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Abstract

Accounting for inequality constraints, such as boundedness, monotonicity or convexity, is chal-
lenging when modeling costly-to-evaluate black box functions. In this regard, finite-dimensional
Gaussian process (GP) regression models bring a valuable solution, as they guarantee that the
inequality constraints are satisfied everywhere. Nevertheless, these models are currently restricted
to small dimensional situations (up to dimension 5). Addressing this issue, we introduce the Max-
Mod algorithm that sequentially inserts one-dimensional knots or adds active variables, thereby
performing at the same time dimension reduction and efficient knot allocation. We prove the con-
vergence of this algorithm. In intermediary steps of the proof, we propose the notion of multi-affine
extension and study its properties. We also prove the convergence of finite-dimensional GPs, when
the knots are not dense in the input space, extending the recent literature. With simulated and real
data, we demonstrate that the MaxMod algorithm remains efficient in higher dimension (at least in
dimension 20), and needs fewer knots than other constrained GP models from the state-of-the-art,
to reach a given approximation error.

1 Introduction

Gaussian processes (GPs) are widely used to address diverse applications since they form a flexible
prior over functions [45, 51]. They have been successfully applied in research fields such as numerical
code approximations [49], global optimization [32], model calibration [34], geostatistics [12, 43] and
machine learning [45].

It is known that accounting for inequality constraints (e.g. positivity, monotonicity, convex-
ity) in GPs leads to smaller prediction errors and to more realistic uncertainties [15, 16, 24, 39,
42, 46, 47]. These inequality constraints correspond to available information on functions over
which GP priors are considered. They are encountered in diverse research fields such as social
system analysis [47], computer networking [24], econometrics [13], geostatistics [42], nuclear safety
criticality assessment [39], tree distributions [40], coastal flooding [38], and nuclear physics [52].
Note also that, beyond GPs, regression methods that account for these inequality constraints, also
called shape constraints, are acknowledged as an important need in statistics and machine learning
[8, 20, 21, 27, 28, 29, 36].

Among the existing approaches which enable us to impose inequality constraints to GP mod-
els, we focus on those based on the approximation of GP samples in finite-dimensional spaces of
functions such as piecewise linear functions [3, 13, 39, 42, 52]. Indeed, the main benefit of these
approaches is that they guarantee the inequality constraints to be satisfied everywhere in the input
space. For instance, in the case of boundedness constraints, this means that the realizations from
the posterior distribution of a constrained GP model obtained from these approaches are above or
below the prescribed bounds everywhere in the input space. In contrast, realizations from the pos-
terior distributions obtained from several other GP-based approaches are guaranteed to be above
or below the prescribed bounds only at a limited number of selected input points (see, e.g., [15, 16]
and the work in [47] accounting for monotonicity constraints). Hence, the approaches based on the
approximation of GP samples in finite-dimensional spaces take into account the full information of
the inequality constraints. Furthermore, in practice, domain experts may consider that a statistical
model on a black box function is more trustworthy and physically interpretable if it respects known
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inequality constraints everywhere in the input space. For instance, in the application of Section
5.3, a prediction of the flooded area is expected to be non-negative and non-decreasing with re-
spect to the tide and surge inputs. From this point of view, the approximation of GP samples in
finite-dimensional spaces is one of the few admissible methods.

Nevertheless, the main drawback of approximating GP samples in finite-dimensional spaces is
the scalability to high-dimensional input spaces. Indeed, the finite-dimensional spaces rely on basis
functions, each of them being centered at a D-dimensional knot, with D being the input space
dimension. These D-dimensional knots need to be obtained from the tensorization of D sets of
one-dimensional knots, in order to satisfy the constraints everywhere. According to the state-of-
the-art, for instance [38, 39, 42], the sets of knots are fixed a priori for each of the D inputs. This
limits the applicability to small dimension, say, 3 to 5.

In this paper, we overcome this limitation, in situations where the dimension D is allowed to be
significantly larger (for instance D = 20 in Section 5), but where there are many irrelevant input
variables, or, in other words, the effective dimension is small. We suggest a sequential procedure
for knot insertion and variable selection that is scalable to these situations of higher dimensional
input spaces with irrelevant variables. The procedure leverages three important intuitive principles.
First, there should be a higher concentration of knots in input regions where the function is varying
most. Second, the most influential variables should be allocated the most knots. Third, weakly
influential variables should be allocated one-dimensional knots with the least priority.

Let us now describe the sequential procedure. Consider a set of n input points and n corre-
sponding observations of the function of interest, to be interpolated, as well as given inequality
constraints. We start with a coarse finite-dimensional GP model based on few active variables
and small sets of one-dimensional knots for them. Then, at each step, we either add a new active
variable or insert a one-dimensional knot to a variable that is already active. The new variable or
new knot is the one that corresponds to the largest modification, in L2 norm, of the maximum a
posteriori (MAP) function, also called the mode, of the constrained GP model. For this reason the
suggested sequential procedure is called the MaxMod (maximum modification) algorithm, hereafter
called MaxMod. The MAP is the most probable function that interpolates the observations and
that satisfies the inequality constraints everywhere, according to the finite-dimensional constrained
GP model. As shown in [42], computing the MAP yields a convex optimization problem of moder-
ate complexity. Here, we provide a computationally simple expression of the subsequent L2 norm
(in Appendix B), resulting in a computational complexity that is linear in the number of multi-
dimensional knots. We allow for free locations of one-dimensional knots by using asymmetric hat
basis functions, instead of the symmetric ones investigated in [39, 42]. The sequential procedure
also naturally incorporates a penalization for adding new variables, or for inserting one-dimensional
knots, that overly increase the total number of multi-dimensional knots.

From the point of view of free knot insertion in spline approximation, MaxMod differs from
many existing references [14, 17, 18, 26, 30, 33, 35, 50] (that typically address spline approximation
independently of GPs and inequality constraints). Indeed, these references are based on directly
evaluating and minimizing the approximation error of a target function and thus rely on multiple
evaluations of this function. In contrast, MaxMod is adapted to the situation where evaluations
of the target function are scarce, and it simply maximizes the difference between successive spline
approximations.

We provide a convergence guarantee for MaxMod. We consider the set of n input points and
function observations to be fixed and we let the number of iterations go to infinity. This corresponds
to increasing the computational budget, as measured by the number of multi-dimensional knots.
Then, we show that all the variables are eventually activated and that the set ofD-dimensional knots
becomes dense in the input space. This implies, based on [5, 6], that the MAP function obtained
from MaxMod converges to the optimal constrained interpolant function in the reproducing kernel
Hilbert space (RKHS, see for instance [10]) of the covariance function of the GP model. Hence,
the convergence result states that MaxMod, despite being a sequential procedure, becomes globally
efficient as the number of iterations increases. In particular, loosely speaking, the procedure does
not fall into an undesirable local pattern, where the inserted knots would cluster and would not
eventually cover the whole input space. It is, in general, important to ensure that sequential
procedures avoid undesirable local patterns [7, 9].

In order to obtain the convergence result, we extend the results of [5, 6]. These results show that,
given a dense sequence of multi-dimensional knots, the MAP of a constrained finite-dimensional
GP converges to the above discussed optimal constrained interpolant function in the RKHS of the
GP covariance function. The extension tackles the case where the multi-dimensional knots are
not dense. Based on the subset F of the input space corresponding to their closure, we define a
transformation that we call the multiaffine extension, that extends a function defined on F to the
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entire input space. This extension enables us to define an optimal constrained interpolant function
based on a new RKHS restricted to F . Then, we show that the MAP converges to this optimal
constrained interpolant function, thus extending [5, 6] to any sequence of multi-dimensional knots,
not necessarily dense on the entire input space. The construction and properties of the multiaffine
extension and this extension of [5, 6] may be of independent interest. Also, this general proof
scheme for the convergence of MaxMod may be adapted to the convergence of other algorithms
based on hat basis functions.

The benefit of the suggested sequential procedure is shown in a series of numerical experiments,
provided in Section 5, with simulated and real-world data. For the latter, data come from a coastal
flooding application (see [2, 38]) satisfying both positivity and monotonicity constraints. We test
the versatility of MaxMod for efficiently inserting knots or adding active dimensions while reducing
the approximation error of the resulting constrained GP. We demonstrate that MaxMod remains
tractable and yields a constrained GP model with accurate predictions, even up to the dimension
D = 20, for which the state-of-the-art procedures either are intractable [39, 42] or do not satisfy
the constraints everywhere [16, 47]. Even in smaller dimension, when the procedures of [39, 42]
are tractable, MaxMod typically needs fewer knots to achieve a comparable approximation error.
We also show the benefit of having fewer knots when subsequently computing confidence intervals
from constrained GP models.

This paper is organized as follows. In Section 2, we describe the finite-dimensional GP approach
proposed in [39, 42], that we adapt to the case where only a subset of the D variables is active. In
Section 3, we introduce MaxMod. In Section 4, we present the multiaffine extension and establish
the various convergence results. The numerical experiments are carried out in Section 5. Section
6 concludes the paper. Finally, in the appendix, we provide technical developments, some of the
technical conditions, and all the proofs of the paper.

2 Finite-dimensional constrained Gaussian processes

For convenience, we have summarized the notations of Sections 2 and 3 in Table 1, located at the
end of Section 3.

2.1 Basis function decomposition

The principle of finite-dimensional constrained GPs is to consider linear combinations of basis
functions which are tensorizations of one-dimensional asymmetric hat basis functions. These one-
dimensional basis functions are parametrized by −∞ < u < v < w < +∞, and are written
φu,v,w : R→ R, defined by,

φu,v,w(t) =





1
v−u (t− u) for u ≤ t ≤ v

1
w−v (w − t) for v ≤ t ≤ w
0 for t 6∈ [u,w],

for t ∈ R. Clearly, φu,v,w is a ‘hat’ function centered at v and with support [u,w].
Still in dimension one, we now explain how a set of basis functions can be defined from the

notion of subdivision. A (one-dimensional) subdivision is a set of (one-dimensional) knots S ={
t
(S)
0 , . . . , t

(S)
mS+1

}
. We let t

(S)
(0) ≤ · · · ≤ t

(S)
(mS+1) be the corresponding ordered knots. For any

subdivision, we assume that 0 = t
(S)
(1) < · · · < t

(S)
(mS) = 1 and, to deal with boundary issues, we set

t
(S)
(0) = −1 and t

(S)
(mS+1) = 2. With this convention, the smallest subdivision containing 0 and 1,

denoted as S0, is {−1, 0, 1, 2}.
Now, let D ∈ N be the ambient (potentially large) dimension and consider a given set of

active variables J = (a1, . . . , ad) ⊆ {1, . . . , D}, with 1 ≤ a1 < · · · < ad ≤ D, of size d ≤ D.
We now explain how to construct d-dimensional basis functions of the d active variables. We
define a d-dimensional subdivision (indexed by J ) as a vector of one-dimensional subdivisions
S = (Sa1 , . . . , Sad). For convenience, we may identify S with the set of d-dimensional knots∏d
j=1 Saj ⊆ Rd. We denote by SJ the set of d-dimensional subdivisions indexed by J .

For conciseness, we use tensor notation. Thus, the notation for a multi-index is ` = (`a1 , . . . , `ad) ∈
Nd. For a subdivision S ∈ SJ , the associated set of multi-indices is denoted

LS = {`; `i ∈ {1, . . . ,mSi}, i ∈ J },
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Figure 1: Illustration of the knots and basis functions.

and AS = {α` ∈ R; ` ∈ LS} is the set of associated real-valued sequences. For a given multi-index

` ∈ LS , the associated vector of knots is denoted t
(S)
` =

(
t
(Sa1 )

(`a1 ) , . . . , t
(Sad )

(`ad )

)
. We call this vector a

d-dimensional knot. Then, to any ` ∈ LS we associate the d-dimensional basis function defined by
tensorization, for t = (ta1 , . . . , tad) ∈ [0, 1]d,

φ
(S)
` (t) =

d∏

i=1

φ
t
(Sai

)

(`ai
−1)

,t
(Sai

)

(`ai
)
,t

(Sai
)

(`ai
+1)

(tai).

This basis function is 1 at the knot (t
(Sa1 )

(`a1 ) , . . . , t
(Sad )

(`ad ) ) and has support equal to the hypercube
∏d
i=1[t

(Sai )

(`ai−1), t
(Sai )

(`ai+1)].

In Figure 1, we now provide an illustrative example. Consider a total of D = 4 input variables,
among which the d = 2 variables 1 and 3 are active. We thus have the active set J = (a1, a2) =
(1, 3). Consider that for the first active variable, the subdivision is S1 = {−1, 0, 1/3, 1, 2}. In

S1, the knots −1 and 2 are only present to deal with boundary issues and the knots t
(S1)
(1) = 0,

t
(S1)
(2) = 1/3 and t

(S1)
(3) = 1 are displayed as two blue bullets and one blue triangle on the left panel.

The basis functions φ−1,0,1/3, φ0,1/3,1 and φ1/3,1,2 centered at these latter three knots are also
displayed. Similarly for the second active variable, the subdivision is S3 = {−1, 0, 1/4, 1/2, 1, 2}
(this subdivision is written S3 because the second active variable is the variable 3). The four knots

t
(S3)
(1) = 0, t

(S3)
(2) = 1/4, t

(S3)
(3) = 1/2 and t

(S3)
(4) = 1 are displayed at the middle panel, as well as the

basis functions φ−1,0,1/4, φ0,1/4,1/2, φ1/4,1/2,1 and φ1/2,1,2 centered at these knots.
Then, consider the two-dimensional space formed by the two active variables with subdi-

vision S = (S1, S3). Its associated set of multi-indices LS contains the 3 × 4 = 12 indices
(1, 1), (1, 2), . . . , (3, 4). The corresponding 12 bi-dimensional knots are displayed on the right. The

bi-dimensional knot represented as a triangle is t
(S)
(2,3) = (1/3, 1/2) with multi-index ` = (2, 3). It

corresponds to the triangle one-dimensional knots t
(S1)
(2) = 1/3 and t

(S3)
(3) = 1/2. The bi-dimensional

basis function φ
(S)
` on the right panel is a pyramid which top is located at the blue triangle and

which vertices are the dashed lines.
Next, let us construct the finite-dimensional space of functions ES that contains finite-dimensional

constrained GPs. We let ES be the linear space of functions [0, 1]d → R, spanned by the tensor

basis functions φ
(S)
` with ` ∈ LS . Equivalently, ES is the space of multivariate splines of degree 1,

constituted of componentwise piecewise linear functions, with knots defined by S. For α ∈ AS , we
let YS,α be the element of ES with coefficients α:

YS,α =
∑

`∈LS
α`φ

(S)
` . (1)

Note that YS,α(t
(S)
` ) = α` for all ` ∈ LS . Finally, for a function f : [0, 1]d → R, we denote by πS(f)

the projection of f onto ES :

πS(f) =
∑

`∈LS
f(t

(S)
` )φ

(S)
` . (2)

This projection is the componentwise piecewise linear function that coincides with f at the knots
of S.
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2.2 Function spaces for interpolation and inequality constraints

We let F(A,R) (resp. C(A,R)) be the set of functions (resp. continuous functions) from a subset
A of a finite-dimensional vector space to R. For d ∈ {1, . . . , D}, U = (u1, . . . , un) ∈ ([0, 1]d)n and
v(n) = (v1, . . . , vn) ∈ Rn, we write

IU,v(n) =
{
f : [0, 1]d → R; f(ui) = vi for i = 1, . . . , n

}
,

the set of d-dimensional functions which interpolate v(n) at U . Typically, a D-dimensional function
of interest is observed at observation points δ1, . . . , δn ∈ [0, 1]D, with values v1, . . . , vn and we let
ui = (δi)J . Throughout the paper, we use the following notation: for J ⊆ {1, . . . , D} and x ∈ RD,
we let xJ be the vector extracted from x by keeping only the components with indices in J .

We treat the inequality constraints as a subset CD of C([0, 1]D,R). Note that, even if a con-
strained GP model has a subset J of active variables that is strictly smaller than {1, . . . , D}, the
functions of this model are also functions of the full D variables, and considered as such, they are
required to belong to CD.

Three classical examples of inequality constraints are given below, corresponding respectively
to boundedness, (componentwise) monotonicity and componentwise convexity:

CD = {f ∈ C([0, 1]D,R); a ≤ f(x) ≤ b for all x ∈ [0, 1]D}, (3)

CD = {f ∈ C([0, 1]D,R); f(u) ≤ f(v) for all u, v ∈ [0, 1]D, u ≤ v}, (4)

CD = {f ∈ C([0, 1]D,R); for all i ∈ {1, . . . , D}, for all x∼i ∈ [0, 1]D−1, (5)

the function ui 7→ f(ui, x∼i) is convex}.

For monotonicity, the notation used above, u ≤ v, means u1 ≤ v1, . . . , uD ≤ vD. For componentwise
convexity, for t ∈ [0, 1]D, i ∈ {1, . . . , D} and ui ∈ [0, 1], we denote t∼i the vector obtained from t by
removing the coordinate i, and (ui, t∼i) the vector obtained from t by replacing the ith coordinate
by ui.

The inequality constraint set CD of functions in C([0, 1]D,R) naturally yields a corresponding
inequality constraint set for functions in C([0, 1]|J |,R), where for a finite set Θ, we write |Θ| for its
cardinality. The inequality constraint set in C([0, 1]|J |,R) corresponding to CD is

CJ =
{
g : [0, 1]|J | → R;

(
x ∈ [0, 1]D 7→ g(xJ )

)
∈ CD

}
.

The set CJ is the set of functions of the variables in J , that yield functions in CD when extended
with D − |J | inactive variables.

We finally introduce the next basic condition on the inequality constraint set.

Condition 1 (constraint set topology). The set CD is convex and closed with the topology of
uniform convergence.

Note that Condition 1 holds when CD is given by one of (3), (4) or (5).

2.3 Finite-dimensional Gaussian processes under interpolation and in-
equality constraints

2.3.1 Finite-dimensional Gaussian processes

We consider a continuous GP ξD indexed by [0, 1]D, with mean zero and continuous covariance
function kD on [0, 1]D × [0, 1]D. The covariance function kD can be restricted to an active set of
variables J ⊆ {1, . . . , D} as follows. We let −J = {1, . . . , D}\J . We let kJ be the covariance
function on [0, 1]|J | × [0, 1]|J | defined by, for u, v ∈ [0, 1]|J |, kJ (u, v) = kD(ũ, ṽ), where ũJ = u,
ũ−J = 0, ṽJ = v and ṽ−J = 0. Note that the choice of the value 0 for the inactive variables, i.e.
that are not in J , is arbitrary.

