt

and by

e1,ε,∆t
n “ ´

1

ε

ż tn`1

tn

ErxDyu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, pΛ∆t

ε
´ ΛqỸε,∆t

ptqysdt(78)

e2,ε,∆t
n “

1

ε

ż tn`1

tn

ÿ

jPN

ErD2
yu

ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq.

`

pQ∆t
ε
´ Iqej, ej

˘

sdt.(79)

Before proceeding with the proof of upper bounds for the error terms, it is necessary to
introduce a further decomposition for e0,ε,∆t

n . Using the equalities

Xε,∆t
n`1 ´ Xε,∆t

n “
`

A∆t ´ IqXε,∆t
n `∆tA∆tF pXε,∆t

n ,Yε,∆t
n`1q

“
`

A∆t ´ I `∆tΛqXε,∆t
n

`∆tpA∆t ´ IqF pXε,∆t
n ,Yε,∆t

n`1q

`∆t
`

´ΛXε,∆t
n ` F pXε,∆t

n ,Yε,∆t
n`1q

˘

,

the error term e0
n is decomposed as

e0,ε,∆t
n “ e0,1,ε,∆t

n ` e0,2,ε,∆t
n ` e0,3,ε,∆t

n ` e0,4,ε,∆t
n ,
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where the error terms in the right-hand side of the expression above are defined for n P
t0, . . . , N ´ 1u by

e0,1,ε,∆t
n “ ErxDxu

ε
pT ´ tn`1,Xε,∆t

n ,Yε,∆t
n`1q, pA∆t ´ I `∆tΛqXε,∆t

n ys(80)

e0,2,ε,∆t
n “ ErxDxu

ε
pT ´ tn`1,Xε,∆t

n ,Yε,∆t
n`1q,∆tpA∆t ´ IqF pXε,∆t

n ,Yε,∆t
n`1qys(81)

e0,3,ε,∆t
n “

ż tn`1

tn

ErxDxu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq,ΛXε,∆t

n ysdt(82)

´∆tErxDxu
ε
pT ´ tn`1,Xε,∆t

n ,Yε,∆t
ptn`1qq,ΛXε,∆t

n ys(83)

e0,4,ε,∆t
n “

ż tn`1

tn

ErxDxu
ε
pT ´ tn`1,Xε,∆t

n , Ỹε,∆t
ptn`1qq, F pXε,∆t

n , Ỹε,∆t
ptn`1qqysdt(84)

´

ż tn`1

tn

ErxDxu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, F pXε,∆t

n , Ỹε,∆t
ptqqysdt.

The weak error estimate is then a straightforward consequence of the following inequali-
ties, which are proved below (using the conditions from Assumption 3 on the initial values
xε0 and yε0) there exists CκpT q P p0,8q, such that for all ε P p0, ε0q and ∆t P p0,∆t0q, one has

N´1
ÿ

n“0

|e1,ε,∆t
n | ď CκpT q∆tp1` |Λ

κ
2 x0|q ` CκpT q

`∆t

ε

˘
1
2
´κ
p1` |Λ

κ
2 x0|q(85)

N´1
ÿ

n“0

|e2,ε,∆t
n | ď CκpT q

`∆t

ε

˘
1
2
´κ(86)

N´1
ÿ

n“0

|e0,1,ε,∆t
n | ď CκpT q∆tp1` |Λ

κ
2 x0|q ` CκpT q∆t

1´κ
p1` |x0|q(87)

N´1
ÿ

n“0

|e0,2,ε,∆t
n | ď CκpT q∆t

1´κ
p1` |x0|q(88)

N´1
ÿ

n“0

|e0,3,ε,∆t
n | ď CκpT q∆tp1` |Λ

κ
2 x0|q ` CκpT q

´∆t

ε

¯1´κ
`

1` |Λ
κ
2 x0|

2
˘

(89)

N´1
ÿ

n“0

|e0,4,ε,∆t
n | ď CκpT q

´

`∆t

ε
q

1
2
´κ
`
`∆t

ε
q
1´κ

`
∆t

ε

¯

`

1` |Λ
κ
2 x0|

2
˘

.(90)

Gathering the inequalities above then concludes the proof of Proposition 3.6. �

It remains to prove the inequalities (85)-(90). To simplify the notation, in the proofs
below, the parameters ε,∆t are omitted when refering to the error terms defined above, or
to other error terms introduced below: for instance one has e1

n “ e1,ε,∆t
n in the proof of the

inequality (85).

Proof of the inequality (85). Recall that the error term e1
n “ e1,ε,∆t

n is defined
by (78) for all n P t0, . . . , N ´ 1u. Using (75), the error term e1

n is decomposed as

e1
n “ e1,1

n ` e1,2
n
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with

e1,1
n “

1

ε

ż tn`1

tn

ErxDyu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, pΛ´ Λ∆t

ε
qe
´ t
ε
Λ ∆t

ε yε0ysdt

e1,2
n “

1

ε

ż tn`1

tn

ErxDyu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, pΛ´ Λ∆t

ε
q

c

2

ε

ż t

0

e
´ t´s

ε
Λ ∆t

ε Q
1
2
∆t
ε

dW psqysdt.

‚ Error term e1,1
n .Owing to the regularity estimate (46) from Lemma 4.1, for all n P

t0, . . . , N ´ 1u, one has

|e1,1
n | ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

ˇ

ˇΛ´1`κ
2 pΛ´ Λ∆t

ε
qe
´ t
ε
Λ ∆t

ε yε0
ˇ

ˇdt.

The cases n “ 0 and n P t1, . . . , N ´ 1u are treated differently. On the one hand, owing to
Assumption 3, one obtains

|e1,1
0 | ď

ż t1

t0

CκpT q

pT ´ tq1´
κ
2

dt|Λ
κ
2 yε0| ď CκpT q∆tp1` |Λ

κ
2 x0|q.

On the other hand, owing to the inequality (see [5, Lemma 5.1])

sup
τPp0,8q

sup
tPpτ,8q

pt´ τq
1
2
´κ

2 }Λ
1
2
´κ

2 e´tΛτ }LpHq ă 8,

and to the inequalities (26), for all n P t1, . . . , N ´ 1u, one obtains

|e1,1
n | ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

ε
1
2
´κ

2

pt´∆tq
1
2
´κ

2

dt|Λ´
3
2
`κ
pΛ´ Λ∆t

ε
qyε0|

ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

ε1´
κ
2

pt´∆tq1´
κ
2

dt
∆t

1
2
´κ

ε
1
2
´κ
|Λ

κ
2 yε0|

ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

1

pt´∆tq1´
κ
2

dt∆t
1
2
´κ
p1` |Λ

κ
2 x0|q.

using Assumption 3.
‚ Error term e1,2

n . Using the Malliavin integration by parts formula (8), one obtains

e1,2
n “

ż tn`1

tn

ÿ

jPN

ErxDyu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, ejy

ż t

0

e
´ t´s

ε
λ∆t
ε ,jdβjpsqsdt

pλj ´ λ∆t
ε
,jq

ε

d

2q∆t
ε
,j

ε

“
1

ε

ż tn`1

tn

ż t

0

ÿ

jPN

ErDej
s

`

xDyu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, ejy

˘

sIε,∆tj pt, sqdsdt,

where for all t ě 0 and j P N one has

Iε,∆tj pt, sq “ e
´ t´s

ε
λ∆t
ε ,jpλj ´ λ∆t

ε
,jq

d

2q∆t
ε
,j

ε
ě 0.

Note that for all t ě 0 and j P N one has
ż t

0

Iε,∆tj pt, sqds ď
pλj ´ λ∆t

ε
,jq

λ∆t
ε
,j

b

2q∆t
ε
,jε.
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Using the chain rule, one obtains

e1,2
n “ e1,2,1

n ` e1,2,2
n ,

for all n P t0, . . . , N ´ 1u, where

e1,2,1
n “

1

ε

ż tn`1

tn

ż t

0

ÿ

jPN

ErDxDyu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq.

`

Dej
s Xε,∆t

n , ej
˘

sIε,∆tj pt, sqdsdt

e1,2,2
n “

1

ε

ż tn`1

tn

ż t

0

ÿ

jPN

ErD2
yu

ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq.

`

Dej
s Ỹε,∆t

ptq, ej
˘

sIε,∆tj pt, sqdsdt.

For all h P H and t ě s ě 0, the random variable Dh
s Ỹε,∆tptq satisfies

Dh
s Ỹε,∆t

ptq “

c

2

ε
e
´ t´s

ε
Λ ∆t

ε Q
1
2
∆t
ε

h.

