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BRACKET WORDS: A GENERALISATION OF STURMIAN

WORDS ARISING FROM GENERALISED POLYNOMIALS

BORIS ADAMCZEWSKI AND JAKUB KONIECZNY

Abstract. Generalised polynomials are maps constructed by applying the

floor function, addition, and multiplication to polynomials. Despite super-
ficial similarity, generalised polynomials exhibit many phenomena which are

impossible for polynomials. In particular, there exist generalised polynomial

sequences which take only finitely many values without being periodic; exam-
ples of such sequences include the Sturmian words, as well as more complicated

sequences like
⌊
2
{
πn2 +

√
2n

⌊√
3n

⌋}⌋
.

The purpose of this paper is to investigate letter-to-letter codings of finitely-
valued generalised polynomial sequences, which we call bracket words, from

the point of view of combinatorics on words. We survey existing results on

generalised polynomials and their corollaries in terms of bracket words, and
also prove several new results. Our main contribution is a polynomial bound

on the subword complexity of bracket words.
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2 B. ADAMCZEWSKI AND J. KONIECZNY

1. Introduction

Generalised polynomial sequences are expressions built up from the usual poly-
nomials with the use of addition, multiplication, and the floor function, such as

g(n) = 2n
⌊√

2n⌊
√
3n⌋2 +

√
5n3

⌋
− 7n2 .

They have been investigated by many authors, with particular emphasis placed on
problems involving uniform distribution and taking their source in Weyl’s equidis-
tribution theorem for classical polynomials. See, for instance, [H̊al93, H̊al94,BH96,
BL07,Lei12,BHKS20] and the references therein.

An important feature that distinguishes generalised polynomials from ordinary
polynomials is that they can be bounded without being constant. As a basic exam-
ple, for any polynomial p(x) ∈ R[x], the sequence of fractional parts ({p(n)})∞n=0 is
a generalised polynomial sequence with values in [0, 1), which is non-constant for
most choices of p. In fact, it is also possible for non-constant generalised polyno-
mials sequences to take only finitely many values. A notable example of a class
of such finitely-valued generalised polynomial sequences is provided by Sturmian
words. Indeed, every Sturmian word a = (an)

∞
n=0 over {0, 1} can be defined by a

generalised polynomial formula

(1) an = ⌊αn+ β⌋ − ⌊α(n− 1) + β⌋
for some α ∈ [0, 1) \Q and β ∈ [0, 1) (possibly with the floor function ⌊·⌋ replaced
by the ceiling function ⌈·⌉).

Motivated by this fundamental example, we endeavour to investigate finitely-
valued generalised polynomials from the perspective of combinatorics on words.
More precisely, we study letter-to-letter codings of finitely-valued generalised poly-
nomial sequences, which we dub bracket words (cf. Definition 2.2). Thus, a bracket
word a = (an)

∞
n=0 over an alphabet Σ takes the form an = c(g(n)), were g : N0 → R

is a finitely-valued generalised polynomial sequence and c is a map from the finite
set g(N0) to Σ. Throughout the paper, we let N = {1, 2, . . . } denote the set of
positive integers and put N0 = N ∪ {0}. Bracket words are thus first thought of as
a broad arithmetical generalisation of Sturmian words.

Among the several equivalent definitions of Sturmian words, one involves codings
of circle rotations. Indeed, the word a defined by (1) can be described with the
help of the rotation Rα : R/Z → R/Z, x 7→ x+ α, as

(2) an =

{
1 if Rn

α(β) ∈ [0, α) ,

0 otherwise.

A seminal paper of Bergelson and Leibman [BL07] provides a dynamical representa-
tion of any bounded generalised polynomial sequence in terms of nilrotations, which
are translations on nilmanifolds, hence linking the theory of generalised polynomi-
als with nilpotent dynamics. As a consequence, each bracket word can be obtained
as a coding of a nilrotation with respect to a semialgebraic partition. Conversely,
each coding of a nilrotation which involves a semialgebraic partition gives rise to a
bracket word.

Nilsystems have received a considerable amount of attention in the past two
decades. A major source of interest stems from their significance in the study of
multiple ergodic averages, as demonstrated by Host and Kra [HK05] and Ziegler
[Zie07]. Nilsystems also play a key role in additive combinatorics, specifically in the
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relatively modern branch of higher order Fourier analysis, initiated by Gowers in
his work on an alternative proof of Szemerédi’s theorem [Gow01]. The importance
of nilsystems was revealed by Green, Tao, and Ziegler, who characterised Gowers
uniformity in terms of correlations with nilsequences [GTZ12], see also [GT10a].
For an introduction to higher order Fourier analysis, we refer to [Tao12]. Thus, the
characterisation of bracket words mentioned above, which we discuss in more detail
in Section 4, allows us to take advantage of deep pre-existing results.

A great number of combinatorial results concerning Sturmian words can be de-
rived from the continued fraction expansion of the irrational parameter α and some
related expansion, the so-called Ostrowski expansion, of the real parameter β (these
parameters being defined as in (1) or (2)). In contrast, the study of bracket words
involves much more general Diophantine problems related to simultaneous rational
approximations of real numbers. For this reason, one cannot expect to always ob-
tain results as accurate as for Sturmian words. For instance, Sturmian words can
be charaterised in terms of their subword complexity. Recall that for an infinite
word a, the subword complexity pa(N) is the count of distinct length-N subwords
which appear in a, and that a is Sturmian if and only if pa(N) = N + 1 for each
N ≥ 1, which is the slowest rate of growth possible for a word which is not eventu-
ally periodic. Contrary to Sturmian words, bracket words cannot be characterised
in terms of their subword complexity, but we still prove the following polynomial
upper bound, which is our main new result. It is also shown in Section 12 that this
result is essentially the best possible (c.f. Propositions 12.2 and 12.3).

Theorem A. Let a be a bracket word. Then there exists a constant C > 0 such
that pa(N) = O(NC) for all N ∈ N.

In another direction, Sturmian words can also be characterised in terms of bal-
ance: a word a over {0, 1} is Sturmian if and only if it is not eventually periodic and
for each N ≥ 1 and each pair u, v of length-N subwords of a, the number occur-
rences of the symbol 1 in u and in v is either the same or differs by 1. For bracket
words, we have weaker estimates on frequencies of symbols, which we explore in
Sections 7 and 8.

Since Sturmian words are bracket words, all of our results apply in particular to
Sturmian words. In all instances, the special case involving Sturmian words was
shown earlier than the general case, or follows quickly from earlier results. However,
there are several facts which we suspect might not be very widely known. These
facts include existence of frequencies along the primes (Theorem 7.6) and the IP∗

recurrence (Theorem 7.11).
A different source from which we draw inspiration is the theory of automatic

sequences, and computation theory in general. Recall that a word a = (an)
∞
n=0

is k-automatic if there exists a deterministic finite automaton which, given the
base-k expansion of n as input, produces an as output (for extensive introduction,
see [AS03]). Although k-automatic words are generally not bracket words (cf. Re-
mark 1.1 below), we find this comparison helpful because the classes of k-automatic
sequences and the bracket words enjoy similar closure properties with respect to
Cartesian products, codings, finite modifications and certain types of rearrange-
ments, as discussed at length in Section 6. For instance, bracket words taking
values in a ring, equipped with coordinatewise addition and multiplication, form
a ring. In contrast, the class of Sturmian sequences is considerably too small for
analogous closure properties to be true.
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Access to the closure properties mentioned above allows us to look at bracket
words from a computational perspective. For example, given three bracket words
a(0),a(1) ∈ Σ∞, and b ∈ {0, 1}∞, we can construct a new bracket word a given by

an =

{
a
(0)
n if bn = 0 ,

a
(1)
n if bn = 1 .

As a consequence, bracket words can encode any finite computation including real
constants, the basic arithmetic operations +,×, the operation of taking the integer
part ⌊·⌋ and conditional statements involving = and < (c.f. Proposition 5.4).

Remark 1.1. We stress that, even though we use automatic sequences as a moti-
vating example, automatic words in general are not bracket words. In fact, there
are no automatic words that are also bracket words, except for eventually periodic
ones (see Theorem 11.23). Rather, our interest in automatic sequences stems from
the fact that they share with bracket words certain properties, as discussed above.
Other classes of sequences which we discuss in this context are morphic sequences
and regular sequences (in the sense of Allouche and Shallit, [AS92]).

In light of the discussion above, it is natural to ask which properties of bracket
words can be tested algorithmically. We will say that a problem is decidable if there
exists an algorithm which solves it on all inputs, and undecidable otherwise. Many
properties are known to be decidable for k-automatic sequences, see e.g., [CRS12]
and references therein; a practical implementation is discussed in [GHS13] and
[Mou16]. Similarly, there are many results on decidability for k-regular sequences
(see e.g. [AS92], [KS22]) and for morphic sequences (see e.g. [Dur13a,Dur13b]).

For problems involving generalised polynomial sequences, we assume that the
algorithm is provided with a formula involving only polynomials, addition, mul-
tiplication and the floor function which represents the sequence. In [Lei12], Leib-
man constructed a “canonical” representation of a bounded generalised polynomial,
which is essentially unique. As a consequence, the problem of determining if a given
generalised polynomial is zero almost everywhere is decidable. Likewise, it is de-
cidable whether two given bracket words are equal almost everywhere. Here, a
statement φ(n), involving a parameter n ∈ N0, is said to hold almost everywhere if
the set {n ∈ N0 | ¬φ(n)} of positions where it is false has asymptotic density zero.
Somewhat surprisingly, the problem of verifying equality everywhere turns out to
be undecidable, as shown in Section 9. (For terminology used, see Section 2.2 and
Remark 2.5.)

Theorem B. It is undecidable if two given bracket words a and b with algebraic
coefficients defined over a finite alphabet Σ are equal.

Finally, we discuss examples of “naturally occurring” words for which we can
show that they are, or that they are not, bracket words. In the positive direction,
we note that the characteristic word 1F = 1111010010010001 · · · of the Fibonacci
numbers is a bracket word, which can be traced back to the observation that the
golden ratio (1+

√
5)/2 is a Pisot unit and the group of units of the field it generates

has rank 1. In Section 10 we discuss generalisations of this example, corresponding
to other Pisot and Salem numbers. Similar but slightly weaker results were obtained
in [BK18].

In the negative direction, several criteria for proving that an infinite word is not
a bracket word follow from results discussed in the reminder of the paper. Several
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other techniques were developed in a series of papers by Byszewski and the second-
named author [BK18,BK20,Kon21], leading to a proof that automatic sequences
which are not eventually periodic are not bracket words. As explicit applications
of the aforementioned methods, we mention the characteristic words of primes and
of squares are not bracket words. The same applies to many words coming from
number theory, such as (φ(n) mod q)∞n=0, where φ denotes the totient function and
q ≥ 3.

We point out that a significant part of the paper is devoted to a survey of
known results concerning generalised polynomial sequences and their interpretation
in terms of bracket words. Beyond that, we prove several new results, including
Theorems A and B. The paper is organised as follows.

Organisation of the paper. Sections 2 and 3 are concerned with setting up the
terminology and providing examples of bracket words. In Section 4, we discuss the
connection between dynamics on nilmanifolds and generalised polynomials, which
is one of the key tools used in subsequent sections. For the sake of readability,
we delegate some related material to Appendix A. In Sections 5 and 6, we discuss
closure properties of bracket words and other ways in which bracket words can be
constructed. These results allow us to perform many basic operations on bracket
words later in the paper. Sections 7–9 each concern a different facet of bracket words
and can mostly be read independently from one another. In Sections 7 and 8, we
discuss frequencies of symbols and subwords in bracket words; qualitative results
are included in 7 and quantitative — in 8. In Section 9, we discuss the canonical
representation of bracket words, based on [Lei12], and its consequences in terms
of decidability; next, we prove several undecidability results, including Theorem
B. In Section 10, we consider a class of bracket words, consisting of characteristic
words of certain sets of integers described by a linear recurrence. In Section 11, we
consider the problem of proving that a given word is not a bracket word. We collect
several criteria from previous sections and from [BK18,Kon21], and give a number
of new examples and applications. In Section 12, we discuss subword complexity
of bracket words and lay the lay the groundwork for Theorem A, which we prove
in Sections 13–15.

Acknowledgements. The second-named author works within the framework of
the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the
program ”Investissements d’Avenir” (ANR-11-IDEX- 0007) operated by the French
National Research Agency (ANR). We are also grateful to Valérie Berthé, Jakub
Byszewski, and Sam Chow for helpful comments, and to the anonymous referee for
careful reading of our paper and valuable corrections.

2. Definitions and notation

2.1. Combinatorics on words. An alphabet Σ is a finite set of symbols, also
called letters. A finite word over Σ is a finite sequence of letters in Σ or, equivalently,
an element of Σ∗ =

⋃∞
ℓ=0 Σ

ℓ, the free monoid generated by Σ with respect to the
concatenation of finite words. The length of a finite word w, that is, the number
of symbols in w, is denoted by |w|. We let ϵ denote the empty word, the neutral
element of Σ∗. An infinite word a = (an)

∞
n=0 over Σ is an element of Σ∞, or,

equivalently, an infinite sequence with values in Σ, (i.e., a map from N0 to Σ). It is
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sometimes represented as a = a0a1 · · · . Throughout, we use bold symbols a,b, . . .
to denote infinite words.

Let Σ and Π be two alphabets. A morphism is a map σ : Σ∗ → Π∗ that obeys
the identity σ(uv) = σ(u)σ(v) for all words u, v ∈ Σ∗. Note that a morphism σ is
uniquely determined by the knowledge of σ(x) for all x ∈ Σ. A map from Σ to Π∗

naturally (and uniquely) extends as a morphism from Σ∗ to Π∗. A morphism is
said to be non-erasing if σ(x) ̸= ϵ for all x ∈ Σ. A morphism σ over Σ∗ is said to be
k-uniform if |σ(a)| = k for every letter a in Σ, and just uniform if it is k-uniform for
some k. A 1-uniform morphism is called a coding. Furthermore, there is a natural
way to extend the action of a non-erasing morphism to infinite words, that is, as a
map from Σ∞ to Π∞ defined by σ(a) = σ(a0)σ(a1) · · · for a ∈ Σ∞. Such a map is
still called a morphism and denoted by σ.

2.2. Generalised polynomials and bracket words. For x ∈ R, we let ⌊x⌋ ∈ Z
denote the integer part of x (also known as the floor), which is the unique integer
with ⌊x⌋ ≤ x < ⌊x⌋+1. Similarly, we let {x} = x−⌊x⌋ ∈ [0, 1) denote the fractional
part, ⌈x⌉ = −⌊−x⌋ ∈ Z — the ceiling, ⌊x⌉ = ⌊x+ 1/2⌋ ∈ Z — the nearest integer,
and ∥x∥ = |x− ⌊x⌉| ∈ [0, 1/2] — the distance to the nearest integer. We extend the

notions introduced above to x = (xi)
d
i=1 ∈ Rd for d ≥ 2 coordinate-wise, meaning

that ⌊x⌋ = (⌊xi⌋)di=1 ∈ Zd, etc. Similarly, for a map f : X → R (where X is any
set) we define ⌊f⌋ : X → Z by ⌊f⌋ (x) = ⌊f(x)⌋.

Let d ∈ N. We define GP maps (or generalised polynomial maps) Rd → R as
the smallest family such that

(i) each polynomial map Rd → R is a GP map;
(ii) if g, h : Rd → R are GP maps then g + h and g · h are GP maps;
(iii) if g : Rd → R is a GP map then ⌊g⌋ is a GP map.

Note that x 7→ {x} , ⌈x⌉ , ⌊x⌉ are GP maps, and the definition of a GP map does
not change if in (iii) we replace ⌊·⌋ with {·}, ⌈·⌉ or ⌊·⌉. The distance for the
nearest integer can also be expressed by a generalised polynomial formula, such
as ∥x∥ = (x− ⌊x⌉) · (2 ⌈x− ⌊x⌉⌉ − 1). (Since all maps Rd → R obtained from
polynomials using addition, multiplication and ∥·∥ is continuous, replacing ⌊·⌋ with
∥·∥ in (iii) yields a strictly smaller family of maps.)

Remark 2.1. If g : R → R and h : Rd → R are GP maps, then g ◦ h is also a GP
map.

A GP map on a domain Ω ⊆ Rd (e.g. Ω = Zd or Nd
0) is simply the restriction of

a GP map on Rd. In particular, each GP map on Ω can be extended to Rd, but the
extensions is usually not unique. In this paper, we are particularly interested in
finitely-valued GP sequences (i.e., GP maps N0 → R), as seen from the perspective
of combinatorics on words. This motivates us to pose the following definition.1

Definition 2.2. A bracket word over a (finite) alphabet Σ is an infinite word
a = (an)

∞
n=0 ∈ Σ∞ of the form an = c(g(n)) for all n ∈ N0, where g : N0 → R is a

finitely-valued GP map and c : g(N0) → Σ is an arbitrary map.

1Several authors have expressed the sentiment that a better name for “generalised polynomials”

would have been “bracket polynomials”, and the main reason to not adopt the latter name is that
it is already used in knot theory (see e.g. [Lei12]). Fortunately, similar considerations do not

apply to the term “bracket word”.
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Remark 2.3. The inclusion of the coding in Definition 2.2 does not significantly
increase the level of generality. Indeed, if a = (an)

∞
n=0 is a bracket word over an

alphabet Σ and ϕ : Σ → R is an arbitrary map then the map g : N0 → R given
by g(n) = ϕ(an) is a GP map as a consequence of Corollary 5.3. However, from
the perspective of combinatorics on words, it would be unnatural to restrict our
attention to words over alphabets contained in R. We also point out that in Section
6 it is frequently more natural to consider words over more general alphabets,
especially when it comes to closure under Cartesian products in Proposition 6.2.

Remark 2.4. In analogy with Definition 2.2, one can define d-dimensional bracket
words over a finite alphabet Σ to be d-dimensional infinite words

a = (an1,n2,...,nd
)∞n1,n2,...,nd=0 ∈ Σ∞ × Σ∞ × · · · × Σ∞

of the form an1,n2,...,nd
= c(g(n1, n2, . . . , nd)) where g : Nd

0 → R is a finitely-valued
GP map and c : g(Nd

0) → Σ is an arbitrary map. We limit the discussion to the
1-dimensional case for the sake of clarity, but many of the results have their multi-
dimensional analogues. In particular, we point out that multidimensional Sturmian
sequences (as defined in [Fer06, Def. 4]), and more generally rotation sequences (as
defined in [Fer06, Def. 5]) are multidimensional bracket words (cf. [Fer06, Prop. 2]).

Remark 2.5. For a ring Z ⊆ A ⊆ R we define GP maps with coefficients in
A in a fully analogous way, except that in (i) we only include polynomial maps
with coefficients in A. We will be especially interested in GP maps with algebraic
coefficients, i.e., A = Q. One can also define the set of coefficients of a generalised
polynomial (see e.g. [H̊al94]), but we avoid using this notion since it depends on
the choice of a representation, which is usually not unique (see Section 9 for further
discussion). Slightly informally, we will say that an infinite word a over Σ is a
bracket word arising from a GP map with algebraic coefficients, or simply a bracket
word with algebraic coefficients, if an = c(g(n)) for every n ∈ N0, where g : N0 → R
is a finitely-valued GP map with coefficients in Q and c : g(N0) → Σ is a map.

For k ≥ 2, a map g = (gi)
k
i=1 : Rd → Rk is GP if for each i, 1 ≤ i ≤ k, the

coordinate map gi is GP. In most cases, we find it simpler to speak of k-tuples of
GP maps instead.

A GP subset of Ω ⊆ Rd (or simply a GP set, if Ω is clear from the context)
is the zero locus of a GP map, that is, a set E ⊆ Ω which takes the form E =
{x ∈ Ω | g(x) = 0} for some GP map g : Ω → R. As we will see in Section 5,
E ⊆ N0 is a GP set if and only if 1E is a bracket word, cf. Proposition 5.4. (Here
and elsewhere, 1E ∈ {0, 1}∞ is given by (1E)n = 1 if n ∈ E and (1E)n = 0
otherwise). We stress that this notion depends on Ω; in particular, a GP subset of
N0 will usually not be a GP subset of Z.

2.3. Other notation. We briefly summarise some other pieces of notation we use.
ForN ∈ N0, we let [N ] = {0, 1, . . . , N−1}. For a quantityX, we let O(X) denote

any quantity bounded in absolute value by CX, where C is a constant. When the
C is additionally allowed to depend on a parameter Y , we write OY (X) instead.
Similarly, assuming that X > 0, we let Ω(X) denote any quantity bounded from
below by cX, where c > 0 is a constant. If X = O(Y ) and Y = Ω(X), we write
Y = Θ(X). We occasionally also use the notation Y ≪ X when Y = O(Y ). Lastly,
we write on→∞(X) for any quantity Y with limn→∞ Y/X = 0; if the parameter n
is clear from the context, we write o(X) instead.
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In what follows, we will use the Iverson bracket notation. For a sentence φ we
put JφK = 1 if φ is a true and JφK = 0 otherwise. By a slight abuse of notation, we
also use the Iverson bracket to define infinite words over the alphabet {0, 1}. For
instance, if X,Y are sets with Y ⊆ X and f : N0 → X is a map then Jf ∈ Y K ∈
{0, 1}∞ is given by Jf ∈ Y Kn = Jf(n) ∈ Y K for all n ∈ N0.

3. Examples

Let us now present several examples of bracket words. In some cases, the fact
that the sequence under consideration indeed is a bracket word will follow directly
from the definition, while in other cases it may be more surprising.

Example 3.1. Let α ∈ R \ Q and let a be the bracket word defined by an =
⌊1− {nα}⌋ for n ∈ N0. Then a = 1{0} = 100 · · · . More generally, all eventually
constant sequences are bracket words. Explicitly, if a is a word over Σ with an = b
for all n ≥ N then an = c(g(n)), where g : Z → {−1, 0, 1, . . . , N −1} is the GP map
given by

g(n) = −1 +

N−1∑
m=0

(m+ 1) ⌊1− {(n−m)α}⌋ ,

and c : {−1, 0, 1, . . . , N − 1} → Σ is given by c(n) = an if n ̸= −1 and c(−1) = b.

Example 3.2. Let Q ∈ N. Then a ∈ [Q]∞ defined by an = n mod Q = Q {n/Q}
is a bracket word. More generally, all eventually periodic words are bracket words.
For details, see Section 6.

Example 3.3. One way to define Sturmian words is by an explicit formula. Namely,
an infinite word a over {0, 1} is Sturmian if it is the discrete derivative of a Beatty
sequence, meaning that it takes one of the following forms:

an = ⌊nα+ β⌋ − ⌊α(n− 1) + β⌋ , or(3)

an = ⌈nα+ β⌉ − ⌈α(n− 1) + β⌉ ,(4)

for some α, β ∈ [0, 1) with α irrational. (Note that (3) and (4) differ for at most
one value of n.) Thus, Sturmian words are bracket words (while Beatty sequences
are unbounded GP sequences). We also point out that Sturmian words arise from
codings of rotations, which gives another way to see that they are bracket words;
we explore this point of view further in Section 4.

More concretely, setting α =
√
5−1
2 and β = 0 we obtain the Fibonacci word,

whose initial values are:

10101101011011010110101101101011011010110101101101011010 · · ·

Example 3.4. As a generalisation of Example 3.3, let p : R → R be a polynomial
and let I ⊆ [0, 1) be an interval (or a finite union thereof). Let a be the infinite
word over {0, 1} defined as

an =

{
1 if {p(n)} ∈ I,

0 otherwise.
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Then a is a bracket word. As a concrete illustration, let p(x) = φx2, where φ =√
5+1
2 is the golden ratio, and I = [0, 1/4) ∪ (3/4, 1). Then

an =

{
1 if

∥∥φn2
∥∥ < 1/4,

0 if
∥∥φn2

∥∥ ≥ 1/4.