We consider the continuous GP ξJ on [0, 1]|J | defined by, for u ∈ [0, 1]|J |, ξJ (u) = ξD(ũ), where
ũ ∈ [0, 1]D is defined by ũJ = u and ũ−J = 0. Then ξJ has mean zero and covariance function kJ .
Remark that ξJ is obtained by freezing to 0 the inputs of ξD that are not in J , which enables to
model functions of the variables in J . Given a multi-dimensional subdivision, S ∈ SJ , we consider
the finite-dimensional GP

πS(ξJ ) =
∑

`∈LS
ξJ (t

(S)
` )φ

(S)
` . (6)

This finite-dimensional GP only depends on the vector of values at the knots, (ξJ (t
(S)
` ))`∈LS .
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Let us consider the covariance matrix of this vector, that we write kJ (S, S). Writing J =
(a1, . . . , ad) with 1 ≤ a1 < · · · < ad ≤ D, kJ (S, S) is the matrix of size mSa1

× · · · ×mSad
, that we

write in a multi-index way as, for `, `′ ∈ LS , kJ (S, S)`,`′ = kJ
(
t
(S)
` , t

(S)
`′

)
.

Remark that with this multi-index writing, matrix products of the form kJ (S, S)kJ (S, S),
matrix inverses of the form kJ (S, S)−1 and matrix vector products of the form kJ (S, S)α for α ∈ AS
can be defined by a straightforward extension of the corresponding operations for standard (single
indexed) matrices and vectors. Let us explain the matrix vector product case. Since LS corresponds

to the set
∏d
i=1{1, . . . ,mSai

} and α = (α`)`∈LS , the values of α can be indexed (arbitrarily) as
α1, . . . , αN , with N = mSa1

× · · · × mSad
. With the same indexing, the values in kJ (S, S) can

be written as (ki,j)i,j=1,...,N . The standard matrix vector product between (ki,j)i,j=1,...,N and
(α1, . . . , αN ) provides the vector (β1, . . . , βN ). Using then the reverse indexing, we obtain the values
(β`)`∈LS which are exactly the values of the (multi-indexed) matrix vector product kJ (S, S)α.

We assume that kJ (S, S) is invertible for all J ⊆ {1, . . . , D} and S ∈ SJ . This holds in
particular when the matrix [kD(δi, δj)]i,j=1,...,q is invertible for any q ∈ N and δ1, . . . , δq ∈ [0, 1]D,
two-by-two distinct. This is verified by most common covariance functions, for instance the squared
exponential ones and those from the Matérn class [45, 51].

2.3.2 Obtaining a finite number of linear inequality constraints for finite-
dimensional Gaussian processes

The main benefit of the finite-dimensional GP πS(ξJ ) is that, for many classical inequality sets
CJ , obtained from J = (a1, . . . , ad) ⊆ {1, . . . , D} and CD, there exists an explicit (multi-indexed)
matrix M(CJ ) = (M(CJ )b,`)b=1,...,B,`∈LS and an explicit vector v(CJ ) = (v(CJ )b)b=1,...,B such that

πS(ξJ ) ∈ CJ ⇐⇒M(CJ )(ξJ (t
(S)
` ))`∈LS ≤ v(CJ ), (7)

where again the definition of multi-indexed matrix-vector products is straightforward.
Equation (7) provides B linear inequality constraints on the vector of values of ξJ at the knots

(t
(S)
` )`∈LS . Hence, the constraint πS(ξJ ) ∈ CJ , that is a priori infinite-dimensional and intractable,

boils down to simple linear inequality constraints.
Consider for illustration the one-dimensional case, i.e. d = 1, and let S = Sa1 . Then, in the

case of boundedness constraints, it is shown in [42] that πS(ξJ ) ∈ CJ if and only if

ξJ (t
(S)
(`) ) ∈ [a, b], ` = 1, . . . ,mS .

Hence, for boundedness constraints, (7) holds when M(CJ ) is the (single-indexed) 2mS×mS matrix
(−ImS , ImS )> and v(CJ ) is (−a, . . . ,−a, b, . . . , b)> of size 2mS × 1.

In the case of monotonicity constraints, it is shown in [42] that πS(ξJ ) ∈ CJ if and only if

ξJ (t
(S)
(`) ) ≥ ξJ (t

(S)
(`−1)), ` = 2, . . . ,mS .

Hence under monotonicity constraints, (7) holds when v(CJ ) is the zero vector and M(CJ ) is
the (single-indexed) (mS − 1)×mS banded matrix




1 −1 0 · · · 0

0 1 −1 0 · · ·
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 1 −1



.

In dimension |J | = d > 1, for boundedness and monotonicity constraints, the principle is the
same but the notations become more cumbersome. In Appendix A, we provide the expressions of
M(CJ ) and v(CJ ) for which (7) holds, for boundedness, monotonicity and componentwise convexity,
in any dimension. These expressions follow from [39, 42], except for componentwise convexity in
dimension larger than one, when they are not available in earlier references, to the best of our
knowledge.
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2.3.3 The maximum a posteriori function

Consider now some input locations U = (u1, . . . , un) ∈ ([0, 1]d)n and some corresponding observa-
tions v(n) = (v1, . . . , vn) ∈ Rn. We are interested in the conditional distribution of πS(ξJ ) given
πS(ξJ ) ∈ IU,v(n) (interpolation constraints) and given πS(ξJ ) ∈ CJ (inequality constraints).

Let us define the following central characteristics of this conditional distribution:

α̂J ,S,U,v(n) = argmin
α∈AS

s.t. YS,α ∈IU,v(n)∩CJ

α>kJ (S, S)−1α. (8)

The mathematical definitions underlying (8) are recalled in Table 1. In words, the quantity in
(8) is the mode of the density of the Gaussian vector extracted from the finite-dimensional GP at
the knots, conditionally on the equality and inequality constraints. The linear combination of the
basis functions based on these knot values leads to the MAP function

YS,α̂J ,S,U,v(n)
, (9)

which is used by [5, 6, 39, 42] and is also called the mode of a finite-dimensional GP given interpo-
lation and inequality constraints.

Note that the interpolation constraint YS,α ∈ IU,v(n) can be expressed as a set of explicit linear
equations for α, see for instance [39, 42]. When the equivalence (7) holds, the constraint YS,α ∈ CJ
is expressed as a set of linear inequality constraints. In this case, the optimization problem (8)
is a quadratic optimization problem with linear inequality constraints and efficient optimization
procedures are available [11, 25], see also [39, 42].

Furthermore, under Condition 1 and when u1, . . . , un are two-by-two distinct, α̂J ,S,U,v(n) in (8)
is well-defined when the minimization set is non-empty, because this set is closed and convex, and
the function to be minimized is continuous and strictly convex, and goes to infinity as ||α|| goes to
infinity.

Finally, beside the MAP function YS,α̂J ,S,U,v(n)
, obtaining conditional realizations of πS(ξJ )

given πS(ξJ ) ∈ IU,v(n) and πS(ξJ ) ∈ CJ is also of high interest, for uncertainty quantification.
When (7) holds, these conditional realizations can be approximately sampled by Monte Carlo and
Markov chain Monte Carlo (MCMC) procedures [39, 42] (see also Section 5).

3 The MaxMod algorithm

3.1 Initialization

We consider the set of n observation points and observed values to be fixed in Section 3. We let

x
(1)
D , . . . , x

(n)
D ∈ [0, 1]D be the n two-by-two distinct observation points, and y1, . . . , yn ∈ R be the

corresponding observations. Typically, yi = f(x
(i)
D ) where f : [0, 1]D → R is the function of interest

that is modeled by a GP realization. We write XD = (x
(1)
D , . . . , x

(n)
D ) and y(n) = (y1, . . . , yn). For

i = 1, . . . , n and J ⊆ {1, . . . , D} we write x
(i)
J for the vector extracted from x

(i)
D by keeping the

components with indices in J . We write XJ = (x
(1)
J , . . . , x

(n)
J ).

The sequential procedure we suggest is based on updating the set of active input variables and
the (multidimensional) subdivision on the space of active input variables. It is initialized by a
non-empty set J0 ⊆ {1, . . . , D} of active variables, with |J0| = d0 and by an initial subdivision
S(0) ∈ SJ0

.

We also assume that x
(1)
J0
, . . . , x

(n)
J0

are two-by-two distinct. This condition is not restrictive
and typically holds when selecting a few active variables for initialization (for instance the most
correlated with the outputs, empirically). We also assume that the set {α ∈ AS(0) ;YS(0),α ∈
IXJ0 ,y(n) ∩ CJ0} is non-empty, which means that there exists a finite-dimensional interpolating
function satisfying the inequality constraints at the initialization of the sequential procedure. This
holds for general choices of a sufficient number of multidimensional knots.

Then, α̂J0,S(0),XJ0 ,y
(n) is well-defined when Condition 1 holds, since the minimization set in (8)

is non-empty, as discussed above.

3.2 The L2 difference between modes

For a non-empty set J ⊆ {1, . . . , D}, and for S ∈ SJ , define

α̂J ,S = α̂J ,S,XJ ,y(n) and ŶJ ,S = YS,α̂J ,S .
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By definition of α̂J ,S , the function ŶJ ,S satisfies both interpolation and inequality constraints,
i.e. belongs to IXJ ,y(n) ∩ CJ . Recall that, by definition of α̂J ,S , this function is the most likely
constrained interpolator of the observations, given the active variables J and the knots in S. Let
us now introduce two simple operations on a given subdivision S ∈ SJ .

• Insertion of a new knot: for i ∈ J and for t ∈ [0, 1] \ Si, we denote by S ∪i t the subdivision
S′ ∈ SJ defined by S′j = Sj for j ∈ J \ {i}, and by S′i = Si ∪ {t}.

• Addition of a new variable: for i 6∈ J , we denote by S + i the subdivision S′ ∈ SJ∪{i} defined
by S′j = Sj for j ∈ J , and by S′i = S0, the minimal subdivision defined in Section 2 that
corresponds to functions that are linear with respect to variable i.

For a non-empty J ⊂ {1, . . . , D}, for S ∈ SJ and for i ∈ {1, . . . , D}, let

NS,J ,i =





∏
j∈J
j 6=i

(|Sj | − 2) if i ∈ J
∏
j∈J (|Sj | − 2) if i 6∈ J ,

with the convention
∏
j∈J
j 6=i

(|Sj | − 2) = 1 if J = {i}.

The quantityNS,J ,i is the increase of the number of basis functions if, starting from a subdivision
S and a set of active variables J , a knot was inserted for the active variable i or the inactive variable
i was made active. Recall that for j ∈ J , |Sj | − 2 is the number of one-dimensional basis functions
corresponding to the variable j.

Now, we introduce the criterion used by MaxMod. The idea is to measure the L2 difference be-
tween the mode of the finite-dimensional process obtained at a potential next step of the algorithm,
and the current one, characterized by J and S. At a new iteration, two choices are possible. Either
a new knot t is inserted for an active variable i ∈ J , or a new active variable i 6∈ J is added. In
this case, the minimal subdivision is added for the dimension i (corresponding to a linear function
with respect to the dimension i). Formally, for t ∈ [0, 1] and i ∈ {1, . . . , D}, the criterion is written:

IJ ,S(i, t) =





1
NS,J ,i

∫

[0,1]d

(
ŶJ , S ∪i t(x)− ŶJ , S(x)

)2

dx if i ∈ J ,

1
NS,J ,i

∫

[0,1]d+1

(
ŶJ∪{i}, S+ i(x)− ŶJ , S(x)

)2

dx if i 6∈ J .
(10)

Note that in (10), in the case i 6∈ J , we have made the slight abuse of notation of treating ŶJ , S as
a function of the |J |+ 1 variables (xj)j∈J∪{i}, that does not use the variable xi. We also remark
that, for i 6∈ J , IJ ,S(i, t) does not depend on t. We explain how to compute (10) efficiently in
practice in Appendix B, resulting in a computational complexity that is linear in the number of
multi-dimensional knots.

The criterion (10) also penalizes insertions of knots at active variables or additions of new
active variables, that increase the number of basis functions (that is the computational complexity)
significantly. More precisely, the L2 difference between modes is divided by the number of additional
basis functions.

3.3 The MaxMod algorithm

For ∆,∆′ > 0, we introduce the reward

RJ ,S(i, t) =

{
∆d(t, Si) if i ∈ J
∆′ otherwise

(11)

that promotes the addition of new variables or the insertion of one-dimensional knots not too close
to existing ones. Here, for q ∈ N, x ∈ Rq and B ⊆ Rq, we denote by d(x,B) = infu∈B ||x − u||,
the distance between x and the set B. The reward for adding a new active variable is ∆′ and the
reward for inserting a knot for an existing variable is ∆ times the distance to the closest existing
knot.

For technical reasons, we need to prevent inserting one-dimensional knots that coincide with
existing ones. We thus introduce a sequence of separation distances (bm)m∈N, with bm > 0, such
that, at step m of MaxMod, no one-dimensional knot should be inserted at distance less than bm
to an existing knot. In practice, bm can be taken as small as desired, even equal to the machine
precision. We assume that the (bm)m∈N are small enough such that

∀m ∈ N, 2bm

(
max
i∈J0

∣∣∣S(0)
i

∣∣∣+m

)
< 1. (12)
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Algorithm 1 MaxMod (maximum modification of the MAP)

Input parameters: ∆ > 0, ∆′ > 0, two sequence of strictly positive numbers (am)m∈N and (bm)m∈N,
the initial set of active variables J0 ⊆ {1, . . . , D} and the initial subdivision S(0) ∈ SJ0 .

Sequential procedure: For m ∈ N, m ≥ 0, do the following.

1: Set i?m+1 ∈ {1, . . . , D}, t?m+1 ∈ [0, 1] such that d
(
t?m+1, S

(m)
i?m+1

)
≥ bm if i?m+1 ∈ Jm, and such that

IJm,S(m)(i?m+1, t
?
m+1) +RJm,S(m)(i?m+1, t

?
m+1) + am

≥ sup
i∈{1,...,D}, t∈[0,1],

s.t. d(t,S
(m)
i )≥ bm

if i ∈ Jm

(
IJm,S(m)(i, t) +RJm,S(m)(i, t)

)
. (13)

2: if i?m+1 ∈ Jm then Jm+1 = Jm and S(m+1) = S(m) ∪i?m+1
t?m+1, that is we add the knot t?m+1 to

the current subdivision S(m) for the variable i?m+1.

3: else Jm+1 = Jm ∪ {i?m+1} and S(m+1) = S(m) + i?m+1, that is we add the variable i?m+1 to the

current subdivision S(m).

As will be explained below, (12) simply guarantees that the separation distance does not prevent
MaxMod to insert knots.

We also introduce a sequence (am)m∈N of strictly positive numbers that correspond to distances
to optimality. The principle is that a knot or a variable added by MaxMod at step m should
maximize a quality criterion and that we allow for a distance to the global maximum that is not
exactly zero but is simply bounded by am. The MaxMod sequential procedure can now be written
as in Algorithm 1.

MaxMod maximizes a quality criterion, over the added variable or the inserted one-dimensional
knot. This quality criterion is the sum of the reward and the L2 distance between the current
mode function and the next one (divided by the number of additional knots). Note that if a new
variable is added, there is no new one-dimensional knot to select. Indeed, the new one-dimensional
subdivision of the new variable is always composed of the knots {−1, 0, 1, 2}. If a knot is inserted
to an existing variable, its location in [0, 1] is optimized continuously. As discussed above, we allow
for an approximate maximization of the quality criterion with a gap am to the maximum at step
m. Again as discussed above, no knot should be inserted to an active variable at distance less than
bm from an already existing knot.

Notice that Algorithm 1 is well-defined in the sense that i?m+1, t
?
m+1 can be chosen at each step.

Indeed, first the supremum in (13) is over a non-empty set. This is because (12) implies that for

all m ∈ N, one can take any i ∈ J0 ⊆ Jm and find t ∈ [0, 1] s.t. d
(
t, S

(m)
i

)
≥ bm. Indeed, consider

the intervals of length 2bm centered at t
(S

(m)
i )

j , j = 1, . . . ,m
S

(m)
i

. At step m of Algorithm 1, the

number of these intervals is less than maxi∈J0

∣∣S(0)
i

∣∣ + m, since the initial number of knots is less

than maxi∈J0

∣∣S(0)
i

∣∣ and the algorithm inserted at most one knot for coordinate i at each previous
step. Thus, the union of these intervals does not cover [0, 1].
Secondly, the sup is finite in (13) as proved in the following lemma.

Lemma 1. Let Condition 1 hold. Then, for each m ∈ N, the sup in (13) is finite.

4 Convergence results

In Section 4.1, we first provide an intermediary result that may be considered of independent
interest. We show that for any sequence of multi-dimensional knots, the MAP function converges
uniformly to a limit function which we define. Then, in Section 4.2 we use this intermediary result
to prove the convergence of MaxMod.

4.1 Convergence of the finite-dimensional MAP function with a general
sequence of multi-dimensional knots

In this section, we consider a fixed set of active variables J with |J | = d, and a corresponding
sequence of subdivisions, not necessarily obtained from MaxMod. Without loss of generality, we
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Table 1: List of symbols for Sections 2 and 3, with the page numbers where the symbols are introduced.
Symbol Description Page
φu,v,w One-dimensional hat basis function with knots u, v, w 3

t
(S)
(0) , . . . , t

(S)
(mS+1) Ordered knots of a one-dimensional subdivision S 3

D, d Input space dimension and number of active variables 3
J = (a1, . . . , ad) Set of active variables 3
S = (Sa1 , . . . , Sad) (Multi-dimensional) subdivision (vector of one-dim. subdivisions) 3
` ∈ LS Multi-index for a subdivision S (indexation of the knots) 3
α ∈ AS Sequence of coefficients for a subdivision S (values at knots) 4

t
(S)
` (d-dimensional) knot for a subdivision S 4

φ
(S)
` Basis function for a subdivision S (tensorized hat basis functions) 4

ES Linear space of the componentwise, piecewise linear functions
(equivalently multivariate splines of degree 1) with knots in S

4

YS,α Function in ES with values at knots α 4
πS(f) Function in ES interpolating f at knots in S 4

IU,v(n) Set of d-dimensional functions whose values at inputs U are v(n) 5
CD Set of D-dimensional functions satisfying the inequality constraints 5
CJ Set of d-dimensional functions satisfying the inequality constraints,

when seen as functions of D variables
5

kD, kJ Covariance functions with input dimension D and d 5
ξJ d-dimensional GP with covariance function kJ 5
kJ (S, S) Covariance matrix of the values of ξJ at the knots in S 6
M(CJ ), v(CJ ) Matrix and vector for the inequality constraints 6
α̂J ,S,U,v(n) Values at knots of ξJ with highest density conditionally on interpo-

lation and inequality constraints
7

YS,α̂J ,S,U,v(n)
d-dim. function in ES built from α̂J ,S,U,v(n) (MAP or mode) 7

XD, XJ , y(n) Observation points and associated observed values for MaxMod 7

α̂J ,S , ŶJ ,S α̂J ,S,U,v(n) and YS,α̂J ,S,U,v(n)
for MaxMod 7

S ∪i t Insertion of the knot t to the subdivision S for the variable i 8
S + i Addition of the variable i to the subdivision S 8
NS,J ,i Number of additional basis functions for a new knot/variable 8
IJ ,S(i, t) Normalized L2 difference between modes for a new knot/variable 8
RJ ,S(i, t) Reward promoting new variables and distance between knots 8
d(x,B) Distance between a point x and a set B 8

set J = {1, . . . , d} ⊆ {1, . . . , D} for d ≤ D. Thus we shall consider functions from [0, 1]d to R, with
the fixed dimension d. This allows us to remove the dependence on J in the notations, and to write

more simply: X = (x(1), . . . , x(n)) = (x
(1)
J , . . . , x

(n)
J ), S = SJ , α̂S,U,v(n) = α̂J ,S,U,v(n) , α̂S = α̂J ,S ,

ŶS = ŶJ ,S , C = CJ and k = kJ . In particular, the sets C corresponding to (3), (4) and (5) are
written:

C = {f ∈ C([0, 1]d,R); a ≤ f(x) ≤ b for all x ∈ [0, 1]d}, (14)

C = {f ∈ C([0, 1]d,R); f(u) ≤ f(v) for all u, v ∈ [0, 1]d, u ≤ v} (15)

C = {f ∈ C([0, 1]d,R); for all i ∈ {1, . . . , d}, for all x∼i ∈ [0, 1]d−1, (16)

the function ui 7→ f(ui, x∼i) is convex}.