In particular, one obtains the inequality

(91) |Dej
s Ỹε,∆t

ptq| ď

d

2q∆t
ε
,j

ε

for all t ě s ě 0 and j P N. Using the chain rule and the definition (21) of the scheme, for
all h P H, if s ě tn, one has

Dh
sX

ε,∆t
n`1 “ A∆tDh

sXε,∆t
n `∆tA∆tDxF pXε,∆t

n ,Yε,∆t
n`1q.Dh

sXε,∆t
n `∆tA∆tDyF pXε,∆t

n ,Y∆t
n`1q.Dh

sY
ε,∆t
n`1

and Dh
sXε,∆t

n “ 0 if tn ă s. Using the identity Yε,∆t
n`1 “ Ỹε,∆tptnq, the inequality (91) above,

the boundedness of DxF and DyF (Assumption 2), one obtains the upper bound

(92) |Dej
s Xε,∆t

n | ď CpT q

d

2q∆t
ε
,j

ε

for all s P r0, T s, n P t0, . . . , N ´ 1u and j P N.
Using the regularity estimates (47) from Lemma 4.1 with α1 “ 0 and α2 “ 1 ´ κ

2
, and

the inequalities (91) and (92), one thus obtains the upper bound

|e1,2,1
n | ` |e1,2,2

n | ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

ÿ

jPN

d

2q∆t
ε
,j

ε
λ
´1`κ

2
j

ż t

0

Iε,∆tj pt, sqdsdt

ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

dt
ÿ

jPN

q∆t
ε
,j

λ∆t
ε
,j

λ
´1`κ

2
j pλj ´ λ∆t

ε
,jq.

Using the identity q∆t
ε
,j “

λ∆t
ε ,j

λj
and the inequality (26) (with α “ 1

2
´ κ), one then obtains,

for all n P t0, . . . , N ´ 1u, the upper bound

|e1,2
n | ď |e

1,2,1
n | ` |e1,2,2

n | ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

dt
`∆t

ε

˘
1
2
´κ

ÿ

jPN

λ
´ 1

2
´κ

2
j ,

with
ř

jPN λ
´ 1

2
´κ

2
j ă 8.

Gathering the estimates for the error terms e1,1
n and e1,2

n and summing for n P t0, . . . , N´
1u then concludes the proof of the inequality (85) for the error term e1

n “ e1,1
n ` e1,2

n . �
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Proof of the inequality (86). Recall that the error term e2
n “ e2,ε,∆t

n is defined
by (79) for all n P t0, . . . , N ´ 1u. Owing to the regularity estimate (47) from Lemma 4.1
and to the inequalities (26) (with α “ 1

2
´ κ), for all n P t0, . . . , N ´ 1u, one has

|e2
n| ď

1

ε

ż tn`1

tn

ÿ

jPN

Er
ˇ

ˇ

ˇ
D2
yu

ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq.

`

pQ∆t
ε
´ Iqej, ej

˘

ˇ

ˇ

ˇ
sdt

ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

dt
ÿ

jPN

1´ q∆t
ε
,j

λ
1´κ

2
j

ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

dt
`∆t

ε

˘
1
2
´κ

ÿ

jPN

1

λ
1`κ

2
j

ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

dt
`∆t

ε

˘
1
2
´κ
.

Summing for n P t0, . . . , N ´ 1u then concludes the proof of the inequality (86). �

Proof of the inequality (87). Recall that the error term e0,1
n e “ n0,1,ε,∆t is defined

by (80) for all n P t0, . . . , N´1u. The cases n P t1, . . . , N´2u and n P t0, N´1u are treated
differently.

On the one hand, if n P t0, . . . , N ´ 2u, owing to the regularity estimate (46) from
Lemma 4.1 (with α “ 1´ κ

2
), one obtains

|e0,1
n | ď

CκpT q

pT ´ tn`1q
1´κ

2

Er|Λ´1`κ
2 pA∆t ´ I `∆tΛqXε,∆t

n |s

ď
CκpT q

pT ´ tn`1q
1´κ

2

Er|Λ´2`κ
pA∆t ´ I `∆tΛqΛ1´κ

2 Xε,∆t
n |s

ď
CκpT q∆t

pT ´ tn`1q
1´κ

2

∆t1´κEr|Λ1´κ
2 Xε,∆t

n |s.

Using the moment bound (29), if n P t1, . . . , N ´ 2u, one obtains

|e0,1
n | ď

CκpT q∆t

pT ´ tn`1q
1´κ

2

∆t1´κ
1

t
1´κ

2
n

p1` |x0|q.

If n “ 0, using Assumption 3 one obtains

|e0,1
0 | ď

CκpT q∆t

pT ´ t1q
1´κ

2

|Λ´1`κ
2 pA∆t ´ I `∆tΛqxε0|

ď CκpT q∆t|Λ
κ
2 xε0|

ď CκpT q∆tp1` |Λ
κ
2 x0|q.

On the other hand, if n “ N ´ 1, owing to the regularity estimate (46) from Lemma 4.1
(with α “ 0), one obtains

|e0,1
N´1| ď CpT qEr|pA∆t ´ I `∆tΛqXε,∆t

N´1|s

ď CpT q∆tEr|ΛXε,∆t
N´1|s.
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Using the identity

Xε,∆t
N´1 “ AN´1

∆t xε0 `∆t
N´2
ÿ

`“0

AN´1´`
∆t F pXε,∆t

` ,Yε,∆t
` q,

see the proof of Lemma 2.4, and the moment bounds (28) and (27) from Lemma 2.3, one
obtains (with pN ´ 1q∆t “ T ´∆t ě T ´∆t0)

Er|ΛXε,∆t
N´1|s ď

C

pN ´ 1q∆t
|xε0| `∆t

N´2
ÿ

`“0

C

pN ´ 1´ `q∆t
p1` |x0|q ď CpT q∆t´κp1` |x0|q,

which gives
|e0,1
N´1| ď CpT q∆t1´κp1` |x0|q.

Gathering the estimates and summing for n P t0, . . . , N ´ 1u then concludes the proof of
the inequality (87). �

Proof of the inequality (88). Recall that the error term e0,2
n “ e0,2,ε,∆t

n is defined
by (81) for all n P t0, . . . , N ´ 1u. The cases n P t0, . . . , N ´ 2u and n “ N ´ 1 are treated
differently.

On the one hand, if n P t0, . . . , N ´ 2u, owing to the regularity estimate (46) from
Lemma 4.1 (with α “ 1´ κ), one obtains

|e0,2
n | ď

CκpT q∆t

pT ´ tn`1q
1´κ

Er|Λ´1`κ
pA∆t ´ IqF pXε,∆t

n ,Yε,∆t
n`1q|s

ď
CκpT q∆t

pT ´ tn`1q
1´κ

∆t1´κEr|F pXε,∆t
n ,Yε,∆t

n`1q|s

ď
CκpT q∆t

pT ´ tn`1q
1´κ

∆t1´κp1` |x0|q,

using the moment bounds (28) and (27) from Lemma 2.3.
On the other hand, if n “ N ´ 1, owing to the regularity estimate (46) from Lemma 4.1

(with α “ 0), one obtains

|e0,2
N´1| ď CpT q∆tEr|pA∆t ´ IqF pXε,∆t

N´1,Y
ε,∆t
N q|s ď CpT q∆tp1` |x0|q,

using the moment bounds (28) and (27) from Lemma 2.3.
Gathering the estimates and summing for n P t0, . . . , N ´ 1u then concludes the proof of

the inequality (88). �

Proof of the inequality (89). Recall that the error term e0,3
n “ e0,3,ε,∆t

n is defined
by (82) for all n P t0, . . . , N ´ 1u. The proof of the inequality (89) requires more delicate
arguments than the proofs of the inequalities obtained above. The cases n P t1, . . . , N ´ 1u
and n “ 0 are treated differently.

Introduce the auxiliary mapping vε,∆t : r0, T s ˆ H2 Ñ R defined as follows: for all
t P r0, T s, x, y P H, set

(93) vε,∆tpt, x, yq “ xDxu
ε
pT ´ t, x, yq, e´

∆t
ε

ΛΛxy.