The initial values of a are:

1000101001111011101110111010011111011101111000111110111 · · ·

Example 3.5. Let F = {0, 1, 2, 3, 5, 8, 13, . . . } be the set of all Fibonacci numbers.
Then 1F is a bracket word. Similarly, let (ti)

∞
i=0 be the sequence given by t0 = 0,

t1 = t2 = 1 and ti+3 = ti+2+ti+1+ti for all i ∈ N0, sometimes called the Tribonacci
numbers, and let T = {ti | i ∈ N0}. Then 1T is a bracket word. These are special
cases of Proposition 10.1. In an upcoming preprint by the second-named author
and Byszewski [BK22], it is shown that, more generally, for each E ⊆ F , 1E is a
bracket word.

Example 3.6. Let α, β ∈ R and ε > 0. Then the infinite word a over {0, 1} defined
by

an =

{
1 if n ̸= 0 and ∥αn∥ · ∥βn∥ < ε/n,

0 otherwise,

is a bracket word, as follows from Proposition 5.4. We point out that a famous
conjecture in Diophantine approximation, the Littlewood conjecture, is equivalent
to the statement that, for each choice of α, β, ε, the bracket word a defined above
is not identically zero. Indeed, in its usual formulation, Littlewood’s conjecture
asserts that

(5) lim inf
n→∞

n · ∥αn∥ · ∥βn∥ = 0

for all α, β ∈ [0, 1). A landmark result toward its resolution is due to Einsiedler,
Katok and Lindenstrauss [EKL06]: the set of possible exceptions (i.e., the set of
pairs (α, β) for which (5) is false) has Hausdorff dimension zero.

Example 3.7. Let (ni)
∞
i=0 be a sequence of positive integers with ni+1 ≥ n2i for

all i, such as ni = 22
i

. Put E = {ni | i ∈ N0}. Then 1E is a bracket word. This is
a special case of Proposition 8.4.

4. Dynamical representation

In this section, we discuss a dynamical description of bounded GP sequences and
bracket words. Specifically, we briefly introduce basic facts about nilmanifolds and
nilsystems and explain their relation to generalised polynomials, as established by
Bergelson and Leibman [BL07].

4.1. Nilsystems and generalized polynomials. Classical theory of nilpotent
dynamics can be found in [AGH63]. In order to maintain the introductory nature
of this section, we delegate some of the more technical results to Appendix A. We
also refer to cited references, such as [BL07], for precise definitions and a more
detailed discussion.
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4.1.1. Nilpotent Lie groups. Let G be a group. The lower central series (Gi)i≥0 is
the chain of subgroups of G inductively defined by G0 = G1 = G and Gi+1 = [G,Gi]
for i ≥ 1. Here, we let [G,H] denote the group generated by the commutators
[g, h] = ghg−1h−1 for g ∈ G, h ∈ H. The group G is nilpotent if there exists s such
that Gs+1 = {idG}. The smallest such s is called the nilpotency class of G and
G is said to be nilpotent of class s or a s-step nilpotent group. We recall that a
Lie group is a smooth manifold obeying the group properties and that satisfies the
additional condition that the group operations are differentiable. A nilpotent Lie
group is a Lie group that is nilpotent.

4.1.2. Nilrotations. A nilmanifold is a quotient space G/Γ where G is a nilpotent
Lie group and Γ is a discrete cocompact subgroup. A nilsystem is a dynamical
system of the form (G/Γ, Tg), where G/Γ is a nilmanifold and Tg is a nilrotation.
That is, there exists some g ∈ G such that Tg(hΓ) = ghΓ for all h ∈ G. In general,
there is no guarantee that G is connected, and we let G◦ denote the connected
component of idG. We may assume without loss of generality that G◦ is simply
connected. The simplest example of a nilsystem is the aforementioned rotation on
the torus, where we take G = R, Γ = Z (see Section 4.2).

4.1.3. Mal’cev basis. Let G be a connected and simply connected s-step nilpotent
Lie group and let Γ < G be a discrete cocompact subgroup. In this case, for g ∈ G
and t ∈ R, one can use the Lie algebra of G to define gt ∈ G. We let dimG
denote the dimension of G as a Lie group. A Mal’cev basis of G is a sequence
h1, h2, . . . , hd ∈ Γ satisfying the following conditions.

(i) Every g ∈ G has a unique representation ht11 h
t2
2 · · ·htdd with ti ∈ R.

(ii) There exists an increasing sequence of natural numbers

1 = k1 < k2 < · · · < ks = d+ 1

such that for each 1 ≤ j ≤ s, the quotient Gj/Gj+1 is spanned by hkj
, . . . , hkj+1−1.

Existence of such bases was established by Mal’cev [Mal49,Mal51]. Given a Mal’cev
basis, we let τ̃ : G→ Rd denote the coordinate map, characterised by the property
that

(6) τ̃
(
ht11 h

t2
2 · · ·htdd

)
= (t1, t2, . . . , td) , ti ∈ R .

This induces also the coordinate map τ : G/Γ → [0, 1)d, similarly characterised by

(7) τ
(
ht11 h

t2
2 · · ·htdd Γ

)
= (t1, t2, . . . , td) , ti ∈ [0, 1) .

Thus, the nilmanifold G/Γ can be identified with a cube [0, 1)dimG via Mal’cev
coordinates τ : G/Γ → [0, 1)dimG. The coordinate map τ is a bijection; τ−1 is
continuous, its restriction to (0, 1)dimG is a diffeomorphism. The nilmanifold G/Γ
carries a natural probability measure, the Haar measure, which we denote by µG/Γ.

4.1.4. Semialgebraic sets. An algebraic variety in Rd is a set defined by a finite
number of polynomial equations. More generally, a semialgebraic set is a set defined
by a finite number of polynomial equations and inequalities, or a finite union of sets
of this form. A map f : Rd → R is piecewise polynomial if there exists a partition
Rd = S1∪S2∪· · ·∪Sr into semialgebraic pieces such that, for every i, 1 ≤ i ≤ r, the
restriction f |Si

is a polynomial map. A map f : G/Γ → R is piecewise polynomial

if it takes the form f = f̃ ◦ τ for a piecewise polynomial map f̃ : RdimG → R. The
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notion of a piecewise polynomial map is independent of the choice of Mal’cev basis
(see [BL07, Sec. 0.18]).

4.1.5. Connectedness. Let us now return to the general case, where G may be
disconnected. If G/Γ is connected, then it remains true that G/Γ = G◦/Γ∩G◦, and
the previous discussion applies verbatim (note, however, that not every translation
Tg, with g ∈ G, can be represented as Th, with h ∈ G◦). IfG/Γ is disconnected, then
it can be decomposed as a finite union of connected components which again are
nilmanifolds, and we can apply the discussion above to each component separately.
A map f : G/Γ → R is piecewise polynomial if its restriction to each connected
component of G/Γ is piecewise polynomial.

Finally, we recall that a topological dynamical system (X,T ) is minimal if there
is no closed subset Y ⊆ X with T (Y ) ⊆ Y . We have now introduced all the
terminology which is needed to state the 1-dimensional case of the main result of
[BL07].

Theorem 4.1 ([BL07, Thm. A]). Any bounded GP map g : Z → R admits a rep-
resentation g(n) = f(Tn(x)), where (X,T ) is a minimal nilsystem, f : X → R is
piecewise polynomial, and x ∈ X. Conversely, for any nilsystem (X,T ), any piece-
wise polynomial map f : X → R, and any x ∈ X, the map n 7→ f(Tn(x)) from Z
to R is a bounded GP map.

For future reference, we record the following special case of Theorem 4.1 appli-
cable to bracket words.

Theorem 4.2. For any bracket word a over an alphabet Σ, there exists a minimal
nilsystem (X,T ), a point x ∈ X, and a partition X =

⋃
i∈Σ Si into pairwise disjoint

semialgebraic pieces, such that for each n ∈ N and i ∈ Σ,

an = i if and only if Tn(x) ∈ Si .(8)

Conversely, for any nilsystem (X,T ), any point x ∈ X and any partition X =⋃
i∈Σ Si into pairwise disjoint semialgebraic pieces, (8) defines a bracket word.

Proof. Pick a representation an = c(g(n)) (n ∈ N0), where g is a finitely-valued
GP map and c is a coding. Let g(n) = f(Tn(x)) be the representation of g as in
Theorem 4.1. Then, for each i ∈ Σ, Si = f−1(c−1(i)) is a semialgebraic set such
that (8) holds. The converse implication follows along similar lines. □

Now, we give two emblematic examples of nilsystems and the corresponding GP
maps. While we do not use them elsewhere in the paper, we believe they help to
illustrate Theorem 4.1.

4.2. One dimensional torus and Sturmian words. As already mentioned in
the introduction, Sturmian words can be dynamically represented as codings of
irrational translations on the one-dimensional torus. In this case, we simply take
G = R, Γ = Z, and the nilrotation T = Tα is just an irrational translation on
R/Z. More precisely, let a be the Sturmian word defined by (3) (or, respectively,
by (4)). Let Tα : R/Z → R/Z denote the translation by α on R/Z, meaning that
Tα(x) = x+ α (x ∈ R/Z). Let I ⊆ R/Z be the interval [0, α) (resp. (0, α]). Then,
(3) (resp. (4)) is equivalent to:

an = 1I(T
n
α (β)) =

{
1 if Tn

α (β) ∈ I ,

0 otherwise.
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4.3. Heisenberg group. Another helpful example to keep in mind is the Heisen-
berg nilsystem. It is a standard example, and appears e.g. in [BL07, Sec. 0.14],
[GT12b, Sec. 5], [GT10a, Sec. 1], [GT12a, p. 555], [GTZ12] (as a running example).
Pick any α, β, γ ∈ R, and set

G =

1 R R
0 1 R
0 0 1

 , Γ =

1 Z Z
0 1 Z
0 0 1

 , and h =

1 β γ + αβ/2
0 1 α
0 0 1

 .

One possible choice for Mal’cev coordinates is given by

τ

1 y z
0 1 x
0 0 1

 = (x, y, z) .

Then we can compute that

hnΓ =

1 nβ nγ + n2αβ/2
0 1 nα
0 0 1

Γ

=

1 {nβ}
{
nβ {nα} − n2αβ/2 + γn

}
0 1 {nα}
0 0 1

Γ .

Hence, using the nilsystem (G/Γ, Th) and taking f = τ3 (i.e., the third entry of the
coordinate map τ), we obtain a representation of the bounded GP map

g(n) =
{
nβ {nα} − n2αβ/2 + γn

}
.

A slightly more complicated but similar construction involving matrices in dimen-
sion 4 discussed in [BL07, Sec. 0.14] provides a dynamical representation of the
sequence {nβ {nα}}.

5. Representations and constructions

In this section we discuss methods by which bracket words can be represented
and constructed.

5.1. Representations. It is clear from the definition that GP maps : N0 → R are
precisely those maps which can be expressed using (classical) polynomials, addition,
multiplication and the floor function. For finitely-valued GP maps and bracket
words, the situation becomes more complicated. As we will see in Section 9, it
is not always possible to decide if a given GP map g : N0 → R is finitely-valued
(and hence relevant to the study of bracket words) or not. Thus, it is not always
possible to see if a given formula represents a bracket word. On the other hand, for
suitably constructed GP maps, it is easy to see that they must be finitely-valued.
For instance, if g(n) = ⌊2 {h(n)}⌋ for some GP map h : N0 → R, then evidently
g(N0) ⊆ {0, 1}. In general, one can always represent a finitely-valued GP map in a
form which makes it easy to estimate the cardinality of the image. We stress that
Proposition 5.1 provides a concrete way to generate all finitely valued GP maps
from N0 to R, and hence all bracket words.

Proposition 5.1. Let g : N0 → R be a finitely-valued GP map. Then g can be
written in the form g(n) = f (⌊N{h(n)}⌋), where f and h are GP maps from N0

to R and N = |g(N0)|. Conversely, any map g : N0 → R of the form g(n) =
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f (⌊N{h(n)}⌋), where f and h are GP maps from N0 to R and N ∈ N, is a GP
map which takes at most N distinct values.

In the course of the proof of Proposition 5.1, we will need the following simple
fact, which clarifies the relation between bracket words and finitely-valued GPmaps.

Lemma 5.2. Let f : N0 → R be a map taking finitely many values. Then the two
following properties are equivalent.

(i) The word f = (f(n))
∞
n=0 is a bracket word.

(ii) The map f : N0 → R is a GP map.

Proof. It is clear that (ii) implies (i): in Definition 2.2, we can take g = f and c = id.
For the converse implication, suppose that f(n) = c(g(n)), where g : N0 → R has
finite image and c : g(N0) → R. There exists a polynomial map p : R → R such that
p(x) = c(x) for all x ∈ g(N0). Hence, f = p ◦ g is a GP map. □

Proof of Proposition 5.1. Let c : g(N0) → [N ] be any bijective map. Then the word
a = (c(g(n))∞n=0 is a bracket word taking values in [N ]. Hence, by Lemma 5.2,
c ◦ g is a GP map. Let h be the GP map defined by h(n) = c(g(n))/N , and let
f : N0 → R be a polynomial map such that f(c(x)) = x for each x ∈ g(N0) (such f
exists by polynomial interpolation). It is straightforward to check that

f(⌊N {h(n)}⌋) = f(c(g(n))) = g(n)

for all n ∈ N0, as needed. The converse direction holds trivially. □

As a consequence of Proposition 5.1, for each bracket word we can construct a
particularly convenient representation.

Corollary 5.3. Let a be a bracket word defined over a finite alphabet Σ and let
N = |Σ|. Then there exist a GP map g : N0 → [N ] and a map c : [N ] → Σ such
that an = c(g(n)) for all n ∈ N0.

Proof. Let an = c′(g′(n)), where g′ : N0 → R is a finitely-valued GP map and
c′ : g′(N0) → Σ. Let g′(n) = f(⌊N {h(n)}⌋) be the representation of g′ from
Proposition 5.1. It remains to define g and c by g(n) = ⌊N {h(n)}⌋ and c(x) =
c′(f(x)). □

5.2. Constructions. Next, we discuss a basic tool, which can be used to construct
potentially interesting examples of bracket words. In what follows, we will use
the Iverson bracket notation, where Jg ∈ IK denotes the word over the alphabet
{0, 1} which records the positions n such that g(n) ∈ I (see Section 2.3 for exact
definition).

Proposition 5.4. Let g : N0 → R be a GP map and I ⊆ R be an interval (possibly
infinite or degenerate). Then Jg ∈ IK is a bracket word.

Proof. The case where I is bounded is covered by [BK18, Lemma 1.2], while the
case where I is unbounded follows from [Kon21, Lemma B.3]. □

Remark 5.5. We point out that the analogous result with N0 replaced by Z is
true for bounded I and false for unbounded I. For instance, 1N(n) = Jn ∈ (0,∞)K
is not a GP map on Z (c.f. [Kon21, Ex. B.2]). This is one of the reasons why we
focus on one-sided bracket words (an)

∞
n=0, rather than on their two-sided analogues

(an)n∈Z.
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We will use later the following slight refinement of Proposition 5.4 in the case
I = {0}.

Lemma 5.6. Let g : N0 → R be a GP map with coefficients in some field K with
Q ⊊ K ⊆ R. Then Jg = 0K is a bracket word with coefficients in K.

Proof. Pick any α ∈ K \Q. Note that the only solution to {x} = {αx} = 0 in R is
x = 0. Hence, ⌊

1− 1

2
{x} − 1

2
{αx}

⌋
= Jx = 0K , (x ∈ R) .

It follows that

Jg(n) = 0K =
⌊
1− 1

2
{g(n)} − 1

2
{αg(n)}

⌋
, n ∈ N0 . □

One of the main reasons for interest in Lemma 5.6 is that it gives an alternative
definition of bracket words, phrased in terms of fibres.

Corollary 5.7. Let a be an infinite word defined over a finite alphabet Σ. Then
the two following properties are equivalent.

(i) The word a is a bracket word.
(ii) For every x ∈ Σ, the fibre {n ∈ N0 | an = x} is a GP subset of N0.

In particular, for a set E ⊆ N0, E is a GP set if and only if 1E is a bracket word.

Proof. Let us assume that a is a bracket word defined over Σ and let x ∈ Σ. Let
an = c(g(n)) be a representation of a, where g : N0 → R is a finitely valued GP
map and c is a map from g(N0) to Σ. Then h =

∏
a∈c−1(x)(g− a) is a GP map and

it follows from Lemma 5.6 that Jh(n) = 0K = {n ∈ N0 | an = x} is a GP subset of
N0.

Conversely, let us assume that, for every x ∈ Σ, the fibre Fx = {n ∈ N0 | an = x}
is a GP subset of N0. Hence 1Fx

is a GP map. Let us assume that |Σ| = N and let

x1, . . . , xN denote an enumeration of the elements of Σ. Set h =
∑N

i=1 i1Fxi
and

let c be the map defined by c(i) = xi, 1 ≤ i ≤ N . Then h is a GP map and thus
an = c(h(n)) is a bracket word. □

With some basic algebraic manipulations, one can extend Proposition 5.4 to
apparently more complicated conditions, as shown by the following example.

Example 5.8. Let g and h be GP maps from N0 to R and assume that h(n) > 0
for all n ∈ N0. Then Jg < 1/hK = Jgh < 1K is a bracket word. More generally, for
each rational exponent λ = p/q ∈ Q>0, also

q
g < 1/hλ

y
= Jgqhp < 1K is a bracket

word. As an explicit application, for every pair (α, c) ∈ R2 and λ ∈ Q, with c and λ
positive, the formula an =

q
∥αn∥ < c/nλ

y
defines a bracket word a which detects

denominators of good rational approximations to α.

6. Closure properties

We will now discuss ways in which known instances of bracket words can be used
to construct new ones. Compared to the earlier section, the results discussed here
have a more computational flavour. For instance, we point out that, with the sole
exception of Proposition 6.14, all results in this section are analogues of standard
results about automatic sequences, in the sense that they remain true if the term
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“bracket word” is replaced with “k-automatic sequence” and the term “GP set” is
replaced with “k-automatic set” for fixed k ≥ 2 (see [AS03, Sec. 5]).

6.1. Codings and products. It is an almost immediate consequence of Definition
2.2 that bracket words are preserved under coding.

Lemma 6.1. Let a be a bracket word defined over a finite alphabet Σ and let
φ : Σ → Π be a map to some other finite alphabet Π. Then (φ(an))

∞
n=0 is a bracket

word over Π.

Proof. If an = c(g(n)) is the representation of a as in Definition 2.2, then φ(an) =
c′(g(n)) where c′ = φ ◦ c. □

Next, we note that the direct product of two bracket words is again a bracket
word.

Proposition 6.2. Let a and a′ be bracket words respectively defined over some
finite alphabets Σ and Σ′. Then a × a′ = ((an, a

′
n))

∞
n=0 is a bracket word over

Σ× Σ′.

Proof. Recall that, by definition of a bracket word, a has a representation an =
c(g(n)), where g : N0 → A is a GP map taking values in some finite set A ⊆ R, and
c : A → Σ is an arbitrary map. Let a′n = c′(g′(n)) be an analogous representation
of a′.

Replacing g with Cg for a sufficiently large positive real number C > 0 (and
modifying A and c accordingly), we may assume that the only solutions to x+x′ =
y + y′ with (x, y) ∈ A2 and (x′, y)′ ∈ A′2 are the trivial ones: x = x′ and y = y′.
Let B denote the sumset A+A′ = {x+ x′ | x ∈ A, x′ ∈ A′}, let h denote the GP
map g + g′ : N0 → B, and let d : B → Σ × Σ′ denote the unique map such that
d(x+ x′) = (c(x), c′(x′)) for all x ∈ A and x′ ∈ A′. Then (an, a

′
n) = d(h(n)) for all

n ∈ N0. □

Remark 6.3. It follows that replacing, in Definition 2.2, GP maps N0 → R with
GP maps N0 → Rd for arbitrary d ∈ N, leaves unchanged the set of words so
defined.

In practice, Proposition 6.2 is mostly used via the following corollary.

Corollary 6.4. Let a and a′ be bracket words respectively defined over some finite
alphabets Σ and Σ′, and let f : Σ× Σ′ → Π be a map to some other finite alphabet
Π. Then (f(an, a

′
n))

∞
n=0 is a bracket word over Π.

Proof. This follows directly from Proposition 6.2 and Lemma 6.1. □

Remark 6.5. In particular, for any ring R, bracket words taking values in R,
equipped with coordinatewise addition and multiplication, form a ring.

As a consequence of the two previous results, we see that bracket words can be
defined in a “case-by-case” manner.

Proposition 6.6. Let Σ be a finite alphabet, N0 =
⋃r

i=1 Si be a partition of N0

into pairwise disjoint GP subsets, and a(i), 1 ≤ i ≤ r, be bracket words over Σ. Let

a be defined by an = a
(i)
n if n ∈ Si. Then a is a bracket word.
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Proof. We first infer from a recursive use of Proposition 6.2 that the word

(1S1
, . . . ,1Sr

,a(1), . . . ,a(r))

defined over the alphabet {0, 1}r × Σr is a bracket word. Now, letting f be any
function from {0, 1}r × Σr to Σ such that

f(ε1, . . . , εr, x1, . . . , xr) = xi if εi = 1 and εj = 0 when j ̸= i ,

we infer from Corollary 6.4 that f(1S1
, . . . ,1Sr

,a(1), . . . ,a(r)) is a bracket word. It
remains to see that a = f(1S1

, . . . ,1Sr
,a(1), . . . ,a(r)). □

Example 6.7. Let a be the infinite word over the alphabet {−2,−1, 0, . . . , 10}
given by

an =


⌊
n
{√

2n
}⌋

if n
{√

2n
}
≤ 10 ,

−1 if n
{√

2n
}
> 10 and n2

{√
2n

⌊√
3n

⌋}
− n

{√
5n

}
+ 7 > 0 ,

−2 if n
{√

2n
}
> 10 and n2

{√
2n

⌊√
3n

⌋}
− n

{√
5n

}
+ 7 ≤ 0 .

Then a is a bracket word.

Since each eventually constant sequence is a bracket word, it follows that bracket
words are also closed under finite modifications.

Corollary 6.8. Let a,a′ be infinite words over a finite alphabet. If a is a bracket
word and a′n = an for all but finitely many n ∈ N0 then a′ is a bracket word.

Proof. The result follows directly from Proposition 6.6 and the fact that all finite
subsets of N0 are GP. □

6.2. Rearrangements and morphisms. Many natural operations on infinite
words can be described in terms of extracting or inserting entries in a regular
manner. We record a simple observation, which can be used to find examples of
operations of the aforementioned type which preserve bracket words.

Lemma 6.9. Let a be a bracket word and let h : N0 → N0 be a GP map. Then(
ah(n)

)∞
n=0

is a bracket word.

Proof. If an = c(g(n)) is the representation of a as in Definition 2.2, then ah(n) =
c(g′(n)), where g′ = g ◦ h is a GP map (see Remark 2.1). □

Below, we list some applications of this result. Recall that, for A ∈ N, the map
N0 → N0 given by n 7→ n mod A = A {n/A} is a GP map.

Corollary 6.10. Let a be a bracket word defined over a finite alphabet Σ, let A ∈ N,
B ∈ N0, let ♢ be a symbol not belonging to Σ, and let π : [A] → [A] be a map. Then
the following infinite words are also bracket words.

(i) (aAn+B)
∞
n=0.

(ii) a′ defined over Σ ∪ {♢} by a′n = an/A if A | n and a′n = ♢ otherwise.

(iii)
(
a⌊n/A⌋+π(n mod A)

)∞
n=0

.