4.1.1 The multiaffine extension of a multivariate function

For a univariate continuous function g defined on a closed subset B of [0, 1] containing 0 and 1, let
us denote by LB(g), or simply LB g, the affine extension of g on [0, 1]:

LB g(t) =

{
g(t) if t ∈ B
ω−(t)g(t−) + ω+(t)g(t+) if t /∈ B

(17)

where t− = max{u ∈ B;u ≤ t} is the closest left neighbor of t in B, t+ = min{u ∈ B;u ≥ t} is the

closest right neighbor of t in B, ω+(t) = t−t−
t+−t− and ω−(t) = 1− ω+(t). Notice that, thanks to the
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x1
x2

f(x)

x1

x2
f(x)

x1

x2

f(x)

Figure 2: Sequential construction of the multiaffine extension. Illustration on the 2-dimensional function
f(x) = (x1 − 0.5)2(x2 − 0.5)3, defined on F1×F2, with F1 = F2 = [0, 0.1]∪ [0.4, 1]. The three perspective plots
represent, from left to right: f , L2f and PF→[0,1]df = L1L2f .

assumptions on B, if t ∈ [0, 1] \ B then t− and t+ are well-defined and distinct and belong to B.
Hence ω−(t), ω+(t) ∈ (0, 1) are well-defined, and LB is well-defined by (17).

One can show that LB g is the unique continuous function h equal to g on B such that h is
affine on all intervals of [0, 1] \ B (see the proof of Proposition 1). This is clear when B is a finite
union of intervals, but it is still valid for more complex closed sets, such as an infinite sequence with
an accumulation point. Starting from this property, we now introduce the multiaffine extension of
a continuous multivariate function, as defined below.

Definition 1 (multiaffine function). Let f be a function defined on a product set G = G1×· · ·×Gd.
We say that f is d-affine or simply multiaffine if it is componentwise affine: for all i = 1, . . . , d,
for all u = (u1, . . . , ud) ∈ G, the function ui 7→ f(u) is affine on Gi.

Proposition 1 (definition of the multiaffine extension). Consider a continuous multivariate func-
tion f on F = F1 × · · · × Fd, where each Fi is a closed subset of [0, 1] containing 0 and 1.
Then, there exists a unique continuous function g defined on [0, 1]d, equal to f on F , such that,
for all i = 1, . . . , d, for all t ∈ [0, 1]d, the univariate cut function g(., t∼i) : ui 7→ g(ui, t∼i) is affine
on each interval of [0, 1] \ Fi. Furthermore, g is obtained sequentially from f by linearly extending
univariate cuts. More precisely, for i ∈ {1, . . . , d}, denote F 1:i = F1 × · · · × Fi, F 1:0 = ∅, and let
Li be defined from F(F 1:i × [0, 1]d−i,R) to F(F 1:(i−1) × [0, 1]d−i+1,R) by

Li(h)(t) = Li h(t) = (LFi [h(., t∼i)])(ti)

for h ∈ F(F 1:i × [0, 1]d−i,R) and t ∈ F 1:(i−1) × [0, 1]d−i+1. Then

g = L1 . . . Ld f.

We call g the multiaffine extension of f , and denote it by PF→[0,1]d(f) (or simply PF→[0,1]df).

Furthermore, PF→[0,1]d(f) is given explicitly by, for t ∈ [0, 1]d,

PF→[0,1]d(f)(t) =
∑

ε1,...,εd∈{−,+}

(
d∏

j=1

ωεj (tj)

)
f(tε11 , . . . , t

εd
d ), (18)

where the 2d products are non-negative and sum to one.

A two-dimensional illustration of the multiaffine extension is provided in Figure 2. As observed
on this figure, a feature of the multiaffine extension is the extension of the definition of a continuous
function f on hyper-rectangles where f is defined only at the 2d vertices (for instance the square
[0.1, 0.4]2 in the figure). The connection with the hat basis functions of Section 2 is that the
extension at one of these hyper-rectangles coincides with the expression of YS,α from (1), when the
closest knots in S to the hyper-rectangle coincide with its vertices. We refer to the last item of
Remark 1 for a more formal statement.
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Remark 1.

• As a direct consequence of Proposition 1, all q-dimensional cuts of the multiaffine extension,
i.e. (ti1 , . . . , tiq ) 7→ PF→[0,1]df(t), are q-affine on any hypercube in the product of complemen-
tary sets

∏q
`=1([0, 1] \ Fi`).

• In Proposition 1, the multiaffine extension is obtained by composing 1-dimensional cuts in a
specific order. By uniqueness, permuting the order will give the same result.

• In one dimension, extending linearly a function by using the closest neighbors as in (17) can
be viewed as computing the posterior mean of the Brownian motion [10, preface, page xiv]. In
general, one could define the multiaffine extension of Proposition 1 with the Brownian sheet.
However, this would require to condition the Brownian sheet on a continuous set and would
add technicalities (see, e.g., [4] for more details). This is why we have chosen to introduce
the multiaffine extension with basic tools.

• Consider S ∈ S and the set FS =
∏d
j=1(Sj ∩ [0, 1]), where each Sj ∩ [0, 1] is a closed subset

of [0, 1] containing 0 and 1. Then, by Proposition 2, for all f ∈ C([0, 1]d,R),

πS(f) = PFS→[0,1]d(f|FS ). (19)

Hence, we can also interpret the multiaffine extension as a generalization of the projection πS
to an infinite number of knots.

Now, we gather below some properties of the multiaffine extension.

Proposition 2.

1. The map f 7→ PF→[0,1]d(f) is affine and 1-Lipschitz from C(F,R) to C([0, 1]d,R), equipped
with the L∞ norm. In particular, it preserves uniform convergence.

2. If S is a d-dimensional subdivision such that S ∩ [0, 1]d ⊆ F , then any piecewise multilinear
function constructed from S coincides with the multiaffine extension of its restriction to F :

∀f ∈ ES : PF→[0,1]d
(
f|F
)

= f.

Corollary 1. For x ∈ [0, 1]d, let f, g be d-affine on the hypercube ∆ =
∏d
j=1[x−j , x

+
j ], and coincide

on its 2d vertices. Then they are equal on ∆.

4.1.2 Technical conditions

We let m0 ∈ N and consider a sequence of subdivisions (S(m))m≥m0
with S(m) ∈ S for m ≥ m0

(not necessarily the sequence obtained from MaxMod). Let the subdivisions be nested (i.e. S
(m)
i ⊆

S
(m+1)
i for i ∈ {1, . . . d}). We will show the convergence of the sequence of mode functions obtained

from the sequence of subdivisions (S(m))m≥m0
. In that view, we now introduce a list of technical

conditions.
To the set C, that is interpreted as the set of functions satisfying inequality constraints, we

associate a set
•
C ⊆ C, that we can choose and that is interpreted as a set of functions satisfying

corresponding strict inequality constraints. Let us explicitly show how
•
C is chosen when C is given

by one of (14), (15) or (16).
First, consider that C is given by (14), with −∞ < a < b < +∞ (the cases where either

a = −∞ or b = +∞ are similar). Then we choose
•
C as the set of continuous functions that are

strictly between a and b. Second, consider that C is given by (15). Let us write u < v when u ≤ v
and u 6= v. We say that a function f from [0, 1]d to R is strictly increasing if f(u) < f(v) for all

u, v ∈ [0, 1]d, u < v. Then we chose
•
C as the set of continuous strictly increasing functions. Finally,

consider that C is given by (16). Then we choose
•
C as

{f ∈ C([0, 1]d,R), for all i ∈ {1, . . . , d}, for all x∼i ∈ [0, 1]d−1,

the function ui 7→ f(ui, x∼i) is strictly convex}.

For other inequality sets C, we emphasize that we are free to choose the set
•
C ⊆ C for which the

technical conditions given below (Conditions 2 and 4) hold.

Condition 2 (initial knots flexibility, 1). The set {α ∈ AS(m0) ;YS(m0),α ∈ IX,y(n)∩
•
C} is non-empty.
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The previous condition means that one can construct, from the initial subdivision, a finite-
dimensional function that satisfies the interpolation and strict inequality constraints. With the

choice of
•
C for boundedness, Condition 2 implies that a < y1 < b, . . . , a < yn < b and that there

are enough knots in the initial subdivision to generate an interpolating function that is strictly
between a and b.

With the choice of
•
C for monotonicity, Condition 2 implies yi < yj for xi < xj (i, j = 1, . . . , n)

and that there are sufficiently many knots in the initial subdivision to generate a strictly increasing
interpolating function.

Consider finally componentwise convexity. For U = (u1, . . . , ur) ∈ ([0, 1]d)r and v(r) = (v1, . . . , vr) ∈
Rr, let us say that U and v(r) are compatible with strict convexity if there exists a function g in

•
C

such that g(ui) = vi, i = 1, . . . , r. Then, Condition 2 implies that X and y(n) are compatible with
strict convexity and that there are sufficiently many knots in the initial subdivision to generate a
componentwise strictly convex interpolating function.

Condition 3 (initial knots flexibility, 2).
{ (
YS(m0),α(x(i))

)
i=1,...,n

;α ∈ S(m0)
}

= Rn.

This condition means that for any possible n-dimensional observation vector (not only y(n)),
there exists a combination of basis functions based only on the initial knots that interpolates this
observation vector. This condition requires that there are enough initial knots (at least n) and that
these knots are located adequately. This condition is mild, since the number of knots increases to
infinity. For instance, in dimension d = 1, it is sufficient that there is one initial knot in between
each pair of observation points.

For a subset B in a metric space with distance dist, its interior is written intdist(B) and its
closure is written B. In particular, for a finite dimensional subspace A, and for B ⊆ C(A,R), we
shall consider int||.||∞(B) relatively to the L∞ norm. We let H be the RKHS (see for instance [10])
of k and we write ||.||H for the RKHS norm on H. We shall then consider int||.||H(H ∩ C), where
the interior is defined w.r.t. the RKHS norm of k on H.

Condition 4 (RKHS interior). For all h ∈
•
C, for all r ∈ N, U = (u1, . . . , ur) ∈ ([0, 1]d)r, with

u1, . . . , ur two-by-two distinct, letting v(r) = (h(u1), . . . , h(ur)) ∈ Rr, the set int||.||H(H∩C)∩IU,v(r)
is non-empty.

With the choice of
•
C for boundedness, Condition 4 holds when int||.||H(H ∩ C) ∩ IU,v(r) is non-

empty for all U = (u1, . . . , ur) ∈ ([0, 1]d)r and v(r) = (v1, . . . , vr) ∈ Rr, with u1, . . . , ur two-by-two
distinct and a < v1 < b, . . . , a < vn < b. We also have the following lemma.

Lemma 2. With C given by (14) with −∞ < a < b < +∞ and when
•
C is the set of continuous

functions that are strictly between a and b, we have H ∩
•
C ⊆ int||.||H(H ∩ C).

From Lemma 2, the set int||.||H(H∩C)∩IU,v(r) is non-empty if there exists h ∈ H that is strictly
between a and b and interpolates (u1, v1), . . . , (uv, vn). This can be interpreted as requiring H to
be rich enough, and is not restrictive (it is also required in [5, 6]).

With the choice of
•
C for monotonicity, Condition 4 holds when the set int||.||H(H ∩ C) ∩ IU,v(r)

is non-empty for all U = (u1, . . . , ur) ∈ ([0, 1]d)r and v(r) = (v1, . . . , vr) ∈ Rr, with u1, . . . , un
two-by-two distinct, with vi < vj for ui < uj (i, j = 1, . . . , n). Again, this is not restrictive, it is
also required in [5, 6] and can be interpreted as H being rich enough.

With the choice of
•
C for componentwise convexity, Condition 4 holds when int||.||H(H ∩ C)

∩ IU,v(r) is non-empty for all U = (u1, . . . , ur) ∈ ([0, 1]d)r and v(r) = (v1, . . . , vr) ∈ Rr that are
compatible with strict convexity. Again this is not restrictive and is also required in [5, 6].

Next, we introduce two conditions related to the stability of the constraint set.

Condition 5 (constraint set stability by projection). For all subdivision S ∈ S, πS(C) ⊆ C.

Condition 6 (constraint set stability by multiaffine extension). For f ∈ C, with f|F the restriction
of f to F , we have PF→[0,1]d(f|F ) ∈ C.

By Lemma 3 below, these two conditions hold in the cases of boundedness, monotonicity and
componentwise convexity. About Condition 5, this is a consequence of Remark 1 and Lemma 3,
applied to the set FS = S∩ [0, 1]d, that is closed, of product form, and contains {0, 1}d. Notice that
the fact that Condition 5 holds for boundedness and monotonicity constraints has been already
proved in [42].

Lemma 3. When C is given by one of (14), (15) or (16), Condition 6 holds.
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4.1.3 Convergence of the finite-dimensional MAP function

For a sequence of sets (Bm)m≥m0
, with Bm ⊆ [0, 1] for m ≥ m0, we say that Bm is dense in [0, 1]

as m→∞ if for every x ∈ [0, 1], we have d(x,Bm)→ 0 as m→∞. We first recall the convergence

theorem (Theorem 3) in [6] that shows that, when for i = 1, . . . , d the knots in S
(m)
i are dense in

[0, 1], then the function ŶS(m) converges as m→∞ to a limit function Yopt.

Theorem 1 (Kimeldorf-Wahba correspondence under constraints, [6]). Consider a sequence of

nested subdivisions (S(m))m≥m0
with S(m) ∈ S for m ≥ m0 (i.e. S

(m)
i ⊆ S(m+1)

i for i ∈ {1, . . . d}),

such that for i ∈ {1, . . . d}, S(m)
i is dense in [0, 1]. Assume that Condition 1 holds. Assume that

the two following conditions hold.

(H1) int||.||H(H ∩ C) ∩ IX,y(n) is non-empty,

(H2) ∀m ≥ m0, πS(m)(C) ⊆ C.

Then, as m→∞, the function ŶS(m) converges uniformly on [0, 1]d to Yopt, with:

Yopt = argmin
f ∈H∩C ∩I

X,y(n)

||f ||H.

In fact, in the above theorem, (H1) and (H2) hold in our framework. Indeed, (H1) is a conse-
quence of Conditions 2 and 4 and (H2) is a consequence of Condition 5.

The interpretation is that ŶS(m) is a finite-dimensional GP mode, obtained by solving an opti-
mization problem in finite dimension (see Section 2), while Yopt is the optimal constrained inter-
polator in H, obtained by solving an optimization problem in infinite dimension, see [6].

We now give an extension to Theorem 1 to the case where, for i ∈ {1, . . . , d}, the knots in

S
(m)
i are not necessarily dense in [0, 1]. This extension is the main result of this section. We define
F = F1 × · · · × Fd, where Fi is the closure in [0, 1] of all the knots at coordinate i:

Fi = [0, 1] ∩
⋃

m≥m0

S
(m)
i .

We further denote by CF and IF,X,y(n) the pre-image sets of C and IX,y(n) by the multiaffine
extension PF→[0,1]d introduced in Section 4.1.1:

CF = {f : F → R, s.t. PF→[0,1]df ∈ C},
IF,X,y(n) = {f : F → R, s.t. PF→[0,1]df ∈ IX,y(n)}.

We also let kF be the restriction of the kernel k on F × F and HF be the corresponding RKHS of
functions from F → R (see e.g. [10]). We have HF = {f : F → R, ∃h ∈ H s.t. h|F = f}, and the
RKHS norm in HF is ‖f‖HF = inf

h|F=f
‖h‖H.

Then we state the extension of Theorem 1 to non-dense sequences. The result is intuitive: on the
closure set F , the finite-dimensional GP mode converges uniformly to the constrained interpolator
in HF , with the equality and inequality constraints given by IF,X,y(n) and CF . On the complement
of F , these two functions are piecewise multilinear (the interpolator in HF being extended with
the multiaffine extension), see Proposition 1. The multiaffine extension enables to express the
convergence, both on F and its complement, simply.

Theorem 2. Consider a sequence of nested subdivisions S(m), as well as F , HF , CF , IF,X,y(n) , as

defined in this section. Assume that Conditions 1 to 6 hold. Then, as m→∞, the function ŶS(m)

converges uniformly on [0, 1]d to PF→[0,1]d (YF,opt), with:

YF,opt = argmin
f ∈HF ∩CF ∩IF,X,y(n)

||f ||HF .

Note that the two functions Yopt in Theorem 1 and YF,opt in Theorem 2 are equal when F =
[0, 1]d. When F 6= [0, 1]d, these two functions need not coincide, even on F .

4.2 Convergence of the MaxMod algorithm

We can now apply Theorem 2 to prove the convergence of MaxMod in Theorem 3 below. The
technical conditions for Theorem 3 are adaptations of those of Theorem 2 to the setting of MaxMod.
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They are stated and discussed in Appendix C. There, we also show that these conditions hold in
the cases of boundedness, monotonicity and componentwise convexity.

Theorem 3 shows the consistency of MaxMod, which will asymptotically select all the variables
and allocate a dense sequence of knots to each variable. As a consequence, the mode function
obtained from MaxMod converges to the infinite-dimensional optimal function Yopt defined in The-
orem 1. In Theorem 3, we let HD be the RKHS of kD.

Theorem 3. Let (Jm) and (S(m)) be the sequence of sets of active variables and of subdivisions
obtained from Algorithm 1. Assume that am → 0 and that Conditions 1 and 7 to 11 (see Appendix

C) hold. Then, for m large enough, Jm = {1, . . . , D}. Furthermore, for j = 1, . . . , D, the set S
(m)
j

(which becomes well-defined for m large enough) is dense in [0, 1] as m → ∞. Consequently, as

m→∞, the mode ŶS(m) converges uniformly on [0, 1]D to the function Yopt defined by

Yopt = argmin
f ∈HD ∩CD ∩IXD,y(n)

||f ||HD .