For all n P t1, . . . , N ´ 1u, the error term e0,3
n can then be decomposed as

e0,3
n “ e0,3,1

n ` e0,3,2
n ` e0,3,3

n ,
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where

e0,3,1
n “

ż tn`1

tn

ErxDxu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, pI ´ e´

∆t
ε

Λ
qΛXε,∆t

n ysdt

e0,3,2
n “ ∆tErxDxu

ε
pT ´ tn`1,Xε,∆t

n , Ỹε,∆t
ptn`1qq, pI ´ e

´∆t
ε

Λ
qΛXε,∆t

n ys

e0,3,3
n “

ż tn`1

tn

`

Ervε,∆tpt,Xε,∆t
n , Ỹε,∆t

ptqqs ´ Ervε,∆tptn`1,Xε,∆t
n , Ỹε,∆t

ptn`1qqs
˘

dt.

‚ Error term e0,3,1
n . Owing to the regularity estimate (46) from Lemma 4.1 (with α “

1 ´ κ
2
), to the inequality (10) and to the moment bound (29) from Lemma 2.4, one obtains

for all n P t1, . . . , N ´ 1u

|e0,3,1
n | ď

ż tn`1

tn

CκpT q

pT ´ tq1´
κ
2

dtEr|pI ´ e´
∆t
ε

Λ
qΛ

κ
2 Xε,∆t

n |s

ď

ż tn`1

tn

CκpT q

pT ´ tq1´κ
dt
`∆t

ε

˘1´κEr|Λ1´κ
2 Xε,∆t

n |s

ď

ż tn`1

tn

CκpT q

pT ´ tq1´κ
dt
`∆t

ε

˘1´κ 1

pn∆tq1´
κ
2

p1` |x0|q.

‚ Error term e0,3,2
n . The cases n P t1, . . . , N ´ 2u and n “ N ´ 1 are treated differently.

On the one hand, owing to the regularity estimate (46) from Lemma 4.1 (with α “ 1´ κ
2
),

to the inequality (10) and to the moment bound (29) from Lemma 2.4 one obtains for all
n P t1, . . . , N ´ 2u

|e0,3,2
n | ď

CκpT q∆t

pT ´ tn`1q
1´κ

2

Er|pI ´ e´
∆t
ε

Λ
qΛ

κ
2 Xε,∆t

n |s

ď

ż tn`1

tn

CκpT q

pT ´ tq1´κ
dt
`∆t

ε

˘1´κ 1

pn∆tq1´
κ
2

p1` |x0|q.

On the other hand, owing to the regularity estimate (46) from Lemma 4.1 (with α “ 0), one
obtains

|e0,3,2
N´1| ď CpT q∆tEr|pI ´ e´

∆t
ε

Λ
qΛXε,∆t

N´1|s

ď CpT q∆t1´κp1` |x0|q.

‚ Error term e0,3,3
n . Recall that the process

`

Ỹε,∆tptq
˘

tě0
is the solution of the stochastic

evolution equation (72). Applying Itô’s formula, for all n P t1, . . . , N ´ 1u and t P rtn, tn`1s,
one has

Ervε,∆tpt,Xε,∆t
n , Ỹε,∆t

ptqqs ´ Ervε,∆tptn`1,Xε,∆t
n , Ỹε,∆t

ptn`1qqs

“ ´

ż tn`1

t

ErBtvε,∆tps,Xε,∆t
n , Ỹε,∆t

psqqsds

`
1

ε

ż tn`1

t

ErxDyv
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε
Ỹε,∆t

psqysds

´
1

ε

ż tn`1

t

ÿ

jPN

q∆t
ε
,jErD

2
yv

ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq.pej, ejqsds.
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Therefore, the error term e0,3,3
n is decomposed as

e0,3,3
n “ e0,3,3,1

n ` e0,3,3,2
n ` e0,3,3,3

n

with for all n P t1, . . . , N ´ 1u one has

e0,3,3,1
n “

ż tn`1

tn

ż tn`1

t

ErBtvε,∆tps,Xε,∆t
n , Ỹε,∆t

psqqsdsdt

e0,3,3,2
n “

ż tn`1

tn

1

ε

ż tn`1

t

ErxDyv
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε
Ỹε,∆t

psqysdsdt

e0,3,3,3
n “ ´

ż tn`1

tn

1

ε

ż tn`1

t

ÿ

jPN

q∆t
ε
,jD

2
yv

ε,∆
ps,Xε,∆t

n , Ỹε,∆t
psqq.pej, ejqdsdt.

For the error term e0,3,3,1
n , note that, owing to the regularity estimate (48) from Lemma 4.1,

for all t P r0, T q and x, y P Hκ{2, one has

|Btv
ε,∆t
pt, x, yq| “ |xBtDxu

ε
pT ´ t, x, yq,Λe´

∆t
ε

Λxy|

ď
CκpT q

εpT ´ tq1´
κ
2

`

1` |Λ
κ
2 x| ` |Λ

κ
2 y|

˘

|Λ1`κ
2 e´

∆t
ε

Λx|

ď
CκpT q

∆tκε1´κpT ´ tq1´
κ
2

`

1` |Λ
κ
2 x| ` |Λ

κ
2 y|

˘

|Λ1´κ
2 x|,

using the smoothing inequality (9) in the last step. As a consequence, using the moment
bounds (30) and (74), one obtains, for all n P t1, . . . , N ´ 1u,

|e0,3,3,1
n | ď

ż tn`1

tn

ż tn`1

t

Er|Btvε,∆tps,Xε,∆
n , Ỹε,∆t

psqq|sdsdt

ď

ż tn`1

tn

ż tn`1

t

CκpT q

∆tκε1´κpT ´ sq1´
κ
2

Er
`

1` |Λ
κ
2 Xε,∆t

n | ` |Λ
κ
2 Ỹε,∆t

psq|
˘

|Λ1´κ
2 X∆t,ε

n |sdsdt

ď

ż tn`1

tn

ż tn`1

t

CκpT q

∆tκε1´κpT ´ sq1´
κ
2

dsdt
`

1` |Λ
κ
2 x0| ` |Λ

κ
2 yε0|

˘ 1

pn∆tq1´
κ
2

|x0|

ď
`∆t

ε

˘1´κ
ż tn`1

tn

CκpT q

pT ´ sq1´
κ
2

ds
`

1` |Λ
κ
2 xε0|

˘2 1

pn∆tq1´
κ
2

.

For the error term e0,3,3,2
n , note that, owing to the regularity estimate (47) from Lemma 4.1

(with α1 “ 0 and α2 “ 1´ κ{2) and to the inequality (9), for all t P r0, T q and x, y P H, one
has

|xDyv
ε,∆t
pt, x, yq, hy| “ |DxDyu

ε
pt, x, yq.pe´

∆t
ε

ΛΛx, hq| ď
CκpT qε

pT ´ tq1´
κ
2

` ε

∆t

˘
κ
2 |Λ1´κ

2 x||Λ´1`κ
2 h|.
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As a consequence, using the moment bounds (29) and (74), and the inequality λτ,j ď λj for
all j P N and τ P p0,8q one obtains, for all n P t1, . . . , N ´ 1u,

|e0,3,3,2
n | ď

ż tn`1

tn

ż tn`1

t

1

ε
Er|xDyv

ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε
Ỹε,∆t

psqy|sdsdt

ď

ż tn`1

tn

ż tn`1

t

CκpT qε
κ
2

pT ´ sq1´
κ
2 ∆t

κ
2

Er|Λ1´κ
2 Xε,∆t

n ||Λ´1`κ
2 Λ∆t

ε
Ỹε,∆t

psq|sdsdt

ď

ż tn`1

tn

ż tn`1

t

CκpT qε
κ
2

pT ´ sq1´
κ
2

∆t
κ
2 Er|Λ1´κ

2 Xε,∆t
n ||Λ

κ
2 Ỹε,∆t

psq|sdsdt

ď ∆t1´
κ
2

ż tn`1

tn

CκpT q

pT ´ sq1´
κ
2

ds
1

pn∆tq1´
κ
2

p1` |Λ
κ
2 x0|q

2.

For the error term e0,3,3,3
n , note that, owing to the regularity estimate (58) from the proof

of Lemma 4.1 and to the inequality (9), for all j P N, t P r0, T q and x, y P H, one has

|Dyvε,∆tpt, x, yq.pej, ejq| “ |DxD
2
yv

ε,∆t
pT ´ t, x, yq.pe´

∆t
ε

ΛΛx, ej, ejq|

ď
CκpT q

pT ´ tq1´κ
` ε

∆t

˘κ
|Λ1´κx|λ´1`κ

j .