Proof. The first item follows directly from Lemma 6.9. The second and third items
follow from Lemma 6.9 and Proposition 6.6. □

Lemma 6.11. Let Σ and Π be two alphabets. Let a be a bracket word over Σ and
σ be a morphism of constant length from Σ∗ to Π∗. Then σ(a) is a bracket word.
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Proof. Let us assume that σ has constant length k, and set a′ = σ(a). For each
i ∈ [k] and n ∈ N0, we have a′kn+i = σ(an)i, where we let σ(an)i denote the ith
letter occurring in σ(an). It remains to apply Proposition 6.6 and Lemmas 6.9 and
6.1. □

By similar techniques, we can show a result in the reverse direction: bracket
words are preserved under grouping blocks of constant length, or, in other words,
if the image of a word a by an injective morphism of constant length is a bracket
word, then a itself is also a bracket word.

Lemma 6.12. Let a be an infinite word defined over a finite alphabet Σ and let
k ∈ N. Consider the infinite word a′ over Σk given by a′n = aknakn+1 · · · akn+k−1.
Then a′ is a bracket word if and only if a is a bracket word.

Proof. The proof is similar to the one of Lemma 6.11. □

6.3. Orbit closure. Given an infinite word a defined over a finite alphabet Σ, we
let O(a) denote the orbit of a under the shift, that is, the set of all infinite words
a′ given by a′n = an+m for some m ∈ N0.

Proposition 6.13. Let a be a bracket word and let a′ ∈ O(a). Then a′ is a bracket
word.

Proof. This follows from (i) of Corollary 6.10 in the special case where A = 1. □

More generally, we can consider the orbit closure O(a), that is, the closure of

O(a) with respect to the product topology on Σ∞. Explicitly, a′ belongs to O(a)
if, for every N ∈ N, there exists m such that a′n = an+m for all n ∈ [N ].

Proposition 6.14. Let a be a bracket word and let a′ ∈ O(a). Then a′ is a bracket
word.

Proof. This is a direct consequence of Lemmas A.5 and A.6 given in Appendix
A. □

Example 6.15. Let a be the bracket word given by an =
q{√

2n
{√

3n
}}

< 1/4
y
.

Then each a′ ∈ O(a) can be written in the form

a′n =
r{

(
√
2n+ α)

{√
3n+ β

}
+ γn+ δ

}
< 1/4

z
,

where α, β, γ, δ ∈ [0, 1). Conversely, O(a) contains all sequences a′ of the aforemen-
tioned form, as well as all sequences obtained from them by replacing any instances
of {x} with {x}′ = 1− {−x}, or by replacing the strict inequality < with ≤.

6.4. GP sets. The closure properties of bracket words directly translate into clo-
sure properties of GP subsets of N0 thanks to Corollary 5.7. In fact, we have
already used this connection at several places. For ease of reference, we gather
these properties here.

Proposition 6.16. The family of GP subsets of N0 is a field of sets. In other
words, it contains the empty set and if E,F ⊆ N0 are GP sets then so are N0 \ E,
E ∪ F , and E ∩ F .

Proof. The result follows from Proposition 6.6. □
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Proposition 6.17. Let E ⊆ N0 be a GP set. Then the following sets are also GP
sets.

• m · E = {nm | n ∈ E}, where m ∈ N0.
• E/m = {n ∈ N0 | nm ∈ E}, where m ∈ N.
• E −m = {n ∈ N0 | n+m ∈ E}, where m ∈ Z.

Proof. This is a consequence of Corollary 6.10. □

7. Frequencies and recurrence

In this section, we collect some facts concerning frequencies with which symbols
and subwords appear in bracket words, as well as additive structure of the set of
positions at which a given symbol appears in a bracket word. Most of these facts
are consequences of results concerning uniform distribution and recurrence of orbits
of point in nilsystems, and hence are related to the dynamical characterization of
bracket words discussed in Section 4. We point out that, similarly, many standard
properties of Sturmian words can be inferred from dynamical properties of circle
rotations.

7.1. Uniform frequency. Let Σ be a finite alphabet. Given an infinite word
a ∈ Σ∞ and a letter x ∈ Σ, the (asymptotic) frequency of x in a is defined as

freq(a, x) = lim
N→∞

|{n ∈ [N ] | an = x}| /N ,

provided that the limit exists. More generally, given a finite word w ∈ Σℓ, the
frequency of w in a is defined as

freq(a, w) = lim
N→∞

∣∣{n ∈ [N ]
∣∣ a[n,n+ℓ) = w

}∣∣ /N ,

provided that the limit exists. Here and elsewhere, a[n,n+ℓ) denotes the finite
subword anan+1 · · · an+ℓ−1. We define also the recurrence function of w in a as the
least length of a segment of a that is guaranteed to contain an occurrence of w:

rec(a, w) = inf

{
r ∈ N

∣∣∣∣ for each m there exists n ∈ [m,m+r)
such that a[n,n+ℓ) = w

}
∈ N ∪ {∞} .

For bracket words, we have a strong result about the existence of frequencies, which
is a rephrasing of [BL07, Thm. B].

Theorem 7.1. Let a be a bracket word defined over a finite alphabet Σ and ℓ
be a positive integer. Then for each w ∈ Σℓ, the frequency freq(a, w) exists and,
moreover, one has∣∣{n ∈ [M,M +N)

∣∣ a[n,n+ℓ) = w
}∣∣ /N → freq(a, w)

uniformly in M as N → ∞.

Proof. By definition, there exist a finitely valued GP map g : N0 → R and a coding
c : g(N0) → Σ such that an = c(g(n)). We deduce from [BL07, Thm. B] that the
desired conclusion holds for the sequence g(n). The same conclusion remains true
after applying a coding. □

Corollary 7.2. For a and w as above, either freq(a, w) = 0 or rec(a, w) <∞.



BRACKET WORDS 19

Remark 7.3. It can happen that freq(a, w) = 0 but still w appears in a infin-
itely often, see e.g. Example 3.5. Hence, bracket words are not guaranteed to be
uniformly recurrent2.

The same result can be stated in terms of densities of GP sets. Recall that the
asymptotic density of a set E ⊆ N0 is defined by

d(E) = lim
N→∞

|E ∩ [N ]| /N ,

provided that the limit exists. In general, we let d(E) and d(E) denote the up-
per and lower asymptotic densities, obtained by replacing lim with lim sup and
lim inf respectively. Additionally, we define the upper and lower uniform (Banach)
densities by

d∗(E) = lim sup
N→∞

sup
M

|E ∩ [M,M +N)| /N

and
d∗(E) = lim inf

N→∞
inf
M

|E ∩ [M,M +N)| /N .

In general, we have the chain of inequalities: d∗(E) ≤ d(E) ≤ d(E) ≤ d∗(E).

Theorem 7.4. Let E be a GP subset of N0. Then d(E) exists. Moreover, d∗(E) =
d∗(E) = d(E).

7.2. Distribution along subsequences. Many of the desirable properties of bra-
cket words are preserved under passing to subsequences. As a first instance of this
principle, we consider the simple case of polynomial subsequences.

Proposition 7.5. Let a be a bracket word defined over a finite alphabet Σ, p :
N0 → N0 be a polynomial, and ℓ be a positive integer. Then for each w ∈ Σℓ, the
frequency freq

((
ap(n)

)∞
n=0

, w
)
exists.

Proof. Let an = c(g(n)) be a representation of a, where g : N0 → R is a GP map.
Then g · p : N0 → N0 is also a GP map for GP maps are closed under composition,
and ap(n) = c(g ◦ p(n)). The results follows now from Theorem 7.1. □

We point out that even in the simplest cases, passing to a subsequence can
alter frequencies with which symbols occur. For instance, if a = 101010 · · · then
freq(a, 1) = 1/2 but freq((a2n)

∞
n=0, 1) = 1.

Next, let us consider distribution along the primes. In [GT12a], Green and Tao
obtained quantitative estimates on correlations between the Möbius function and
nilsequences, which have important consequences for the question at hand, (cf.
[GT12a, Sec. 5]). Extending the techniques developed by Green and Tao, and the
connection between GP maps and nilsystems, Bergelson, H̊aland-Knutson and Son
[BHKS20] showed that bounded GP maps have asymptotic distribution along the
primes. The following result is obtained by specialising [BHKS20, Theorem 5.1]
to finitely-valued sequences. Below, we let pn denote the n-th prime. We also
mention related work of Eisner [Eis20] concerning convergence of ergodic averages
along primes in nilsystems. In the case of Sturmian words, this result is essentially
due to Davenport [Dav37].

Theorem 7.6. Let a be a bracket word defined over a finite alphabet Σ. Then for
each x ∈ Σ, the frequency freq

(
(apn

)
∞
n=0 , x

)
exists.

2A sequence a is uniformly recurrent if, for every finite word w which appears in a, there exists
ℓ ∈ N such that w appears in the length-ℓ segment a|[n,n+ℓ) for all n.



20 B. ADAMCZEWSKI AND J. KONIECZNY

Proof. This follows from [BHKS20, Thm. 5.1] using the same argument as in the
proof of Theorem 7.1. □

Considering a = 101010 · · · again, we see that the frequencies freq
(
(apn)

∞
n=0 , x

)
need not be equal to freq (a, x). One can also inquire if it possible to generalise
Theorem 7.6 from frequencies of symbols x ∈ Σ to frequencies of words w ∈ Σℓ,
ℓ ≥ 2. While it seems plausible that this generalisation is true, it is out of reach
of the current techniques. Indeed, already in the case where a = (n mod q)∞n=0

is a periodic word with period q ≥ 3, such a generalisation would require us to
understand the asymptotic behaviour of

(9)
1

N
|{n < N | pn ≡ w1, pn+1 ≡ w2, . . . , pn+ℓ−1 = wn+ℓ−1 mod q}| .

It is conjectured that the expression in (9) converges to 1/φ(q)ℓ, where φ denotes
the totient function; in fact, the Main Conjecture in [LOS16] gives a more precise
asymptotic expression. However, such estimate remains unknown for any ℓ ≥ 2, as
discussed in [LOS16].

Lastly, we consider a class of subsequences which preserve the frequencies of
symbols. As already alluded to earlier, Theorem 4.1 leads to a close connection
between equidistribution results for nilsystems and statements about frequencies of
symbols in bracket words. Recall that each nilmanifold X comes equipped with the
Haar measure µX . A sequence (xn)

∞
n=0 is equidistributed in X if for each continuous

map f : X → R we have

(10) lim
N→∞

1

N

N−1∑
n=0

f(xn) =

∫
X

fdµX .

Definition 7.7. Let t : N0 → N0. We say that t is good for equidistribution
in nilsystems if, for all minimal nilsystems (X,T ) and all x ∈ X, the sequence
(T t(n)(x))∞n=0 is equidistributed in X.

Proposition 7.8. Let a be a bracket word defined over a finite alphabet Σ, and
let t : N0 → N0 be good for equidistribution in nilsystems. Then the frequencies of
letters in a along the subsequence t(n) exist and remain the same as in a:

freq
((
at(n)

)∞
n=0

, x
)
= freq(a, x) ∀x ∈ Σ .

Proof. This is a consequence of the representation of a coming from Theorem 4.2.
Indeed, though the indicator functions 1Si

of the semialgebraic sets Si from The-
orem 4.2 are not continuous, they can be efficiently approximated by continuous
functions to which Equality (10) can be applied. □

Hopefully, the following result of Frantzikinakis [Fra09] provides a plentiful
source of sequences that satisfy Definition 7.7 and make Proposition 7.8 relevant.

Theorem 7.9 ([Fra09, Thm. 1.1]). Let us assume that f : R>0 → R>0 satisfies the
following properties.

(i) The function f belongs to some Hardy field.
(ii) There exists C > 0 such that f(x) = O(xC) as x→ ∞.

(iii) For every p ∈ Z[x] and c ∈ R, we have lim
x→∞

|f(x)− cp(x)|
log x

= ∞.

Then ⌊f⌋ is good for equidistribution in nilsystems.
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For a definition of a Hardy field, we refer the reader to [Fra09]. Here, we just
point out that one example of a Hardy field is the logarithmic-exponential functions,
that is, real-valued functions defined on some interval [c,∞), c ∈ R, that can
be constructed from polynomials using addition, multiplication, and the functions
exp and log. Hence, the following formulae define sequences that are good for
equidistribution in nilsystems:

⌊
n3/2

⌋
,
⌊
n2 log2 n

⌋
,
⌊
n2 + log2 n

⌋
, and

⌊
n2 +

√
2n

⌋
.

Conversely, because of item (iii), there is no guarantee that the same should apply

to
⌊
n2 + log n

⌋
or

⌊√
2n

⌋
. In fact, one can compute that

1√
2

⌊√
2n

⌋
= n+

{√
2n

}
√
2

≡
{√

2n
}

√
2

mod 1,

so
⌊√

2n
⌋
is not good for equidistribution for the circle rotation by 1/

√
2. Extensions

of some results in [Fra09] were recently obtained by Richter [Ric20].
It is not possible to directly generalise Proposition 7.8 to frequencies of words

instead of symbols. For instance, the sequence t(n) = ⌊
√
n⌋ is good for equidistri-

bution in nilsystems and constant on each interval [N2, (N + 1)2), N ∈ N. Hence,
already for the periodic word a = 101010 · · · and w ∈ {0, 1}2 we have

freq
(
(at(n))

∞
n=0, w

)
=

{
1/2 if w ∈ {00, 11},
0 if w ∈ {01, 10}.

Thus, the frequencies of words in (at(n))
∞
n=0 bear little resemblance to the frequen-

cies of symbols and words in a.
On the other hand, under additional growth conditions, one can obtain positive

results. The key technical component is the following theorem of Bergelson, Moreira
and Richter. Below, we let f (j) denote the j-th derivative of f .

Theorem 7.10 ([BMR20, Thm. 5.6, special case]). Let (X,T ) be a minimal nil-
system, let z ∈ X, and let f1, f2, . . . , fk be functions belonging to the same Hardy
field. Suppose further that the following two conditions hold.

(i) For each h ∈ span
{
f
(j)
i

∣∣∣ 1 ≤ i ≤ k, j ≥ 0
}

and each p(x) ∈ R[x], we have

either |h(x)− p(x)| = O(1) or |h(x)− p(x)| / log x→ ∞ as x→ ∞.
(ii) For each non-zero h ∈ span {fi | 1 ≤ i ≤ k} and each p(x) ∈ R[x], we have

|h(x)− p(x)| → ∞ as x→ ∞.

Then
((
T ⌊f1(n⌋(z), T ⌊f2(n⌋(z), . . . , T ⌊fk(n⌋(z)

))∞
n=0

is equidistributed in Xk.

Let now f be a function belonging to a Hardy field, and put t = ⌊f⌋ and
fi(x) = f(x + i) for every i such that 1 ≤ i ≤ k. Using standard techniques, such
as the Taylor expansion and estimates on derivatives of functions in Hardy fields
[Fra09, Lem. 2.1], one can verify that conditions 7.10.(i) and 7.10.(ii) are satisfied
if

f(x)

xk log x
→ ∞ and

f(x)

xk+1
→ 0 as x→ ∞.

Combining the conclusion of Theorem 7.10 with Theorem 4.2, one could show that
for each bracket word a and each word w ∈ Σk we have

(11) freq
((
at(n)

)∞
n=0

, w
)
=

k−1∏
i=0

freq (a, wi) .
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We emphasise that the frequencies in (11) are, in general, not equal to freq(a, w);
rather, they are the values which one would expect if t exhibited random-like be-
haviour. We leave the details to the interested reader.

7.3. IP recurrence. Apart from asymptotic density, one can also inquire into
combinatorial richness of GP subsets of N. In order to state the relevant results,
we introduce some terminology. A set E ⊆ N is an IP-set if it contains all finite
sums of a sequence of positive integers, that is, if there exists a sequence of positive
integers (ni)

∞
i=1 such that

∑
i∈I ni ∈ E for all finite set I ⊆ N. A set F ⊆ N is IP∗

if E ∩ F ̸= ∅ for every IP-set E, or, equivalently, if for every sequence of positive
integers (ni)

∞
i=1 there exists a finite set I ⊆ N with

∑
i∈I ni ∈ F . We also define

shifted variants of these notions. A set E ⊆ N is IP+ if (E + n) ∩ N is an IP-set
for some n ∈ Z. Likewise, a set F ⊆ N is IP∗

+ if (F + n) ∩N is an IP∗-set for some
n ∈ Z. Each IP∗-set is syndetic, meaning that for every IP∗-set F there exists an
integer N such that F ∩ [n, n + N) ̸= ∅ for all n ∈ N0. In particular, all IP∗-sets
have positive lower uniform density. Moreover, since for all m ∈ N, the multiples
of m form an IP-set, all IP∗-sets contain a multiple of m. The class of IP∗-sets is
closed under intersection, meaning that for all pairs F, F ′ ⊆ N of IP∗-sets, F ∩ F ′

is also an IP∗-set. In what follows, we say that a statement φ(n) holds for almost
all n ∈ N0 if d ({n ∈ N0 | ¬φ(n)}) = 0.

Theorem 7.11 ([BL07, Thm.D]). Let a be a bracket word over Σ. Then for almost
all n0 ∈ N0 and all sequences of positive integers (ni)

∞
i=1, there exists a finite set

I ⊆ N such that an0+
∑

i∈I ni
= an0

. In other words, if E ⊆ N is a GP set with

d(E) > 0, then E is IP∗
+. Furthermore, (E − n) ∩ N is IP∗ for almost all n ∈ E.

Remark 7.12. For Sturmian words, a much simpler proof is possible, see e.g. a
special case of [Ber10, Cor. 7.3].

Remark 7.13. One can obtain more precise versions of this result. Specifically, it
follows from [BL18] that one can additionally require that I ⊆ [r] for some integer
r that only depends on a and n0. In a different direction, it follows from [Kon17]
that one can additionally require that the gaps between consecutive elements of I
are bounded from above by some integer d that only depends on a.

8. Counting function and discrepancy

Let a be a bracket word defined over a finite alphabet Σ. In addition to the
asymptotic frequency freq(a, x) with which a symbol x ∈ Σ appears in a, one can
inquire into more quantitative estimates on the count of occurrences of x in a. This
leads us to consider the counting function

(12) π(a, x;N) = |{n ∈ [N ] | an = x}| ,
as well as the closely related notion of symbolic discrepancy considered in [Ada04],

(13) ∆(a;N) = max
x∈Σ

∣∣∣π(a, x;N)−N freq(a, x)
∣∣∣ .

For example, if a is the Sturmian word given by an = ⌊αn+ β⌋ − ⌊α(n− 1) + β⌋,
then we have the estimates

π(a, 1;N) = αN +O(1) and ∆(a, N) = O(1) ,(14)

which are significantly stronger than freq(a, 1) = α.
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In this section, our aim is to study the possible rates of growth of π(a, x;N) and
∆(a;N) when a is a bracket word. We note that, as a direct consequence of the
definitions, for each x ∈ Σ and N ∈ N we have

0 ≤ π(a, x;N), ∆(a;N) ≤ N .

Since frequencies of all symbols exist, we also have

π(a, x;N)/N → freq(a, x) and ∆(a;N)/N → 0 as N → ∞ .

This quantitative approach is especially relevant in the case where freq(a, x) = 0.
We point out that if there exists z ∈ Σ with freq(a, z) = 1 then

∆(a;N) = N − π(a, z;N) =
∑

x∈Σ\{z}

π(a, x;N) .

For instance, if we let F = {0, 1, 2, 3, 5, 8, . . .} denote the set of Fibonacci numbers,

φ = (1 +
√
5)/2 be the golden ratio, and E = {n ∈ N0 | ∥φn∥ < 1/

√
n}, then the

frequencies freq(1E , 1) and freq(1F , 1) are both zero, but

π(1F , 1;N) = ∆(1F ;N) = Θ(logN)

grows much more slowly (cf. Proposition 8.10) than

π(1E , 1;N) = ∆(1E ;N) = Θ(
√
N) .

For context, we mention that similar questions have been studied for other classes
of sequences of combinatorial interest. For instance, it is well-known (see e.g. [Rig14,
Sec. 1.2]) that for each k-automatic word a over a finite alphabet Σ and each
x ∈ Σ, the count of integers n with an = x whose base-k expansion has length
L ≥ 1, π(a, x; kL) − π(a, x; kL−1), satisfies a linear recurrence in L. Thus, either

π(a, x;N) = Θ(logdN) for some d ∈ N0 or π(a, x;N) = Ω(N c) for some c ∈ (0, 1]

[Rig14, Thm. 1.48]. In particular, if π(a, x;N) = No(1) then π(a, x;N) = logO(1)N .
Another convenient consequence is that if freq(a, x) = 0 then π(a, x;N) = O(N c)
for some c ∈ (0, 1).

8.1. Linear growth and low discrepancy. As we have already observed, the
rate of growth of π(a, x;N) can be linear and ∆(a;N) can be bounded. In this
context, it is helpful to recall the notion of a C-balanced word. An infinite word a
over an alphabet Σ is C-balanced if the number of occurrences of a given symbol
in any two subwords of a of equal length differs by at most C. For instance, as
we have already pointed out in the introduction, Sturmian words are 1-balanced.
It was shown in [Ada03, Prop. 7] that an infinite word a is C-balanced for a finite
value C > 0 if and only the discrepancy ∆(a;N) is bounded as N → ∞.

Lemma 8.1. For every α ∈ (0, 1], there exists a bracket word over {0, 1} with
π(a, 1;N) = αN +O(1), and thus freq(a, 1) = α and ∆(a;N) = O(1).

Proof. Follows immediately from (14). □

The example above stems from the fact that [0, α) is a bounded remainder set for
the rotation by α on the torus R/Z. In general, given d ∈ N and α = (α1, α2, . . . , αd)
a measurable set S ⊆ Rd/Zd is a bounded remainder set for the rotation by α on
Rd/Zd if for almost all x ∈ Rd/Zd, the discrepancy

∆(S, x;N) =

∣∣∣∣∣
N−1∑
n=0

1S(x+ nα)− λ(S)N

∣∣∣∣∣
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is bounded by a constant C(S, α) independent of x and N . (Above, λ denotes
the Lebesgue measure.) A complete classification of Riemann measurable bounded
remainder sets for rotations on tori was obtained in [GL15]. In particular, by
[GL15, Thm. 1], if v1, v2, . . . , vd ∈ Zα + Zd are linearly independent vectors such
that the parallelepiped

P =

{
d∑

i=1

tivi

∣∣∣∣∣ t1, t2, . . . , td ∈ [0, 1)

}
is contained in [0, 1)d then P (or, strictly speaking, its projection to Rd/Zd) is a
bounded remainder set.

Example 8.2. Let d ∈ N, let α = (α1, α2, . . . , αd) ∈ Rd be a d-tuple of real
numbers such that 1, α1, α2, . . . , αd are linearly independent over Q, and let S ⊆
Rd/Zd be a bounded remainder set for the rotation by α on Rd/Zd which is also a
semialgebraic set. Then a = (1S(nα))

∞
n=0 is a bracket word with freq(a, 1) = λ(S)

and ∆(a;N) = O(1) as N → ∞.

A different way to generalise Lemma 8.1 is to consider iterated discrete deriva-
tives of polynomials of higher degrees.

Example 8.3. Let α ∈ (0, 1) and let a be the bracket word given by

an =
⌊
α(n+ 2)2

⌋
− 2

⌊
α(n+ 1)2

⌋
+

⌊
αn2

⌋
+ 1

= −
{
α(n+ 2)2

}
+ 2

{
α(n+ 1)2

}
−

{
αn2

}
+ 1 + 2α.

It follows directly from the formula above that an ∈ Z and −1 < an < 5 for all
n ∈ N0, so a is a word over the alphabet {0, 1, 2, 3, 4}. Consider the word a′ over
the alphabet {0, 1} given by

a′4n+i =

{
1 if an > i,

0 otherwise.
for n ∈ N0, i ∈ {0, 1, 2, 3} .

Then we can compute that

π(a′, 1;N) =

N−1∑
n=0

a′n =

N/4−1∑
n=0

an +O(1)

= N/4 +
⌊
α(N/4 + 1)2

⌋
−

⌊
α(N/4)2

⌋
+O(1) = (1/4 + α/8)N +O(1).