Theorem 3 can be interpreted as stating that, for a fixed dataset, as the computational budget
(quantified here by the number of multi-dimensional knots) goes to infinity, the finite-dimensional
mode converges to Yopt, which is optimal for the dataset, but requires, so to speak, an infinite
computational budget. Remark that MaxMod is sequential and of the greedy type. Hence, as
discussed in Section 1, it is important to guarantee that its one-step-ahead allocation of the knots
does not prevent it to yield mode functions that are converging to the global optimum Yopt.

Remark 2. From the proof of Theorem 3, one can see that the convergence of MaxMod still holds
if the L2 distance in (10) is replaced by any discrepancy criterion ∆(f1, f2), that goes to zero when
||f1 − f2||∞ → 0.

5 Numerical experiments

In this section, we aim at testing the performance of the constrained GP when the knots and active
dimensions are sequentially added using MaxMod. In practice, as shown in [38], incorporating
noise in the constrained GP model leads to significant computational improvements due to the
“relaxation” of the interpolation conditions. The noise, parametrized by a variance τ2 ≥ 0, leads
to a new definition of the mode in (9), that can be found in [38, 41], and that we call the noisy
mode. This noisy mode can be computed even when the number of multi-dimensional knots m =
mSa1

× · · · × mSad
is smaller than the number of observations n. MaxMod can be carried out

exactly as in Section 3 when working with the noisy mode. We will denote as ŶMaxMod the noisy
mode obtained from MaxMod.

Here, we shall work with the noisy mode, which allows us to always initialize MaxMod with
only one active dimension, i.e. |J | = 1, and to add new active ones according to Algorithm 1. We

take the first active dimension as the one resulting in an initial mode ŶMaxMod,0 that differs the
most from zero. Then, for each addition of a new dimension, an initial set of two knots is allocated
at the boundaries of [0, 1].

Algorithm 2 summarizes the practical implementation of MaxMod that is used within this
section. We fix ∆ = ∆′ = 1 × 10−9, see (11), which means that there is a negligible reward for
either inserting a new knot in an already active dimension or adding a new dimension. For other
applications, one may be particularly interested in adding knots while preserving a tractable input
dimension, in which case ∆ must be larger than ∆′. Furthermore, we consider a squared exponential
kernel for the covariance function kJ [23, 45]. For each step of MaxMod, the covariance parameters
of kJ and the noise variance parameter τ2 are estimated via maximum likelihood [45]. The open
source code of MaxMod is available in the R package lineqGPR (0.2.0) [37].1

5.1 2D illustration under monotonicity constraints

For illustration, we consider the 2D monotonic function f(x) = 1
2x1 + arctan(10x2) on [0, 1]2. We

evaluate f at a maximin Latin hypercube design (LHD, [19]) with n = 40 points x
(1)
D , . . . , x

(n)
D .

1The source code can be found at: https://github.com/anfelopera/lineqGPR. The analytic examples proposed
here (Sections 5.1 and 5.2) can be reproduced using the Jupyter notebooks available in the GitHub repository (https:
//github.com/anfelopera/lineqGPR/tree/master/notebooks). The numerical experiments were executed on an 11th
Gen Intel(R) Core(TM) i5-1145G7 CPU@2.60GHz, 16 Gb RAM. Computations from step 2 to 4 of Algorithm 2 were
parallelized using two independent cores.
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Algorithm 2 Practical implementation of MaxMod using the noisy mode

Input parameters: ∆ > 0, ∆′ > 0, D.
1: Initialize the algorithm by selecting as initial input dimension the variable that gives the largest

norm of the initial noisy mode ŶMaxMod,0.
Sequential procedure: For m ∈ N, m ≥ 0, do the following.
2: for k = 1, . . . , D do
3: if the variable k is already active then compute the optimal position of the new knot tk ∈ [0, 1]

according to the MaxMod criterion described in (13) (in the supremum), and denote the resulting

noisy mode as Ŷ
(k)

MaxMod,m+1.
4: else add two knots at the boundaries of the selected new active dimension, i.e. (tk,1, tk,2) =

(0, 1), and denote the resulting noisy mode as Ŷ
(k)

MaxMod,m+1.

5: Choose the optimal decision k∗ ∈ {1, . . . , D} that maximizes the MaxMod criterion:

k∗ ∈ argmax
k∈{1,...,D}

MaxMod∆,∆′(ŶMaxMod,m, Ŷ
(k)

MaxMod,m+1).

6: Update knots and active variables, set new noisy mode to ŶMaxMod,m+1 = Ŷ
(k∗)

MaxMod,m+1.
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Figure 3: Evolution of MaxMod using f(x) = 1
2x1 + arctan(10x2) as target function. The mode

ŶMaxMod accounts for monotonicity constraints everywhere. The panels shows: the observations (black
dots), the mode (1D: green solid line, 2D: solid surface) and the knots (red crosses). The set of added
knots are highlighted by a vertical red line in 1D and a vertical red plane in 2D.

The observations, with the notation of Section 3, are thus y1 = f(x
(1)
D ), . . . , yn = f(x

(n)
D ). For

ŶMaxMod, we account for monotonicity constraints everywhere. As a stopping rule, we check that
the criterion in (10), plus the reward in (11), is smaller than a tolerance fixed to 1 × 10−5, for all
possible new knot or variable.

5.1.1 Assessment of MaxMod in terms of bending energy

From Figure 3, we can observe that MaxMod starts by adding the second dimension rather than
the first one since f is more variable across x2. Note also that, before activating the first dimension,
the algorithm refines the second one by placing a third knot around x2 = 0.29. Then, after the
second iteration, although the first dimension has been activated, the algorithm prefers enriching
the quality of ŶMaxMod across x2 while staying linear across x1. The convergence of the algorithm
is obtained after four iterations, resulting in a total of m = 10 knots: 2 and 5 one-dimensional
knots allocated across the first and the second dimension, respectively. We note that the final
estimated noise variance parameter is negligible, τ̂2

MaxMod = 8.38 × 10−5 (equivalent to ≈ 0.07%
of the variance of the observations), resulting in a GP model that almost interpolates all the
observations (see Figure 3).

We now compare the mode ŶMaxMod to modes resulting from equispaced designs of the knots
(see [38, 39, 42]). We consider either square or rectangular designs of the knots. This leads to three
modes denoted as:
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Figure 4: Evolution of the (normalized) bending energy En for the example in Figure 3. Results are
shown for Ŷsquare (green dotted line), ŶMaxMod,rect (red dashed line) and ŶMaxMod (blue solid line). For

ŶMaxMod,rect and ŶMaxMod, the labels on top are given for each iteration. They denote which dimension
has been refined by MaxMod and vertical dashed lines indicate when a new active dimension is added.

• ŶMaxMod: the mode resulting from MaxMod.

• ŶMaxMod, rect: the mode resulting from equispaced one-dimensional knots but where the num-

ber of knots per dimension is the same as for ŶMaxMod.

• Ŷsquare: the mode resulting from equispaced one-dimensional knots with the same number of
knots per dimension.

We assess the quality of Ŷsquare, ŶMaxMod,rect and ŶMaxMod in terms of the (normalized) bending

energy [17]: En(f, Ŷ ) =
∫

[0,1]D
(f(x)−Ŷ (x))2dx/

∫
[0,1]D

f2(x)dx. By comparing the En values using

ŶMaxMod to the ones provided by Ŷsquare or ŶMaxMod,rect, we aim at showing that MaxMod not only
adds active dimensions strategically but also places knots in regions leading to smaller errors.

Figure 4 shows the performance of Ŷsquare, ŶMaxMod,rect and ŶMaxMod in terms of En. Observe

that the mode ŶMaxMod minimizes faster the En criterion, leading to negligible values after adding
m = 8 knots (iteration 4, see also Figure 3). For equispaced designs of knots, the En values

from ŶMaxMod,rect outperformed those from Ŷsquare. However, both Ŷsquare and ŶMaxMod,rect led to
suboptimal results due to the equispaced restriction.

5.1.2 Computation time

We report the computation time taken by MaxMod and compare it with equispaced knots evenly
allocated to each variable (mode Ŷsquare). We consider the execution of MaxMod up to m = 6
and the equispaced approach with m = 16. Indeed, from Figure 4, both models lead to similar
En values. MaxMod led to a total lapse time of about 1.4s, while the equispaced approach led to
0.13s. The computation time of MaxMod is mostly due to the update of the covariance parameters
(maximum likelihood estimation) each time a new knot or active variable is tried.

Thus, the execution time of MaxMod is larger than for the equispaced approach, for the same
accuracy. However, the benefit of MaxMod is that it reduces the number of knots. This is crucial
for the subsequent exploitation of the Gaussian process model. More precisely, the cost of numerical
sampling of constrained conditional simulations of f , that enables to compute confidence intervals
[38, 39, 42], increases with the number of knots. Here (in two dimensions) this cost is mild:
obtaining 1000 constrained GP simulations required 0.08s with the knots provided by MaxMod,
compared to 0.14s for the equispaced approach.2 However, the benefit of having less knots with
MaxMod is key in higher dimension, as we illustrate below in dimension 5 (see Table 3). Finally,
the equispaced approach becomes intractable when the dimension D is larger than approximately
10, as the available numerical routines are unable to compute a mode with more than about a
thousand (210) knots. This approach may be already inaccurate in the range 6 − 10 for D, as
the common number of knots for the variables cannot exceed 3. In contrast, we will implement
MaxMod up to dimension 20.

2In this paper, we considered the Hamiltonian Monte Carlo sampler proposed in [44] for simulating constrained GP
realizations.
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Figure 5: Evolution of the (normalized) bending energy En for the example in Figure 3 with respect
to the sample size n = 10, . . . , 50. The En criterion is computed over a 10× 10 equispaced grid.

5.1.3 Impact of the sample size

In the context of expensive black box objective functions, we are interested in having accurate
predictions with small sample sizes (number of observations of f). We assess the quality of the
three modes for varying sample sizes n = 10, . . . , 50, considering again maximin LHDs. We use
the optimal configurations of knots obtained in the experiment in Figure 4, that is m = 15 (m1 =

3,m2 = 5) for ŶMaxMod,rect and ŶMaxMod and m = 16 (m1 = m2 = 4) for Ŷsquare. Figure 5 shows

that for small sample sizes, the three modes lead to small En values, and that both ŶMaxMod,rect

and ŶMaxMod outperform Ŷsquare. For this latter mode, we can see a local increase of the error from
sample size 20 to 30, which may be explained by the randomness of the maximin LHDs. Hence,
again, the prediction accuracy improves when considering the optimal design of knots of MaxMod.

5.2 Dimension reduction illustration

We now focus on the capability of MaxMod to perform dimension reduction. We apply the same
stopping rule as in the previous test case, with a tolerance equal to 5 × 10−3. We consider the
target function:

f(x) =

d∑

i=1

arctan

(
5

[
1− i

d+ 1

]
xi

)
, (20)

with x ∈ [0, 1]d. Note that f is completely monotone exhibiting lesser growth rates as i increases.
In addition to (x1, . . . , xd), we include D − d virtual variables, indexed as (xd+1, . . . , xD), which
will compose the subset of inactive dimensions since f does not depend on them. We consider
D ∈ {5, 10, 15, 20} and d ∈ {2, 3, 4, 5}. We also analyze the case where d = D. For each value of
D, we evaluate f at a maximin LHD with n = 10×D points. For any possible combination of D
and d, we apply MaxMod expecting at properly finding the true d active dimensions when d < D.
When d = D, we expect that MaxMod will concentrate the computational budget on the most
important input variables x1, . . . , xd∗ with d∗ < d.

From Table 2, we observe that when d < D MaxMod properly identifies the d dimensions that
are actually active, leading to small En results when considering either ŶMaxMod,rect or ŶMaxMod.3

When d = D, MaxMod successfully detects the most important variables 1, . . . , d∗ with d∗ < D for
D ≥ 10. When the active dimension d is larger or equal to 10, the function approximation problem
is intrinsically more difficult. Thus MaxMod stops before being able to reach the stopping criterion,
since the number of knots becomes too large for the numerical routines that compute the mode
(m > 1400). In these cases, we fix the maximal number of iterations to 12, which nevertheless
yields small values of En.

Overall, ŶMaxMod outperformed ŶMaxMod,rect due to its flexibility to freely allocate knots without

being limited to equispaced designs. Finally, we remark that the mode Ŷsquare is intractable here
due to the large dimension D.

3In all the replicates in Table 2, MaxMod leads to small noise variance parameters τ̂2MaxMod when d < D. The largest
value, obtained for D = 20 and d = 5, is τ̂2MaxMod = 1.75× 10−3 (≈ 0.4% of the variance of the observations).
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Table 2: Performance of MaxMod for the example in Section 5.2. Results are shown for both
ŶMaxMod,rect and ŶMaxMod considering D ∈ {5, 10, 15, 20} and d ∈ {2, 3, 4, 5}. We also consider the
case where d = D. The activated dimensions, number of one-dimensional knots per active dimension
and En results are displayed for any combination of D and d. †The maximal number of iterations is
fixed to 12 for the experiments where d ≥ 10.

D d active dim. knots per dim. En(f, ŶMaxMod,rect) En(f, ŶMaxMod)

5

2 (1, 2) (7, 4) 2.59 × 10−5 4.51× 10−5

3 (1, 2, 3) (6, 6, 4) 6.42× 10−4 4.09 × 10−4

4 (1, . . . , 4) (4, 4, 3, 2) 9.02 × 10−4 9.05× 10−4

5 (1, . . . , 5) (3, 4, 4, 3, 2) 1.15 × 10−3 1.19× 10−3

10

2 (1, 2) (5, 3) 1.03 × 10−5 2.78× 10−5

3 (1, 2, 3) (5, 4, 3) 2.13× 10−3 1.79 × 10−3

4 (1, . . . , 4) (5, 3, 3, 2) 3.10× 10−4 2.89 × 10−4

5 (1, . . . , 5) (3, 4, 3, 3, 2) 7.40× 10−4 4.31 × 10−4

10† (1, . . . , 7) (3, 3, 3, 2, 3, 3, 2) 4.44× 10−3 3.94 × 10−3

15

2 (1, 2) (4, 3) 1.73 × 10−4 1.85× 10−4

3 (1, 2, 3) (4, 3, 3) 2.13× 10−4 1.94 × 10−4

4 (1, . . . , 4) (3, 3, 3, 2) 4.06× 10−4 1.94 × 10−4

5 (1, . . . , 5) (3, . . . , 3, 2) 2.26× 10−4 9.29 × 10−5

15† (1, . . . , 6) (3, . . . , 3) 6.22× 10−3 5.93 × 10−3

20

2 (1, 2) (5, 3) 9.88× 10−5 9.37 × 10−5

3 (1, 2, 3) (4, 4, 3) 1.40 × 10−4 1.40 × 10−4

4 (1, . . . , 4) (4, 3, 3, 3) 3.48× 10−4 1.97 × 10−4

5 (1, . . . , 5) (3, . . . , 3, 2) 5.60× 10−4 2.83 × 10−4

20† (1, . . . , 7) (2, 3, . . . , 3, 2) 5.58× 10−3 5.55 × 10−3

5.3 Coastal flooding application in 5D

We consider the 5D coastal flood application studied in [2, 38], available in the R package profExtrema
[1]. In the past, a flood event at the Boucholeurs area (La Rochelle, France) was induced by an
overflow on the Atlantic ocean caused by the Xynthia storm in 2010. To prevent adverse coastal
flood events, such as the one led by the Xynthia storm, accurate forecast and early-warning systems
(see, e.g., [2, 38, 48] for GP-based ones) are required.

The dataset contains 200 observations of the flooded area (Aflood[m2]) driven by five offshore
forcing conditions (inputs) at the Boucholeurs area: tide (T [m]), surge (S[m]), the phase difference
(φ, hours) between the surge peak and the high tide, the time duration of the raising part (t−,
hours) and the falling part (t+, hours) of the (triangular) surge signal. In particular, it is known
that Aflood increases as T and S increase. According to [2, 38], while the contribution of T , S, t−
and t+ are almost linear, Aflood exhibits a higher variation across φ. Thus, in our experiments, we
may expect that MaxMod properly concentrate one-dimensional knots across φ rather than across
the other dimensions. As suggested in [38], we consider here Y := log10(Aflood) as the output
variable.

As shown in [38], enforcing a GP-based coastal emulator to both positivity and monotonicity
(with respect to T and S) constraints leads to a more reliable prediction. There, the number of
one-dimensional knots per dimension has been manually fixed looking for a trade-off between the
computational cost and the quality of resolution of the constrained GP. Here, we aim at applying
MaxMod and comparing the En results to those from the knots in [38]. As in Sections 5.1 and 5.2, we

compute the modes Ŷsquare, ŶMaxMod,rect and YMaxMod. In addition, we compute the mode resulting

from the knots in [38], denoted as Ŷ∗. Since the target function Y is actually unknown, the bending

energy En is computed over the available 200 observations: En(Y, Ŷ ) =
∑200
i=1(Yi − Ŷi)2/

∑200
i=1 Y

2
i .

Figure 6 shows that MaxMod results in a total of m = 4 × 3 × 6 × 3 × 2 = 432 knots, leading to
En(Y, ŶMaxMod,rect) = 9.17×10−3 and En(Y, ŶMaxMod) = 8.81×10−3. These results are comparable

to those from Ŷ∗, En(Y, Ŷ∗) = 8.72 × 10−3 with m = 4 × 4 × 5 × 3 × 3 = 720, and from Ŷsquare,

En(Y, Ŷsquare) = 8.72 × 10−3 with m = 45 = 1024. Moreover, as expected, MaxMod concentrated
the computational budget on the input φ (6 one-dimensional knots) rather than the other ones
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,Ŷ

)
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Figure 6: Evolution of the bending energy En criterion for the coastal flooding application in Section
5.3. The panel description is the same as in Figure 4. The En value associated to the mode Ŷ∗, yielded
by using the configuration of the knots suggested in [38], is displayed by a purple asterisks at m = 720.

Table 3: CPU lapse times for the coastal flooding application in Section 5.3.

En(Y, Ŷ )
CPU time [s]

Approach m
[1× 10−3] Training step

Computation Sampling step

of Ŷ with 100 realizations

Ŷsquare 1024 8.72 49.1 8.03 non converged after 1 day

ŶMaxMod 432 8.81 949.5 0.58 108.72

(4, 3, 3, 2) since Y varies the most across φ. In Figure 6, it appears that ŶMaxMod is the most

efficient, needing a smaller number of knots than Ŷsquare, ŶMaxMod,rect and Ŷ∗ to reach a given
value of En. In terms of noise variance, MaxMod estimates τ̂2

MaxMod = 6.16 × 10−2, a small (but
non negligible) value equivalent to ≈ 7.6% of the variance of the observations. Our interpretation
for this small value is that it accounts for possible numerical instabilities of the computer code.
Furthermore it improves the accuracy of the mode function and speeds up its computation by
making the inequality constraints easier to satisfy (see [38] for further discussions).