As a consequence, using the moment bound (29), one obtains, for all n P t1, . . . , N ´ 1u,

|e0,3,3,3
n | ď

1

ε

ż tn`1

tn

ż tn`1

t

ÿ

jPN

q∆t
ε
,jErD

2
yv

ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq.pej, ejq|sdsdt

ď
1

ε

ż tn`1

tn

ż tn`1

t

CκpT q

pT ´ sq1´κ
dsdt

` ε

∆t

˘κEr|Λ1´κXε,∆t
n |s

ÿ

jPN

q∆t
ε
,jλ

´1`κ
j

ď
`∆t

ε

˘1´κ
ż tn`1

tn

CκpT q

pT ´ sq1´κ
ds

1

pn∆tq1´κ
p1` |x0|q

Gathering the estimates, for all n P t1, . . . , N ´ 1u, one then obtains the inequality

|e0,3,3
n | ď |e0,3,3,1

n | ` |e0,3,3,2
n | ` |e0,3,3,3

n |

ď

´∆t

ε

¯1´κ
ż tn`1

tn

CκpT q

pT ´ sq1´
κ
2

ds
`

1` |Λ
κ
2 x0|

˘2 1

pn∆tq1´
κ
2

.

‚ Error term e0,3
0 . Note that, owing to the regularity estimate (46) from Lemma 4.1, one

has

|e0,3
0 | ď

ż t1

t0

Er|xDxu
ε
pT ´ t, xε,∆t0 , Ỹε,∆t

ptqq,Λxε0y|sdt

`∆tEr|xDxu
ε
pT ´ t1, x

ε
0,Yε,∆t

pt1qq,Λx
ε,∆t
0 y|s

ď CpT q∆tp1` |Λ
κ
2 x0|q.

Gathering the estimates for the error terms e0,3,1
n , e0,3,2

n and e0,3,3
n and summing for n P

t0, . . . , N ´ 1u, the proof of the inequality (89) is thus completed. �
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Proof of the inequality (90). Recall that the error term e0,4
n “ e0,4,ε,∆t

n is defined
by (84) for all n P t0, . . . , N ´ 1u. The cases n P t1, . . . , N ´ 1u and n “ 0 are treated
differently.

Like in the proof of the inequality (89), it is necessary to introduce an auxiliary mapping
wε,∆t : r0, T s ˆH2 Ñ R defined as follows: for all t P r0, T s, x, y P H, set

(94) wε,∆tpt, x, yq “ xDxu
ε
pT ´ t, x, yq, e´

∆t
ε

ΛF px, yqy.

For all n P t1, . . . , N ´ 1u, the error term e0,3
n is then decomposed as

e0,4
n “ e0,4,1

n ` e0,4,2
n ` e0,4,3

n ,

where, for all n P t1, . . . , N ´ 1u, one has

e0,4,1
n “

ż tn`1

tn

ErxDxu
ε
pT ´ t,Xε,∆t

n , Ỹε,∆t
ptqq, pI ´ e´

∆t
ε

Λ
qF pXε,∆t

n , Ỹε,∆t
ptqqysdt

e0,4,2
n “ ∆tErxDxu

ε
pT ´ tn`1,Xε,∆t

n , Ỹε,∆t
ptn`1qq, pI ´ e

´∆t
ε

Λ
qF pXε,∆t

n , Ỹε,∆t
ptn`1qqys

e0,4,3
n “

ż tn`1

tn

`

Erwε,∆tpt,Xε,∆t
n , Ỹε,∆t

ptqqs ´ Erwε,∆tptn`1,Xε,∆t
n , Ỹε,∆t

ptn`1qqs
˘

dt

‚ Error term e0,4,1
n . Owing to the regularity estimate (46) from Lemma 4.1 (with α “

1´ κ) and to the inequality (10), for all n P t1, . . . , N ´ 1u, one has

|e0,4,1
n | ď

ż tn`1

tn

CκpT q

pT ´ tq1´κ
Er|Λ´1`κ

pI ´ e´
∆t
ε

Λ
qF pXε,∆t

n , Ỹε,∆t
ptqq|sdt

ď
`∆t

ε

˘1´κ
ż tn`1

tn

CκpT q

pT ´ tq1´κ
Er|F pXε,∆t

n , Ỹε,∆t
ptqq|sdt

ď
`∆t

ε

˘1´κ
ż tn`1

tn

CκpT q

pT ´ tq1´κ
dtp1` |x0|q,

using the Lipschitz continuity of F and the moment bounds (27) and (28) from Lemma 2.3.
‚ Error term e0,4,2

n . The cases n P t1, . . . , N ´ 2u and n “ N ´ 1 are treated differently.
On the one hand, owing to the regularity estimate (46) from Lemma 4.1 (with α “ 1´κ)

and to the inequality (10), for all n P t0, . . . , N ´ 2u, one has

|e0,4,2
n | ď

CκpT q∆t

pT ´ tn`1q
1´κ

Er|Λ´1`κ
pI ´ e´

∆t
ε

Λ
qF pXε,∆t

n , Ỹε,∆t
ptn`1qq|s

ď
`∆t

ε

˘1´κ CκpT q∆t

pT ´ tn`1q
1´κ

Er|F pXε,∆t
n , Ỹε,∆t

ptn`1qq|sdt

ď
`∆t

ε

˘1´κ CκpT q∆t

pT ´ tn`1q
1´κ

dtp1` |x0|q,

using the Lipschitz continuity of F and the moment bounds (27) and (28) from Lemma 2.3.
On the other hand, owing to the regularity estimate (46) from Lemma 4.1 (with α “ 0),

one has

|e0,4,2
N´1| ď CpT q∆tEr|pI ´ e´

∆t
ε

Λ
qF pXε,∆t

N´1, Ỹ
ε,∆t
ptNqq|s

ď CpT q∆tp1` |x0|q

using the Lipschitz continuity of F and the moment bounds (27) and (28) from Lemma 2.3.
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‚ Error term e0,4,3
n . Applying Itô’s formula, for all n P t1, . . . , N ´ 1u and t P rtn, tn`1s,

one has

Erwε,∆tpt,Xε,∆t
n , Ỹε,∆t

ptqqs ´ Erwε,∆tptn`1,Xε,∆t
n , Ỹε,∆t

ptn`1qqs

“ ´

ż tn`1

t

ErBtwε,∆tps,Xε,∆
n , Ỹε,∆t

psqqsds

`
1

ε

ż tn`1

t

ErxDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε
Ỹε,∆t

psqysds

´
1

ε

ż tn`1

t

ÿ

jPN

q∆t
ε
,jErD

2
yw

ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq.pej, ejqsds.

Therefore, one has the decomposition e0,4,3
n “ e0,4,3,1

n ` e0,4,3,2
n ` e0,4,3,3

n , with

e0,4,3,1
n “ ´

ż tn`1

tn

ż tn`1

t

ErBtwε,∆tps,Xε,∆t
n , Ỹε,∆t

psqqsdsdt

e0,4,3,2
n “

ż tn`1

tn

1

ε

ż tn`1

t

ErxDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε
Ỹε,∆t

psqysdsdt

e0,4,3,3
n “ ´

ż tn`1

tn

1

ε

ż tn`1

t

ÿ

jPN

q∆t
ε
,jD

2
yw

ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq.pej, ejqdsdt.

For the error term e0,4,3,1
n , note that, owing to the regularity estimate (48) from Lemma 4.1,

for all t P r0, T s and x, y P H
κ
2 , one has

|Btw
ε,∆t
pt, x, yq| “ |xBtDxu

ε
pT ´ t, x, yq, e´

∆t
ε

ΛF px, yqy|

ď
CκpT q

εpT ´ tq1´
κ
2

`

1` |Λ
κ
2 x| ` |Λ

κ
2 y|q|Λ

κ
2 e´

∆t
ε

ΛF px, yq|

ď
CκpT q

∆t
κ
2 ε1´

κ
2 pT ´ tq1´

κ
2

`

1` |Λ
κ
2 x| ` |Λ

κ
2 y|q2,

using the smoothing inequality (9) and the linear growth of F in the last step. As a conse-
quence, using the moment bounds (29) and (74), for all n P t1, . . . , N ´ 1u, one obtains

|e0,4,3,1
n | ď

ż tn`1

tn

ż tn`1

t

Er|Btwε,∆tps,Xε,∆t
n , Ỹε,∆t

psqq|sdsdt

ď

ż tn`1

tn

ż tn`1

t

CκpT q

∆
κ
2 ε1´

κ
2 pT ´ sq1´

κ
2

`

1` Er|Λ
κ
2 Xε,∆t

n |
2
s ` Er|Λ

κ
2 Ỹε,∆t

psq|2s
˘

dsdt

ď
`∆t

ε

˘1´κ
ż tn`1

tn

CκpT q

pT ´ sq1´
κ
2

ds
1

pn∆tq1´κ
`

1` |Λ
κ
2 x0|

˘2
.