Hence, π(a′, 1;N) = (1/4 + α/8)N +O(1) and ∆(a′;N) = O(1).

We recall the words in Examples 8.2 and 8.3 are C-balanced for some finite
constant C. Thanks to Theorem 4.2, one could use Example 8.3 to construct an
explicit example of a bounded remainder set for a certain 2-step nilsystem.

8.2. Slow growth and small discrepancy. At the other extreme in terms of
the possible rates of growth of π(a, x;N), it is possible for π(a, x;N) to tend to
∞ arbitrarily slowly. In the case where |Σ| = 2, ∆(a;N) = π(a, x;N) tends to
∞ at the same rate. As a first example, we mention a result [BK18, Theorem C]
asserting that any “sufficiently sparse” subset of N0 is a GP set.

Proposition 8.4 ([BK18, Thm. C]). Let E = {ni | i ∈ N0} ⊆ N≥2 be a set with

lim inf
i→∞

log ni+1

log ni
> 1.
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Then 1E is a bracket word.

The proof of Proposition 8.4 relies on an application of Proposition 5.4 for a
GP map of the form g(n) =

q
∥αn∥ < 1/nd

y
with large d ∈ N and a carefully

constructed α ∈ R. Of course, this result provides examples of bracket words over
{0, 1} for which the growth of π(a, 1;N) tends to infinity as slowly as wanted.

Now, we prove the following general result that also covers growth order of type
logN .

Proposition 8.5. Let f : N0 → R>0 be a non-decreasing map and assume that
there exists a positive real number C such that f(2n) ≤ f(n) + C for all n ∈ N.
Then there exists a bracket word a over {0, 1} such that π(a, 1;N) = f(N) +O(1).

Proof. Let F be the set of all Fibonacci numbers, and let F ′ = F + [C]. Note that
for all sufficiently large n ∈ N, we have |F ′ ∩ [n, 2n)| ≥ C. In [BK22], it is shown
that any subset E of F is a GP set, and hence the same also applies to each E ⊆ F ′.
One can inductively construct a set E ⊆ F ′ such that |E ∩ [N ]| = f(N) +O(1) for
all N : for each n ∈ F ′, assuming that E ∩ [n] has already been constructed, we let
n ∈ E if and only if f(n) > |E ∩ [n]|. It remains to set a = 1E . □

Example 8.6. For every α ∈ R>0, there is a bracket word a over {0, 1} such that
π(a, 1;N) = α logN +O(1).

For the sake of completeness, we mention that for even slower rates of growth,
we can reformulate [BK18, Thm. C] to obtain a slightly more precise result which
does not involve an error term.

Proposition 8.7. Let f : R>0 → R>0 be a continuously differentiable increasing
function with supx |f ′(x)| <∞. Then there exists a bracket word a over {0, 1} with
π(a, 1;N) = ⌊f(log logN)⌋ for all sufficiently large N .

Proof. Since f(log log x) is increasing in x and its derivative tends to 0 as x→ ∞,
we can construct a set E = {m1 < m2 < · · · } with |E ∩ [N ]| = ⌊f(log logN)⌋ for
all sufficiently large N . Thus, for sufficiently large n we have

f(log logmn) < n ≤ f(log log(mn + 1)) .

As a consequence, we find that

f−1(n− 1/2) ≤ log logmn ≤ f−1(n) .

Applying this bound to n and n+ 1, we obtain

logmn+1

logmn
≥ exp

(
f−1(n+ 1/2)− f−1(n)

)
.

Since f ′(x) is bounded as x→ ∞, we have

lim inf
n→∞

(
f−1(n+ 1/2)− f−1(n)

)
> 0 ,

and consequently

lim inf
n→∞

logmn+1

logmn
> 1 .

Thus, 1E is a bracket word by Proposition 8.4. □

Example 8.8. There are bracket words a over {0, 1} such that π(a, 1;N) is any
of the following: ⌊α log logN⌋ for any α ∈ R>0, ⌊(log logN)c⌋ for any c ∈ [0, 1),
⌊log log logN⌋, and so on.
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8.3. Moderate behaviours. Bearing in mind the examples mentioned above, we
are left with the question of determining which rates of growth between linear
and logarithmic are possible for π(a, x;N). Towards this end, we will make use
of results concerning the asymptotic behaviour of Diophantine expressions of the

form
∏d

i=1 ∥αin∥, which have received considerable attention in connection with
the Littlewood conjecture (see Example 3.6). While the conjecture remains un-
solved, one can obtain considerably more precise estimates for a generic choice of
(α1, α2, . . . , αd). For future reference, let us define the set

E(λ, α) =

{
n ∈ N

∣∣∣∣∣
d∏

i=1

∥nαi∥ < n−1+λ

}
,

where d ∈ N, λ ∈ [0, 1], and α = (α1, α2, . . . , αd) ∈ Rd. Note that E(λ, α) is a GP
set if λ ∈ Q.

Proposition 8.9. For every λ ∈ [0, 1)∩Q and c ∈ N0, there exists a bracket word
a over {0, 1} with π(a, 1;N) = Θ(Nλ logcN).

Proof. It follows from a variant of the main result in [WY81], as cited in [CT22,
Thm. 1.6] and specialised to ψ(n) = n−1+λ, that for each d ∈ N and almost all
α ∈ Rd, we have the asymptotic formula

(15) |E(λ, α) ∩ [N ]| =

{
Θ(xλ logd−1 x) if λ ̸= 0,

Θ(logd x) if λ = 0.

If λ = c = 0 then one can simply take a = 1{0}, so suppose this is not the case.
Let d = c + 1 if λ ̸= 0 and d = c if λ = 0. It follows from (15) that for almost all
α ∈ Rd we may take a = 1E(λ,α). □

Unfortunately, the main result in [WY81] does not provide any explicit example
of α ∈ Rd for which (15) holds, and as a consequence our proof of Proposition 8.9
does not provide any explicit example of bracket words a such that π(a, 1;N) has
prescribed asymptotic behaviour. However, such examples can be constructed in
the special case where (using notation from Proposition 8.9) d = 0. Below, we let
φ denote the golden ratio.

Proposition 8.10. Let λ ∈ (0, 1) ∩Q, and let a = 1E, where

E =
{
n ∈ N

∣∣ ∥nφ∥ ≤ n−1+λ
}
.

Then π(a, 1;N) = Θ(Nλ).

Proof. Recall that every positive integer n has a unique expansion

n =

∞∑
i=2

ϵi(n)fi ,

where fi is the i-th Fibonacci number, ϵi(n) ∈ {0, 1} and (ϵi(n), ϵi+1(n)) ̸= (1, 1)
for all i ≥ 2. Let ν(n) denote the least index i ≥ 1 such that ϵi+1(n) = 1, and let
µ(n) = − logφ ∥nφ∥. It follows from [DMS18, Lemma 1] that the difference between
ν(n) and µ(n) is bounded; in fact, |µ(n)− ν(n)| ≤ 3 for all n ∈ N.

It is a standard exercise to show that for each ℓ ∈ N, the number of sequences in
{0, 1}ℓ with no pair of consecutive 1s is fℓ+2 = Θ(φℓ). As a consequence, for each
sufficiently large ℓ ∈ N and each c ∈ (−10, 10), we have

(16) |{n ∈ [fℓ−1, fℓ) | ν(n) ≥ (1− λ)ℓ+ c}| = Θ
(
φλℓ

)
.
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Since |µ(n)− ν(n)| ≤ 3 and
∣∣logφ n− ℓ

∣∣ < 2 for all n ∈ [fℓ−1, fℓ), it follows that

(17)
∣∣{n ∈ [fℓ−1, fℓ)

∣∣ µ(n) ≥ (1− λ) logφ n
}∣∣ = Θ

(
φλℓ

)
.

Let N be a large integer, and let i be the index with fi−1 ≤ N < fi. Summing (17)
over all ℓ ≤ i (resp. ℓ ≤ i− 1), we conclude that

|E ∩ [N ]| =
∣∣{n ∈ [N ]

∣∣ µ(n) ≥ (1− λ) logφ n
}∣∣ = Θ

(
φλi

)
= Θ

(
Nλ

)
. □

In general, it is not clear how to construct α ∈ Rd which satisfy (15) for d ≥ 2.
However, some progress in that direction follows from recent work of Chow and
Technau. For instance, it follows as a special case of [CT22, Theorem 1.9], that for
each λ ∈ (0, 1) and each α1 ∈ R which is not a Liouville number (i.e., ∥nα1∥ ≫ 1/nC

for some constant C), for almost all α2 we have the we have the one-sided variant
of (15),

|E(λ, (α1, α2)) ∩ [N ]| ≫ Nλ logN .

8.4. Almost linear growth. It might come as a surprise that there exist bracket
words a over {0, 1} such that the growth rate π(a, 1;N) is slower than, but ar-
bitrarily close to, linear. This is closely related to a classical result of Khinchine
asserting that there exist pairs α1, α2 ∈ R, with 1, α1, α2 linearly independent over
Q, such that min|n|<N ∥n1α1 + n2α2∥ tends to 0 arbitrarily fast as N → ∞, see
e.g. [Cas72, Ch. V, Thm. XIV]. We will need the following elementary lemma.

Lemma 8.11. Let (Ni)
∞
i=1 be a sequence of positive integers and (εi)

∞
i=1 be a se-

quence with values in (0, 1) such that

Ni+1 ≥ 2Ni/εi .

Then there exists α ∈ R \Q with ∥Niα∥ ≤ εi for all i ∈ N.

Proof. For every j ∈ N, we set

Aj = {α ∈ R/Z | ∥Niα∥ ≤ εi for all 1 ≤ i ≤ j} .
It will suffice to show that the set A =

⋂∞
j=1Aj is uncountable.

Note that, for each j ∈ N, Aj+1 is the intersection of Aj with the periodic set
{α ∈ R/Z | ∥Nj+1α∥ ≤ εj+1}, which is the union of the intervals

I
(m)
j+1 =

[
m− εj+1

Nj+1
,
m+ εj+1

Nj+1

]
, m ∈ [Nj+1].

This motivates us to recursively define a family of sets A′
j by A′

1 = A1 and

A′
j+1 =

⋃{
I
(m)
j+1

∣∣∣ m ∈ [Nj+1] and I
(m)
j+1 ⊆ A′

j

}
.

A routine inductive argument shows that A′
j ⊆ Aj for each j ∈ N, and it follows

directly from the definition that A′
j is a union of intervals with lengths 2εj/Nj . Set

A′ =
⋂∞

j=1A
′
j ⊆ A.

Since 2εj/Ni ≥ 4/Nj+1, for each m ∈ [Nj ] there exists m′ ∈ [Nj+1] such that

(18) I
(m′)
j+1 , I

(m′+1)
j+1 ⊆

[
m′ − 1

Nj+1
,
m′ + 2

Nj+1

]
⊆ I

(m)
j .

Applying this observation inductively and using Cantor’s intersection theorem, we

conclude that I
(m)
j ∩ A′ ̸= ∅ for each j ∈ N and m ∈ [Nj ] such that I

(m)
j ⊆ Aj .

In fact, since the left hand side of (18) includes two disjoint intervals, we can use
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a similar argument to produce an injective map from {0, 1}N to A′. Thus, A′ is
uncountable, and so is A. □

Proposition 8.12. Let f : N → (0, 1] be any function with f(N) → 0 as N → ∞.
There exists a bracket word a over {0, 1} such that freq(a, 1) = 0 but π(a, 1;N) =
∆(a;N) ≥ f(N)N for all N ∈ N.

Proof. We may assume without loss of generality that f(n) ≥ 1/n for all n ∈ N
and that f is non-increasing; if this is not the case, we can freely replace f(n)
with max (1/n, f(n), f(n+ 1), f(n+ 2), . . .). For each N , let h(N) denote the least
positive integer with f(h(N)) < 1/N , and let (Ni)

∞
i=1) be the sequence defined by

N1 = 1 and
Ni+1 = 2h(Ni)

2 .

Put also εi = Ni/h(Ni+1)
2 = 2Ni/Ni+2. Note that h(N) > N so Ni+1 > 2N2

i , and
in particular the sequence Ni is increasing.

By Lemma 8.11, there exist α0, α1 ∈ R\Q such that ∥αjNi∥ ≤ εi for all j ∈ {0, 1}
and i ∈ N with i ≡ j mod 2. For j ∈ {0, 1}, set

Ej = {n ∈ N | ∥nαj∥ ≤ 1/n} ,
E = E0 ∪ E1 ∪ [h(N1)], and a = 1E . We claim that a satisfies the required
conditions. Since α0 and α1 are irrational, we have

freq(a, 1) = d(E) ≤ d(E0) + d(E1) = 0 .

It remains to show that π(a, 1;N) = |E ∩ [N ]| ≥ f(N)N for all N . If N ≤ h(N1)
then [N ] ⊆ E, so we may assume that N > h(N1). Let i denote the unique index
such that h(Ni) ≤ N < h(Ni+1), and put α = αi mod 2. Since ∥Niα∥ ≤ εi, we have

∥mNiα∥ ≤ m ∥Niα∥ ≤ mεi ≤
1

mNi

and thus mNi ∈ E for all integers m with 1 ≤ m ≤ h(Ni+1)/Ni. It follows that

|E ∩ [N ]| ≥ N/Ni ≥ f(h(Ni))N ≥ f(N)N. □

Example 8.13. There exists a bracket word a over {0, 1} with freq(a, 1) = 0
and π(a, 1;N) ≥ N/ log log logN for all sufficiently large N . Note, however, that
Proposition 8.12 does not ensure the existence of a bracket word a with π(a, 1;N) =
Θ(N/ log log logN).

8.5. Algebraic coefficients. The construction in Proposition 8.12 relies on find-
ing a pair of real numbers (α0, α1) with some rather unusual Diophantine properties.
If we restrict our attention to bracket words with algebraic coefficients (c.f. Remark
2.5), such constructions are no longer possible and some gap appears in the possible
growth rates.

Proposition 8.14. Let a be a bracket word defined over a finite alphabet Σ which
arises from a GP map with algebraic coefficients and let x ∈ Σ. If freq(a, x) = 0,
then there exists c > 0 such that π(a, x;N) = O(N1−c).

Proof. In this proof, we will make extensive use of the material discussed in Ap-
pendix A. We also recall that definitions of algebraic varieties and semialgebraic
sets are given in Section 4.1.4.

By Theorem A.1, there exists a nilmanifold X = G/Γ with G connected and
simply connected, as well as a polynomial sequence g : Z → G and a semialgebraic
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set S ⊆ X such that for each n ∈ N0 we have the equivalence: an = x ⇐⇒
g(n)Γ ∈ S. The nilmanifold X can be equipped with a Mal’cev coordinates τ : X →
[0, 1)d, where we put d = dimG. Recall also from (6) that we have a closely
related coordinate map τ̃ : G → Rd. Furthermore, inspecting the construction in
[BL07], we see that X can be equipped with a Mal’cev coordinates τ such that
τ̃ ◦ g is a polynomial with algebraic coefficients and τ(S) is defined by equations
and inequalities with algebraic coefficients. Since freq(a, x) = 0, the measure of S
is zero. As a consequence (see e.g. [BCR98, Sec. 2.8]), S is contained in a proper
algebraic variety V ⊊ Rd, which is defined over Q.

Now, we pick a non-zero polynomial p : Rd → R that vanishes on V ∪ ∂[0, 1]d,
which exists because V ∪ ∂[0, 1]d is contained in a proper algebraic sub-variety
of Rd (specifically, in the union of the algebraic variety V and 2d hyperplanes).
Throughout the argument, we allow all implicit constants to depend on X, g, and
S. There are now two cases to consider, depending on the distribution of g(n)Γ.

Suppose first that the sequence (g(n)Γ)∞n=0 is equidistributed in X. Then by

Lemma A.4, there exists c1 > 0 such that for each N the sequence (g(n)Γ)
N−1
n=0 is

O(N−c1)-equidistributed for all N ∈ N. For δ > 0, consider the function Hδ : X →
[0, 1] defined by

Hδ(x) = max
(
1− |p(τ(x))|

δ
, 0
)
.

Then ∥Hδ∥Lip = O(1/δ) and
∫
HδdµX = O(δc2) for some c2 > 0. We can now

estimate

π(a, x;N) ≤
N−1∑
n=0

Hδ(g(n)Γ) ≪
N1−c1

δ
+

N

δc2
·

Letting δ = N−c/c2 for a sufficiently small c > 0, we obtain π(a, x;N) = O(N1−c).
Let us assume now that the sequence (g(n)Γ)∞n=0 is not equidistributed in X.

In that case, there exists a horizontal character η : X → R/Z such that η ◦ g is
constant. Let G′ be the connected component of ker η and let Γ′ = Γ ∩G′. Then,
g(n) can be decomposed as g(n) = g′(n)γ(n), where g′ takes values in G′ and γ is
periodic. This can be shown by adapting the proof of [GT12b, Prop. 9.2], or using
this result as a black-box and passing to the limit δ → 0; periodicity of γ follows
from Lemma A.12 therein. Let q denote a period of γ. Each of the sequences a(i),

0 ≤ i < q, defined by a
(i)
n = aqn+i can be represented using the nilmanifold G′/Γ′

rather than X. Reasoning by induction with respect to the dimension d, we may
assume that for each i, 0 ≤ i < q, there exists ci such that π(a(i), x;N) = O(N1−ci).
Letting c = min0≤i<q ci, we see that π(a, x;N) = O(N1−c). □

8.6. Concluding remarks. We close this section by mentioning several rates of
growth about which we do not know if they can be realised. It is also not clear if
restriction to bracket words with algebraic coefficients influences the answer.

Question 8.15. Does there exist a bracket word a over {0, 1} such that one of the
following rate of growth holds?

(i) π(a, 1;N) = Θ(Nλ), where λ ∈ (0, 1) \Q .
(ii) π(a, 1;N) = Θ(logcN), where c ∈ (1,∞) \ N .

(iii) π(a, 1;N) = Θ
(
e
√
logN

)
.
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9. Computability

As we have already seen, a single bracket word can be represented by many
different formulae. This happens, for instance, in Lemma 5.6. An even simpler
example is provided by the bracket word a = 10, which can be represented as
an = ⌊1− {αn}⌋ for any α ∈ R \Q. A more surprising representation of the same
word is attributed to H̊aland Knutson in [GO10, p. 2]:

an =
⌊
⌊
√
2n⌋2

√
2n

⌋
−

⌊√
2n

⌋2
− 2n2 + 1 .

Existence of multiple representations of a single bracket word is not, in and of
itself, surprising or worrying. After all, the same phenomenon occurs for usual
polynomials, say with real coefficients. The reason why this ambiguity does not
lead to problems in that case is that each polynomial p(x) ∈ R[x] has a canonical

representation p(x) =
∑d

i=0 αix
d, where αi ∈ R and αd ̸= 0.

Leibman [Lei12] constructed a similar canonical representation for GP sequences.
The full statement of the main result, [Lei12, Thm. 0.1 & 0.2], is rather technical, so
we state only a simplified version. Specifically, we restrict our attention to bracket
words (Leibman’s result concerns arbitrary bounded GP maps from Zd to R) and
do not discuss the details of the construction (Leibman explicitly describes the
families FM appearing below).

Theorem 9.1. Let a be a bracket word defined over a finite alphabet Σ. Then there
exist families FM , M ∈ N, of GP maps from N0 to R, depending only on polyno-
mials which appear in a given representation of a, with the following properties.

(i) For each M,d ∈ N, and each d-tuple of different maps v1, v2, . . . , vd ∈ FM ,
the sequence ({v1(n)} , {v2(n)} , . . . , {vd(n)})∞n=0 is equidistributed in [0, 1)d.

(ii) There exist integers M,Q, d ∈ N, maps v1, v2, . . . , vd ∈ FM , and a partition
of

{0, 1/Q, . . . , (Q− 1)/Q} × [0, 1)d

into pairwise disjoint semialgebraic pieces Si, i ∈ Σ, such that for each n ∈ N and
i ∈ Σ,

an = i if and only if ({n/Q} , {v1(n)} , {v2(n)} , . . . , {vd(n)}) ∈ Si .(19)

Remark 9.2. (i) The families FM are explicitly constructed in [Lei12]. We
start with polynomial maps p1(x), p2(x), . . . ∈ R[x] that span the Q-algebra gener-
ated by the polynomials which appear in some fixed representation of a. As the first
step, p1/M, p2/M, . . . ∈ FM . In subsequent steps, we add to FM some elements
of the form u {v} where u, v ∈ FM have already been constructed. For details on
exactly which of such elements should be added, we refer to the original paper.

(ii) The representation in 9.1(ii) can be explicitly computed for a given repre-
sentation of the bracket word a. For fixed M , Q, and d, the sets Si are determined
uniquely up to a set of measure zero.

As a consequence of Theorem 9.1, for a given bracket word a over an alphabet
Σ and i ∈ Σ, one can check if an = i for almost all n ∈ N0. Indeed, it is enough
to verify if Si has full measure. Since, for any two bracket words a and b over
the same alphabet, we can construct the bracket word (Jan = bnK)∞n=0, one can
determine whether an = bn for almost all n ∈ N0. The situation is totally different
when we insist on exact equality, even when restricting our attention to bracket
words with algebraic coefficients.
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Theorem 9.3. Given GP map g : N0 → {0, 1} with algebraic coefficients, the fol-
lowing problems are undecidable.

(i) Determine if g(n) = 0 for at least one n ∈ N0.
(ii) Determine if g(n) = 0 infinitely many n ∈ N0.
(iii) Determine if g(n) = 0 for all but finitely many n ∈ N0.
(iv) Determine if g(n) = 0 for all n ∈ N0.

Corollary 9.4. It is undecidable if a given GP map g : N0 → R with algebraic
coefficients takes only finitely many values.

Proof. Take an arbitrary GP map g : N0 → {0, 1} and consider the GP map
h : N0 → R defined by h(n) = g(n)n. Then h takes finitely many values if and
only if g(n) = 0 for all but finitely many n ∈ N0. □

Remark 9.5. (i) In Theorem 9.3, item (i) is reminiscent of the undecidability of
Hilbert’s tenth problem, concerning the existence of integer solutions to polynomial
equations. In fact, our argument proceeds by a reduction to this problem.

(ii) In the case of k-automatic sequences, the analogues of properties in 9.3(i)–
(iv) are easily seen to be decidable.

(iii) Another related result, due to Allouche and Shallit [AS92, Thm. 5.2], as-
serts that it is undecidable if a given k-regular sequence with integer values has at
least one vanishing term. We point out that, conversely to Theorem 9.3(iv), it is
decidable if a k-regular sequence is identically zero [KS22, Thm. A].

A key component in the proof of Theorem 9.3 is the existence of a surjective GP
map from N0 to Zd for each d ∈ N.

Proposition 9.6. For each d ∈ N, there exists a GP map hd : N0 → Zd with
algebraic coefficients such that for each x ∈ Zd there exist infinitely many n ∈ N0

with hd(n) = x. In particular, hd is surjective.

Before we proceed to construct the maps mentioned in Proposition 9.6, let us
show how their existence can be used to deduce Theorem 9.3 from classical unde-
cidability results.

Proof of Theorem 9.3 assuming Proposition 9.6. Let p be an arbitrary polynomial
in Z[x1, . . . , xd] and let h : N0 → Zd be the map constructed in Proposition 9.6.
Define gp by gp(n) = Jp(h(n)) = 0K for n ∈ N0. Then gp is a GP map from N0 to
{0, 1} with algebraic coefficients, and the following conditions are equivalent.

(a) There exists n ∈ N0 with gp(n) = 0.
(b) There exist infinitely many n ∈ N0 with gp(n) = 0.
(c) There exist x1, x2, . . . , xd ∈ Z with p(x1, x2, . . . , xd) = 0.