Table 3 shows the CPU times required for training the GP models from Ŷsquare (covariance

parameter estimation) and ŶMaxMod (Algorithm 2 including covariance parameter estimation). It

also shows the elapsed times related to the computation of the modes Ŷsquare and ŶMaxMod (with
given covariance parameters), and to the sampling of 100 conditional realizations of the resulting

constrained processes. The training time is smaller for Ŷsquare. The computation of Ŷ is faster for

MaxMod, but for both MaxMod and the equispaced approach, the computation time for Ŷ is small
compared to the training time. With the 432 knots from MaxMod, the 100 conditional realizations
are obtained in less than 2 minutes. In contrast, with the 1024 knots from Ŷsquare, the Hamiltonian
Monte Carlo routine for sampling the conditional distribution proposed in [44] does not converge,
because of the overly high dimension. This highlights the benefit of MaxMod in real applications:
it requires an acceptable increase of the (offline) training time in order to reduce the constrained
GP model dimension, which enhances its subsequent exploitation (conditional sampling).

6 Conclusion

This paper introduces MaxMod, that sequentially inserts one-dimensional knots or adds active
variables to a constrained GP regression model. This algorithm results in the first constrained GP
model that at the same time satisfies the constraints everywhere and that is not restricted to small
dimensional cases in practice.

A proof of convergence, for a fixed dataset and as the number of iterations goes to infinity,
guarantees that, despite its sequential nature, MaxMod globally converges to an optimal infinite
dimensional model. In establishing this convergence, the notion of a multi-affine extension is
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constructed. Furthermore, the convergence of finite-dimensional GP models is shown in settings
where the multi-dimensional knots are not dense in the input domain, thereby extending the recent
literature. This construction, and this latter convergence result, may be of special and independent
interest, together with the corresponding proof techniques.

In Section 5, with simulated and real data, it is confirmed numerically that MaxMod is tractable
and accurate (at least in dimension D = 20), and typically needs less multi-dimensional knots than
the other state-of-the-art constrained GP models. We demonstrate the strong benefit of having
fewer knots when subsequently computing confidence intervals from constrained GP models. These
numerical examples also indicate that MaxMod successfully detects the active variables when the
effective dimension d is small. Even when d = D, MaxMod was able to detect the most important
variables.
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A Expression of the linear inequality constraints in Section
2.3.2 for boundedness, monotonicity and componentwise con-
vexity

Let us provide expressions of M(CJ ) and of v(CJ ) such that (7) holds when CD is given by (3), (4)
and (5). When CD is given by (3), we define M(CJ ) and v(CJ ) as follows. The matrix M(CJ ) has
2|LS | rows and thus v(CJ ) is of size 2|LS |. The first |LS | rows and values of v(CJ ) are indexed by
` ∈ LS and defined by, for `′ ∈ LS ,

M(CJ )`,`′ = −1`=`′ and v(CJ )` = −a. (21)

The last |LS | rows and values of v(CJ ) are indexed by ` ∈ LS and defined by, for `′ ∈ LS ,

M(CJ )|LS |+`,`′ = 1`=`′ and v(CJ )|LS |+` = b, (22)

using the slight abuse of notation |LS | + ` to denote the last |LS | rows and values. The fact
that (7) holds with (21) and (22) can be simply shown to follow from the proof of Lemma 3 and
from (19). Similar equations were also stated, in the previous references [39, 42].

When C is given by (4), we define M(CJ ) and v(CJ ) as follows. The matrix M(CJ ) is
composed of d = |J | vertically stacked matrices M (1)(CJ ), . . . ,M (d)(CJ ) and v(CJ ) is com-
posed of d vertically stacked column vectors v(1)(CJ ), . . . , v(d)(CJ ). For i = 1, . . . , d, the matrix
M (i)(CJ ) has (mSai

− 1)
∏
j=1,...,d,j 6=imSaj

rows and v(i)(CJ ) has the same number of compo-

nents. The rows and values of v(i)(CJ ) are indexed by the multi-indices ` = (`a1 , . . . , `ad) ∈(∏i−1
j=1{1, . . . ,mSaj

}
)
× {2, . . . ,mSai

} ×
(∏d

j=i+1{1, . . . ,mSaj
}
)

and defined by

M (i)(CJ )(`a1 ,...,`ad ),(`′a1
,...,`′ad

) = −1`aj=`′aj
for j 6=i,`ai=`′ai + 1`aj=`′aj

for j 6=i,`ai−1=`′ai
(23)

and v(i)(CJ )(`a1 ,...,`ad ) = 0.

Equation (23) means that the set of values on the tensorized grid of d-dimensional knots is
component-wise non-decreasing. It can be shown from the proof of Lemma 3 and from (19) that
M(CJ ) and v(CJ ) given by (23) imply (7). This was noticed in the previous references [39, 42].

Finally, when C is given by (5), we define M(CJ ) and v(CJ ) as follows. The matrix M(CJ )
is composed of d vertically stacked matrices M (1)(CJ ), . . . ,M (d)(CJ ) and v(CJ ) is composed of d

4OQUAIDO gathers partners in technological research (BRGM, CEA, IFPEN, IRSN, Safran, Storengy) and academia
(CNRS, Ecole Centrale de Lyon, Mines Saint-Etienne, Univ. of Grenoble, Univ. of Nice, Univ. of Toulouse) around
advanced methods for Computer Experiments.

5French National Research Agency, under the RISCOPE project (ANR-16-CE04-0011).
6UNQ program (EPSRC grantEP/K032208/1).
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vertically stacked column vectors v(1)(CJ ), . . . , v(d)(CJ ). For i = 1, . . . , d, the matrix M (i)(CJ ) has
(mSai

− 2)
∏
j=1,...,d,j 6=imSaj

rows and v(i)(CJ ) has the same number of components. The rows

and values of v(i)(CJ ) are indexed by the multi-indices ` = (`a1 , . . . , `ad) ∈
(∏i−1

j=1{1, . . . ,mSaj
}
)
×

{3, . . . ,mSai
} ×

(∏d
j=i+1{1, . . . ,mSaj

}
)

and defined by

M (i)(CJ )(`a1 ,...,`ad ),(`′a1
,...,`′ad

) (24)

= −1`aj=`′aj
for j 6=i,`ai=`′ai + 21`aj=`′aj

for j 6=i,`ai−1=`′ai
− 1`aj=`′aj

for j 6=i,`ai−2=`′ai

and v(i)(CJ )(`a1 ,...,`ad ) = 0.

Equation (24) means that the set of values on the tensorized grid of d-dimensional knots is
component-wise convex. It follows from the proof of Lemma 3 and from (19) that M(CJ ) and
v(CJ ) given by (24) imply (7). To the best of our knowledge, this was only shown in dimension
one, in earlier references.

Remark 3. The equation (24) is defined only for i ∈ {1, . . . , d} such that mSai
≥ 3. If i is such

that mSai
= 2, then the matrix M (i)(CJ ) and the vector v(i)(CJ ) can be removed from M(CJ ) and

v(CJ ). Indeed, when mSai
= 2, the function πS(ξJ ) is linear (thus convex) along the dimension ai.

B Computing the L2 difference between modes in practice

At step m of the MaxMod algorithm, the current mode function is ŶJm, S(m) : [0, 1]dm → R, with
dm = |Jm| and with

ŶJm, S(m) =
∑

`∈L
S(m)

(α̂Jm,S(m))`φ
(S(m))
` . (25)

To simplify the exposition in Section B, we let Jm = J , and we consider the case where
J = {1, . . . , d}. The results of Section B can then be immediately extended to a general set J , by
permuting indices. We also let S(m) = S = (S1, . . . , Sd).

B.1 L2 difference for a knot insertion to an active variable

Consider the active variable 1, and a new knot t ∈ [0, 1]\S(m)
1 (for the variable 1). Again, the

choice of the active variable 1 enables to simplify the exposition and the results of Section B.1 can
be immediately extended to a general active variable i ∈ {1, . . . , d}.

The candidate mode function is

ŶJ , S∪1t =
∑

`∈LS∪1t
(α̂J ,S∪1t)`φ

(S∪1t)
` . (26)

For j = 1, . . . , d, write mj = mSj . With this notation, Sj = {t(Sj)(0) , . . . , t
(Sj)

(mj+1)} with the ordered

knots t
(Sj)

(0) < · · · < t
(Sj)

(mj+1).

Let S′ = S ∪1 t = (S′1, . . . , S
′
d). We have S′j = Sj for j ∈ {2, . . . , d}. Let ν ∈ {1, . . . ,m1 − 1}

be such that tS1

(ν) < t < tS1

(ν+1). Then we have S′1 = {t(S
′
1)

(0) , . . . , t
(S′1)

(m1+2)} with the ordered knots

t
(S′1)

(0) < · · · < t
(S′1)

(m1+2) with

(t
(S′1)

(0) , . . . , t
(S′1)

(m1+2)) = (t
(S1)
(0) , . . . , t

(S1)
(ν) , t, t

(S1)
(ν+1), . . . , t

(S1)
(m1+1)).

Then the next proposition provides a computationally efficient formula for the L2 difference
between modes. To understand Proposition 3, note that the difference between the current mode
function (25) and the new mode function (26) can be expressed as a weighted sum of the basis
functions of the new (refined) subdivision S′. In Proposition 3, (27), (28) and (29) first provide
the expressions of the corresponding coefficients. Then, it just suffices to compute the matrix of
L2 inner products between the d-dimensional basis functions of S′. This matrix is given in (30).
It is the tensor product of the d matrices of L2 inner products between the one-dimensional basis
functions of the d one-dimensional subdivisions S′1, . . . , S

′
d. These latter matrices are provided in

(31).
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Proposition 3 (L2 difference for knot insertion to an active variable). Define for ` = (`1, . . . , `d) ∈
LS′ ,

β` = (α̂J ,S)` − (α̂J ,S′)` (27)

if `1 ∈ {1, . . . , ν},

β` = (α̂J ,S)(ν,`2...,`d)

t
(S1)
(ν+1) − t

t
(S1)
(ν+1) − t

(S1)
(ν)

+ (α̂J ,S)(ν+1,`2,...,`d)

t− t(S1)
(ν)

t
(S1)
(ν+1) − t

(S1)
(ν)

− (α̂J ,S′)`, (28)

if `1 = ν + 1 and
β` = (α̂J ,S)(`1−1,`2,...,`d) − (α̂J ,S′)` (29)

if `1 ∈ {ν + 2, . . . ,m1 + 1}.
Define for ` = (`1, . . . , `d) ∈ LS, `′ = (`′1, . . . , `

′
d) ∈ LS′ ,

Ψ`,`′ =

{∏
j=1,...,d ψ

(j)
`j ,`′j

if |`j − `′j | ≤ 1 for j = 1, . . . , d

0 else
, (30)

with, when |`j − `′j | ≤ 1,

ψ
(j)
`j ,`′j

=





t
(S′)
(`j+1)

−t(S
′)

(`j)

3 if `j = `′j = 1

t
(S′)
(`j)
−t(S

′)
(`j−1)

3 if `j = `′j = mj + 1

t
(S′)
(`j+1)

−t(S
′)

(`j−1)

3 if `j = `′j ∈ {2, . . . ,mj}
t
(S′)
(`j+1)

−t(S
′)

(`j)

6 if `′j = `j + 1

t
(S′)
(`j)
−t(S

′)
(`j−1)

6 if `′j = `j − 1

. (31)

Then, we have
∫

[0,1]d

(
ŶJ , S(x)− ŶJ , S∪1t(x)

)2

dx =
∑

`∈LS′ ,`′∈LS′
β`Ψ`,`′β`′ . (32)

Consider that the coefficients in (25) and (26) have been computed by optimization of a
quadratic function with linear inequality constraints, see Section 2.3. Then, from the above propo-
sition, the L2 difference between modes can be obtained by the explicit quadratic form (32).
Furthermore, the matrix Ψ defining this quadratic form is the tensor product of d banded ma-
trices ψ(1), . . . , ψ(d). Hence, the computational cost is eventually linear in the number of multi-
dimensional knots.

B.2 L2 difference when a new active variable is added

Consider the new variable d+ 1. Again, the choice of the new variable d+ 1 enables to simplify the
exposition and the results of Section B.2 can be immediately extended to a general new variable
i ∈ {d+ 1, . . . , D}. The candidate mode function is

ŶJ∪{d+1}, S+(d+1) =
∑

`∈LS+(d+1)

(α̂J∪{d+1},S+(d+1))`φ
(S+(d+1))
` . (33)

Then the next proposition provides a computationally efficient formula for the L2 difference
between modes.

Proposition 4 (L2 difference when a new active variable is added). Let ` ∈ LS+(d+1) and write `

of the form (̃`, `d+1) with ˜̀ ∈ LS and `d+1 ∈ {1, 2}. Then let

β` = (α̂J ,S )̃` − (α̂J∪{d+1},S+(d+1))`.

For `, `′ ∈ LS+(d+1), define Ψ`,`′ as in Proposition 3, but with S′ there replaced by S + (d + 1).
Then we have

∫

[0,1]d+1

(
ŶJ , S(x)− ŶJ∪{d+1}, S+(d+1)(x)

)2

dx =
∑

`∈LS+(d+1),`
′∈LS+(d+1)

β`Ψ`,`′β`′ . (34)

The discussion of Proposition 4 is the same as for Proposition 3.
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C Technical conditions for Theorem 3

As for Theorem 2, for each J ⊆ {1, . . . , D}, we consider a set of functions in C([0, 1]|J |,R) satisfying

strict inequalities:
•
CJ ⊆ CJ . We recall that the MaxMod algorithm is initialized with J0 ⊆

{1, . . . , D} and S(0) ∈ S.
Conditions 2, 3 and 4 are replaced by the following conditions.

Condition 7 (extension of Condition 2). Consider J ⊇ J0 and S ∈ SJ such that, for j ∈ J0, we

have Sj ⊇ S(0)
j . Then the set

{α ∈ AS ;YS,α ∈ IXJ ,y(n) ∩
•
CJ }

is non-empty.

Condition 7 means that whenever the set of active variables has been increased compared to
J0 and knots have been inserted to the variables in J0 or to the new active variables, then it is
possible to find an interpolating function that satisfies the strict inequalities.

Condition 8 (extension of Condition 3). We have

{(
YS(0),α

(
x

(i)
J0

))
i=1,...,n

;α ∈ S(0)

}
= Rn.

For J ⊆ {1, . . . , D}, we let HJ be the RKHS of kJ with norm || · ||HJ (recall that HJ is a set
of functions from [0, 1]|J | to R).

Condition 9 (extension of Condition 4). For all J ⊆ {1, . . . , D}, for all h ∈
•
CJ , for all r ∈ N, U =

(u1, . . . , ur) ∈ ([0, 1]|I|)r, with u1, . . . , ur two-by-two distinct, letting v(r) = (h(u1), . . . , h(ur)) ∈ Rr,
the set int||.||HJ (HJ ∩ CJ ) ∩ IU,v(r) is non-empty.

Consider the case where CD is given by (3), (4) and (5) (boundedness, monotonicity and con-
vexity). Then the same discussions of Conditions 2 and 4 of Theorem 2 apply to Conditions 7 and

9 here. In particular, when CD is given by (3), we choose
•
CJ as the set of functions in C([0, 1]|J |,R)

that are strictly between a and b. When CD is given by (4), we choose
•
CJ as the set of functions

in C([0, 1]|J |,R) that are strictly increasing. When CD is given by (5), we choose
•
CJ as the set

of functions in C([0, 1]|J |,R) which one-dimensional cuts are strictly convex. With these choices,
Conditions 7 and 9 are mild and mean that there are sufficiently many knots and sufficiently many
active variables at the beginning of the MaxMod algorithm and that the Hilbert space HJ is
sufficiently rich for J ⊇ J0. Finally, Lemma 2 can be straightforwardly adapted.

Condition 5 is replaced by the following one.

Condition 10 (extension of Condition 5). For all J ⊆ {1, . . . , D}, for all subdivision S ∈ SJ ,
πS(CJ ) ⊆ CJ .

As for Theorem 2, Condition 10 can be shown to hold for boundedness, monotonicity and
input-wise convexity constraints. Finally, Condition 6 is replaced by the following one.

Condition 11 (extension of Condition 6). For any J = (a1, . . . , ad) ⊆ {1, . . . , D}, for a closed
set F = Fa1 × · · · × Fad ⊆ [0, 1]d with 0, 1 ∈ Faj for j = 1, . . . , d, let us define PF→[0,1]d as in
Proposition 1. Then, for f ∈ CJ , with f|F the restriction of f to F , we have PF→[0,1]d(f|F ) ∈ CJ .

Remark that Lemma 3 can be extended straightforwardly.

D Proofs

Proof of Lemma 1. Since the reward RJm,S(m)(i, t) is smaller than max(∆,∆′), it is sufficient
to show that, for i ∈ {1, . . . , D},

sup
t∈[0,1],

s.t. d(t,S
(m)
i )≥ bm

if i ∈ Jm

IJm,S(m)(i, t) <∞. (35)

If i 6∈ Jm, IJm,S(m)(i, t) in (35) does not depend on t (since the knots for the variable i, after this
variable has been added, are {−1, 0, 1, 2} independently on t). Thus the sup in (35) is finite.
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Consider now i ∈ Jm. Let Ei,m be the set of t ∈ [0, 1] such that d
(
t, S

(m)
i

)
≥ bm. By continuity

of d
(
., S

(m)
i

)
, notice that Ei,m is compact.

Consider the function ŶJm, S(m) . We can write it in the thinner space obtained by inserting the
knot t at coordinate i, in the form YS(m) ∪i t, αm,t for some αm,t ∈ AS(m) ∪i t.

The coefficients αm,t are equal to the values of the function ŶJm,S(m) at the (multidimensional)

knots in S(m) ∪i t, as remarked just after (1). Since ŶJm,S(m) does not depend on t and is continuous

on [0, 1]|Jm|, it follows that αm,t is bounded with respect to t ∈ Ei,m.
Furthermore, let λmax(M) and λmin(M) be the largest and smallest eigenvalues of a matrix M . By

definition of α̂Jm,S(m) ∪i t, and since ŶJm,S(m) belongs to IX(Jm),y(n) ∩ CJm , we have:

α̂>Jm,S(m) ∪i tkJm(S(m) ∪i t, S(m) ∪i t)−1α̂Jm,S(m) ∪i t

≤ α>m,tkJm(S(m) ∪i t, S(m) ∪i t)−1αm,t

≤ ||αm,t||2

λmin

(
kJm(S(m) ∪i t, S(m) ∪i t)

) .

Furthermore,

α̂>Jm,S(m) ∪i tkJm(S(m) ∪i t, S(m) ∪i t)−1α̂Jm,S(m) ∪i t

≥
||α̂Jm,S(m) ∪i t||

2

λmax

(
kJm(S(m) ∪i t, S(m) ∪i t)

) .