For the error term e0,4,3,2
n , like for the treatment of the error term e1,2

n above (proof of the
inequality (85)), the Malliavin integration by parts formula (8) is employed. Recall that the
mild solution

`

Ỹε,∆tptq
˘

tě0
of the stochastic evolution equation (72) is given by (75). The

error term e0,4,3,2
n is then decomposed as

e0,4,3,2
n “ e0,4,3,2,1

n ` e0,4,3,2,2
n ,
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where for all n P t1, . . . , N ´ 1u one has

e0,4,3,2,1
n “

1

ε

ż tn`1

tn

ż tn`1

t

ErxDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε
e
´ s
ε
Λ ∆t

ε yε0ysdsdt

e0,4,3,2,2
n “

1

ε

ż tn`1

tn

ż tn`1

t

ErxDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε

c

2

ε

ż s

0

e
´ s´r

ε
Λ ∆t

ε Q
1
2
∆t
ε

dW prqysdsdt.

To deal with the error term e0,4,3,2,1
n , note that for all t P r0, T s, x, y P H and h P H, one

has

|xDyw
ε,∆t
pt, x, yq, hy| ď

ˇ

ˇxDxu
ε
pT ´ t, x, yq, e´

∆t
ε

ΛDyF px, yq.hy|

` |DxDyu
ε
pT ´ t, x, yq.pe´

∆t
ε

ΛF px, yq, hq|

ď CpT q~ϕ~2p1` |x| ` |y|q|h|.

Owing to the regularity estimates (46) and 47 from Lemma 4.1. Therefore, using the moment
bounds (28) and (74), one obtains

|e0,4,3,2,1
n | ď

1

ε

ż tn`1

tn

ż tn`1

t

Er|xDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq,Λ∆t

ε
e
´ s
ε
Λ ∆t

ε yε0y|sdsdt

ď
CpT q

ε

ż tn`1

tn

ż tn`1

t

Er
`

1` |Xε,∆t
n | ` |Ỹε,∆t

ptq|
˘

|Λ∆t
ε
e
´ s
ε
Λ ∆t

ε yε0|sdsdt

ď
CκpT q∆t

ε

ż tn`1

tn

ε1´
κ
2

s1´κ
2

dsp1` |Λ
κ
2 x0|q

2,

using the inequality

|Λ∆t
ε
e
´ s
ε
Λ ∆t

ε yε0| ď CκpT q
ε1´κ

s1´κ
|Λκ

∆t
ε
yε0| ď CκpT q

ε1´
κ
2

s1´κ
2

|Λ
κ
2 yε0|

which follows from a version of the smoothing inequality (9) applied to the linear operator
Λ∆t

ε
instead of Λ and its associated semi-group, and from the inequality λτ,j ď λj for all

j P N and τ P p0,8q.
To deal with the error term e0,4,3,2,2

n , applying the Malliavin integration by parts for-
mula (8), one obtains

e0,4,3,2,2
n

“

?
2

ε
3
2

ż tn`1

tn

ż tn`1

t

ÿ

jPN

ErxDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq, ejyλ∆t

ε
,j

ż s

0

e
´ s´r

ε
λ∆t
ε ,j

a

q∆t
ε
,jdβjprqsdsdt

“

?
2

ε
3
2

ż tn`1

tn

ż tn`1

t

ż s

0

ÿ

jPN

ErDej
r

`

xDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq, ejy

˘

sλ∆t
ε
,je
´ s´r

ε
λ∆t
ε ,j

a

q∆t
ε
,jdrdsdt

“ e0,4,3,2,2,1
n ` e0,4,3,2,2,2

n
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where, using the chain rule, one has

e0,4,3,2,2,1
n “

?
2

ε
?
ε

ż tn`1

tn

ż tn`1

t

ż s

0

ÿ

jPN

dx,ε,∆tn,j pr, sqλ∆t
ε
,je
´ s´r

ε
λ∆t
ε ,j

a

q∆t
ε
,jdrdsdt

e0,4,3,2,2,2
n “

?
2

ε
?
ε

ż tn`1

tn

ż tn`1

t

ż s

0

ÿ

jPN

dy,ε,∆tn,j pr, sqλ∆t
ε
,je
´ s´r

ε
λ∆t
ε ,j

a

q∆t
ε
,jdrdsdt

with

dx,ε,∆tn,j pr, sq “ ErDxDyw
ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq.

`

Dej
r Xε,∆t

n , ej
˘

s

dy,ε,∆tn,j pr, sq “ ErD2
yw

ε,∆t
ps,Xε,∆t

n , Ỹε,∆t
psqq.

`

Dej
r Ỹε,∆t

psq, ej
˘

s.

On the one hand, note that for all t P r0, T s, x, y P H and h1, h2 P H, one has

DxDyw
ε,∆
pt, x, yq.ph1, h2

q “ xDxu
ε
pT ´ t, x, yq, e´

∆t
ε

ΛDxDyF px, yq.ph
1, h2

qy

`D2
xu

ε
pT ´ t, x, yq.ph1, e´

∆t
ε

ΛDyF px, yq.h
2
q

`DxDyu
ε
pT ´ t, x, yq.pe´

∆t
ε

ΛDxF px, yq.h
1, h2

q

`D2
xDyu

ε
pT ´ t, x, yq.ph1, e´

∆t
ε

ΛF px, yq, h2
q.

Owing to the regularity estimates (46), (47) and (58) from Lemma 4.1 and its proof, and to
the properties of F stated in Assumption 2, one has the upper bound

|DxD
2
yw

ε,∆t
pt, x, yq.ph1, h2

q| ď CpT qp1` |x| ` |y|q|h1
||h2
|.

Using the bound (92) for the Malliavin derivative Dej
r Xε,∆t

n (see the proof of the inequal-
ity (86)) and the moment bounds (28) from Lemma 2.3 and (74), one has

|e0,4,3,2,2,1
n | ď

CpT q

ε2
p1` |x0|q

ż tn`1

tn

ż tn

t

ż s

0

ÿ

jPN

λ∆t
ε
,je
´ s´r

ε
λ∆t
ε ,jq∆t

ε
,jdrdsdt

ď
CpT q

ε
p1` |x0|q

ż tn`1

tn

ż tn

t

ÿ

jPN

q∆t
ε
,jdsdt

ď
CpT q∆t2

ε
p1` |x0|q~ϕ~3

ÿ

jPN

q∆t
ε
,j.

On the other hand, note that for all t P r0, T s, x, y P H and h1, h2 P H, one has

D2
yw

ε,∆t
pt, x, yq.ph1, h2

q “ DxD
2
yu

ε
pT ´ t, x, yq.

`

e´
∆t
ε

ΛF px, yq, h1, h2
˘

`DxDyu
ε
pT ´ t, x, yq.

`

e´
∆t
ε

ΛDyF px, yq.h
1, h2

˘

`DxDyu
ε
pT ´ t, x, yq.

`

e´
∆t
ε

ΛDyF px, yq.h
2, h1

˘

` xDxu
ε
pT ´ t, x, yq, e´

∆t
ε

ΛD2
yF px, yq.ph

1, h2
qy.

Owing to the regularity estimates (46), (47) and (58) from Lemma 4.1 and its proof, and to
the properties of F stated in Assumption 2, one has the upper bound

|D2
yw

ε,∆t
pt, x, yq.ph1, h2q| ď CpT qp1` |x| ` |y|q|h1

||h2
|.
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Using the bound (91) for the Malliavin derivative Dej
r Ỹε,∆tpsq (see the proof of the inequal-

ity (86)) and the moment bounds (28) from Lemma 2.3 and (74), one obtains

|e0,4,3,2,2,2
n | ď

CpT q

ε2
p1` |x0|q

ż tn`1

tn

ż tn

t

ż s

0

ÿ

jPN

λ∆t
ε
,je
´ s´r

ε
λ∆t
ε ,jq∆t

ε
,jdrdsdt

ď
CpT q

ε
p1` |x0|q

ż tn`1

tn

ż tn

t

ÿ

jPN

q∆t
ε
,jdsdt

ď
CpT q∆t2

ε
p1` |x0|q

ÿ

jPN

q∆t
ε
,j.