Hilbert’s tenth problem is known to be undecidable (see, for instance, [Mat93]).
Hence, comparing (a) and (c), we conclude that there is no algorithm to determine
whether an element of the set {gp | d ≥ 1, p ∈ Z[x1, . . . , xd]} has a zero. Similarly,
comparing (b) and (c) we conclude that there is no algorithm to determine whether
an element of the aforementioned set has infinitely many zeroes. This finishes the
proof in cases (i) and (ii).

To derive case (iii) from (ii), it is enough to notice that, for any map g : N0 →
{0, 1}, the condition that g(n) = 0 for all but finitely many n ∈ N0 is equivalent to
the condition that there are finitely many n ∈ N0 such that 1− g(n) = 0. Likewise,
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(iv) follows from (i) and the observation that, g(n) = 0 for all n ∈ N0 is equivalent
to the condition that there does not exist n ∈ N0 such that 1− g(n) = 0. □

We now turn to the proof of Proposition 9.6. The main difficulty lies in the
construction of a surjective GP map N0 → N2

0; once such a map is constructed, it
will not be difficult to use it to construct surjective maps N0 → Zd for all d ∈ N.
As a source of motivation, let us consider a (random) map f : N0 → N2

0 given by
f(n) =

(⌊
X2

nn
⌋
,
⌊
Y2

nn
⌋)
, where Xn,Yn for n ∈ N0 are jointly independent random

variables, uniformly distributed in [0, 1). One can explicitly compute that, for fixed
k, l ∈ N and sufficiently large N , we have

P(f(n) = (k, l)) =

(√
k + 1−

√
k
)(√

l + 1−
√
l
)

n
·

Hence, by the second Borel–Cantelli lemma, almost surely there exists infinitely
many n ∈ N0 with f(n) = (k, l). This prompts us to consider generalised polyno-

mials of the form
(⌊
{
√
2n}2n

⌋
,
⌊
{
√
3n}2n

⌋)
, or, more generally(⌊

{
√
2n}An

⌋
,
⌊
{
√
3n}An

⌋)
for A ≥ 2, and exploit equidistribution properties of the sequence

(
{
√
2n}, {

√
3n}

)
in [0, 1)2. As a first step in that direction, we mention the following quantitative
equidistribution estimate.

Lemma 9.7. There exist N0 > 0 and c > 0 such that for each M ∈ Z, N ≥ N0,
and (x, y) ∈ [0, 1)2, there exists n ∈ [M,M +N) such that

max
{∥∥∥√2n− x

∥∥∥ ,∥∥∥√3n− y
∥∥∥} ≤ 1/N c .

Proof. A more precise version follows from [Che00, Thm 1.(ii)] combined with stan-
dard estimates on the quality of approximate rational relations between algebraic
numbers. Specifically, we have the well-known estimate

min
(n,m)∈[N ]2\{(0,0)}

∥∥∥n√2 +m
√
3
∥∥∥ ≫ N−3 ,

which is easily obtained by noticing that the norm
∏

σ,ρ∈{±1}
(
k + σn

√
2 + ρm

√
3
)

is an integer for all k, n,m ∈ Z. (Stronger estimates follow from Schmidt’s subspace
theorem [Sch72], but are not needed for our purposes.)

The theorem is applied with n = 2,m = 1, α1 = x, α2 = y, T1 =M , T ′
1 =M+N ,

δ1 = δ2 = 1, and M = N1/7; then ∆ = 2, Λ2 ≫ N−3, and ∥S(T )∥ = N . The
conclusion, after elementary manipulations, asserts that there exists n ∈ [M,M+N)
such that

max
{∥∥∥√2n− x

∥∥∥ ,∥∥∥√3n− y
∥∥∥} ≪ N−2/7 .

Alternatively, one can also derive this estimate as a special case of Theorem A.3. □

Lemma 9.8. For A ∈ N, define the map gA : N0 → N2
0 by

gA(n) =
(⌊

{
√
2n}An

⌋
,
⌊
{
√
3n}An

⌋)
.

There exists a constant A0 such that for all A > A0, for all (k, l) ∈ N0 the set

{n ∈ N0 | gA(n) = (k, l)}
is infinite. In particular, gA is surjective.
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Proof. Let c be the constant from Lemma 9.7 and let A > 3/c. Fix (k, l) ∈ N2
0, let

N be a sufficiently large integer (to be determined in the course of the argument),
and put M = N2. It will suffice to show that there exists n ∈ [M,M + N) with
gA(n) = (k, l).

Pick (x, y) ∈ [0, 1)2 such that xAM = k and yAM = l (that is, x = (k/M)1/A

and y = (l/M)1/A). By Lemma 9.7, we can find n ∈ [M,M + N) such that

x ≤
{√

2n
}
< x+ 1/N c and y ≤

{√
3n

}
< y + 1/N c. It remains to show that

(20) k ≤ {
√
2n}An < k + 1 and l ≤ {

√
3n}An < l + 1 .

We only consider the first of these two conditions, the second one is fully analogous.
The lower bound is immediate:

{
√
2n}An ≥ xAn = kn/M ≥ k .

For the upper bound, we first obtain that

{
√
2n}An < (x+N−c)A(M +N) .

If k = 0, then x = 0 and thus (x + N−c)A(M + N) < 2N2−Ac < 1 (recall that
A > 3/c). If k ≥ 1, then x > N−2c/3 and hence

(x+N−c)A(N0 +N) = xAN0

(
1 +N−c/x

)A
(1 +N/M)

≤ k
(
1 +N−c/3

)A
(1 + 1/N) ≤ k exp

(
(A+ 1)N−c/3

)
.

Thus, we can find N0 = N0(k) = OA(k
3/c) such that, for all N ≥ N0, we have

{
√
2n}An ≤ k exp

(
(A+ 1)N−c/3

)
< k + 1 ,

as needed. □

Proof of Proposition 9.6. Let g2 : N0 → N2
0 denote the map constructed in Lemma

9.8. For d ≥ 2, define gd : N0 → Nd
0 inductively by

gi+1(n) = (g2(n)1, gi(g2(n)2)) .

An inductive argument shows that for each x ∈ Nd
0, there are infinitely many n ∈ N0

with gd(n) = x. Next, define hd : N0 → Zd by

hd(n) = (g2d(n)1 − g2d(n)d+1, g2d(n)2 − g2d(n)d+2, . . . , g2d(n)d − g2d(n)2d) .

Since the map N2
0 → Z, (n,m) 7→ n −m is surjective, for each x ∈ Zd, there are

infinitely many n ∈ N0 with hd(n) = x. □

9.1. Consequences for bracket words. As a consequence of Theorem 9.3, we
deduce Theorem B, which we restate below for the reader’s convenience.

Theorem B. It is undecidable if two given bracket words a and b with algebraic
coefficients defined over a finite alphabet Σ are equal.

Proof. Given an arbitrary GP map g : N0 → {0, 1}, define a by an = g(n) for all
n ∈ N0, and let b be defined by bn = 0 for all n ∈ N0. Then a = b if and only if
g(n) = 0 for all n ∈ N0. Thus, the results follows from Theorem B. □
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10. Linear recurrences

In earlier sections, we have encountered examples of bracket words related to
linear recurrence sequences, such as the Fibonacci numbers. Here, we discuss these
results in more detail and provide some new arguments.

10.1. Results. We recall that a Pisot number is a real algebraic integer β > 1 such
that all Galois conjugates of β have absolute value strictly less than 1. Similarly,
a Salem number is a real algebraic integer β > 1 whose Galois conjugates all have
absolute value no greater than 1, and at least one of which has absolute value exactly
1. The minimal polynomial for a Salem number must be reciprocal, which implies
that 1/β is a Galois conjugate of β, and that all other roots have absolute value
exactly one. As a consequence, a Salem number is a unit in the ring of algebraic
integers.

Theorem 10.1. Let β > 1 be an algebraic unit with minimal polynomial p(x) =

xd −
∑d

i=1 x
d−iai for some d ∈ N and a1, a2, . . . , ad ∈ Z. Let (ni)

∞
i=0 be a sequence

of non-negative integers satisfying the linear recurrence

ni+d =

d∑
i=1

aini+d−1 , i ∈ N0 ,

and put E = {ni | i ∈ N0}. Then 1E is a bracket word if one of the following holds.

(i) d = 2 (in this case, β must be a Pisot number).
(ii) d = 3 and β is a Pisot number with no real Galois conjugate (i.e., the

discriminant of p is negative).
(iii) β is a Salem number.

Proof. Case (i) is covered by [BK18, Thm. B], using an argument which relies
on best rational approximations to quadratic irrationals. Case (ii) likewise follows
from [BK18, Thm. B] under mild additional assumptions. Below in Theorem 10.2
we give a complete proof of Case (ii) which has a distinctly algebraic flavour, in
contrast to the argument in [BK18] relying on Diophantine approximation. Finally,
case (iii) is covered in the upcoming preprint [BK22] using methods analogous to
those used in Theorem 10.2. □

In the remainder of this section, we will mostly speak of GP subsets of N0 rather
than bracket words. We recall that, as defined in Section 2, these terms are closely
related, and the connection between them if further elucidated in Corollary 5.7.

10.2. Cubic Pisot units. The main ingredient in the proof of Theorem 10.1(ii)
is the following result. In fact, the two results are equivalent due to a reduction
obtained in [BK18, Prop. 5.1].

Theorem 10.2. Let β > 1 be a cubic Pisot unit with a pair of complex Galois
conjugates α, α and let E =

{⌊
βi
⌉ ∣∣ i ∈ N0

}
. Then 1E is a bracket word.

Proof. We will devise a procedure that verifies if, for a given integer n ∈ Z, we have

(21) n =
⌊
βi
⌉
for some i ∈ N0 .

Later, we will explain how this procedure can be encoded using a generalised poly-
nomial formula. Throughout, we assume that |n| is sufficiently large, which we may
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do because GP sets are closed under finite modifications. Set L = Q(β, α, α) and
K = Q(β), and let p(x) = x3 − ax2 − bx− 1 denote the minimal polynomial of β.

Suppose for a moment that (21) holds, and hence in particular n > 0. Our first
goal is to compute βi as a GP function of n. Since βi + αi + αi is an integer and∣∣αi

∣∣ = β−i/2 ≪ 1/
√
n, we see that

(22) n = βi + αi + αi .

Similarly, for every j ∈ N, we have

βjn = βi+j + αi+j + αi+j +O(βj/
√
n) ,

and, as a consequence, bearing in mind that n is large enough, we obtain

⌊βn⌉ = βi+1 + αi+1 + αi+1(23) ⌊
β2n

⌉
= βi+2 + αi+2 + αi+2 .(24)

Thus, we have expressed (n, ⌊βn⌉ ,
⌊
β2n

⌉
) as a linear function of (βi, αi, αi). As a

consequence, we can compute (βi, αi, αi) by solving a system of linear equations
involving (n, ⌊βn⌉ ,

⌊
β2n

⌉
) and algebraic coefficients belonging to L.

For each n ∈ Z, let g(n), h(n), and h∗(n) be the solution to the system of
equations

g(n) + h(n) + h∗(n) = n(25)

g(n)β + h(n)α+ h∗(n)α = ⌊βn⌉(26)

g(n)β2 + h(n)α2 + h∗(n)α2 =
⌊
β2n

⌉
.(27)

Note that (25)–(27) is non-singular, so g(n), h(n), and h∗(n) are well-defined and
unique. In fact, one can explicitly compute that

g(n) =
⌊βn⌉ (α+ α)− ααn−

⌊
β2n

⌉
(β − α)(β − α)

=
⌊βn⌉ (a− β)− n/β −

⌊
β2n

⌉
2β2 − aβ + 1/β

(28)

h(n) =
⌊βn⌉ (β + α)− βαn−

⌊
β2n

⌉
(α− α)(α− β)

=
⌊βn⌉ (a− α)− n/α−

⌊
β2n

⌉
2α2 − aα+ 1/α

(29)

h∗(n) =
⌊βn⌉ (α+ β)− αβn−

⌊
β2n

⌉
(α− α)(α− β)

=
⌊βn⌉ (a− α)− n/α−

⌊
β2n

⌉
2α2 − aα+ 1/α

·(30)

The key reason for our interest in g, h, h∗ is that, if (21) holds, then it follows from
the discussion above that g(n) = βi, h(n) = αi and h∗(n) = αi. Indeed, (βi, αi, αi)
is a solution to (25)–(27), and the solution to (25)–(27) is unique.

It is apparent from formulae (28)–(30) (or from the symmetries of (25)–(27))

that h∗(n) = h(n) and g(n) ∈ K = Q(β), h(n) ∈ Q(α) for all n ∈ Z. We also see
that g(n) is a linear combination of n, ⌊βn⌉, and

⌊
β2n

⌉
. Hence g is a GP map. For

the same reason, Re(h) and Im(h) are GP maps3.
Our next goal is to express condition (22) in terms of the maps g, h, h∗. By the

Dirichlet unit theorem, we know that the group of units of OK has rank 1. Since β
is a unit, it generates a group that has finite index in the group of all units of OK .
Assume for now that β is a fundamental unit, meaning that all units in OK take
the form ±βi for i ∈ Z. We address the general case at the end of the proof.

3Note that we have not introduced the notion of a GP map N0 → C. However, if one identifies
C with R2 in the standard way, then h is a GP map under this identification.
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Recall that if (21) holds for some n ∈ Z, then g(n) = βi and h(n) = αi. Thus,
g(n) ∈ OK and g(n)h(n)h∗(n) = 1. If, additionally, |n| is sufficiently large, then
g(n) ∈ [n − 1, n + 1). Suppose, conversely, that for some n ∈ Z we have g(n) ∈
OK and g(n)h(n)h∗(n) = 1. Then g(n) is a unit, since its norm NL/Q(g(n)) =

g(n)h(n)h∗(n) is equal to 1. As a consequence, we have g(n) = ±βi for some i ∈ Z.
If additionally g(n) ≥ n−1 then g(n) = βi for some i ∈ N. Thus, for all but finitely
many n ∈ Z, (21) is equivalent to

g(n) ∈ OK , g(n)h(n)h∗(n) = 1 , and g(n) ∈ [n− 1, n+ 1) .(31)

Our final goal is to express the conditions in (31) in terms of generalised poly-
nomials. As a first step in this direction, we will need a more precise description of
g, h, h∗. Since g(n) ∈ Q(β), for each n ∈ Z, there exists a decomposition

(32) g(n) = u(n) + v(n)β + w(n)β2 ,

where u(n), v(n), and w(n) ∈ Q. If σ ∈ Gal(L/Q) is an automorphism with
σ(β) = α, then σ(g(n)) = h(n), and as a consequence we also have

h(n) = u(n) + v(n)α+ w(n)α2(33)

h∗(n) = u(n) + v(n)α+ w(n)α2 .(34)

Arguing along similar lines as above, we can express u(n), v(n), and w(n) as
linear combinations of g(n), h(n), and h∗(n), and hence also as a linear combination
of n, ⌊βn⌉, and

⌊
β2n

⌉
. For instance,

u(n) =
1

∆

( (
−2a3 + a2b2 − 10ab+ 4b3 − 9

)
n

+
(
a3b− a2 + 4ab2 + 6b

)
⌊βn⌉+

(
−a2b+ 3a− 4b2

) ⌊
β2n

⌉ )
,

where ∆ = −4a3 + a2b2 − 18ab+4b3 − 27 is the discriminant of p. In particular, u,
v, and w are GP maps.

Since g, Re(h) and Im(h) are generalised polynomials, it follows that

E1 = {n ∈ Z | g(n)h(n)h∗(n) = 1} and E2 = {n ∈ Z | g(n)− n ∈ [−1, 1)}
are GP sets. Let us consider the set

Λ =
{
(x, y, z) ∈ Q3

∣∣ x+ yβ + zβ2 ∈ OK

}
.

Clearly, Λ is a lattice. It follows that Λ is a GP subset of R3. Indeed, if Λ = AZ3

for a matrix A ∈ GL(3;R), then
Λ =

{
x ∈ R3

∣∣ {(A−1x
)
1

}
+

{(
A−1x

)
2

}
+
{(
A−1x

)
3

}
= 0

}
.

Recalling that u, v, and w are GP maps, we conclude that

E3 = {n ∈ Z | g(n) ∈ OK} = {n ∈ N0 | (u(n), v(n), w(n)) ∈ Λ}
is a GP set. Hence, E1∩E2∩E3 is a GP set by Proposition 6.16, and it is precisely
the set of all n ∈ Z which satisfy (31), as needed.

Let us now consider the case where the fundamental unit of K is some β̃ ̸= ±β.
We may assume that β̃ > 0. Since β is a unit, we have β = β̃k for some k ∈ N.
It is straightforward to verify that β̃ is again a cubic Pisot unit with a pair of

complex conjugates, say (γ, γ), so the above discussion applies with β̃ in place of

β. Set ñi = β̃i+γi+γi, for every i ∈ N0. Then (ñi)
∞
i=0 satisfies a linear recurrence

relation, and, for all sufficiently large i, we have ñi = ⌊β̃i⌉ and ñi+1 = ⌊β̃ñi⌉.
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Furthermore, Ẽ = {ñi | i ∈ N0} is a GP subset of N0. One can find an integer m
such that the sequence (ñi mod m)∞i=0 is periodic with minimal period ℓ that is a
multiple of k [War33] 4 . Note that, for each sufficiently large i and for each j,
0 ≤ j < ℓ, we have ⌊

β̃j ñi

⌉
≡ ñi+j mod ℓ mod m.

This allows us to identify, for each residue class r, 0 ≤ r < ℓ, the elements n ∈ Ẽ
which take the form n = ñi with i ≡ r mod ℓ. With finitely many exceptions, these

are precisely those n ∈ Ẽ for which
⌊
β̃j ñ

⌉
≡ ñr+j mod ℓ mod m for all j, 0 ≤ j < ℓ.

It follows that the set
{⌊
βi
⌉ ∣∣ i ∈ N0

}
differs by finitely many elements from

(35)
{
n ∈ Ẽ

∣∣∣ (∃ 0 ≤ a < ℓ/k) (∀ 0 ≤ j < ℓ) ⌊β̃jn⌉ ≡ ñak+j mod m
}
.

Since the set in (35) is a GP set, and since the property of being a GP set is
preserved under finite modifications, we conclude that the set

{⌊
βi
⌉ ∣∣ i ∈ N0

}
is

also a GP set. □

Proof of Theorem 10.1(ii). Follows immediately from Theorem 10.2 and [BK18,
Prop. 5.1]. □

10.3. Concluding remarks. Let us now briefly discuss potential generalisations

of Theorem 10.1. Let p(x) = xd −
∑d

i=1 aix
d−i ∈ Z[x] be a monic irreducible

polynomial of degree d ∈ N with a root β > 1 which is either a Pisot unit or a
Salem number, and let α1, α2, . . . , αd−1 denote the remaining roots.

Much of the reasoning in Theorem 10.2 carries through to this more general
context, except that the group of units of OK now no longer has rank 1 (here,
K = Q(β)). Adapting the argument, we can hope to show that

F =
{
TrL/Q(µ)

∣∣ µ is a unit of OK

}
is a GP subset of Z, where L = Q(β, α1, . . . , αd−1) is the splitting field of p.

Consider also the sequence given by ni = Tr(βi) = βi +
∑d−1

k=1 α
i
k ∈ Z, and note

that ni obeys the linear recurrence

ni+d =

d∑
j=1

ajni+d−j , i ∈ N0 .

Set E = {ni | i ∈ N0} ∩ N. Note that the assumption on β ensures that ni =
⌊βi⌉+O(1) for all i ∈ N0. In analogy with Theorem 10.1, one can ask if E is a GP
subset of N.

In the case where the group of units of OK has rank 1, the set F is essentially
equal to E, which is one of the key observations behind the proof of Theorem 10.2.
In general, we have the inclusion E ⊃ F , but E will usually be a proper subset of
F and there is no clear way of describing E inside of F with a GP formula.

In the case where β is a Pisot number but not a unit, we have a negative result for
d = 1: if k ≥ 2 is and integer, then E =

{
ki

∣∣ i ∈ N0

}
is not a GP set. (We revisit

this example in Section 11.) When d ≥ 2, nothing is known, but, based on the

4More precisely, by [War33, Thm. 1], it is enough to consider the case where k is a power of a

prime p. By [War33, Thm. 10.2 & Cor. 3], the period of (ñi mod pN )i is a multiple of the order

of β̃ in Fq [β̃]×, where q = pN−C for a constant C. In particular, the period of (ñi mod pN )i is a

multiple of k for sufficiently large N .
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previously mentioned result, it seems reasonable to expect a negative result. In the
case where β is neither a Pisot nor a Salem number (i.e., either β is transcendental
or β has a Galois conjugate with absolute value greater than 1) nothing is known,
and the techniques discussed in this section appear not to be applicable. We end
this section with the following two general problems.

Problem 10.3. (i) Classify all sequences of positive integers (ni)
∞
i=1 satisfying

a linear recurrence such that the characteristic word 1E of the set E = {ni | i ∈ N0}
is a bracket word.

(ii) Classify all real numbers β > 1 such that the characteristic word 1E of the
set E =

{⌊
βi
⌉ ∣∣ i ∈ N0

}
is a bracket word.

11. Negative results

In this section we discuss the problem of proving that a given infinite word
cannot be described by a generalised polynomial formula. We remark that, as a
general principle, it is often harder to verify that a sequence does not admit a
representation of a specified form than it is to find such a representation when
it exists. This phenomenon is particularly prevalent from a computational point
of view. For context, we also note that Allouche, Shallit, and Yassawi [ASY21]
recently survey ways in which one can show that a sequence is not automatic.

11.1. General conditions. Let us now review criteria that can be used to show
that a given infinite word a is not a bracket word. In principle, each “positive”
result about bracket words gives rise to such a criterion, and vice versa. For each
property P which can apply to finitely-valued sequences, the implication “If a is a
bracket word then P (a)” is tantamount to “If ¬P (a) then a is not a bracket word”.
In practice, depending on the aesthetic appeal of the property P (a) and on the ease
of verifying ¬P (a), one of these implications is more interesting than the other. The
following proposition gathers several such properties that arise from positive results
discussed earlier.

Proposition 11.1. Let a be an infinite word defined over a finite alphabet Σ. Then
a is not a bracket word if one of the following conditions hold.

(i) There is w ∈ Σ∗ such that freq(a, w) does not exist.
(ii) There is w ∈ Σ∗ such that freq(a, w) > 0 but rec(a, w) = ∞.
(iii) The subword complexity of a satisfies lim supn→∞ log(pa(N))/ logN = ∞.
(iv) There exists x ∈ Σ with freq(a, x) < 1 and t : N0 → N0 that is good for

equidistribution on nilsystems (cf. Sec. 7.2) such that at(n) = x for all n ∈ N0.

Proof. These are immediate consequences of Theorem 7.1, Corollary 7.2, Theorem
A, and Proposition 7.8. □

Another way to discriminate bracket words that we want to mention is related to
periodicity. Following [BK20], we say that an infinite word a is weakly periodic if for
every infinite arithmetic progression (kn+ r)

∞
n=0 (k ∈ N, r ∈ N0) there exist two

distinct sub-progressions with equal steps (k′n+ r′)
∞
n=0 and (k′n+ r′′)

∞
n=0 (k′ ∈ N

and k | k′, r′ and r′′ belong to N0, r
′ ≡ r′′ ≡ r mod k, and r′ ̸= r′′) such that

the corresponding restrictions of a are the same: ak′n+r′ = ak′n+r′′ for all n ∈ N0.
For instance, all automatic sequences are weakly periodic, all Toeplitz sequences
are weakly periodic, and the characteristic sequence of the square-free integers is
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weakly periodic.5 We will also say that a is almost everywhere periodic if there
exists an infinite periodic word a′ such that an = a′n for almost all n, that is,
d ({n ∈ N0 | an ̸= a′n}) = 0. The following result is a rephrasing of [BK20, Thm.
2.6].

Proposition 11.2 ([BK20, Thm. 2.6]). Let a be an infinite word that is weakly
periodic but not almost everywhere periodic. Then a is not a bracket word.