Hence, we have that

sup
t∈Ei,m

||α̂Jm,S(m) ∪i t||
2 ≤ sup

t∈Ei,m

λmax

(
kJm(S(m) ∪i t, S(m) ∪i t)

)

λmin

(
kJm(S(m) ∪i t, S(m) ∪i t)

) sup
t∈Ei,m

||αm,t||2.

By assumption, kJm is continuous and the matrix kJm(S(m) ∪i t, S(m) ∪i t) is invertible for all t
in the compact set Ei,m. Thus, the ratio of eigenvalues above is bounded. Hence ||α̂Jm,S(m) ∪i t||
is bounded with respect to t ∈ Ei,m and thus also the supremum of the function ŶJm,S(m) ∪i t is
bounded with respect to t ∈ Ei,m. Hence the sup in (35) is indeed finite, which concludes the
proof.

Proof of Proposition 3. The current mode function

ŶJ , S =
∑

˜̀∈LS
(α̂J ,S )̃`φ

(S)˜̀ (36)

can be expressed of the form

ŶJ , S =
∑

`∈LS′
γ`φ

(S′)
` .

Let us express γ`. Let ` = (`1, . . . , `d) ∈ LS′ . First, if `1 ∈ {1, . . . , ν}, we have

γ` = ŶJ , S((t
(S′1)

(`1) , . . . , t
(S′d)

(`d) ))

and because t
(S′1)

(`1) = t
(S1)
(`1) , we obtain from (36), ŶJ , S((t

(S′1)

(`1) , . . . , t
(S′d)

(`d) )) = (α̂J ,S)` and thus

γ` = (α̂J ,S)`.

Second, if `1 ∈ {ν + 2, . . . ,m1 + 1}, we have

γ` = ŶJ , S((t
(S′1)

(`1) , . . . , t
(S′d)

(`d) ))

and because t
(S′1)

(`1) = t
(S1)
(`1−1), we obtain from (36),

ŶJ , S((t
(S′1)

(`1) , . . . , t
(S′d)

(`d) )) = (α̂J ,S)(`1−1,`2,...,`d).

Hence
γ` = (α̂J ,S)(`1−1,`2,...,`d).
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Finally, if `1 = ν + 1, we have

γ` = ŶJ , S((t
(S′1)

(ν+1), t
(S′2)

(`2) , . . . , t
(S′d)

(`d) ))

= (α̂J ,S)(ν,`2,...,`d)φt(S1)

(ν−1)
,t

(S1)

(ν)
,t

(S1)

(ν+1)

(t
(S′1)

(ν+1)) + (α̂J ,S)(ν+1,`2,...,`d)φt(S1)

(ν)
,t

(S1)

(ν+1)
,t

(S1)

(ν+2)

(t
(S′1)

(ν+1)),

from the definition of the multidimensional hat basis functions and the position of (t
(S′1)

(ν+1), t
(S′2)

(`2) ,

. . . , t
(S′d)

(`d) ) relatively to the knots in the subdivision S. Hence we have, since t
(S′1)

(ν+1) = t,

γ` = (α̂J ,S)(ν,`2,...,`d)

t
(S1)
(ν+1) − t

t
(S1)
(ν+1) − t

(S1)
(ν)

+ (α̂J ,S)(ν+1,`2,...,`d)

t− t(S1)
(ν)

t
(S1)
(ν+1) − t

(S1)
(ν)

.

Hence, we have shown that

ŶJ , S − ŶJ , S′ =
∑

`∈LS′
β`φ

(S′)
` ,

with β` as given in the proposition. To conclude the proof, by bilinearity of the square L2 distance,
it remains to prove that for ` = (`1, . . . , `d) ∈ LS′ , `′ = (`′1, . . . , `

′
d) ∈ LS′ ,

∫

[0,1]d
φ

(S′)
` (x)φ

(S′)
`′ (x)dx = Ψ`,`′ , (37)

with Ψ`,`′ as given in the proposition. If there is j ∈ {1, . . . , d} such that |`j − `′j | > 1, then the

supports of φ
(S′)
` and φ

(S′)
`′ are disjoint and thus (37) is zero. Consider now that for j ∈ {1, . . . , d},

|`j − `′j | ≤ 1. Then (37) is equal to

∏

j=1,...,d

∫ 1

0

φ
t
(S′
j
)

(`j−1)
,t

(S′
j
)

(`j)
,t

(S′
j
)

(`j+1)

(x)φ
t
(S′
j
)

(`′
j
−1)

,t
(S′
j
)

(`′
j
)
,t

(S′
j
)

(`′
j
+1)

(x)dx.

Let now j ∈ {1, . . . , d} and write t` as a short-hand for t
(S′j)

(`) , for ` ∈ {0, . . . ,mS′j
+ 1}. Write also

φ` as a short-hand for φ
t
(S′
j
)

(`−1)
,t

(S′
j
)

(`)
,t

(S′
j
)

(`+1)

.

Consider `, `′ ∈ {1, . . . ,mj + 1}. If ` = `′ = 1, we have

∫ 1

0

φ`(x)φ`′(x) =

∫ t2

t1

(
t2 − x
t2 − t1

)2

dx =
t2 − t1

3
.

If ` = `′ = mj + 1, we have

∫ 1

0

φ`(x)φ`′(x) =

∫ tmj+1

tmj

(
x− tmj

tmj+1 − tmj

)2

dx =
tmj+1 − tmj

3
.

If ` = `′ ∈ {2, . . . ,mj}, we have

∫ 1

0

φ`(x)φ`′(x) =

∫ t`

t`−1

(
x− t`−1

t` − t`−1

)2

dx+

∫ t`+1

t`

(
t`+1 − x
t`+1 − t`

)2

dx =
t`+1 − t`−1

3
.

If `′ = `+ 1 ∈ {2, . . . ,mj + 1}, we have

∫ 1

0

φ`(x)φ`′(x) =

∫ t`+1

t`

(
t`+1 − x
t`+1 − t`

)(
x− t`
t`+1 − t`

)
dx =

t`+1 − t`
6

.

Finally, if `′ = `− 1 ∈ {1, . . . ,mj}, we have

∫ 1

0

φ`(x)φ`′(x) =

∫ t`

t`−1

(
t` − x
t` − t`−1

)(
x− t`−1

t` − t`−1

)
dx =

t` − t`−1

6
.

Hence, we have shown that for j ∈ {1, . . . , d} and `j , `
′
j ∈ {1, . . . ,mj + 1} with |`j − `′j | ≤ 1,

∫ 1

0

φ
t
(S′
j
)

(`j−1)
,t

(S′
j
)

(`j)
,t

(S′
j
)

(`j+1)

(x)φ
t
(S′
j
)

(`′
j
−1)

,t
(S′
j
)

(`′
j
)
,t

(S′
j
)

(`′
j
+1)

(x)dx = ψ
(j)
`j ,`′j

with the notation of the proposition. This concludes the proof.
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Proof of Proposition 4. The current mode function

ŶJ , S =
∑

˜̀∈LS
(α̂J ,S )̃`φ

(S)˜̀
can be expressed of the form

ŶJ , S =
∑

˜̀∈LS
2∑

`d+1=1

(α̂J ,S )̃`φ
(S)˜̀ φ

t
(S0)

(`d+1−1)
,t

(S0)

(`d+1)
,t

(S0)

(`d+1+1)

=
∑

`∈LS′
γ`φ

(S+(d+1))
`

with γ` = (α̂J ,S )̃` when ` = (̃`, `d+1). Hence we obtain

ŶJ , S − ŶJ∪{d+1}, S+(d+1) =
∑

`∈LS+(d+1)

β`φ
(S+(d+1))
` ,

with β` as defined in the proposition. The rest of the proof is then identical to the proof of
Proposition 3.

Proof of Proposition 1. Let us first prove that

L1 . . . Ldf(t) =
∑

ε1,...,εd∈{−,+}

(
d∏

j=1

ωεj (tj)

)
f(tε11 , . . . , t

εd
d ).

In dimension 1, notice that the affine extension can be rewritten as

LBf(t) = ω−(t)f(t−) + ω+(t)f(t+) =
∑

ε∈{−,+}
ωε(t)f(tε), (38)

with the convention chosen for ω−(t), ω+(t) for t ∈ B. Indeed, in that case t− = t+ = t, and thus
LBf(t) = 1

2 (f(t) + f(t)) = f(t). Then, let us show by induction on i = d, d− 1, . . . , 1 the property

(Pi) : ∀t ∈ F 1:i−1 × [0, 1]d−i+1,

Li . . . Ldf(t) =
∑

εi,...,εd∈{−,+}

(
d∏

j=i

ωεj (tj)

)
f(t1, . . . , ti−1, t

εi
i , . . . , t

εd
d ). (39)

First Pd is true, by the expression (38) for LFd . Now, assume that Pi+1 is true (for i ∈ {1, . . . , d−1}).
Then, we have, for t ∈ F 1:i−1 × [0, 1]d−i+1:

Li . . . Ldf(t) = LFi(Li+1 . . . Ldf(., t∼i))(ti)

=
∑

εi∈{−,+}
ωεi(ti)(Li+1 . . . Ldf)(tεii , t∼i)

=
∑

εi∈{−,+}
ωεi(ti)

( ∑

εi+1,...,εd∈{−,+}

(
d∏

j=i+1

ωεj (tj)

)
f(t1, . . . , ti−1, t

εi
i , t

εi+1

i+1 , . . . , t
εd
d )

)

which gives Pi. Finally P1 gives (18). Furthermore, notice that:

∑

ε1,...,εd∈{−,+}

(
d∏

j=1

ωεj (tj)

)
=

d∏

j=1

(ω−(tj) + ω+(tj)) = 1.

Let us now justify the existence and unicity of PF→[0,1]d .
Firstly, if g exists, then necessarily g = L1 . . . Ldf . Indeed, by assumption, when t∼1 = (t2, . . . , td)
is fixed in [0, 1]d−1, the univariate function

g(., t∼1) : u1 7→ g(u1, t∼1)

is continuous and affine on all intervals of [0, 1] \F1. By property of the affine extension, it is equal
to the affine extension of its restriction to F1:

g(., t∼1) = LF1
(g(., t∼1)|F1

) = LF1

(
g|F1×[0,1]d−1(., t∼1)

)
.
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This shows that
g = L1 g|F1×[0,1]d−1 .

By the same reasoning,
g|F1×[0,1]d−1 = L2 g|F1×F2×[0,1]d−2 ,

and by an immediate induction,

g = L1 . . . Ld g|F = L1 . . . Ldf.

Now, let us check that the function g = L1 . . . Ldf verifies the conditions of the proposition.

• It is equal to f on F , since each Li leaves the values of its input function unchanged on F .

• Let check that all 1-dimensional cuts of g are affine on all intervals of the complements of the
Fi’s. Indeed, consider the explicit formula (18). Let fix i ∈ {1, . . . , d} and consider an interval
Ii included in [0, 1]\Fi. Without loss of generality, we assume that Ii = [ai, bi] is closed, with
ai < bi. Then, for all ti ∈ Ii, we have a−i = t−i < t+i = b+i . Thus, t−i , t

+
i do not depend on

ti. Consequently, ω+(ti) =
ti−a−i
b+i −a

−
i

and ω−(ti) = 1− ω+(ti) depend linearly on ti. Finally, by

(18), for all t∼i ∈ [0, 1]d−1, the cut function ti 7→ L1 . . . Ldf(t) is affine on Ii.

• To prove continuity, by composition, it is sufficient to prove that for i ∈ {1, . . . , d}, when h
belongs to C(F 1:i × [0, 1]d−i,R) then Li h belongs to C(F 1:(i−1) × [0, 1]d−i+1,R). Let us thus
consider i, and h as just described. Let t = (t1, . . . , td) ∈ F 1:(i−1) × [0, 1]d−i+1 and consider
a sequence tn = (tn,1, . . . , tn,d) ∈ F 1:(i−1) × [0, 1]d−i+1 converging to t. We will show that
Li h(tn) converges to Li h(t).

Up to extracting subsequences, it suffices to consider the cases (1) tn,i ∈ Fi, (2) tn,i 6∈ Fi,
tn,i ≤ ti, tn,i increasing and (3) tn,i 6∈ Fi, tn,i ≥ ti, tn,i decreasing.
In case (1), since Fi is closed we have ti ∈ Fi. Thus, as h is continuous, Li h(tn) = h(tn)
converges to h(t) = Li h(t).
Consider now the case (2). Observe that we have

Lih(tn) = [1− ω+(tn,i)]h(t−n,i, tn,∼i) + ω+(tn,i)h(t+n,i, tn,∼i). (40)

Furthermore, as t−n,i is increasing and bounded above by ti, it converges to a limit t−∞,i ≤ ti.

Consider the case (2a) where ti ∈ Fi. Then, by definition of t+n,i, we have tn,i ≤ t+n,i ≤ ti.

Hence t+n,i converges to ti. If, first, t−∞,i = ti, then from (40), Lih(tn) is a convex combinations
of two values of h at two inputs that converge to t so Lih(tn) converges to h(t) = Lih(t):

|Lih(tn)− h(t)|
=
∣∣[1− ω+(tn,i)](h(t−n,i, tn,∼i)− h(t)) + ω+(tn,i)(h(t+n,i, tn,∼i)− h(t))

∣∣
≤ max(|h(t−n,i, tn,∼i)− h(t)|, |h(t+n,i, tn,∼i)− h(t)|) −→

n→+∞
0.

If, second, t−∞,i < ti, then ω+(tn,i)→ 1 and by (40), Lih(tn) converges to h(t) = Lih(t).
Consider now the case (2b) where ti 6∈ Fi. Then, since [0, 1]\Fi is open in [0, 1], for n
large enough we have t−n,i = t−i and t+n,i = t+i . Thus, ω+(tn,i) → ω+(ti), and by (40),
Lih(tn)→ Lih(t). This concludes the case (2). The case (3) is treated similarly.

Proof of proposition 2.

1. First, the linearity of PF→[0,1]d comes from the linearity of g 7→ LBg, and by composition of
affine maps.

Now, let us prove that PF→[0,1]d is 1-Lipschitz. By linearity, it is sufficient to show that for
f ∈ C(F,R),

sup
t∈[0,1]d

|PF→[0,1]d(f)(t)| ≤ sup
t∈F
|f(t)|. (41)

Notice that, with g a univariate and continuous function on a closed subset B of [0, 1] con-
taining the boundaries 0 and 1, by construction, the values of the affine extension of LB(g)
lie in the range of g values. This implies that, for f ∈ C(F,R),

sup
t∈F1×···×Fd−1×[0,1]

|Ld f(t)| ≤ sup
t∼d∈F1×···×Fd−1

ud∈Fd

|f(ud, t∼d)| ≤ sup
t∈F
|f(t)|.
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Similarly, we have

sup
t∈F1×···×Fd−2×[0,1]2

|Ld−1Ld f(t)| ≤ sup
t∼(d−1)∈F1×···×Fd−2×[0,1]

ud−1∈Fd−1

|Ld f(ud−1, t∼(d−1))|

≤ sup
t∈F
|f(t)|.

Hence, by iteration we show (41).

2. Any f ∈ ES can be written as YS,α with α ∈ AS . Let us first consider the marginal extension
of YS,α|F with respect to coordinate d: for t = (t1, . . . , td) ∈ F1 × · · · × Fd−1 × [0, 1], we have

LdYS,α|F (t) = LFd [ud 7→ YS,α|F (t1, . . . , td−1, ud)](td).

Observe that, when t1, . . . , td−1 are fixed in F1 × · · · × Fd−1, the univariate function

ud 7→ YS,α|F1×···×Fd−1×[0,1](t1, . . . , td−1, ud)

is piecewise linear, and all its knots are contained in Fd, by definition of F . Hence, when
restricting it to Fd and then reextending it to [0, 1] with LFd , one obtains exactly the same
function. In other words: for t = (t1, . . . , td) ∈ F1 × · · · × Fd−1 × [0, 1], we have

LdYS,α|F (t) = YS,α|F1×···×Fd−1×[0,1](t).

By the same reasoning, we have, for t = (t1, . . . , td) ∈ F1 × · · · × Fd−2 × [0, 1]2,

Ld−1LdYS,α|F (t) = YS,α|F1×···×Fd−2×[0,1]2(t).

Hence by an immediate induction: PF→[0,1]dYS,α|F (t) = YS,α(t) for t ∈ [0, 1]d.

Proof of Corollary 1. The functions f and g are d-affine on ∆, thus they are polynomial func-
tions and can be defined on [0, 1]d. Consider F =

∏d
j=1

(
[0, 1]\(x−j , x

+
j )
)
. One can simply show

that f satisfies the conditions for PF→[0,1]d(f) in Proposition 1, then by unicity f = PF→[0,1]d(f).
Similarly g = PF→[0,1]d(g). Finally, from (18), PF→[0,1]d(g) = PF→[0,1]d(f) since f and g coincide

on the 2d vertices of ∆.

Proof of Lemma 2. Observe that
•
C = int||.||∞(C). Let us consider g ∈ H ∩ int||.||∞(C). Then

g ∈ H ∩ C. Since k is continuous and defined on the compact set [0, 1]d × [0, 1]d, there exists
a constant Csup such that for all h ∈ C([0, 1]d,R), ||h||∞ ≤ Csup||h||H (see for instance Lemma
2 in [5]). Let ε > 0 such that ||g − h||∞ ≤ ε implies h ∈ C. Then, for all h ∈ H such that
||g − h||H ≤ ε/Csup, we have h ∈ C. This means that g is in int||.||H(H ∩ C).

Lemma 4. Let B be a closed subset of [0, 1] containing 0 and 1. Let fB ∈ C(B,R) be non-decreasing.
Then LBfB is non-decreasing from [0, 1]→ R.

Proof of Lemma 4. Write L = LBfB . Let 0 ≤ v < w ≤ 1. Since L is affine on [v−, v+] and
L(v−) = fB(v−) ≤ fB(v+) = L(v+), we have L(v−) ≤ L(v) ≤ L(v+). Similarly L(w−) ≤ L(w) ≤
L(w+). Hence if (1) v+ ≤ w−, then L(v) ≤ L(w). If (2) v+ > w−, then one can show that
[v, w] ∩B = ∅ and thus v− = w− and v+ = w+. Then L is affine on [v−, v+] with L(v−) ≤ L(v+)
and v, w ∈ [v−, v+]. Hence L(v) ≤ L(w). Hence L is increasing from [0, 1]→ R.

In the next lemma, for B ⊆ R, we assume that fB : B → R is convex, i.e. for all x, y ∈ B,
λ ∈ [0, 1] with λx+ (1− λ)y ∈ B, we have

fB(λx+ (1− λ)y) ≤ λfB(x) + (1− λ)fB(y). (42)

Lemma 5. Let B be a closed subset of [0, 1] containing 0 and 1. Let fB ∈ C(B,R) be convex. Then
LBfB is convex from [0, 1]→ R.