Note that, for all κ P p0, 1
2
q and all τ P p0,8q, one has

ÿ

jPN

qτ,j “
ÿ

jPN

logp1` τλjq

τλj
ď Cκ

ÿ

jPN

pτλjq
1
2
´κ

τλj
ď Cκτ

´ 1
2
´κ,

using the auxiliary inequality

sup
zPp0,8q

logp1` zq

z
1
2
´κ

ă 8.

Gathering the estimates for the error terms e0,4,3,2,1
n , e0,4,3,2,2,1

n and e0,4,3,2,2,2
n , one obtains

|e0,4,3,2
n | ď |e0,4,3,2,1

n | ` |e0,4,3,2,2
n |

ď |e0,4,3,2,1
n | ` |e0,4,3,2,2,1

n | ` |e0,4,3,2,2,2‘
n |

ď
CκpT q∆t

ε
p1` |x0|q

ż tn`1

tn

1

s1´κ
2

ds|Λ
κ
2 yε0| ` CκpT q

`∆t

ε

˘
1
2
´κ
p1` |x0|q.

For the error term e0,4,3,3
n , note that for all t P r0, T s, x, y P H and h1, h2 P H, one has

D2
yw

ε,∆t
pt, x, yq.ph1, h2

q “ DxD
2
yu

ε
pT ´ t, x, yq.

`

e´
∆t
ε

ΛF px, yq, h1, h2
˘

`DxDyu
ε
pT ´ t, x, yq.

`

e´
∆t
ε

ΛDyF px, yq.h
1, h2

˘

`DxDyu
ε
pT ´ t, x, yq.

`

e´
∆t
ε

ΛDyF px, yq.h
2, h1

˘

` xDxu
ε
pT ´ t, x, yq, e´

∆t
ε

ΛD2
yF px, yq.ph

1, h2
qy.

Owing to the regularity estimates (46), (47) and (58) from Lemma 4.1 and its proof, and to
the properties of F stated in Assumption 2, one has the upper bound

|D2
yw

ε,∆t
pt, x, yq.ph1, h2

q| ď CpT qp1` |x| ` |y|q|h1
||h2
|.

As a consequence, using the moment bounds (28) and (74), one obtains

|e0,4,3,3
n | ď

CpT q∆t2

ε
p1` |x0|q

ÿ

jPN

q∆t
ε
,j ď CκpT q

`∆t

ε

˘
1
2
´κ
p1` |x0|q.
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Finally, gathering the estimates for the error terms e0,4,3,1
n , e0,4,3,2

n and e0,4,3,3
n , one obtains,

for all n P t1, . . . , N ´ 1u

|e0,4,3
n | ď |e0,4,3,1

n | ` |e0,4,3,2
n | ` |e0,4,3,3

n |

ď
`∆t

ε

˘1´κ
ż tn`1

tn

CκpT q

pT ´ sq1´
κ
2

ds
1

pn∆tq1´κ
`

1` |Λ
κ
2 x0|

˘2

`
CκpT q∆t

ε

ż tn`1

tn

1

s1´κ
2

dsp1` |Λ
κ
2 x0|q

2
` CκpT q

`∆t

ε

˘
1
2
´κ
p1` |x0|q.

‚ Error term e0,4
0 .

Note that, owing to the regularity estimate (46) from Lemma 4.1 (with α “ 0), for all
t P r0, T q and x, y P H, one has

|e0,4
0 | ď

ż t1

t0

Er|xDxu
ε
pT ´ t, xε,∆t0 , Ỹε,∆t

ptqq, F pXε,∆t
0 , Ỹε,∆t

ptqqy|s

`∆tEr|xDxu
ε
pT ´ t1, x

ε
0,Yε,∆t

pt1qq, F pXε,∆t
0 , Ỹε,∆t

pt1qqy|s

ď CpT q∆tp1` |x0|q,

using the moment bound (74), the linear growth of F and Assumption 3.
‚ Gathering the estimates for the error terms e0,4,1

n , e0,4,2
n and e0,4,3

n and summing for
n P t0, . . . , N ´ 1u, the proof of the inequality (89) is thus completed. �

6.3. Proof of Proposition 3.7. Before proceeding with the proof, auxiliary tools are
required. The statements and the arguments are similar to those in [10]. Let us first state
and prove an auxiliary lemma about discrete-time Poisson equations. For all τ P p0,8q,
let

`

Yτ
k

˘

kě0
be defined using the modified Euler scheme from [5] applied to the stochastic

evolution equation dYpsq “ ´ΛYpsqds` dW psq with time-step size τ : for all m ě 0,

(95) Yτ
m`1 “ AτYτ

m ` Bτ,1
?
τΓm,1 ` Bτ,2

?
τΓm,2,

where the linear operators Aτ , Bτ,1 and Bτ,2 are given by (19). Let Pτ denote the associated
Markov transition operator: for any bounded and measurable mapping φ : H Ñ R and all
y P H,

Pτφpyq “ EyrφpYτ
1qs “ ErφpAτy ` Bτ,1

?
τΓ1,1 ` Bτ,2

?
τΓ1,2qs.

Lemma 6.2. Let φ : H Ñ R be a Lipschitz continuous function, which satisfies the
centering condition

ş

φpyqdνpyq “ 0. For all τ P p0,8q and all y P H, define

ψτ pyq “ τ
8
ÿ

m“0

Pm
τ φpyq.

Then ψτ is a solution of the Poisson equation

(96) Pτψ ´ ψ “ ´τφ.

Moreover, there exists C P p0,8q, such that for all τ P p0,8q, one has

(97) sup
yPH

|ψτ pyq|

1` |y|
ď C maxpτ, 1q sup

y1,y2PH

|φpy2q ´ φpy1q|

|y2 ´ y1|
.
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Proof of Lemma 6.2. Observe that for all τ P p0,8q, one has

τ
8
ÿ

m“0

1

p1` λ1τqm
“

τ

1´ 1
1`λ1τ

“
1` λ1τ

λ1

ď C maxpτ, 1q.

In addition, using the centering condition on φ and the fact that the Gaussian distribution
ν is invariant for the modified Euler scheme (95) for any value of τ P p0,8q, for all m ě 0,
one has

|Pm
τ φpyq| “

ˇ

ˇPm
τ φpyq ´

ż

φdν|

“
ˇ

ˇPm
τ φpyq ´

ż

Pm
τ φpzqdνpzq

ˇ

ˇ

ď sup
y1,y2PH

|φpy2q ´ φpy1q|

|y2 ´ y1|

ż

|Am
τ py ´ zq|dνpzq

ď
1

p1` λ1τqm
sup

y1,y2PH

|φpy2q ´ φpy1q|

|y2 ´ y1|
p

ż

|z|dνpzq ` |y|q.

This proves that ψτ is well-defined for all τ P p0,8q. It is then straightforward to check that
the identity (96) and the inequality (97). The proof of Lemma 6.2 is thus completed. �

Let ∆t “ T {N P p0,∆t0q. For all n P t0, . . . , N ´ 1u, define the auxiliary function
φ∆t
n : H ˆH Ñ R as follows: for all x, y P H, set

(98) φ∆t
n px, yq “ xDu

∆t
N´n´1pA∆txq,A∆t

`

F px, yq ´ F pxq
˘

y.

Note that the centering condition
ż

φ∆t
n px, ¨qdν “ 0

is satisfied, owing to the definition (16) of F pxq. Therefore one can define the auxiliary
functions ψ∆t

n : H ˆH Ñ R as follows:

(99) ψ∆t,ε
n px, yq “ τ

8
ÿ

m“0

Eyrφ∆t
n px,Yτ

mqs,

using the definition (95) for the auxiliary scheme with time-step size τ “ ∆t{ε. Owing to
Lemma 6.2, ψ∆t,ε

n px, ¨q is solution of the discrete Poisson equation (96):

Pτψ∆t,ε
n px, ¨q ´ ψ∆t,ε

n px, ¨q “ ´τφ∆t
n px, ¨q.

One has the following regularity estimates on the functions ψ∆t,ε
n px, ¨q, with constants inde-

pendent of ∆t P p0,∆t0q and ε P p0, ε0q.

