Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification - Archive ouverte HAL Access content directly
Journal Articles Advances in Mathematics Year : 2022

Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification

Arata Komyo
  • Function : Author
  • PersonId : 1130678
Frank Loray
Masa-Hiko Saito
  • Function : Author
  • PersonId : 885136

Abstract

In this paper, we study rank 2 (quasi) parabolic bundles over the Riemann sphere with an effective divisor and these moduli spaces. First we consider a criterium when a parabolic bundle admits a unramified irregular singular parabolic connection. Second, to give a good compactification of the moduli space of semistable parabolic bundles, we introduce a generalization of parabolic bundles, which is called refined parabolic bundles. Third, we discuss a stability condition of refined parabolic bundles and define elementary transformations of the refined parabolic bundles. Finally, we describe the moduli spaces of refined parabolic bundles when the dimensions of the moduli spaces are two. These are related to geometry of some weak del Pezzo surfaces.
Fichier principal
Vignette du fichier
RefinedPS-5.pdf (658 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03614445 , version 1 (20-03-2022)
hal-03614445 , version 2 (12-10-2022)

Identifiers

Cite

Arata Komyo, Frank Loray, Masa-Hiko Saito. Moduli space of irregular rank two parabolic bundles over the Riemann sphere and its compactification. Advances in Mathematics, 2022, 410 (part B), pp.article n°108750. ⟨10.1016/j.aim.2022.108750⟩. ⟨hal-03614445v2⟩
75 View
23 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More