Proof of Lemma 5. For a function g defined on a domain D ⊆ R, we recall the definition of the
epigraph of f , denoted epi(f):

epi(f) := {(t, y) ∈ D × R s.t. y ≥ f(t)}.
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We also recall that the convex hull of a set A ⊆ R2, denoted hull(A), is the smallest convex set
containing A. Equivalently, it is the set of convex combinations of points in A (see e.g. [22]).
Then, we are going to prove that, if fB is convex, then the convex hull of the epigraph of fB is the
epigraph of its affine extension LBfB :

hull(epi(fB)) = epi(LBfB).

The result will then be deduced since it shows that epi(LBfB) is convex, which is equivalent to the
convexity of LBfB (as LBfB is defined on the interval [0, 1]). Let us now come back to the proof.

• First let us show that (and even if fB is not convex) epi(LBfB) ⊆ hull(epi(fB)).
Let (t, y) ∈ epi(LBfB).

– If t ∈ B, then y ≥ LBfB(t) = fB(t). Thus (t, y) ∈ epi(fB) ⊆ hull(epi(fB)).

– If t /∈ B, then t− < t < t+. Consider the straight line joigning (t−, fB(t−)) and (t, y).
Let (t+, y+) the point on that straight line with abscissa t+. Notice that LBfB is a
straight line on [t−, t+], joining (t−, fB(t−)) and (t+, fB(t+)). Then, by Thalès theorem,
the sign of y+ − fB(t+) is the same as y − LBfB(t), which is positive because (t, y) ∈
epi(LBfB). Thus (t+, y+) ∈ epi(fB). Finally, we have shown that (t, y) belongs to a
line segment whose endpoints (t−, fB(t−)), (t+, y+) belong to epi(fB), which proves that
(t, y) ∈ hull(epi(fB)).

• Conversely, let us prove that hull(epi(fB)) ⊆ epi(LBfB). Here the convexity of fB is re-
quired.
Let (t, y) ∈ hull(epi(fB)). Thus (t, y) belongs to a polygon P , which is either a single-
ton, a segment or a triangle and whose vertices (t1, y1), . . . , (tm, ym) are in epi(fB), with
m ∈ {1, 2, 3}, from Carathéodory’s theorem. The intersection of P with the band [t−, t+]×R
is a convex polygon containing (t, y). Thus, from Krein–Milman theorem, (t, y) is a con-
vex combination of its extremal points (u1, z1), . . . , (ur, zr). By definition of t−, t+, the
points t1, . . . , tm /∈ (t−, t+). Then, one can see that these extremal points have abscissas
in {t−, t+} and either belong to {(t1, y1), . . . , (tm, ym)} or are in the segments with endpoints
in {(t1, y1), . . . , (tm, ym)}.
Let us now prove that these extremal points are in epi(fB). Consider for instance (u1, z1).

– If (u1, z1) is in {(t1, y1), . . . , (tm, ym)}, it belongs to epi(fB).

– Otherwise, assume without loss of generality that (u1, z1) is the intersection of the
segment joining (t1, y1), (t2, y2) and {t−} × R, with t1 ≤ t− ≤ t2. Then, there ex-
ists λ ∈ [0, 1] such that (u1, z1) = λ(t1, y1) + (1 − λ)(t2, y2). We have, by using that
(t1, y2), (t2, y2) ∈ epi(fB) and by convexity of fB ,

z1 = λy1 + (1− λ)y2

≥ λfB(t1) + (1− λ)fB(t2)

≥ fB(λt1 + (1− λ)t2)

= fB(u1).

Hence (u1, z1) belongs to epi(fB).

Now, LBfB is affine on [t−, t+]. Recall that u1, . . . , ur are elements of {t−, t+}, and thus are in
B. Hence LBfB coincides with fB at u1, . . . , um. Writing that (t, y) is a convex combination
of (u1, z1), . . . , (ur, zr), and using that (u1, z1), . . . , (ur, zr) ∈ epi(fB), we obtain:

y =

r∑

i=1

λizi ≥
r∑

i=1

λifB(ui) =

r∑

i=1

λiLBfB(ui) = LBfB

(
r∑

i=1

λiui

)
= LBfB(t).

This proves that (t, y) ∈ epi(LBfB).

Proof of Lemma 3. Consider that C is given by (14). Let f ∈ C, with f|F the restriction

of f to F . From (18), for x = (x1, . . . , xd) ∈ [0, 1]d, the value of PF→[0,1]d(f|F )(x) is a convex

combination of the values (f(xε11 , . . . , x
εd
d ))ε1,...,εd∈{−,+}. These 2d values are in [a, b] and thus

PF→[0,1]d(f|F )(x) is also in [a, b]. Thus PF→[0,1]d(f|F ) ∈ C.
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Consider that C is given by (15). Let i ∈ {1, . . . , d}. Let x ∈ [0, 1]d and 0 ≤ ui < vi ≤ 1.
From (18), we have, with the notation xε∼i = (xε11 , . . . , x

εi−1

i−1 , x
εi+1

i+1 , . . . , x
εd
d ),

PF→[0,1]d(f|F )(vi, x∼i)− PF→[0,1]d(f|F )(ui, x∼i)

=
∑

ε1,...,εd∈{−,+}


wεi(vi)

d∏

j=1
j 6=i

ωεj (xj)


 f(vεii , x

ε
∼i)

−
∑

ε1,...,εd∈{−,+}


wεi(ui)

d∏

j=1
j 6=i

ωεj (xj)


 f(uεii , x

ε
∼i)

=
∑

ε∼i∈{−,+}d−1




d∏

j=1
j 6=i

ωεj (xj)

( ∑

εi∈{−,+}
wεi(vi)f(vεii , x

ε
∼i)−

∑

εi∈{−,+}
wεi(ui)f(uεii , x

ε
∼i)

)



=
∑

ε∼i∈{−,+}d−1




d∏

j=1
j 6=i

ωεj (xj)
(
LFif|F (·, xε∼i)(vi)− LFif|F (·, xε∼i)(ui)

)

 . (43)

In the above display, the function f|F (·, xε∼i) is continuous non-decreasing from Fi to R. Hence,
from Lemma 4, the function

t ∈ [0, 1] 7→ LFif|F (·, xε∼i)(t)

is non-decreasing. Hence, the difference in (43) is non-negative and the weighted sum is non-negative
since the weights are non-negative. This concludes the proof.

Consider that C is given by (16). Then the proof is identical to the case where C is
given by (15). Instead of using Lemma 4 we use Lemma 5. For i ∈ {1, . . . , d}, x ∈ [0, 1]d and
0 ≤ ui < vi < wi ≤ 1, instead of considering the first order finite difference

PF→[0,1]d(f|F )(vi, x∼i)− PF→[0,1]d(f|F )(ui, x∼i),

we consider the second order finite difference

PF→[0,1]d(f|F )(wi, x∼i)− PF→[0,1]d(f|F )(vi, x∼i)

wi − vi

−
PF→[0,1]d(f|F )(vi, x∼i)− PF→[0,1]d(f|F )(ui, x∼i)

vi − ui
.

Proof of Theorem 2. To prove the uniform convergence, we cannot directly apply Theorem 1
because the set of d-dimensional knots is not assumed to be dense in [0, 1]d. The idea is to match
this situation, by considering functions defined on their closure F and by using the multiaffine
extension PF→[0,1]d .

We will thus find functions and sets corresponding to ŶS(m) , k, H, C and IX,y(n) in Theorem
1. We will then show that conditions corresponding to those of Theorem 1 hold. Under these
new conditions, the proof of Theorem 1 can be repeated, enabling us to obtain the conclusion of
Theorem 2.

To ŶS(m) , we thus associate ŶS(m)|F , its restriction to F . The input space of ŶS(m) is [0, 1]d

(written X in [6]) while the input space of ŶS(m)|F is F . To k we associate kF . To IX,y(n) (the set of
equality constraints, written I in [6]) we associate IF,X,y(n) . To C (the set of inequality constraints)

we associate CF . To φ
(S(m))
` , ` ∈ LS(m) (the basis functions) we associate their restriction to F ,

φ
(S(m))
`|F . Then notice that ŶS(m)|F indeed corresponds to the mode function ŶS(m) of Theorem 1, in

the sense that we have, for t ∈ F ,

ŶS(m)|F =
∑

`∈L
S(m)

(α̂S(m))`φ
(S(m))
`|F (t)
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and

α̂S(m) ∈ argmin
α∈A

S(m)

Y
S(m),α

∈I
X,y(n) ∩C

α>k(S(m), S(m))−1α

= argmin
α∈A

S(m)

Y
S(m),α|F ∈IF,X,y(n) ∩CF

α>kF (S(m), S(m))−1α. (44)

Above, we have used that PF→[0,1]dYS(m),α|F = YS(m),α, from Proposition 2. We finally remark

that, by construction, F contains all the knots t
(S(m))
` , ` ∈ LS(m) obtained from S(m).

Then, let us prove that the following assumptions, corresponding to those required for Theo-
rem 1, are satisfied. Notice that CF is convex, since the map PF→[0,1]d is affine and C is convex.
Then, we will show that the following extensions to (H1) and (H2) hold:

(H1, F ) int||.||HF (HF ∩ CF ) ∩ IF,X,y(n) 6= ∅.
(H2, F ) πS(m)|F (CF ) ⊆ CF

Let us first prove (H2, F ). Let fF ∈ CF . Thus f = PF→[0,1]d(fF ) ∈ C. Therefore πS(m)(f) ∈ C
from Condition 5. Now πS(m)|F (fF ) is the restriction to F of the function πS(m)(f), since f = fF
on F (by definition of PF→[0,1]d). Finally, by Proposition 2,

PF→[0,1]d
(
πS(m)|F (fF )

)
= PF→[0,1]d

(
(πS(m)(f))|F

)
= πS(m)(f) ∈ C.

Hence πS(m)|F (fF ) ∈ CF which shows (H2, F ).

Let us now prove (H1, F ). For i = 1, . . . , n let us write x(i) = (x
(i)
1 , . . . , x

(i)
d ). For j = 1, . . . , d,

write x
(i)
j,− = max{u ∈ Fj ;u ≤ x(i)

j } and x
(i)
j,+ = min{u ∈ Fj ;u ≥ x(i)

j }. The set

{(x(i)
1,ε1

, . . . , x
(i)
d,εd

)}ε1,...,εd∈{−,+},i=1,...,n

can be written as {w1, . . . , wp} with w1, . . . , wp two by two distinct.
From Condition 2, for each m ≥ 0 we have

∅ 6= {α ∈ AS(m0) ;YS(m0),α ∈ IX,y(n) ∩
•
C} ⊆ {α ∈ AS(m) ;YS(m),α ∈ IX,y(n) ∩

•
C}, (45)

because the sequence of function spaces {YS(m),α;α ∈ AS(m)}m≥m0
is nested. Hence, we can

take α in the set in (45). Write, for i = 1, . . . , p, zi = YS(m),α(wi).
Then from Condition 4, the set int||.||H(H ∩ C) ∩ IW,z(n) is non-empty. For f in this set, let us

show that f|F belongs to int||.||HF (HF ∩ CF ) ∩ IF,X,y(n) . Thus, this set will be non-empty, what is
to prove.

Firstly, let us check that f|F ∈ IF,X,y(n) . Indeed, on each of the n hypercubes

∏

j=1,...,d

[x
(i)
j,−, x

(i)
j,+],

i = 1, . . . , n, PF→[0,1]d(f|F ) coincide with YS(m),α. Indeed, consider one of these hypercubes. The

2d vertices of this hypercube belong to F , so on these 2d points, PF→[0,1]d(f|F ) coincide with f|F
which coincide with f which coincide with YS(m),α. Furthermore, the two functions PF→[0,1]d(f|F )
and YS(m),α are d-affine on this hypercube, and we have shown that they take the same values

on the 2d vertices. Thus they are equal on the hypercube from Corollary 1. Hence in particular
PF→[0,1]d(f|F )

(
x(i)
)

= YS(m),α

(
x(i)
)

= yi and thus PF→[0,1]d(f|F ) ∈ IX,y(n) and so f|F ∈ IF,X,y(n) .
Note that the above argumentation still goes through in the case where there exist i, j’s such that

x
(i)
j,− = x

(i)
j,+.

Secondly, notice that f ∈ H ∩ C. By Theorem 6 in [10], HF is formed by restrictions to F of
functions inH, and for all fF ∈ HF , we have ‖fF ‖HF = inf

h∈H,h|F=fF
‖h‖. Thus f|F ∈ HF . Moreover,

f|F ∈ CF by Condition 6. Furthermore, let ε > 0 be such that g ∈ H ∩ C for all g ∈ H such that
||g − f ||H ≤ 2ε (recall that f ∈ int||.||H(H ∩ C)). Now, let gF ∈ HF with ||gF − f|F ||HF ≤ ε. By
Theorem 6 in [10], there exists ψ ∈ H such that ψ|F = gF −f|F , and ‖ψ‖H ≤ ‖gF −f|F ‖HF +ε ≤ 2ε.
This implies that f +ψ belongs to H∩C. This in turn implies that (f +ψ)|F belongs to HF ∩ CF ,
with the same arguments as above. Also, we have (f+ψ)|F = f|F +gF −f|F = gF , so gF ∈ HF ∩CF .
Hence, f|F ∈ int||.||HF (HF ∩ CF ).
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With the conditions (H1, F ), (H2, F ), one can check that the proof of Theorem 1 can be carried
out, similarly as in [6]. There are just a few modifications, that we now explain.

The main modification is that in [6], the statement of Lemma 1 and its proof need to be adapted
to our context. The adapted lemma is Lemma 6, that we state and prove below.

The second modification is that the reference [6] considers functions indexed on [0, 1] while
we consider functions indexed on F . This only entails straightforward changes, since we prove

convergence or uniform convergence of functions on F , where the set of knots S
(m)
1 × · · · × S(m)

d is
dense in F .

The last modification is that in [6], the set of inequality constraints corresponding to IF,X,y(n)

is of the form {
f : [0, 1]d → R; f

(
x(i)
)

= yi, i = 1, . . . , n
}
, (46)

while the set IF,X,y(n) in our case is of the form

{
f|F : F → R;

q∑

j=1

λi,jf(aj) = yi, i = 1, . . . , n

}
, (47)

where the fixed coefficients (λi,1, . . . , λi,q)i=1,...,n and the points a1, . . . , aq ∈ F are explicited in the
proof of Lemma 6 and come from (18).

The difference between (46) and (47) changes the arguments in the proof of [6] only in the first
item after (13) there, the change being straightforward. Thus, from this adaptation of the proof in

[6], ŶS(m)|F converges uniformly on F to the function YF,opt defined in the text of Theorem 2.

By Proposition 2, this implies that ŶS(m) converges uniformly on [0, 1]d to the function PF→[0,1]d(YF,opt).

For the next lemmas, notice that the definition of πS(m)(f) in (2) for functions in C([0, 1]d,R)
can be extended for functions f ∈ C(F,R). Indeed, it relies only on the sequence of knots

(t
(S(m))
` )`∈L

S(m)
, which are included in F .

Lemma 6. Consider the setting of Theorem 2. Write

Fm = {f ∈ HF : πS(m)(f)(x(i)) = yi, i = 1, . . . , n}.

Let g ∈ HF ∩ IF,X,y(n) . Then for m large enough we can define gm by

gm = argminh∈Fm ||h− g||HF .

Furthermore as m→∞,
||gm − g||HF → 0.

The interpretation of Lemma 6 is that functions in HF satisfying the n equality constraints are
asymptotically well approximated by their projections on Fm. The space Fm is the set of functions
in HF that satisfy the n equality constraints, when interpolated through πS(m) . Note that this
convergence result applies to functions defined on F and follows from the density of the knots on
F .

Proof of Lemma 6. We introduce notation for the current subdivision and the current left and
right neighbors of (x

(i)
j )i=1,...,n,j=1,...,d, as in Section (4.1.1). For i ∈ {1, . . . , d} and m ≥ m0,

let us write x
(i)
m,j,− = max{u ∈ S

(m)
j ;u ≤ x

(i)
j } and x

(i)
m,j,+ = min{u ∈ S

(m)
j ;u ≥ x

(i)
j }. Also, if

x
(i)
j 6∈ Fj , we write ωm+ (x

(i)
j ) =

x
(i)
j −x

(i)
m,j,−

x
(i)
m,j,+−x

(i)
m,j,−

and ωm− (x
(i)
j ) = 1 − ωm+ (x

(i)
j ). If x

(i)
j ∈ Fi, we write

ωm+ (x
(i)
j ) = ωm− (x

(i)
j ) = 1/2.

We then have, for i = 1, . . . , n, for f ∈ C(F,R),

πS(m)(f)(x(i)) =
∑

ε1,...,εd∈{−,+}

(
d∏

j=1

ωmεj (x
(i)
j )

)
f(x

(i)
m,1,ε1

, . . . , x
(i)
m,d,εd

), (48)

from (18) and (19).
Reindexing by a single index the n2d vertices of hypercubes in (48), let us write q = n2d,

{am,1, . . . , am,q} ⊂ F
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and, for i = 1, . . . , n,
{λm,i,1, . . . , λm,i,q} ⊂ R,

such that, for f ∈ C(F,R),

πS(m)(f)(x(i)) =

q∑

j=1

λm,i,jf(am,j).

Notice that the (λm,i,j)i=1,...,n,j=1,...,q are the products in (48) (also reindexed) and are thus between
0 and 1. Similarly there exist

{a1, . . . , aq} ∈ F
and, for i = 1, . . . , n,

{λi,1, . . . , λi,q}
such that, for f ∈ C(F,R),

PF→[0,1]d(f)(x(i)) =

q∑

j=1

λi,jf(aj). (49)

Let us show that, for m large enough, there exist γ1, . . . , γn ∈ R such that

πS(m)

(
n∑

i′=1

γi′

(
q∑

j′=1

λm,i′,j′kF (·, am,j′)

))
(x(i)) = yi , i = 1, . . . , n. (50)

This is equivalent to

q∑

j=1

λm,i,j

(
n∑

i′=1

γi′

(
q∑

j′=1

λm,i′,j′kF (am,j , am,j′)

))
= yi , i = 1, . . . , n.

This is equivalent to

n∑

i′=1

γi′
q∑

j=1

q∑

j′=1

λm,i,jλm,i′,j′kF (am,j , am,j′) = yi , i = 1, . . . , n.

With γ = (γ1, . . . , γn)>, this is equivalent to

Rmγ = y(n),

where Rm is the n× n matrix with

(Rm)i,i′ =

q∑

j=1

q∑

j′=1

λm,i,jλm,i′,j′kF (am,j , am,j′).