Lemma 6.3. For all T P p0,8q and κ P p0, 1s, there exists CκpT q P p0,8q such that for
all ε P p0, ε0q, ∆t “ T {N P p0,∆t0q, all x, y P H and all n P t0, . . . , N ´ 1u, one has

|ψ∆t,ε
n px, yq| ď C1pT q~ϕ~1 maxpτ, 1qp1` |y|q(100)

sup
hPH;|h|ď1

|xDxψ
∆t,ε
n px, yq, hy| ď C1pT q~ϕ~2 maxpτ, 1qp1` |y|q(101)
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and for all n P t0, . . . , N ´ 3u, one has

(102) |ψ∆t,ε
n`1px, yq ´ ψ

∆t,ε
n px, yq| ď

CκpT q∆t
1´κ

`

pN ´ n´ 2q∆t
˘1´κ~ϕ~2 maxpτ, 1qp1` |x|qp1` |y|q,

with τ “ ∆t{ε.

The proof of Lemma 6.3 consists in the application of Lemma 6.2 for three auxiliary
mappings, combined with the regularity results on u∆t

N´n´1 from Lemma 4.2. The application
of Lemma 6.2 explains the presence of the factor maxpτ, 1q on the right-hand sides of the
inequalities, see the inequality (97) from Lemma 6.2.

Proof of Lemma 3.1. Let us first prove the inequality (100). For all n P t0, . . . , N´1u,
x, y1, y2 P H, one has

|φ∆t
n px, y2q ´ φ

∆t
n px, y1q| “ |xDu

∆t
N´n´1pA∆txq,A∆tpF px, y2q ´ F px, y1qqy|

ď CpT q~ϕ~1|F px, y2q ´ F px, y1q|

ď CpT q~ϕ~1|y2 ´ y1|,

owing to the inequality (49) (see Lemma 4.2) and to the global Lipschitz continuity of
F (Assumption 2). Since φ∆t

n px, ¨q satisfies the centering condition
ş

φ∆t
n px, ¨qdν “ 0, the

inequality (100) is then a straightforward consequence of Lemma 6.2.
Let us now prove the inequality (101). Since the mappings u∆t

N´n´1, F and F are of class
C2 (see Lemma 4.2 and Assumption 2), x ÞÑ φ∆t

n px, yq is of class C1, and one has

xDxφ
∆t
n px, yq, hy “ xDu

∆t
N´n´1pA∆txq,A∆t

`

DxF px, yq.h´DF pxq.h
˘

y

`D2u∆t
N´n´1pA∆txq.

`

A∆tpF px, yq ´ F pxqq,A∆th
˘

.

In particular, the centering condition
ż

xDxφ
∆t
n px, ¨q, hydν “ 0

is satisfied. It is straightforward to check that x ÞÑ ψ∆t,ε
n px, yq is of class C1, and that one

has

xDxψ
∆t,ε
n px, yq, hy “ τ

8
ÿ

k“0

EyrxDxφ
∆t
n px,Yτ

kq, hy.

This means that the mapping xDxψ
∆t,ε
n px, ¨q, hy solves the Poisson equation

pPτ ´ IqxDxψ
∆t,ε
n px, ¨q, hy “ xDxφ

∆t
n px, ¨q, hy.

In order to apply Lemma 6.2, it suffices to check tha the following property holds: for all
n P t0, . . . , N ´ 1u, x, y1, y2 P H, one has

ˇ

ˇxDxφ
∆t
n`1τpx, y2q, hy ´ xDxψ

∆t
n`1px, y1q, hy

ˇ

ˇ

ď
ˇ

ˇxDu∆t
N´n´2pA∆txq,A∆tpDxF px, y2q.h´DxF px, y2q.hqy|

`
ˇ

ˇD2u∆t
N´n´2pA∆txq.

`

A∆th,A∆tpF px, y2q ´ F px, y1qq
˘
ˇ

ˇ

ď CpT q~ϕ~2|h||y2 ´ y1|,
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owing to the inequality (52) (see Lemma 4.2) and to the regularity conditions on F (F
is of class C2 with bounded first and second order derivatives, see Assumption 2). As a
consequence, the inequality (101) is obtained as an application of Lemma 6.2.

It finally remains to prove the inequality (102). Set δψ∆t,ε
n px, yq “ ψ∆t,ε

n`1px, yq´ψ
∆t,ε
n px, yq.

The mapping δψ∆t,ε
n px, ¨q is solution of the Poisson equation

pPτ ´ Iqδψ∆t,ε
n px, ¨q “ τδφ∆t

n px, ¨q,

with the auxiliary function δφ∆t
n px, ¨q defined by

δφ∆t
n px, yq “ xDu

∆t
N´n´2pA∆txq ´Du

∆t
N´n´1pA∆txq,A∆tpF px, yq ´ F pxqqy.

The centering condition
ż

δφ∆t
n px, ¨qdν “ 0

is satisfied, therefore the application of Lemma 6.2 requires to upper bound the Lipschitz
constant of δφ∆t

n px, ¨q.
For all x P H, n P t0, . . . , N ´ 3u, and y1, y2 P H, one has

ˇ

ˇδnφ
τ
px, y2q´δnφ

τ
px, y1q

ˇ

ˇ ď
ˇ

ˇxDu∆t
N´n´2pA∆txq ´Du

∆t
N´n´1pA∆txq,A∆tpF px, y2q ´ F px, y1qqy

ˇ

ˇ

ď ∆t1´κ
CκpT q

`

pN ´ n´ 2q∆t
˘1´κ~ϕ~2p1` |x|q

ˇ

ˇA∆tpF px, y2q ´ F px, y1qq
ˇ

ˇ

ď ∆t1´κ
CκpT q

`

pN ´ n´ 2q∆t
˘1´κ~ϕ~2p1` |x|q|y2 ´ y1|,

owing to the inequality (51) (see Lemma 4.2) and to the global Lipschitz continuity of F
(Assumption 2). Applying Lemma 6.2 then yields the inequality (102).

The proof of Lemma 6.3 is thus completed. �

We are now in position to provide the proof of Proposition 3.7.

Proof of Proposition 3.7. Let T P p0,8q, ϕ : H Ñ R be of class C2, with bounded
first and second order derivatives, ε P p0, ε0q, and ∆t “ T {N P p0,∆t0q, with N P N. Recall
the notation τ “ ∆t{ε.

The error in the left-hand side of (41) can written as follows:

ErϕpXε,∆t
N qs ´ ErϕpX∆t

N qs “ ErϕpXε,∆t
N qs ´ ϕpX∆t

N q ` ϕpX
∆t

N q ´ ErϕpX∆t
N qs.

It suffices to focus on the first error term on the left-hand side: indeed
ˇ

ˇϕpX∆t

N q ´ ErϕpX∆t
N qs

ˇ

ˇ ď CpT q∆t~ϕ~2p1` |x0|
2
q,

see (67) from the proof of Proposition 3.3.
The error term which remain to be studied can be decomposed as follows:

ErϕpXε,∆t
N qs ´ ϕpX∆t

N q “ Eru∆t
0 pX

ε,∆t
N qs ´ u∆t

N px0q

“ Eru∆t
0 pX

ε,∆t
N qs ´ Eru∆t

N pX
ε,∆t
0 qs ` u∆t

N px
ε
0q ´ u

∆t
N px0q,

where the mapping u∆t
N is given by (44).
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The mapping u∆t
N is globally Lipschitz continuous, more precisely one has the inequal-

ity (52), and using Assumption 3 one obtains
ˇ

ˇu∆t
N px

ε
0q ´ u

∆t
N px0q

ˇ

ˇ ď CpT q|xε0 ´ x0| ď CpT qεp1` |x0|q.

Let us now study the remaining error term. Using a telescoping sum argument, one has

Eru∆t
0 pX

ε,∆t
N qs ´ Eru∆t

N pX
ε,∆t
0 qs “

N´1
ÿ

n“0

`

Eru∆t
N´n´1pX

ε,∆t
n`1qs ´ Eru∆t

N´npXε,∆t
n qs

˘

“

N´1
ÿ

n“0

´

Eru∆t
N´n´1pA∆tXε,∆t

n `∆tA∆tF pXε,∆t
n ,Yε,∆t

n`1qqs

´ Eru∆t
N´n´1pA∆tXε,∆t

n `∆tF pXε,∆t
n qqs

¯

.