The proof relies on Theorem 4.1 and the fact that each nilsystem (X,T ) can
be partitioned into a finite number of components, X = X1 ∪X2 ∪ · · · ∪Xd, such
that (Xi, T

d) is a totally minimal6 dynamical system for all i, 1 ≤ i ≤ d. Next, we
observe that, for a totally minimal dynamical system (X,T ), x ∈ X, open S ⊆ X,
k ∈ N, r, r′ ∈ N0 with r ̸= r′, if for all n ∈ N0 we have the implication

T kn+r(x) ∈ S ⇒ T kn+r′(x) ∈ S ,

then S is either empty or dense in X (see [BK20, Lem. 2.4]).

Example 11.3. The indicator function of the square-free integers is not a bracket
word (which can also be derived from item (iii) of Proposition 11.1). A non-periodic
Toeplitz sequence is not a bracket word (note that a Toeplitz sequence is periodic
if and only if it is almost everywhere periodic). It was shown in [CK97] that a large
class of Toeplitz sequences have polynomial subword complexity, so item (iii) of
Proposition 11.1 cannot be applied in this case, nor can item (ii) Proposition 11.1.

As a counterpart to Theorem 7.11, it is shown in [BK18] that any GP subset
E ⊆ N0 with d(E) = 0 is very poor in terms of additive structure. Here, we cite a
slightly weaker (but more succinct) variant of [BK18, Thm. A].

Proposition 11.4 ([BK18, Thm. A]). Let E ⊆ N0 be a set. Suppose that d(E) = 0
and E contains an IP set. Then E is not a GP set.

Corollary 11.5. Let a = (an)
∞
n=0 be an infinite word over a finite alphabet Σ.

Suppose that there exists x ∈ Σ and an IP set E ⊆ N such that freq(a, x) = 0 and
an = 0 for all n ∈ E. Then a is not a bracket word.

Example 11.6. The characteristic word of the set
{∑

n∈I n!
∣∣ I ⊆ N, |I| <∞

}
is

not a bracket word.

Finally, we cite a result recently obtained by the second-named author [Kon21,
Thm. A], as a final ingredient needed to finish the classification of automatic bracket
words, cf. Theorem 11.23. Recall that a set E ⊆ N0 is thick if its complement is
not syndetic, or equivalently if for each ℓ there exists n with n, n+1, . . . , n+ ℓ ∈ E.

Theorem 11.7 ([Kon21, Thm. A]). Let k ≥ 2 be an integer, let E ⊆ N0, and put

F = {m ∈ N | mkn ∈ E for infinitely many n ∈ N0} .
If {kn | n ∈ N0} ⊆ E and N \ F is thick then E is not a GP set.

Example 11.8. Let k ≥ 2 be an integer. Then the characteristic word of the set
{kn | n ∈ N0} is not a bracket word.

5A sequence a is a Toeplitz sequence if for each n there exists a period q ∈ N such that

an+qm = an for all m ∈ N; see, for instance, [Dow05] for background. An integer n is square-free

if, for every prime p, one has p2 ∤ n.
6A topological dynamical system (X,T ) is said to be totally minimal if (X,T d) is minimal for

every d ≥ 1.



40 B. ADAMCZEWSKI AND J. KONIECZNY

For a set E ⊆ N0 and k ∈ N, we set E/k = {n ∈ N0 | kn ∈ E}. Restricting our
attention to sets E ⊆ N0 with E/k = E, we obtain a cleaner statement, which can
be phrased either in terms of GP sets or bracket words.

Corollary 11.9. Let k ≥ 2 and E ⊆ N. If E ̸= ∅, d(E) = 0, and E/k = E, then
E is not a GP set.

Proof. Pick n0 ∈ E and let E′ = E/n0. Then d(E
′) = 0, kn ∈ E′ for all n, and

F ′ = {m ∈ N | mkn ∈ E′ for infinitely many n ∈ N0} = E′.

Since d(F ′) = 0, the set N \ F ′ is thick and we can apply Theorem 11.7. □

Corollary 11.10. Let a = (an)
∞
n=0 be an infinite word over a finite alphabet Σ,

let k ≥ 2 be an integer and let x ∈ Σ. Suppose that (i) akn = an for all n ∈ N,
(ii) freq(a;x) = 0, and (iii) an = x for at least one n ∈ N. Then a is not a bracket
word.

11.2. Primes and squares. Let us consider two standard examples: the primes
P = {2, 3, 5, 7, . . . } and the squares S = {0, 1, 4, 9, . . . }. In both cases, we can show
that the corresponding characteristic word is not a bracket word. The arguments
are short and rely heavily on theorems from nilpotent dynamics.

Proposition 11.11. The characteristic word 1P of the set of primes is not a
bracket word.

Proof. As a special case of [GT12a, Theorem 5.2], for each GP map g : N0 → [0, 1]
and for all sufficiently large integers N , we have

(36)

∣∣∣∣ E
n<N

µ(n)g(n)

∣∣∣∣ = O(log−2N) ,

where we let µ(n) denote the Möbius function (i.e., µ(n) = 0 if n is divisible by a
square and µ(n) = (−1)k if n is the product of k different primes), and the implicit
constant is allowed to depend on g. If 1P was a bracket word, then (36) would
imply that

(37) |P ∩ [N ]| = O(N/ log2N) ,

which would contradict the Prime Number Theorem. □

Remark 11.12. Note, in particular, that the cited theorem implies that µ is not
a bracket word. The same applies, with virtually the same proof, to the Liouville
function, which is defined by λ(n) = (−1)k if n is the product of k primes (count-
ing multiplicities). Results from [FH17] allow one to extend this observation to a
wider class of multiplicative functions. In a different direction, using the results
in [GT12a], one should be able to strengthen the result of Proposition 11.11 by
showing that for each bounded GP map g : N0 → R, the averages Ep∈P∩[N ]g(p)
converge to the same limit as the averages En∈[N ]g(n) as N → ∞.

We next consider the set of squares.

Proposition 11.13. The characteristic word 1S of the set of squares is not a
bracket word.

This follows immediately from the following more general result.
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Proposition 11.14. Let p : Z → Z be a polynomial with p(N0) ⊆ N0 and deg p ≥ 2.
Then the set {p(n) | n ∈ N0} is not a GP subset of N0.

Proof. We will prove marginally more, namely that if p1, p2, . . . , ps : Z → Z are
polynomials with pj(N0) ⊆ N0 and deg pj ≥ 2 for all j, 1 ≤ j ≤ r, then the set

(38) E =
⋃r

j=1 pj(N0)

is not a GP subset of N0. For the sake of contradiction, suppose that the converse
is true. Throughout the proof, we use terminology introduced in Appendix A.

Applying Theorem A.1, we can find a nilmanifold X = G/Γ with G connected
and simply connected, a semialgebraic subset S ⊆ X, and a polynomial sequence
g : Z → G such that E = {n ∈ N0 | g(n)Γ ∈ S}.

Let us first consider the case where (g(n)Γ)∞n=0 is equidistributed in X. Since
d(E) = 0, we have µX(S) = 0. The polynomial sequence (πab(g(n)Γ))

∞
n=0 is equidis-

tributed in Xab. Hence, we can conclude from Weyl’s equidistribution theorem that
(πab(g(p(n)Γ)))

∞
n=0 is equidistributed in Xab for each non-constant polynomial map

p : N0 → N0. It now follows from Theorem A.2 (that is, [Lei05, Thm. C]) that
(g(p(n)Γ))

∞
n=0 is equidistributed in X. In particular g(p(n))Γ ̸∈ S for almost all

n ∈ N0. Taking p = p1 we reach a contradiction.
Suppose next that (g(n)Γ)∞n=0 is not equidistributed in X. Then, it follows from

[Lei05, Thm. B] that there exists q ∈ N and sub-nilmanifolds Y0, Y1, . . . , Yq−1 ⊆ X
such that (g(qn+ i)Γ)

∞
n=0 is equidistributed in Yi for each i ∈ [q]. It remains to

apply the previously considered special case to the sets (E − i)/q for each i ∈ [q]
(note that these sets again take the form (38), possibly for some larger r). □

11.3. Number-theoretical functions. Number theory provides a plentiful source
of examples of finitely-valued sequences, for which one can inquire into the existence
of a generalised polynomial representation. Multiplicative functions constitute a
particularly interesting and well-studied class of sequences, with many applications
to other problems. Recall that a sequence f : N → C is multiplicative if f(nm) =
f(n)f(m) for all n,m ∈ N with gcd(n,m) = 1. For instance, the Möbius function,
mentioned in the previous sub-section, is often used in the study of the prime

numbers. The Prime Number Theorem is equivalent to 1
N

∑N
n=1 µ(n) → 0 as

N → ∞, while the more quantitative bound
∣∣∣∑N

n=1 µ(n)
∣∣∣ = O(N1/2+ε) for each

ε > 0 is equivalent to the Riemann hypothesis. The results from [GT12a] on
correlations of the Möbius function were a crucial ingredient in the work of Green
and Tao on linear patterns in the primes [GT10b]. As we pointed out earlier, the
Möbius function is not a bracket word, and the same applies to the closely related
Liouville function.

While the Möbius function and the Liouville function are bounded, there are
many interesting examples of unbounded integer-valued multiplicative functions. In
order to obtain finitely-valued sequences, we use reduction modulo a fixed integer.
Thus, in this section we investigate infinite words of the form ((f(n) mod q)

∞
n=1,

where q ≥ 2 is an integer and f : N → Z is multiplicative. Analogous questions,
with automatic sequences in place of bracket words, were investigated in [Yaz01].
As an illustrative example, we begin with the Euler totient function ϕ, given by

ϕ(n) = |(Z/nZ)∗| = n
∏

P∋p|n

(
1− 1

p

)
, n ∈ N .
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Proposition 11.15. Let q ≥ 3 be an integer. Then (ϕ(n) mod q)
∞
n=1 is not a

bracket word.

Proof. Let us assume by contradiction that (ϕ(n) mod q)
∞
n=1 is a bracket word.

Replacing q with a divisor, we may assume that q = 4 or q is a prime.
We first assume that q = 4. By direct inspection we have:

ϕ(n) mod 4 =


1 if n ∈ {1, 2};
2 if n = 4 or n ∈ {p, 2p} for a prime p ≡ 3 mod 4;

0 otherwise.

Since (ϕ(n) mod 4)
∞
n=1 is a bracket word, we deduce that P ∩ (4Z+3) is a GP set.

This is impossible by direct repetition of the argument in Proposition 11.11.
Suppose now that q is a prime and set

E = {n ∈ N | ϕ(n) ̸≡ 0 mod q} .
Alternatively, E is described by the condition: n ∈ E if and only if q2 ∤ n and n
has no prime divisors congruent to 1 modulo q. Hence, applying the prime number
theorem in arithmetic progressions, we conclude that d(E) = 0. By assumption, E
is a GP set. Pick a prime p > q with q ∤ p− 1. Then E/p = {n ∈ N | pn ∈ E} = E,
and hence we infer from Corollary 11.9 that E is not a GP set. This provides a
contradiction. □

Applying the same ideas, we can obtain the following result, which can be used
to deal with most other “naturally occurring” multiplicative sequences.

Proposition 11.16. Let f : N → Z be a multiplicative sequence and let q ∈ N.
Suppose that the two following properties hold.

(i) There exists p ∈ P such that the sequence (f(pn) mod q)
∞
n=1 is eventually

periodic but not eventually zero.
(ii) There exist infinitely many p ∈ P such that f(pn) ≡ 0 mod q for some

n ∈ N.
Then (f(n) mod q)

∞
n=1 is not a bracket word.

Proof. We argue by contradiction, assuming that (f(n) mod q)
∞
n=1 is a bracket

word. Using Lemma 6.1, we deduce that (f(n) mod p)
∞
n=1 is also a bracket word

for every p | q. Replacing q with a prime divisor if necessary, we may thus assume
that q is prime. Consider the GP set

E = {n ∈ N | f(n) ̸≡ 0 mod q} .
Let p be a prime satisfying the conditions in (i). Let c ∈ N0 and d ∈ N be such
that f(pn+d) ≡ f(pn) mod q for all n ≥ c and f(pc) ̸≡ 0 mod q. Let E′ be the GP
set defined by E′ = E/pc = {n ∈ N | pcn ∈ E}. Then E′/pd = E′.

Next, we show that d(E) = 0. Suppose, conversely, that d(E) > 0. Then, by
Theorem 7.4, E is syndetic, meaning that we can find N such that E intersects
any interval [n, n + N) (n ∈ N). By (ii), we can pick pairwise coprime integers
r0, r1, . . . , rN−1 with f(ri) ≡ 0 mod q for all i ∈ [N ]. By the Chinese remainder
theorem, we can find n ∈ N such that n + i ≡ ri mod r2i for all i ∈ [N ]. Then we
have f(n + i) ≡ 0 mod q and n + i ̸∈ E for all i ∈ [N ], contradicting the defining
condition of N . Hence d(E) = 0.

Since d(E) = 0, we also have d(E′) = 0. Thus, we infer from Corollary 11.9 that
E′ is not a GP set, which contradicts previous observations. □
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Example 11.17. Given an integer k ≥ 0, we let σk : N → N denote the k-th power
divisor-sum function defined by

σk(n) =
∑
d|n

dk =
∏
p|n

pk(νp(n)+1) − 1

pk − 1
, n ∈ N ,

where the sum runs over all positive integers d that divide n. Note that σ0(n) = d(n)
is the number of divisors of n and σ1(n) = σ(n) is the sum of divisors. For each
integer q ≥ 2, the assumptions of Proposition 11.16 are satisfied: if k ≥ 1 then in
(i) we can take p = q, and in (ii) we can take any p ≡ 1 mod q and n = 1 (infinitude
of such primes follows from Dirichlet’s theorem). If k = 0, both (i) and (ii) hold
for all primes p. Hence, (σk(n) mod q)

∞
n=1 is not a bracket word.

Example 11.18. Given an integer k ≥ 1, we let τk : N → N denote the number of
representations as the product of k positive integers, that is

τk(n) =

∣∣∣∣∣
{
(d1, d2, . . . , dk) ∈ Nk

∣∣∣∣∣
k∏

i=1

di = n

}∣∣∣∣∣ = ∏
p|n

(
k + νp(n)− 1

k − 1

)
, n ∈ N .

For each integer q ≥ 2, the assumptions of Proposition 11.16 are satisfied: both (i)
and (ii) hold for all primes p. Hence, (τk(n) mod q)

∞
n=1 is not a bracket word.

Example 11.19. Let τ : N → Z denote the Ramanujan function, and let q be an
integer with gcd(q, 6) = 1. For each prime p, the sequence (τ(pn))

∞
n=1 satisfies the

recurrence
τ(pn+2) = τ(p)τ(pn+1)− p11τ(pn) ,

and hence the sequence (τ(pn) mod q)
∞
n=1 is eventually periodic. In particular, since

τ(2) = −24 ̸≡ 0 mod q, in Proposition 11.16 assumption (i) is satisfied for p = 2.
It is known that the set of n ∈ N with τ(n) ̸≡ 0 mod q has asymptotic density
0 [AAB+88]. As a consequence, assumption 11.16(ii) is also satisfied (otherwise,
there would exist P ∈ N such that τ(n) ̸≡ 0 mod q for all n ∈ PN + 1). Hence,
(τ(n) mod q)

∞
n=1 is not a bracket word.

We close this section on multiplicative functions with another result, Corollary
11.21, which applies to multiplicative sequences that exhibit non-trivial behaviour
only for a finite set of primes. In particular, these sequences do not satisfy condition
(ii) of Proposition 11.16. In fact, we can state a somewhat more general result. For
a prime p and an integer n, we let νp(n) denote the p-adic valuation of n.

Proposition 11.20. Let ℓ ∈ N, let p1, p2, . . . , pℓ be primes, let Σ be a finite alpha-
bet, and let F : Nℓ

0 → Σ. Let a be the infinite word defined over Σ by

an = F (νp1
(n), νp2

(n), . . . , νpℓ
(n)) , n ∈ N.

Suppose that a is not almost everywhere periodic. Then a is not a bracket word.

Proof. By Proposition 11.2, it will suffice to check that a is weakly periodic. Pick
any k ∈ N, r ∈ N0. We can find k′ with k | k′ such that νpi

(k′) > νpi
(r) for all

1 ≤ i ≤ ℓ. Thus, ak′n+r = ak′n+k′+r for all n ∈ N0, so, with notation as in the
definition of weak periodicity, we may take r′ = r and r′′ = r + k′. □

Corollary 11.21. Let f : N → Z be a multiplicative sequence and let q ∈ P.
Suppose that (f(n) mod q)∞n=1 is not periodic and that there exists p0 ∈ P such that
f(pn) ≡ 1 mod q for all primes p ≥ p0 and all n ∈ N. Then (f(n) mod q)

∞
n=1 is not

a bracket word.
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Proof. Note that the sequence (f(n) mod q)∞n=1 is Toeplitz, since, for every positive
integer n, one has f(n + dm) = f(n) for all m ∈ N, for any choice of d ∈ N such
that νp(d) > νp(n) for all p < p0. Note also that (f(n) mod q)∞n=1 is not periodic,
and thus it is also not almost everywhere periodic. It remains to apply Proposition
11.20. □

Example 11.22. The sequence
(
(−1)ν2(n)+ν3(n)

)∞
n=1

is not a bracket word.

11.4. Automatic sequences. Let us now consider the problem of classifying au-
tomatic sequences which are bracket words. To begin with, we very briefly recall
the definition of an automatic sequence; for extensive background, see [AS03].

Let k ∈ N, let Σk = {0, 1, . . . , k − 1} denote the base-k alphabet, and let Ω be a
finite set. A sequence a over Ω is k-automatic if there exists a finite k-automaton
which computes a. More explicitly, this means that there exist a finite set of states
Q, a distinguished state q0 ∈ Q, a transition function δ : Q × Σk → Q, and an
output map τ : Q → Ω such that for each integer n ∈ N0 with base-k expansion
n = n0 + kn1 + k2n2 + · · ·+ kℓnℓ we have

an = τ
(
δ
(
δ
(
. . . δ(δ(q0, n0), n1) . . . , nℓ−1

)
, nℓ

))
.

It is relatively easy to show that if an automatic sequence a = (an)
∞
n=0 coincides

with a bracket word b = (bn)
∞
n=0 almost everywhere, that is, if

d ({n ∈ N0 | an ̸= bn}) = 0 ,

then a must also be periodic almost everywhere (i.e., there exists a periodic word c
such that d ({n ∈ N0 | an ̸= cn}) = 0). Indeed, this result follows from Proposition
11.2 combined with the fact that a k-automatic sequence has a finite k-kernel; see
[BK20] for details. Here, the k-kernel of a sequence a = (an)

∞
n=0 is defined as the

set of subsequences
{
(akin+r)

∞
n=0

∣∣ r, i ∈ N0, r < ki
}
.

As a consequence of this “density 1” result, in order to classify all automatic
sequences which are bracket words, it is enough to consider sequences a over {0, 1},
with freq(a, 1) = 0. Equivalently, we let a = 1E , where E ⊆ N0 and d(E) = 0. In
[BK18], we investigated such “sparse” bracket words and showed a slightly stronger
variant of Proposition 11.4. Combining it with facts concerning additive richness
of automatic sets, a full classification was obtained in [BK20], conditional on the
conjecture that for k ≥ 2 the set

{
ki

∣∣ i ∈ N0

}
of powers of k is not a GP subset of

N0. This conjecture was finally proved in [Kon21], leading to the following result.

Theorem 11.23 ([Kon21, Thm. B]). Let a be an automatic sequence that is not
eventually periodic. Then a is not a bracket word.

Note that this theorem extends the classical result claiming that a Sturmian
word cannot be automatic.

12. Subword complexity

Since generalised polynomials are defined by relatively simple formulae, it is
natural to inquire if they also have low complexity when viewed from different
perspectives. In particular, we investigate subword complexity, that is, the number
pa(N) of different length-N factors (or subwords) of an infinite word a. An overview
of various results concerning subword complexity can be found in a number of
surveys, such as [CN10] or [All94], and connections with the theory of dynamical
systems are discussed in [Fer99].
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12.1. Background. For an infinite word a = (an)
∞
n=0 defined over an alphabet

Σ, the complexity function of a is the function that associates with each positive
integer n the positive integer

pa(N) = |{anan+1 · · · an+N−1 | n ∈ N0}| .
The simplest sequences, in terms of subword complexity, are the eventually periodic
ones: If a is eventually periodic then pa(N) is bounded. Conversely, it was shown
by Morse and Hedlund that if there exists N with pa(N) ≤ N then a must be
eventually periodic (see, for instance, [MH38] or [Fer99, Prop. 2]). Thus, for any
sequence a, which is not eventually periodic, and every N we have pa(N) ≥ N +1.
The Sturmian words, discussed in Section 4.2, are characterised by the property
that pa(N) = N+1 for all N . Recall that Sturmian words are, in particular, bracket
words. At the other extreme, if |Σ| = k, we have the upper bound pa(N) ≤ kN for
all N , and there exist sequences for which equality holds. (In fact, this is the case
for almost all sequences with respect to the natural probability measure on ΣN0).
Because of the elementary inequality pa(N +M) ≤ pa(N)pa(M), the limit

h(a) = lim
N→∞

log pa(N)

N

exists for any finitely-valued sequence a; its value is called the entropy of a, and is
closely connected to the notion of topological entropy coming from the theory of
dynamical systems.

12.2. New result. Because bracket words can be represented using nilsystems as
in Theorem 4.2 and because nilsystems have zero entropy, one could show7 that
h(a) = 0 for each bracket word a, meaning that pa(N) = exp(o(N)) as N → ∞.
Our main new result concerning the complexity of bracket words is a polynomial
bound, given in Theorem A and restated below for the reader’s convenience.

Theorem A. Let a be a bracket word. Then there exists a constant C > 0 such
that pa(N) = O(NC) for all N ∈ N.

Remark 12.1. We note that related results concerning topological complexity of
nilsystems were obtained in [HKM14], but are not directly applicable in our context
(the crucial obstacle is the fact that the representation in Theorem 4.2 involves a
partition into semialgebraic sets Si which are neither open nor closed, while the
results in [HKM14, Sec. 3] are applicable to open covers).

The proof of this result is carried out in Sections 13, 14, and 15.

12.3. Complementary results. In view of Theorem A, it is natural to inquire
into more precise asymptotics for pa(N), where a is a bracket word. Let

λ(a) = lim sup
N→∞

log pa(N)

logN

be the smallest exponent such that pa(N) ≤ Nλ(a)+o(1) as N → ∞. Theorem
A asserts that λ(a) is finite for all bracket words a. The exact value of λ(a)
is known only in the simplest examples, such as the Sturmian words. Already in

7Since we are about to prove a more precise estimate, we do not go into the details of the

argument. If in Theorem 4.2 the sets Si were open, then the conclusion would be an immediate
consequence of standard facts about topological entropy. In general, the sets Si are not open, but

their boundaries ∂Si have zero µG/Γ-measure, which is sufficient for this application.
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relatively simple cases, such as an =
q{√

2n
⌊√

3n
⌋}

> 1/4
y
, it would be interesting

to compute λ(a) exactly.
Theorem 3.4 of [HKM14] asserts that the topological complexity S(ε,N) of a

minimal nilsystem (X,T ) obeys the bounds C(ε)N c ≤ S(ε,N) ≤ C ′(ε)N c, where
c is the total commutator dimension of X (see the original paper for the relevant
definitions). Let a be a bracket word represented on the nilsystem (X,T ) as in
Theorem 4.2. It seems plausible that, under mild additional assumptions, similar
estimates might hold for pa(N), implying in particular that λ(a) = c.

We prove now that λ(a) can be arbitrarily large. In fact, for each d ∈ N, we can
construct a bracket word a with λ(a) = d.