Consider a GP Z on F with continuous trajectories and covariance function kF . Note that this
exists by taking the restriction to F of a GP on [0, 1]d with continuous trajectories and covariance
function k. Then Rm is the covariance matrix of the Gaussian vector

(
q∑

j=1

λm,i,jZ(am,j)

)

i=1,...,n

=
(
πS(m)(Z)(x(i))

)
i=1,...,n

. (51)

Define R as the covariance matrix of the Gaussian vector
(

q∑

j=1

λi,jZ(aj)

)

i=1,...,n

=
(
PF→[0,1]d(Z)(x(i))

)
i=1,...,n

. (52)

We have that, for all the (continuous) trajectories of Z, πS(m)(Z) converges uniformly to
PF→[0,1]d(Z) on [0, 1]d as m → ∞ from Lemma 7. Hence, the Gaussian vector (51) converges
almost surely to the Gaussian vector (52) as m → ∞. Thus, by Gaussianity (see for instance
[31, Lemma 1]), the covariance matrix of the Gaussian vector (51) converges as m → ∞ to the
covariance matrix of the Gaussian vector (52). Hence Rm goes to R as m→∞.

Let us show that R is invertible. Up to a re-arrangement in the sum (49), we can assume that
a1, . . . , aq are two by two distinct (in this case we have removed duplicates and q can be smaller
than n2d). From Condition 3, for any v(n) ∈ Rn, there exists a function g in ES(m0) such that

(g(x(i)))i=1,...,n = v(n).
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The function g is equal to PF→[0,1]d(g) from Proposition 2, item 2. Hence, with this function g we
have from (49)

(
PF→[0,1]d(g)(x(i))

)
i=1,...,n

=

(
q∑

j=1

λi,jg(aj)

)

i=1,...,n

= v(n).

This means that the application

(h1, . . . , hq) 7→

(
q∑

j=1

λi,jhj

)

i=1,...,n

is surjective. In addition, the covariance matrix of (Z(aj))
q
j=1 is invertible because a1, . . . , aq are

two-by-two distinct. Hence the Gaussian vector

(
q∑

j=1

λi,jZ(aj)

)

i=1,...,n

has an invertible covariance matrix. Its covariance matrix is R which shows that R is invertible.
Hence, for m large enough, Rm is invertible and there exist γ1, . . . , γn such that (50) holds and

thus Fm is non-empty and thus gm is well-defined (from the classical projection theorem). Let us
take m large enough such that Rm is invertible for the rest of the proof.

We define the spaces Gm0 and Gm1 , respectively, as

Gm0 =

{
f ∈ HF :

q∑

j=1

λm,i,jf(am,j) = 0, i = 1, . . . , n

}

and

Gm1 = span

(
q∑

j=1

λm,i,jkF (·, am,j); i = 1, . . . , n

)
.

For arbitrary f in Fm, following the proof of Lemma 1 in [6], we have Fm = f + Gm0 and
gm = f + PGm0 (g − f), where PGm0 is the orthogonal projection onto Gm0 . Therefore, g − gm =

g− f −PGm0 (g− f) ∈ (Gm0 )⊥ = Gm1 , where (Gm0 )⊥ is the orthogonal space to Gm1 . Then there exist
βm1 , . . . , β

m
n ∈ R such that

g − gm =

n∑

i′=1

βmi′

q∑

j′=1

λm,i′,j′kF (·, am,j′). (53)

Hence for i = 1, . . . , n we have

(
q∑

j=1

λm,i,jg(am,j)

)
− yi =

q∑

j=1

λm,i,j(g − gm)(am,j)

=

n∑

j=1

λm,i,j

n∑

i′=1

βmi′

q∑

j′=1

λm,i′,j′kF (am,j , am,j′).

Hence βm = (βn1 , . . . , β
m
n )> is solution of the system

Rmβm = zm,

where

zm =

(
q∑

j=1

λm,i,jg(am,j)− yi

)

i=1,...,n

.

The matrix Rm converges to an invertible matrix as seen before. Furthermore, from Lemma 7,

q∑

j=1

λm,i,jg(am,j) = πS(m)(g)(x(i))→m→∞ PF→[0,1]d(g)(x(i)) = yi
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since g ∈ IF,X,y(n) . Hence the vector zm goes to zero. Hence βm1 , . . . , β
m
n go to zero as m → ∞.

Furthermore, the λm,i,j ’s are non-negative and bounded by 1 and q is fixed, hence, from (53) and
the triangle inequality,

||g − gm||HF ≤ nq max
i′=1,...,n

max
j′=1,...,q

|βmi′ ||λm,i′,j′ |max
x∈F

√
k(x, x)→m→∞ 0,

which concludes the proof.

Lemma 7. Consider the setting of Theorem 2. Let f ∈ C(F,R). Then as m → ∞, πS(m)(f) −
PF→[0,1]d(f)→ 0, uniformly on [0, 1]d.

Remark 4. From Remark 1, we know that

πS(m)(f) = PF
S(m)→[0,1]d(f),

where FS(m) =
∏d
j=1(S

(m)
j ∩ [0, 1]). The set FS(m) is contained in F and converges to F , for

the Hausdorff distance, as m → ∞. Hence, Lemma 7 is a continuity property of the application
F ′ 7→ PF ′→[0,1]d(f), for fixed f , with respect to F ′ and for the Hausdorff distance.

Proof of Lemma 7. Let f ∈ C(F,R). Assume that as m→∞, πS(m)(f)− PF→[0,1]d(f) does not

go to zero. Then, up to extracting subsequences and by compacity of [0, 1]d, there exist ε > 0 and
a sequence (x(m))m≥m0

converging to x(∞) ∈ [0, 1]d such that

∣∣∣πS(m)(f)(x(m))− PF→[0,1]d(f)(x(m))
∣∣∣ ≥ ε. (54)

Let us now contradict (54). Similarly to the proof of Lemma 6, we introduce notation for the current

subdivision and the current left and right neighbors of x
(m)
1 , . . . , x

(m)
d . For j ∈ {1, . . . , d} and

m ≥ m0, let us write x
(m)
m,j,− = max{u ∈ S(m)

j ;u ≤ x
(m)
j } and x

(m)
m,j,+ = min{u ∈ S(m)

j ;u ≥ x
(m)
j }.

Also, if x
(m)
j 6∈ Fj , we write ωm+ (x

(m)
j ) =

x
(m)
j −x(m)

m,j,−

x
(m)
m,j,+−x

(m)
m,j,−

and ωm− (x
(m)
j ) = 1−ωm+ (x

(m)
j ). If x

(m)
j ∈ Fj ,

we write ωm+ (x
(m)
j ) = ωm− (x

(m)
j ) = 1/2.

We then have

πS(m)(f)(x(m)) =
∑

ε1,...,εd∈{−,+}

(
d∏

j=1

ωmεj (x
(m)
j )

)
f(x

(m)
m,1,ε1

, . . . , x
(m)
m,d,εd

),

from (18) and (19). Up to extracting subsequences, we can partition {1, . . . , d} as J1 ∪ J2 ∪ J3 ∪ J4

(where some of the four sets are possibly empty) where

• for j ∈ J1 we have x
(∞)
j 6∈ Fj ,

• for j ∈ J2 we have x
(∞)
j ∈ Fj , x(m)

m,j,− → x
(∞)
j and x

(m)
m,j,+ → x

(∞)
j ,

• for j ∈ J3 we have x
(∞)
j ∈ Fj , x(m)

m,j,− → x
(∞)
j and lim inf |x(m)

m,j,+ − x
(∞)
j | > 0,

• and for j ∈ J4 we have x
(∞)
j ∈ Fj , lim inf |x(m)

m,j,− − x
(∞)
j | > 0 and x

(m)
m,j,+ → x

(∞)
j .

Note that we can indeed find this partition, after extraction of subsequences, because for x
(∞)
j ∈ Fj ,

we have lim inf |x(m)
m,j,− − x

(∞)
j | = 0 or lim inf |x(m)

m,j,+ − x
(∞)
j | = 0. Up to re-indexing and without

loss of generality, we assume that J1 = {1, . . . , j1}, J2 = {j1 + 1, . . . , j2}, J3 = {j2 + 1, . . . , j3} and
J4 = {j3 + 1, . . . , d}.

We have
∣∣∣πS(m)(f)(x(m))− PF→[0,1]d(f)(x(m))

∣∣∣ (55)

=

∣∣∣∣∣
∑

ε1,...,εd∈{−,+}

(
d∏

j=1

ωmεj (x
(m)
j )

)
f(x

(m)
m,1,ε1

, . . . , x
(m)
m,d,εd

)

−
∑

ε1,...,εd∈{−,+}

(
d∏

j=1

ωεj (x
(m)
j )

)
f(x

(m)
1,ε1

, . . . , x
(m)
d,εd

)

∣∣∣∣∣.
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In the above display, for j ∈ J3, then lim inf |x(m)
m,j,+− x

(∞)
j | > 0 and x

(m)
m,j,− → x

(∞)
j . Hence one

can see that if εj = +, wmεj (x
(m)
j )→ 0. Similarly, for j ∈ J4, if εj = −, then wmεj (x

(m)
j )→ 0.

Similarly, for j ∈ J3, if εj = +, then wεj (x
(m)
j )→ 0 and for j ∈ J4, if εj = −, then wεj (x

(m)
j )→ 0.

Hence, in the two sums in (55), if (ε1, . . . , εd) is such that εj = + for j ∈ J3, or εj = − for
j ∈ J4, then the corresponding summand goes to zero. As a consequence we have

∣∣∣πS(m)(f)(x(m))− PF→[0,1]d(f)(x(m))
∣∣∣

= o(1)+
∣∣∣∣∣

∑

ε1,...,εj2∈{−,+}

(
j2∏

j=1

ωmεj (x
(m)
j )

)
f(x

(m)
m,1,ε1

, . . . , x
(m)
m,j2,εj2

,

x
(m)
m,j2+1,−, . . . , x

(m)
m,j3,−, x

(m)
m,j3+1,+, . . . , x

(m)
m,j4,+

)

−
∑

ε1,...,εj2∈{−,+}

(
j2∏

j=1

ωεj (x
(m)
j )

)
f(x

(m)
1,ε1

, . . . , x
(m)
j2,εj2

, x
(m)
j2+1,−, . . . , x

(m)
j3,−, x

(m)
j3+1,+, . . . , x

(m)
j4,+

)

∣∣∣∣∣.

For j ∈ {j1 + 1, . . . , j2}, we have x
(∞)
j ∈ Fj , x

(m)
m,j,− → x

(∞)
j and x

(m)
m,j,+ → x

(∞)
j . As a

consequence, because x
(m)
m,j,− ≤ x

(m)
j,− ≤ x

(m)
j ≤ x

(m)
j,+ ≤ x

(m)
m,j,+, also x

(m)
j,− → x

(∞)
j and x

(m)
j,+ → x

(∞)
j .

Similarly, for j ∈ {j2 + 1, . . . , j3}, we have x
(m)
m,j,− → x

(∞)
j and so also x

(m)
j,− → x

(∞)
j . Similarly, for

j ∈ {j3 + 1, . . . , d}, we have x
(m)
m,j,+ → x

(∞)
j and so also x

(m)
j,+ → x

(∞)
j .

This yields, by continuity of f ,

∣∣∣πS(m)(f)(x(m))− PF→[0,1]d(f)(x(m))
∣∣∣

= o(1) +

∣∣∣∣∣
∑

ε1,...,εj2∈{−,+}

(
j2∏

j=1

ωmεj (x
(m)
j )

)

f(x
(m)
m,1,ε1

, . . . , x
(m)
m,j1,εj1

, x
(∞)
j1+1, . . . , x

(∞)
j2

, x
(∞)
j2+1, . . . , x

(∞)
j3

, x
(∞)
j3+1, . . . , x

(∞)
j4

)

−
∑

ε1,...,εj2∈{−,+}

(
j2∏

j=1

ωεj (x
(m)
j )

)

f(x
(m)
1,ε1

, . . . , x
(m)
j1,εj1

, x
(∞)
j1+1, . . . , x

(∞)
j2

, x
(∞)
j2+1, . . . , x

(∞)
j3

, x
(∞)
j3+1, . . . , x

(∞)
j4

)

∣∣∣∣∣.

In the above display, for the first sum, we can isolate

∑

εj1+1,...,εj2∈{−,+}
(

j2∏

j=j1+1

ωmεj (x
(m)
j )) = 1,

because the argument of f does not depend on εj1+1, . . . , εj2 . We can proceed similarly with the
second sum. This yields

∣∣∣πS(m)(f)(x(m))− PF→[0,1]d(f)(x(m))
∣∣∣

= o(1) +

∣∣∣∣∣
∑

ε1,...,εj1∈{−,+}

(
j1∏

j=1

ωmεj (x
(m)
j )

)

f(x
(m)
m,1,ε1

, . . . , x
(m)
m,j1,εj1

, x
(∞)
j1+1, . . . , x

(∞)
j2

, x
(∞)
j2+1, . . . , x

(∞)
j3

, x
(∞)
j3+1, . . . , x

(∞)
j4

)

−
∑

ε1,...,εj1∈{−,+}

(
j1∏

j=1

ωεj (x
(m)
j )

)

f(x
(m)
1,ε1

, . . . , x
(m)
j1,εj1

, x
(∞)
j1+1, . . . , x

(∞)
j2

, x
(∞)
j2+1, . . . , x

(∞)
j3

, x
(∞)
j3+1, . . . , x

(∞)
j4

)

∣∣∣∣∣.
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Now for j = 1, . . . , j1, we have x
(∞)
j,− < x

(∞)
j < x

(∞)
j,+ . Hence by continuity, we have

∣∣∣πS(m)(f)(x(m))− PF→[0,1]d(f)(x(m))
∣∣∣

= o(1) +

∣∣∣∣∣
∑

ε1,...,εj1∈{−,+}

(
j1∏

j=1

ωεj (x
(∞)
j )

)

f(x
(∞)
1,ε1

, . . . , x
(∞)
j1,εj1

, x
(∞)
j1+1, . . . , x

(∞)
j2

, x
(∞)
j2+1, . . . , x

(∞)
j3

, x
(∞)
j3+1, . . . , x

(∞)
j4

)

−
∑

ε1,...,εj1∈{−,+}

(
j1∏

j=1

ωεj (x
(∞)
j )

)

f(x
(∞)
1,ε1

, . . . , x
(∞)
j1,εj1

, x
(∞)
j1+1, . . . , x

(∞)
j2

, x
(∞)
j2+1, . . . , x

(∞)
j3

, x
(∞)
j3+1, . . . , x

(∞)
j4

)

∣∣∣∣∣.

Notice that the two sums above are the same. Hence
∣∣∣πS(m)(f)(x(m))− PF→[0,1]d(f)(x(m))

∣∣∣ = o(1).

This is in contradiction with (54) which concludes the proof.

Proof of Theorem 3. Since the sequence of sets Jm is nested, it is equal to a set J∞ for m larger
than some m0 ∈ N. Let us consider m ≥ m0 for the rest of the proof. Let d = |J∞|. Then, with
the set of variables J∞, and the sequence of subdivisions

(
S(m)

)
m≥m0

in SJ∞ , we can check that

the conditions of Theorem 3 imply the conditions of Theorem 2.
Hence, from Theorem 2, as m→∞, the sequence of functions ŶJm,S(m) converges uniformly to

a limit function. Hence, as m→∞, we have,

IJm,S(m)(i?m+1, t
?
m+1)→ 0.

Assume now that there exists i ∈ J∞ such that S
(m)
i is not dense in [0, 1]. As for ti ∈ [0, 1], the

sequence d(ti, S
(m)
i ) is decreasing (with respect to m) and thus has a limit, this implies that there

exists ε > 0 and ti ∈ [0, 1] such that d(ti, S
(m)
i ) ≥ ε for all m ∈ N. This means that for m large

enough such that bm ≤ ε,

sup
i∈Jm, t∈[0,1],

d(t,S
(m)
i )≥bm

(
IJm,S(m)(i, t) + ∆d(t, S

(m)
i )

)
≥ ∆ε.

As m ≥ m0, then i?m+1 ∈ Jm = J∞. Thus, by definition of algorithm 1,

IJm,S(m)(i?m+1, t
?
m+1) + ∆ d

(
t?m+1, S

(m)
i?m+1

)
+ am ≥ ∆ε.

Hence, we will reach a contradiction if we show that lim infm→∞ d(t?m+1, S
(m)
i?m+1

) = 0. There is

at least one coordinate i ∈ Jm chosen an infinite number of times by MaxMod algorithm. Let
(m`)`∈N be the corresponding subsequence of values of m, i.e. for which i?m+1 = i. Then we have

{t?m1+1, . . . , t
?
m`+1} ⊆ S

(m`+1)
i and thus d

(
t?m`+1, S

(m`+1)
i

)
≤ d

(
t?m`+1, {t?m1

, . . . , t?m`}
)
. The limit

inferior of this last quantity is zero, by considering a convergent subsequence of (t?m`)` in the compact

interval [0, 1]. Hence, we have reached a contradiction and, eventually, for all i ∈ {1, . . . , d}, S(m)
i

is dense in [0, 1].
Let us now assume that d < D. Let us then consider j∞ ∈ {1, . . . , D}\J . We then have by

definition of the MaxMod algorithm, for m larger than m0,

IJm,S(m)(i?m+1, t
?
m+1) + ∆ d

(
t?m+1, S

(m)
i?m+1

)
+ am ≥ ∆′,

by considering i = j∞ 6∈ J∞ in (13). The left hand side of the above display goes to zero, because

for i ∈ J∞, S
(m)
i is dense in [0, 1], as we have shown and also because

IJm,S(m)(i?m+1, t
?
m+1)→ 0

as we have shown. This yields a contradiction. Hence Jm = {1, . . . , D} for m ≥ m0.

From the fact that all the variables are eventually active and from the density of S
(m)
i for

i ∈ {1, . . . , D}, we conclude from Theorem 1 (Theorem 3.2 in [6]).
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[40] A. F. López-Lopera, S. John, and N. Durrande. Gaussian process modulated Cox processes
under linear inequality constraints. In International Conference on Artificial Intelligence and
Statistics, pages 1997–2006, 2019.

[41] H. Maatouk. Finite-dimensional approximation of Gaussian processes with inequality con-
straints and errors measurements. Preprint HAL, 2017.

[42] H. Maatouk and X. Bay. Gaussian process emulators for computer experiments with inequality
constraints. Mathematical Geosciences, 49(5):557–582, 2017.

40



[43] M. Niu, P. Cheung, L. Lin, Z. Dai, N. Lawrence, and D. Dunson. Intrinsic Gaussian processes
on complex constrained domains. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 81(3):603–627, 2019.

[44] A. Pakman and L. Paninski. Exact Hamiltonian Monte Carlo for truncated multivariate
Gaussians. Journal of Computational and Graphical Statistics, 23(2):518–542, 2014.

[45] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, Cambridge, MA, 2005.

[46] P. Ray, D. Pati, and A. Bhattacharya. Efficient Bayesian shape-restricted function estimation
with constrained Gaussian process priors. Statistics and Computing, 30:839–853, 2020.
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