Since u∆t
n is of class C2 owing to Lemma 4.2, by a Taylor expansion, one obtains the

equality

Eru∆t
0 pX

ε,∆t
N qs ´ Eru∆t

N pX
ε,∆t
N qs “ ∆t

N´1
ÿ

n“0

Erφ∆t
n pXε,∆t

n ,Yε,∆t
n`1qs `R

ε,∆t
n ,

with the function φ∆t
n defined by (98), and where one has

Er|Rε,∆t
n |s ď ∆t2~u∆t

N´n´1~2Er|F pXε,∆t
n ,Yε,∆t

n`1q ´ F pXε,∆t
n q|

2
s

ď CpT q∆t2~ϕ~2

`

1` Er|Xε,∆t
n |

2
s ` Er|Yε,∆t

n`1|
2
s
˘

,

using the inequality (52).
Using the equality ∆t “ τε, the error term can be written as

(103)

∆t
N´1
ÿ

n“0

Erφ∆t
n pXε,∆t

n ,Yε,∆t
n`1qs “ ε

N´1
ÿ

n“0

`

Erψ∆t,ε
n pXε,∆t

n ,Yε,∆t
n`1qs ´ ErPτψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`1qs
˘

“ ε
N´1
ÿ

n“0

`

Erψ∆t,ε
n pXε,∆t

n ,Yε,∆t
n`1qs ´ Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`2qs
˘

“ ε
ÿ

nPt0,N´1,N´2u

`

Erψ∆t,ε
n pXε,∆t

n ,Yε,∆t
n`1qs ´ Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`2qs
˘

` ε
N´3
ÿ

n“1

`

Erψ∆t,ε
n pXε,∆t

n ,Yε,∆t
n`1qs ´ Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`2qs
˘

where the second equality is a consequence of the Markov property and of the definition
of the scheme (21). For technical reasons, it is necessary to treat differently the terms
n P t0, N ´ 2, N ´ 1u and n P t1, . . . , N ´ 3u.

On the one hand, for if n P t0, N ´ 2, N ´ 1u, owing to Lemma 6.3 one has

ε
ˇ

ˇ

ˇ
Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`1qs ´ Erψ∆t,ε
n pXε,∆t

n ,Yε,∆t
n`2qs

ˇ

ˇ

ˇ

ď CpT q~ϕ~1εmaxpτ, 1q
`

1` Er|Yε,∆t
n`1|s ` Er|Yε,∆t

n`2|s
˘

ď CpT q~ϕ~1 maxp∆t, εq,
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using the moment bound (27) from Lemma 2.3.
On the other hand, using a telescoping sum argument and the Markov property, one

obtains the auxiliary identities

ErPτψ∆t,ε
N´2pX

ε,∆t
N´2,Y

ε,∆t
N´2qs ´ ErPτψ∆t,ε

1 pXε,∆t
1 ,Yε,∆t

1 qs

“

N´3
ÿ

n“1

`

ErPτψ∆t,ε
n`1pX

ε,∆t
n`1,Y

ε,∆t
n`1qs ´ ErPτψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n qs
˘

“

N´3
ÿ

n“1

`

ErPτψ∆t,ε
n`1pX

ε,∆t
n`1,Y

ε,∆t
n`1qs ´ ErPτψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`1qs

`

N´3
ÿ

n“1

`

ErPτψ∆t,ε
n pXε,∆t

n ,Yε,∆t
n`1qs ´ ErPτψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n qs
˘

“

N´3
ÿ

n“1

`

Erψ∆t,ε
n`1pX

ε,∆t
n`1,Y

ε,∆t
n`2qs ´ Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`2qs

`

N´3
ÿ

n“1

`

Erψ∆t,ε
n pXε,∆t

n ,Yε,∆t
n`2qs ´ Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`1qs
˘

.

Observe that the expression appearing in the last line above corresponds to the expression
appearing in the last line of (103). One then obtains

∆t
N´3
ÿ

n“1

Erφ∆t
n pXε,∆t

n ,Yε,∆t
n`1qs “ εErψ∆t,ε

1 pXε
1,Y

ε,∆t
2 qs ´ εErψ∆t,ε

N´2pX
ε,∆t
N´2,Y

ε,∆t
N´1qs

` ε
N´3
ÿ

n“1

`

Erψ∆t,ε
n`1pX

ε,∆t
n`1,Y

ε,∆t
n`2qs ´ Erψ∆t,ε

n`1pXε,∆t
n ,Yε,∆t

n`2qs
˘

` ε
N´3
ÿ

n“1

`

Erψ∆t,ε
n`1pXε,∆t

n ,Yε,∆t
n`2qs ´ Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`2qs
˘

.

To prove upper bounds for the three terms on the right-hand side above, the properties of
the mappings ψ∆t,ε

n provided by Lemma 6.3 and moment bounds for the random variables
X∆t,ε
n and Y∆t,ε

n are employed. Recall also that εmaxpτ, 1q “ maxp∆t, εq.
‚ Using the inequality (100), one has

ε
ˇ

ˇErψ∆t,ε
1 pXε

1,Y
ε,∆t
2 qs

ˇ

ˇ ď CpT qmaxp∆t, εq~ϕ~1p1` Er|Yε,∆t
2 |sq

ď CpT qmaxp∆t, εq~ϕ~1,

using the moment bound (27) from Lemma 2.3.
Similarly, one has

ε
ˇ

ˇErψ∆t,ε
N´2pX

ε,∆t
N´2,Y

ε,∆t
N´1qs

ˇ

ˇ ď CpT qmaxp∆t, εq~ϕ~1p1` Er|Yε,∆t
N´1|sq

ď CpT qmaxp∆t, εq~ϕ~1.
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‚ Using the inequality (101), one has

ˇ

ˇ

ˇ
ε
N´3
ÿ

n“1

`

Erψ∆t,ε
n`1pX

ε,∆t
n`1,Y

ε,∆t
n`2qs ´ Erψ∆t,ε

n`1pXε,∆t
n ,Yε,∆t

n`2qs
˘

ˇ

ˇ

ˇ

ď CpT qmaxp∆t, εq~ϕ~2

N´3
ÿ

n“1

E
“

|Xε,∆t
n`1 ´ Xε,∆t

n |p1` |Yε,∆t
n`2|q

‰

ď CpT qmaxp∆t, εq~ϕ~2

N´3
ÿ

n“1

`

Er|Xε,∆t
n`1 ´ Xε,∆t

n |
2
s
˘

1
2 ,

using Hölder’s inequality and the moment bound (27) from Lemma 2.3. Applying Lemma 2.4
then yields

ˇ

ˇ

ˇ
ε
N´3
ÿ

n“1

`

Erψ∆t,ε
n`1pX

ε,∆t
n`1,Y

ε,∆t
n`2qs ´ Erψ∆t,ε

n`1pXε,∆t
n ,Yε,∆t

n`2qs
˘

ˇ

ˇ

ˇ

ď CκpT qmaxp∆t, εq~ϕ~2∆t1´κp1` |x0|q

N´3
ÿ

n“1

1

pn∆tq1´κ

ď CκpT qmaxp∆t, εq~ϕ~2∆t´κp1` |x0|q.

‚ Using the inequality (102), one has

ˇ

ˇ

ˇ
ε
N´3
ÿ

n“1

`

Erψ∆t,ε
n`1pXε,∆t

n ,Yε,∆t
n`2qs ´ Erψ∆t,ε

n pXε,∆t
n ,Yε,∆t

n`2qs
˘

ˇ

ˇ

ˇ

ď CκpT qmaxp∆t, εq~ϕ~2∆t1´κ
N´3
ÿ

n“1

1
`

pN ´ n´ 2q∆t
˘1´κErp1` |X

ε,∆t
n |qp1` |Yε,∆t

n`2|qs

ď CκpT qmaxp∆t, εq~ϕ~2∆t´κp1` |x0|q.

‚ Gathering the estimates, one obtains

ˇ

ˇ∆t
N´3
ÿ

n“1

Erφ∆t
n pXε,∆t

n ,Yε,∆t
n`1qs

ˇ

ˇ ď CκpT qmaxp∆t, εq~ϕ~2∆t´κp1` |x0|q,

and finally
ˇ

ˇErϕpXε,∆t
N qs ´ ϕpX∆t

N q
ˇ

ˇ ď CpT qε~ϕ~1p1` |x0|q ` CpT q∆t~ϕ~2p1` |x0|
2
q

` CpT q~ϕ~1pε`∆tq

` CκpT q
` ε

∆tκ
`∆t1´κ

˘

~ϕ~2p1` |x0|q.

This concludes the proof of the inequality (41) and of Proposition 3.7. �
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