Proposition 12.2. Fix d ∈ N, and α1, α2, . . . , αd ∈ R such that 1, α1, α2, . . . , αd

are Q-linearly independent. For every i, 1 ≤ i ≤ d, let a(i) be the Sturmian word

defined by a
(i)
n = ⌊nαi⌋ − ⌊(n− 1)αi⌋ for n ∈ N0, and set a =

∏d
i=1 a

(i). Then a is
a bracket word with λ(a) = d.

Proof. We first observe that, according to Corollary 6.4, and since Sturmian words
are bracket words, the word a is a bracket word.

For each i, 1 ≤ i ≤ d, we have pa(i)(N) = N+1. As a general fact about products,

we have pa(N) ≤
∏d

i=1 pa(i)(N). It follows that λ(a) ≤
∑d

i=1 λ
(
a(i)

)
= d.

Conversely, for each i, 1 ≤ i ≤ d, and each length-N subword w(i) of a(i), there
exists an interval (not degenerate to a point) I ⊆ R/Z such that, for n ∈ N0,
a(i)|[n,n+N) = w(i) if and only if nαi mod Z ∈ I. Since by assumption the numbers
1, α1, α2, . . . , αd are Q-linearly independent, the sequence (nα1, nα2, . . . , nαd) mod
Zd is equidistributed in Rd/Zd. It follows that for any d-tuple w(1), w(2), . . . , w(d) of

factors of a(1),a(2), . . . ,a(d) respectively,
∏d

i=1 w
(i) is a factor of a. Hence, pa(N) ≥∏d

i=1 pa(i)(N), and consequently λ(a) ≥ d. This ends the proof. □

We end this section with an explicit example showing that λ(a) takes on arbi-
trarily large values for bracket words a, even when the size of the alphabet of a
remains bounded.

Proposition 12.3. Fix d ∈ N. Let α ∈ R \ Q and let a be the bracket word over
{0, 1, . . . , 9} given by an =

⌊
10

{
αnd

}⌋
. Then pa(N) ≫d N

d(d−1)/2 for all N ∈ N.

Proof. For each pair (m,n) ∈ Z2, we can compute that an+m = ⌊10 {hm(n)}⌋,
where

hm(n) =

d∑
i=0

αi(m)nd−i and αi(m) =

{
αmi

(
d

i

)}
, 0 ≤ i ≤ d .

Note that α0(m) = {α} for all m. Let α(m) = (αi(m))
d
i=1 ∈ [0, 1]d, and let

A = {α(m) | m ∈ Z}. By Weyl’s equidistribution theorem, A is dense in [0, 1]d.
Let N be a sufficiently large integer. Suppose that for some m,m′ ∈ N0,

a|[m,m+N) = a|[m′,m′+N). Then

(39) ∥hm(n)− hm′(n)∥ ≤ 1/5 , ∀n ∈ [N ] .

In general, if β = (β0, β1, . . . , βd−1) ∈ [0, 1)d is such that
∥∥∥∑d−1

i=0 βin
i
∥∥∥ ≤ 1/5 for

all n ∈ [N ], then it follows from the quantitative version of the Weyl equidistri-
bution theorem that there exists a non-zero integer q = Od(1) such that ∥qβi∥ =
Od(N

−(d−i)) for all i, 0 ≤ i ≤ d. (This can be derived using [Vau97, Lemma 2.4],
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or as a special case of a much more general statement in Theorem A.3.) Applying
this observation with β = α(m)−α(m′), we see that there exists a set R ⊆ Rd/Zd,
which is a union of Od(1) rectangles with side lengths Od(N

−(d−i)), 1 ≤ i ≤ d, such
that (39) implies α(m)− α(m′) mod Zd ∈ R. Note that the measure of R is

0 < λ (R) = Od

(
N−(d−1)N−(d−2) · · ·N0

)
= Od

(
N−d(d−1)/2

)
.

Put r = ⌊1/λ(R)⌋. We can inductively construct an increasing sequence of integers
m1,m2, . . . ,mr with the property that α(mj)− α(mi) mod Zd ̸∈ R for all 1 ≤ i <
j ≤ r. Indeed, if m1,m2, . . . ,mj−1 have already been constructed (1 ≤ j ≤ r) then
it is enough to pick any mj with

α(mj) mod Zd ̸∈
⋃j−1

i=1 (R+ α(mi)) ,

which is possible because the measure of the union above is strictly less than 1 and
A is dense in [0, 1]d. By construction, all factors a|[mi,mi+N) with 1 ≤ i ≤ r are

distinct. It follows that pa(N) ≥ r ≫d N
d(d−1)/2. □

12.4. Outline of the proof of Theorem A. We illustrate our strategy of the
proof of Theorem A with a specific example, which already employs most of the
tools used in the proof of the general case. Since the subsequent discussion serves
only as illustration and motivation, we skip some of the technical details.

Let a be the bracket word over the alphabet {0, 1} given by

an =

s{√
2n

⌊√
3n

⌋}
<

1

2

{
.

(Above, we use Iverson bracket, introduced in Section 2.3.) Our goal is to obtain a
polynomial bound for pa(N). We may write an = c(g(n)), where

g(n) =
⌊
2
{√

2n
⌊√

3n
⌋}⌋

,

and c : {0, 1} → {0, 1} is given by c(0) = 1, c(1) = 0. Of course, the subword
complexity of a is the same as the subword complexity of (g(n))

∞
n=0.

Our first step (cf. Example 13.6) is to note that for each m ∈ N0 there exist
α, β, γ, δ ∈ [0, 1) such that for all n ∈ N0 we have

g(n+m) =
⌊
2
{
(
√
2n+ α)

⌊√
3n+ β

⌋
+ γn+ δ

}⌋
= g̃α,β,γ,δ(n).

Thus, instead of estimating the number of subwords of (g(n))
∞
n=0 of a given length

N , it will suffice to estimate the number of sequences (g̃α,β,γ,δ(n))
N−1
n=0 , where

(α, β, γ, δ) varies over [0, 1)4. This step is the key reason why we introduce the
notion of a parametric GP map in Section 13.2.

For the purpose of counting, it will be more convenient to work with the operation
⌊·⌋ rather than {·}. We can remove {·} from the definition of g̃ by writing

g̃α,β,γ,δ(n) = 2
⌊
(
√
2n+ α)

⌊√
3n+ β

⌋
+ γn+ δ

⌋
+
⌊
2
(
(
√
2n+ α)

⌊√
3n+ β

⌋
+ γn+ δ

)⌋
= 2g′α,β,γ,δ(n)− g′′α,β,γ,δ(n).

Thus, to obtain a polynomial bound for pa(N), it will suffice to obtain polynomial

bounds for the number of sequences
(
g′α,β,γ,δ(n)

)N−1

n=0
and

(
g′′α,β,γ,δ(n)

)N−1

n=0
, where

(α, β, γ, δ) varies over [0, 1)4. We only consider the first of these two bounds, the
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second one being analogous. (Actually, the two classes of sequences are related by

g′α,β,γ,δ(n) =
⌊
g′′α,β,γ,δ(n)/2

⌋
, but we do not need this fact.)

Expanding the brackets inside ⌊·⌋, we may bring g′α,β,γ,δ(n) into a more conve-
nient form

g′α,β,γ,δ(n) =
⌊√

2n
⌊√

3n+ β
⌋
+ α

⌊√
3n+ β

⌋
+ γn+ δ

⌋
=

⌊√
2h

(1)
β (n) + αh

(2)
β (n) + γh(3)(n) + δh(4)(n)

⌋
,

where h
(1)
β (n) = n

⌊√
3n+ β

⌋
, h

(2)
β (n) =

⌊√
3n+ β

⌋
, h(3)(n) = n and h(4)(n) = 1

are integer-valued GP maps, which are strictly simpler than g′α,β,γ,δ(n) in a sense

that is made precise in Section 13.1. Note also that for each of the maps h(i) and
each n ∈ [N ] we have 0 ≤ h(i)(n) < 10N2.

Suppose that we have already proved a polynomial bound on the number of

sequences
(
h
(1)
β (n)

)N−1

n=0
and

(
h
(2)
β (n)

)N−1

n=0
as β varies over [0, 1). (Our proof of

Theorem A proceeds by induction, cf. Section 13.3. Here, we omit the discussion of
relatively simple and uninteresting cases.) Since the only dependence of g′α,β,γ,δ(n)

on dβ is through h
(1)
β and h

(2)
β , it will suffice to obtain for each β ∈ [0, 1) a poly-

nomial bound for the number of sequences
(
g′α,β,γ,δ(n)

)N−1

n=0
, where (α, γ, δ) varies

over [0, 1)3. Thus, have reduced the number of parameters from 4 to 3. Let us fix

the choice of β ∈ [0, 1), and let h(1)(n) = h
(1)
β (n), h(2)(n) = h

(2)
β (n). We point out

that from this point we will no longer need any information about the maps h(i)

(1 ≤ i ≤ 4) other than that they map [N ] to [10N2]; in particular, we will not use
the fact that they are GP (cf. Proposition 15.2).

We are thus left with the task of obtaining a polynomial bound on the number
of sequences(

g′α,β,γ,δ(n)
)N−1

n=0
=

(⌊√
2h(1)(n) + αh(2)(n) + γh(3)(n) + δh(4)(n)

⌋)N−1

n=0

as α, γ, δ varies over [0, 1)3. A natural approach at this point is to approximate
α, γ, δ by rational numbers α∗, γ∗, δ∗ with denominators Q (to be optimised in the
course of the argument) and (say) 0 ≤ α − α∗, γ − γ∗, δ − δ∗ ≤ 1/Q. Indeed, as
long as we have a polynomial bound Q = NO(1), the choice of α∗, γ∗, δ∗ will only
contribute a polynomial factor to our bound on the subword complexity of a. At
the same time, for n ∈ [N ] we expect (cf. eq. (50)), at least heuristically, that

g′α,β,γ,δ(n) =
⌊√

2h(1)(n) + αh(2)(n) + γh(3)(n) + δh(4)(n)
⌋

=
⌊√

2h(1)(n) + α∗h(2)(n) + γ∗h(3)(n) + δ∗h(4)(n)
⌋
= g′α∗,β,γ∗,δ∗(n).

Let us make that last point somewhat more precise. We have∣∣∣(α− α∗)h(2)(n) + (γ − γ∗)h(3)(n) + (δ − δ∗)h(4)(n)
∣∣∣ ≤ 30N2/Q.

Thus, (cf. eq. (52)) g′α,β,γ,δ(n) = g′α∗,β,γ∗,δ∗(n) as long as we have

(40)
∥∥∥√2h(1)(n) + αh(2)(n) + γh(3)(n) + δh(4)(n)

∥∥∥ > 30N2/Q.
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Next, we will need to better understand the situation where (40) does not hold. It
will be convenient to define (cf. eq. (51))

h(0)(n) = −
⌊√

2h(1)(n) + α∗h(2)(n) + γ∗h(3)(n) + δ∗h(4)(n).
⌉

Then we have the bound 0 ≥ h0(n) > −50N2, and we may express (40) in a slightly
more convenient form∣∣∣h(0)(n) +√

2h(1)(n) + αh(2)(n) + γh(3)(n) + δh(4)(n)
∣∣∣ > 30N2/Q.

Let B ⊆ Z5 denote the set of vectors m = (m0,m1,m2,m3,m4) with 0 ≥ m0 >
−50N2 and 0 ≤ m1,m2,m3,m4 < 10N2 (thus,

(
h(0)(n), h(1)(n), . . . , h(4)(n)

)
∈ B

for n ∈ [N ]). The set of vectors m = (m0,m1,m2,m3,m4) such that∣∣∣m0 +
√
2m1 + αm2 + γm3 + δm4

∣∣∣ ≤ 30N2/Q(41)

can be thought of as a discrete approximation of a hyperplane, and thus we expect
it to be additively structured. Indeed, we show in Section 14 (Proposition 14.4)
that there exists a lattice Λ with the following properties:

• If m ∈ B and (41) holds then m ∈ Λ.
• If m ∈ B ∩ Λ then∣∣∣m0 +

√
2m1 + αm2 + γm3 + δm4

∣∣∣ ≤ CN12/Q(42)

for some absolute constant C > 0.

Consider n ∈ [N ] such that
(
h(0)(n), h(1)(n), . . . , h(4)(n)

)
∈ Λ. Then (cf. eq.

(53))

g′α,β,γ,δ(n) = −h(0)(n) +
⌊
h(0)(n) +

√
2h(1)(n) + αh(2)(n) + γh(3)(n) + δh(4)(n)

⌋
,

where the expression under the ⌊·⌋ is bounded in absolute value by CN12/Q. We
will take Q > CN12, meaning that

g′α,β,γ,δ(n) = −h(0)(n), or g′α,β,γ,δ(n) = −h(0)(n)− 1.(43)

Next, we need to develop a better understanding of when each of the two possibilities
mentioned above occurs. Put

Λ+ =
{
m ∈ Λ

∣∣∣ m0 +
√
2m1 + αm2 + γm3 + δm4 ≥ 0

}
,

Λ− =
{
m ∈ Λ

∣∣∣ m0 +
√
2m1 + αm2 + γm3 + δm4 < 0

}
.

Then Λ = Λ+∪Λ− is a partition obtained by cutting Λ with a hyperplane. We can
now make (43) more precise (cf. eq. (54)):

(44) g′α,β,γ,δ(n) =

{
−h(0)(n) if

(
h(0)(n), h(1)(n), . . . , h(4)(n)

)
∈ Λ+,

−h(0)(n)− 1 if
(
h(0)(n), h(1)(n), . . . , h(4)(n)

)
∈ Λ−.

Recall from (40) that if
(
h(0)(n), h(1)(n), . . . , h(4)(n)

)
̸∈ Λ then g′α,β,γ,δ(n) =

g′α∗,β,γ∗,δ∗(n). Combining this observation with (44), we see that the sequence(
g′α,β,γ,δ(n)

)N−1

n=0
is completely determined by the following data:

• the rational approximations α∗, γ∗, δ∗;

• the restrictions of the sequences h
(1)
β and h

(2)
β to [N ];

• the intersection of the lattice Λ with the box B;
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• the hyperplane partition Λ ∩B = (Λ+ ∩B) ∪ (Λ− ∩B).

As we have seen, we may take Q of the form Q = C ′N12 for a large constant C ′.
Then the number of choices of α∗, γ∗, δ∗ is O(N36), and hence polynomial inN . The

contribution from h
(1)
β and h

(2)
β is polynomial by the inductive assumption. Thus,

it remains to estimate the number of ways in which the set B can be partitioned
into the components B = (B \ Λ) ∪ (Λ+ ∩ B) ∪ (Λ− ∩ B), as described above. A
polynomial estimate on the number of such partitions is obtained in Section 14
(Proposition 14.3) using the techniques of additive geometry.

13. Proof of Theorem A: notation and induction

In this section we set up the inductive scheme and introduce notation which will
be used in the proof of Theorem A.

13.1. Height. One of several measures of complexity of a generalised polynomial is
the height, that is, the number of nested instances of the floor function. Let d ∈ N,
and let GP0 denote the polynomial maps from Rd to R. Inductively, for each i ∈ N,
let GPi be the smallest class of maps from Rd to R that is closed under sums and
products, and which contains g and ⌊g⌋ for each g ∈ GPi−1. By definition, for each
GP map g : Rd → R, there exists an integer i ∈ N0 such that g ∈ GPi. The height
of a GP map g : Rd → R, denoted by ht(g), is the least of such integers i ∈ N0.

More generally, if Ω ⊆ Rd and g : Ω → R is a GP map then ht(g) is defined as
the least possible value of ht(g̃) where g̃ : Rd → R is a GP map and g̃|Ω = g. For

instance, if g is the GP map Z → Z ⊆ R given by g(n) =
⌊√

2n⌊
√
3n⌋+

√
5n2

⌋
then ht(g) ≤ 2. For the following result, we recall that by convention we treat the

empty product
∏0

j=1(· · · ) as being identically equal to 1.

Lemma 13.1. Let d ∈ N and let g : Rd → R be a GP map. Then g can be written
as

(45) g =

s∑
i=1

pi

ri∏
j=1

⌊hi,j⌋ ,

where s ∈ N, pi : Rd → R (1 ≤ i ≤ s) are polynomials, and for each 1 ≤ i ≤ s,
ri ∈ N0 and hi,j : Rd → R (1 ≤ j ≤ ri) are a GP maps with ht(hi,j) < ht(g).

Proof. We proceed by induction on ht(g). If g is a polynomial, there is nothing to
prove, since we can take s = 1 and p1 = g. If g = ⌊h⌋ for some h with ht(h) < ht(g)
then we can take s = 1, r1 = 1, p1 = 1, and h1,1 = h. If g = h+ h′ or g = h · h′ for
some h and h′ with max{ht(h),ht(h′)} < ht(g), then a representation of g of the
form (45) can be obtained from the analogous representations of h and h′. □

13.2. Parametric generalised polynomials. It will be convenient to state some
of our results in terms of parametric GP maps, by which we mean families of GP
maps which include real-valued parameters as coefficients. For instance, the formula

gα,β(n) =
⌊
αn ⌊βn⌋+

√
2n2

⌋
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defines, for each α, β ∈ R, a GP map from Z to R, and we will refer to g• as
a parametric GP map8 Z → R. We make this notion precise in the following
definition. Below and elsewhere, if I ⊆ J are finite sets and β ∈ RJ , we let
β|I ∈ RI denote the restriction of β to I, that is, (β|I)i = βi for all i ∈ I.

Definition 13.2. Let I be a finite set. A parametric GP map g• : Z → R with
index set I is a map RI → RZ, α 7→ gα, such that the combined map RI × Z → R,
(α, n) 7→ gα(n) is a GP map. The height of the parametric GP map g•, denoted by
ht(g•), is the height of the corresponding GP map (α, n) 7→ gα(n).

Definition 13.3. Let g•, h• : Z → R be two parametric GP maps with index sets
I and J respectively. We define the sum g•+h• to be the parametric GP map with
index set I ∪ J given by (g + h)α(n) = gα|I(n) + hα|J(n), α ∈ RI∪J , n ∈ Z. The

product g• · h• is defined accordingly by (g · h)α(n) = gα|I(n) · hα|J(n), α ∈ RI∪J ,
n ∈ Z.

Our interest in parametric GP maps stems largely from the following lemma,
which allows us to replace the study of subwords in GP sequences by the study of
prefixes in parametric GP sequences.

Lemma 13.4. Let g : Z → R be a bounded GP map. Then there exists a parametric
GP map g̃• with index set I, such that, for each m ∈ Z, there exists α ∈ [0, 1)I

such that g(n+m) = g̃α(n) for all n ∈ Z.

Proof. This is just a rephrasing of Lemma A.5. □

In the examples below, we use, as in Section 5, the Iverson bracket convention:
JφK = 1 if φ is a true sentence and JφK = 0 otherwise.

Example 13.5. Let d ∈ N and g(n) =
q{√

2nd
}
< 1

2

y
. Pick any m ∈ Z. Then

g(n +m) = g̃α(n) for all n ∈ Z, where α = (αi)
d
i=0 is given by αi =

{√
2mi

(
d
i

)}
(0 ≤ i ≤ d) and g̃• is given by

g̃α(n) =

t{
d∑

i=0

αin
d−i

}
<

1

2

|

, α ∈ Rd+1, n ∈ Z .

Example 13.6. Let g(n) =
q{√

2n
⌊√

3n
⌋}

< 1
2

y
. Pick any m ∈ Z and let a =⌊√

2m
⌋
, α =

√
2m, b =

⌊√
3m

⌋
, β =

{√
3m

}
, γ =

{√
2b
}
, and δ = {αb}. Then

g(n+m) =

s{
(
√
2n+ a+ α)

(⌊√
3n+ β

⌋
+ b

)}
<

1

2

{

=

s{
(
√
2n+ α)

⌊√
3n+ β

⌋
+
√
2bn+ αb

}
<

1

2

{

=

s{
(
√
2n+ α)

⌊√
3n+ β

⌋
+ γn+ δ

}
<

1

2

{

= g̃α,β,γ,δ(n) ,

8We use “•” as a placeholder for a variable. Thus, in the discussion above, we let g• denote

the map R2 → RZ, (α, β) 7→ gα,β , which can be identified with a map R2 × Z → R in a natural

way.
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where g̃• is the parametric GP map with index set {1, 2, 3, 4} given by

g̃α1,α2,α3,α4(n) =

s{
(
√
2n+ α1)

⌊√
3n+ α2

⌋
+ α3n+ α4

}
<

1

2

{
.

When the dependence of a parametric GP map on the parameters becomes too
complicated, it is often more convenient to instead work with a parametric GP map
which has more parameters but depends on them in a simpler way. For instance, if
g• is a parametric GP map of the form

(46) gα(n) = f1(α)h
(1)
α (n) + f2(α)h

(2)
α (n) + f3(α)h

(3)
α (n) ,

where f1, f2, and f3 are GP maps and h
(1)
• , h

(2)
• , and h

(3)
• are parametric GP maps,

then it might be preferable to instead work with the parametric GP map

(47) g′α,β(n) = β1h
(1)
α (n) + β2h

(2)
α (n) + β3h

(3)
α (n) .

We make this idea precise in the following definition.

Definition 13.7. Let g• and h• be two parametric GP maps with index sets I and
J respectively. Then we say that h• extends g•, denoted h• ⪰ g•, if there exists a
GP map φ : RI → RJ such that gα = hφ(α) for all α ∈ RI .

It is routine to check that the relation ⪰ defined above is a partial order.

Example 13.8. If g• and g′• are respectively given by (46) and (47), then g′• ⪰ g•.
One can take φ(α) = (α, f1(α), f2(α), f3(α)).

13.3. Induction scheme. Using the terminology introduced above, we are ready
to explain the induction scheme that will be used in the proof of Theorem A. It can
be construed as an analogue of the inductive definition of generalised polynomials,
but restricted to Z-valued sequences. Note that GP maps from Z to R can be
identified with parametric GP maps with an empty index set.

Proposition 13.9. Let G be a family of parametric GP maps from Z to Z with
index sets contained in N0. Suppose that G has the following closure properties.

(i) All GP maps Z → Z belong to G.
(ii) For every g• and h• ∈ G, it holds that g• + h• ∈ G and g• · h• ∈ G.
(iii) For every g• ∈ G, G contains all the parametric GP maps g′• : Z → Z

satisfying g• ⪰ g′•.
(iv) For every pair of disjoint finite sets I ⊆ N, J ⊆ N, and every sequence of

parametric GP maps h
(i)
• ∈ G, i ∈ I, with index set J , G contains the parametric

GP map g• defined by

gα,β(n) =

⌊∑
i∈I

αih
(i)
β (n)

⌋
, n ∈ Z , α ∈ RI , β ∈ RJ .

Then G contains all parametric GP maps Z → Z with index sets contained in N0.

Proof. Since each parametric GP map from Z to Z takes the form ⌊g•⌋ for some
parametric GP map g• : Z → R, it suffices to show that ⌊g•⌋ ∈ G for each parametric
GP g• with index set I ⊆ N0. We proceed by induction on ht(g•).

Suppose first that ht(g•) = 0, that is, g• is a polynomial. Expanding, we can
write

gα(n) =

d∑
i=0

qi(α)n
i , n ∈ Z , α ∈ RI ,
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where d ∈ N0 and qi : RI → R are polynomials. It follows from (i) and (iv) that G
also contains the parametric GP map with index set {0, 1, . . . , d} given by

g′α(n) =

⌊
d∑

i=0

αin
i

⌋
, n ∈ Z, α ∈ Rd+1 .

Since g′• ⪰ ⌊g•⌋, it follows from (iii) that g• ∈ G.
Suppose next that ht(g•) ≥ 1. Using Lemma 13.1 and expanding out the poly-

nomial contributions, we can represent g• in the form

gβ(n) =

s∑
i=1

qi(β)h̃
(i)
β (n) , n ∈ Z , β ∈ RJ ,

where for every i, 1 ≤ i ≤ s, qi is a polynomial, and h̃
(i)
• is a parametric GP map

of the form

h̃
(i)
β (n) = ndi

ri∏
j=1

⌊
h
(i,j)
β (n)

⌋
n ∈ Z , β ∈ RJ ,

where di ∈ N0, ri ∈ N0, and ht(h
(i,j)
• ) < ht(g•) for all j, 1 ≤ j ≤ ri. By the

inductive assumption, for each pair (i, j), with 1 ≤ i ≤ s and 1 ≤ j ≤ ri, we have⌊
h
(i,j)
•

⌋
∈ G. Consequently, applying (i) and (ii), we conclude that also h̃

(i)
• ∈ G.

For notational convenience, assume that min J > s and put I = {1, . . . , s} (since
the ordering of the parameters does not play any role, this does not decrease the
level of generality). It follows from (iv) that G also contains the parametric GP
map with index set I ∪ J that is defined by

g′α,β(n) =

⌊
s∑

i=1

αih̃
(i)
β (n)

⌋
, n ∈ Z , α ∈ RI , β ∈ RJ .

Since g′• ⪰ ⌊g•⌋, it follows from (iii) that ⌊g•⌋ ∈ G. This ends the proof. □

14. Proof of Theorem A: auxiliary results

In this section we discuss some results in additive combinatorics and Diophantine
approximation which will be used in the course of the proof of Theorem A.

14.1. Additive geometry. Let r ∈ N. A symmetric generalised arithmetic pro-
gression of rank r in an abelian group Z with steps x1, x2, . . . , xr ∈ Z and side
lengths ℓ1, ℓ2, . . . , ℓr ∈ N0 is defined as the set

P(x1, x2, . . . xr; ℓ1, ℓ2, . . . , ℓr) =

{
r∑

i=1

nixi

∣∣∣∣∣ −ℓi < ni < ℓi for all i, 1 ≤ i ≤ r

}
.

Let d ∈ N. By a lattice in Rd we mean a discrete subgroup of Rd. In particular,
we do not require Λ to have full rank, which is slightly non-standard but consistent
(in particular with [TV06]). If Λ < Rd is a lattice of full rank, we let covol Λ =
vol(Rd/Λ) denote its covolume (that is, the measure of a fundamental domain of
Λ). By a convex body in Rd, we mean a convex, open, non-empty, and bounded set,
and by a half-space, we always mean a closed half-space, that is, a set of the form

H(x, t) =
{
y ∈ Rd

∣∣ x · y ≥ t
}

for some x ∈ Rd and t ∈ R.
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The classical John’s theorem asserts that each symmetric convex body B in Rd

can be efficiently approximated by an ellipsoid E, in the sense that E ⊆ B ⊆
√
dE.

We will use a discrete analogue of this result.

Theorem 14.1 (Discrete John’s Theorem, [TV06, Thm. 3.36]). Let d ∈ N, B ⊆ Rd

be a symmetric convex body, and Λ < Rd be a lattice of rank r. Then there exist
vectors v1, v2, . . . , vr ∈ Rd and integers ℓ1, ℓ2, . . . , ℓr ∈ N such that

P(v1, v2, . . . , vr; ℓ1, ℓ2, . . . , ℓr) ⊆ B ∩ Λ

⊆ P(v1, v2, . . . , vr; r
2rℓ1, r

2rℓ2, . . . , r
2rℓr) .

We also mention an estimate on the number of partitions of a finite set using a
hyperplane.

Theorem 14.2 ([Har67, Thm. 1]). Let d and n be two positive integers, and let
S ⊆ Rd be a set with |S| = n. Then the number of sets of the form S ∩H, where

H is a half-space, is at most 2
∑d

i=0

(
n−1
i

)
.

In the course of the argument, we will need estimates on the number of sets that
can be obtained from a given convex body in Rd by intersecting it with a sub-lattice
of Zd and a half-space.

Proposition 14.3. Let d ∈ N, Γ < Rd be a lattice, and B ⊆ Rd be a symmetric
convex body. Then the number of pairs of sets of the form (Λ ∩B,Λ ∩B ∩H),

where Λ < Γ is a lattice and H is a half-space, belongs to Od(|B ∩ Γ|2d).
Proof. Put M = |B ∩ Γ|. Let Λ < Γ be a sub-lattice. It follows form Theorem 14.1
that there exist vectors v1, . . . , vd ∈ Λ∩B such that Λ∩B ⊆ spanZ{v1, . . . , vd}. As
a consequence,

Λ ∩B = spanZ{v1, . . . , vd} ∩B .
In particular, the set Λ∩B is completely determined by the vectors v1, . . . , vd which
belong to B ∩ Γ, and hence can be chosen in at most Md ways.

For a fixed choice of Λ, we infer from Theorem 14.2 that the number of sets of
the form Λ∩B ∩H, where H is a half-space, belongs to Od(M

d). Combining these
two estimates yields the claim. □

14.2. Diophantine approximation. In this subsection, we briefly discuss ap-
proximate linear relations with integer coefficients. Let d ∈ N. Given a vector
α = (αi)

d
i=1 ∈ Rd, ε > 0, and N ∈ N, we set

(48) RN (α, ε) =

{
n ∈ Zd

∣∣∣∣∣ ∥n∥∞ < N,

∣∣∣∣∣
d∑

i=1

niαi

∣∣∣∣∣ < ε

}
.

These sets naturally appear in the theory of Diophantine approximation. For in-
stance, a classical theorem of Dirichlet asserts that for all α ∈ [0, 1)d, the set
RN (α,N−1/(d−1)) is non-empty, and the exponent −1/(d− 1) cannot be improved
in general [Cas55]. In our application, we will be interested in the case where ε
is considerably smaller. In this regime, the sets RN (α, ε) can be approximated by
lattices in a sense that is made precise by the following proposition.

Proposition 14.4. Let d ∈ N. There exists a positive real number Cd such that
for each α = (αi)

d
i=1 ∈ Rd, ε > 0, and N ∈ N, there exists a lattice Λ = Λ(α, ε,N)

satisfying

(49) RN (α, ε) ⊆ Λ ∩ (−N,N)d ⊆ RN (α,CdN
dε) .
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For later reference, we let Λ(α, ε,N) denote a lattice satisfying (49). The re-
maining part of this section is devoted to the proof of Proposition 14.4. We begin
with a lemma concerning finite groups, where the situation is simpler. Recall that,
for an abelian group G and g ∈ G, the order ord(g) is the least q ∈ N with qg = eG,
the order of G is the cardinality of G, and the exponent of G is the least common
multiple of ord(g) for g ∈ G. For a set S ⊆ G an and k ∈ N, we let kS denote the
k-fold sumset S + S + · · ·+ S = {a1 + a2 + · · ·+ ak | ai ∈ S}.

Lemma 14.5. Let G be a finite abelian group with order M ≥ 2 and exponent q,
and let S ⊆ G be a generating set with eG ∈ S. Then there exists k ≤ q logM/log q
such that kS = G.

Proof. We proceed by induction on M . Pick any g ∈ S \ {eG} and let ℓ = ord(g).
Since G is non-trivial, we may assume that ℓ ≥ 2. Put f(x) = x/log x (x > 1) and
note that f(n) ≤ f(m) for all pairs of integers (n,m) with m ≥ n ≥ 2 and n | m.
Our goal is to find k ≤ f(q) logM with kS = G.

Let G = G/ ⟨g⟩, and let π : G → G be the quotient map. Then G has order
M =M/ℓ and exponent q which divides q. The set S = π(S) generates G. If G is
trivial then G is the cyclic group generated by g, and hence q = M and kS = G
for k = f(q) logM =M , as needed. (Note that in this step we use the assumption
that eG ∈ S.) Suppose next that G is non-trivial, meaning that M ≥ 2. By the
inductive assumption, there exists k ≤ f(q) logM with kS = G. It follows that
kS = G, where k = k + ℓ. We can estimate

k ≤ f(q) logM + ℓ = f(q) logM − (f(q)− f(q)) logM + (f(ℓ)− f(q)) log ℓ.

Thus, it is enough to show that

(f(q)− f(q)) logM ≥ (f(ℓ)− f(q)) log ℓ

which follows from the observations that M ≥ ℓ, ℓ | q, and q | q. □

Lemma 14.6. Let d ∈ N, B ⊆ Rd be symmetric convex body, and S ⊆ B be a
symmetric set with 0 ∈ S. Put Λ = spanZ S and assume that Λ is a lattice. Then
there exists k = Od(|Λ ∩B|) such that kS ∩B = Λ ∩B.

Proof. Put M = |Λ ∩B|. We proceed by induction on d, including the degenerate
case d = 0 for which one can take k = 1. Assume that d ≥ 1 and that the claim
is proved for d− 1. We may also assume without loss of generality that Λ has full
rank, since otherwise we could replace Rd with the subspace spanned by Λ.

Applying Theorem 14.1, we conclude that there exist vectors w1, w2, . . . , wd ∈ Λ
and side lengths ℓ1, ℓ2, . . . , ℓd ∈ N such that

P(w1, w2, . . . , wd; ℓ1, ℓ2, . . . , ℓd) ⊆ B ∩ Λ ⊆ P(w1, w2, . . . , wd;Dℓ1, Dℓ2, . . . , Dℓd) ,

where D = d2d = Od(1). Since Λ has rank d, the vectors w1, w2, . . . , wd form a

basis of Rd. Note that
∏d

i=1 ℓi ≤ M . Applying a change of basis, we may assume
that wi = ei, the i-th standard basis vector, for all i, 1 ≤ i ≤ d. In particular,
Λ = Zd.

Pick any d-tuple of linearly independent vectors v1, v2, . . . , vd ∈ S. Let A ∈ Rd×d

be the matrix satisfying Aei = vi, and put q = detA = covol (spanZ(v1, v2, . . . , vd)).

Then q ̸= 0 and the Leibniz formula gives the estimate |q| ≤ d!Dd
∏d

i=1 ℓi = Od(M).
Using Cramer’s rule to find the inverse of A, we observe that the matrix qA−1

has integer entries and satisfies
∣∣q(A−1)i,j

∣∣ = Od(M/ℓi) for each pair (i, j) with
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1 ≤ i, j ≤ d. Since qei =
∑d

j=1 q(A
−1)i,jvj and since 0 ∈ S, we conclude that there

exists p = Od(M) such that qei ∈ ⌊p/ℓi⌋S for every i, 1 ≤ i ≤ d.
Pick any u ∈ Zd ∩ B. Since u ∈ Zd, by Lemma 14.5 applied to the group

G = Zd/qZd and the set9 (S mod q) ⊆ G, there exists u′ = (u′i)
d
i=1 ∈ Zd such that

u ∈ qu′ + nS for some n ≤ dq. Then for every i, 1 ≤ i ≤ d, we have |u′i| ≤ Dℓi, so
qu′ ∈ mS, where

m =

d∑
i=1

|u′i| ⌊p/ℓi⌋ ≤ dDp = Od(M) .

It follows that we can take k = n+m = Od(M). □

Example 14.7. Pick any d,N ∈ N. Let S = {0,±v1,±v2, . . . ,±vd}, where v1 = e1
and vi = ei −Nei−1 for every i, 2 ≤ i ≤ d. Thus, spanZ(S) = Zd. We can compute
that

ed = vd +Nvd−1 + · · ·+Nd−1v1 .

Taking B = (−2N, 2N)d, we see that
∣∣B ∩ Zd

∣∣ ≤ (4N)d and if kS ⊃ B ∩ Zd then

k ≥ Nd. Hence, the bound in Lemma 14.6 is tight up to a constant factor.

Proof of Proposition 14.4. Apply Lemma 14.6 to B = (−N,N)d and S = RN (α, ε).
It is immediate from the definition that RN (α, ε) ⊆ Λ∩B, where Λ = spanZ S is a
sub-lattice of Zd. For the other inclusion, we note that Λ∩B = kS = kRN (α, ε) ⊆
RN (α, kε), where k = Od(|Λ ∩B|) = Od(N

d). □

15. Proof of Theorem A: combining the ingredients

We are now ready to prove a proposition which serves as the inductive step in
the proof Theorem A. In the argument, we will use the following elementary fact.

Lemma 15.1. Let x and x∗ be two real numbers and assume that |x− x∗| <
min (|x− ⌊x∗⌉| , 1/2). Then ⌊x⌋ = ⌊x∗⌋.

Proof. If {x∗} ∈ [0, 1/2), then |x− ⌊x∗⌉| > |x− x∗| implies that x > ⌊x∗⌉ = ⌊x∗⌋,
and |x− x∗| < 1/2 implies that x < ⌊x∗⌋ + 1. Thus, ⌊x⌋ = ⌊x∗⌋. The case where
{x∗} ∈ [1/2, 1) is analogous. □

Proposition 15.2. Let d ∈ N, let h1, h2, . . . , hd : [N ] → Z be sequences, with
∥hi∥∞ ≤ H for every i, 1 ≤ i ≤ d. For α ∈ Rd, we let gα : [N ] → Z denote the
sequence defined by

gα(n) =

⌊
d∑

i=1

αihi(n)

⌋
, n ∈ [N ] .

Then
∣∣{gα ∣∣ α ∈ [−R,R)d

}∣∣ = Od(R
dH3d2

).

Proof. Note that gα(n) = g{α}(n) + g⌊α⌋(n), where {α} ∈ [0, 1)d and ⌊α⌋ ∈
{−R,−R + 1, . . . , R − 2, R − 1}d, which is a set whose cardinality is in Od(R

d).
Thus, it remains to show that the cardinality of the set

{
gα

∣∣ α ∈ [0, 1)d
}

is in

Od(H
3d2

).

9Note that spanZ S = Λ = Zd. Hence it makes sense to consider the set S mod q. Furthermore,

since by assumption 0 ∈ S, it follows that 0 ∈ S mod q as needed.
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Pick any α ∈ [0, 1)d. Our plan is to construct an alternative description of gα
that, instead of α, includes a finite number of parameters chosen from sets whose
cardinality can be estimated in an easier way.

Put ε = 1/
(
100Cd(dH)d

)
, where Cd is the constant from Proposition 14.4. Let

α∗ = (α∗
i )

d
i=1 ∈ [0, 1)d be any vector such that |αi − α∗

i | < ε/dH and α∗
i ∈ (ε/dH)Z

for every i, 1 ≤ i ≤ d. This ensures that

(50)

∣∣∣∣∣
d∑

i=1

αihi(n)−
d∑

i=1

α∗
i hi(n)

∣∣∣∣∣ < ε , ∀ n ∈ [N ] .

Let h0 : [N ] → Z be the map given by

(51) h0(n) = −

⌊
d∑

i=1

α∗
i hi(n)

⌉
and let h = (h0, h1, h2, . . . , hd) : [N ] → Zd+1. Note that ∥h0∥∞ ≤ dH and, since ε <
1/2, that h0(n) + gα(n) ∈ {0,−1} for all n ∈ [N ]. Put B = [−dH, dH]× [−H,H]d.
Let also Λ = Λ(1α, ε, dH) be the lattice constructed in Proposition 14.4 and set

Λ+ = {m ∈ Λ | 1α ·m ≥ 0} .

Here and elsewhere, we use the shorthand 1α = (1, α1, α2, . . . , αd). Hence (1α)0 = 1
and (1α)i = αi for every i ≥ 1.

We have now introduced all the objects needed to obtain a more well-behaved
formula for gα(n). We consider two cases, depending on whether h(n) ∈ Λ or not.
If h(n) ∈ B \ Λ, then |1α · h(n)| > ε and hence, by Lemma 15.1, we find

gα(n) =

⌊
d∑

i=1

αihi(n)

⌋
=

⌊
d∑

i=1

α∗
i hi(n)

⌋
.(52)

Next, if h(n) ∈ B ∩ Λ, then |1α · h(n)| < Cd(dH)dε < 1/2. Since h0(n) ∈ Z, we
have

gα(n) = −h0(n) + ⌊1α · h(n)⌋ .(53)

If n ∈ Λ+, then 1α · h(n) ∈ [0, 12 ) and hence ⌊1α · h(n)⌋ = 0. Similarly, if h(n) ∈
Λ \ Λ+, then 1α · h(n) ∈ (− 1

2 , 0) and hence ⌊1α · h(n)⌋ = −1. Combining (52) and
(53), and expanding out the definition of h0, we conclude that

gα(n) =



⌊
d∑

i=1

α∗
i hi(n)

⌋
if h(n) ∈ B \ Λ ,⌊

d∑
i=1

α∗
i hi(n) +

1

2

⌋
if h(n) ∈ B ∩ Λ+ ,⌊

d∑
i=1

α∗
i hi(n)−

1

2

⌋
if h(n) ∈ B ∩ Λ \ Λ+.

(54)

It follows from (54) that, in order to determine gα|[N ], it is sufficient to know the

following data: α∗, B ∩Λ, and B ∩Λ+. The number of possible choices of α∗ is in

Od(H
d2

) directly by the definition. Furthermore, it follows from Proposition 14.3,
applied with Γ = Zd, that the number of possible choices for B ∩Λ and B ∩Λ+ are
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both in Od

(
H2d2

)
. Consequently, the number of distinct sequences of the form

gα|[N ] is in Od

(
H3d2

)
. This ends the proof. □

We have now collected all the components needed to prove our main result.

Proposition 15.3. Let g• : Z → Z be a parametric GP map with index set I ⊆ N0.
Then there exist two positive real numbers B = B(g•) and C = C(g•) such that

(55)
∣∣{gα|[N ]

∣∣ α ∈ RI , ∥α∥∞ ≤ R
}∣∣ = Og

(
RBNC

)
.

Proof. We proceed by structural induction with respect to g•, using the scheme
introduced by Proposition 13.9. Let G′ denote the set of all parametric GP maps
g• such that (55) holds.

(i) If g : Z → Z is a GP map (viewed as a parametric GP map with empty index
set), then the set in (55) has only one element and thus g ∈ G holds trivially.

(ii) For each g•, h• ∈ G′ with index sets I, J ⊆ N0 respectively, and for each
N ∈ N, we note that (g + h)γ |[N ], γ ∈ RI∪J , is uniquely determined by gα|[N ] and
hβ |[N ], where α = γ|I and β = γ|J . As a consequence, g• + h• ∈ G′ and we can
take

(56) B(g• + h•) ≤ B(g•) +B(h•) and C(g• + h•) ≤ C(g•) + C(h•) .

The same reasoning also applies to the product g• · h•, with the same bounds.
(iii) Next, let g• and g′• be two parametric GP maps with index sets I, J ⊆ N0

respectively, and suppose that g• ∈ G′ and g• ⪰ g′•. By Definition 13.7, there exists
a GP map φ : RJ → RI such that g′β = gφ(β) for all β ∈ RJ . Since φ is a GP map,

there exists a constant D = D(φ) such that ∥φ(β)∥∞ ≤ DRD for all β ∈ RJ with
∥β∥∞ ≤ R. Hence, for every pair of positive integers (N,R), we have∣∣{g′β |[N ]

∣∣ β ∈ RJ ,
∥∥β∥∥∞ ≤ R

}∣∣ ≤ ∣∣{gα|[N ]

∣∣ α ∈ RI , ∥α∥∞ ≤ DRD
}∣∣ ,

which implies that g′• ∈ G′ and that we can take

(57) B(g′•) ≤ DB(g•) and C(g′•) ≤ C(g•) .

(iv) Finally, let I ⊆ N0 be a finite set, and, for every i ∈ I, let h
(i)
• ∈ G′ be a

parametric GP map with index sets J (i) ⊆ N0 \ I. Set J =
⋃

i∈I J
(i). Our aim is to

show that G′ also contains the parametric GP map g• with index set I ∪ J defined
by

gα,β(n) =

⌊∑
i∈I

αih
(i)
β (n)

⌋
, n ∈ Z , α ∈ RI , β ∈ RJ .

Given any N,R ∈ N, we set

H = max
i∈I

max
n∈[N ]

sup
∥β∥∞≤R

∣∣∣h(i)β (n)
∣∣∣ .

Since the h
(i)
• ’s are parametric GP maps, we have H = Og(R

DND) for some con-

stant D = D(g•). For every i ∈ I, set Bi = B(h
(i)
• ), Ci = C(h

(i)
• ), and

Hi =
{
h
(i)
β |[N ]

∣∣∣ β ∈ RJ , ∥β∥∞ ≤ R
}
.

By Proposition 15.2, for each h1 ∈ H1, h2 ∈ H2, . . . , hd ∈ Hd, the number of

sequences of the form
⌊∑d

i=1 αihi

⌋
, where α ∈ Rd and ∥α∥∞ ≤ R, belongs to
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Od(R
dH3d2

). It follows that the number of distinct sequences of the form gα,β |[N ],

where α ∈ RI , β ∈ RJ , and max{∥α∥∞ , ∥β∥∞} ≤ R, is at most

d∏
i=1

|Hi| ·Od

(
RdH3d2

)
= Og(R

BNC) ,

where

B =
∑
i∈I

Bi + d+ 3d2D and C =
∑
i∈I

Ci + 3d2D .

In particular, g• ∈ G′ and we can take B(g•) ≤ B and C(g•) ≤ C.

It now follows from Proposition 13.9 that G′ contains all parametric GP maps
Z → Z with index sets contained in N0. This ends the proof. □

Proof of Theorem A. Let a be a bracket word defined over an alphabet Σ. We
infer from Corollary 5.3 that there exist a finitely-valued GP map g : N0 → N and
c : g(N0) → Σ such that a =

(
c(g(n))

)∞
n=0

. Let g = (g(n))∞n=0. It follows from

Proposition 15.3 and Lemma 13.4 that pg(N) = Og(N
C) for some C > 0. Since

pa(N) ≤ pg(N) for all N ∈ N, this ends the proof. □

Appendix A. Nilpotent dynamics

A.1. Connectedness. A technical issue which often leads to complications is that
there is in general no guarantee that the nilpotent Lie group G and the nilmanifold
X in Theorem 4.1 should be connected.

As for connectedness of X, in most application this is not a major problem. In
this case, it follows from [Lei05, Thm. B] that there exists q ∈ N and connected
sub-nilmanifolds Y0, Y1, . . . , Yq−1 ⊆ X such that (g(qn+ i)Γ)

∞
n=0 is equidistributed

in Yi for each i ∈ [q]. Passing to an arithmetic progression of the form qN0 + i, one
can then work with the connected nilsystem (Yi, T

q).
Connectedness of G is a more fundamental issue. For instance, for α ∈ R\Q, the

GP map g(n) =
{
n2α

}
can be represented using the nilrotation (G/Γ, Th), where

G =

1 Z R
0 1 R
0 0 1

 , Γ =

1 Z Z
0 1 Z
0 0 1

 , and h =

1 1 −α
0 1 2α
0 0 1

 .
Indeed, a simple computation shows that

gnΓ =

1 0
{
n2α

}
0 1 {2nα}
0 0 1

Γ.

However, if we pass to the connected component of G, then we obtain a much
simpler nilsystem G◦/Γ ∩ G◦ ≃ R2/Z2, where it is no more possible to represent
g. Fortunately, this problem disappears if instead of sequences gnΓ we consider
polynomial maps from Z to G. Given a connected and simply connected Lie group
G, a polynomial map p : Z → G is a sequence of the form

p(n) = g
p1(n)
1 g

p2(n)
2 · · · gpr(n)

r ,

where gi ∈ G, r ∈ N, and pi : R → R are polynomials.
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Theorem A.1 ([BL07, Thm. A∗]). Any GP map g : Z → [0, 1) has a represen-
tation g(n) = τj(p(n)Γ), where X = G/Γ is a nilmanifold with G connected and
simply connected, τ = (τ1, τ2, . . . , τdimG) : G/Γ → [0, 1)dimG are Mal’cev coordi-
nates, p : Z → G is a polynomial map, and 1 ≤ j ≤ dimG. Conversely, any map
g : Z → R of the aforementioned form is a GP map.

A.2. Quantitative equidistribution. Let X = G/Γ be a nilmanifold, with G
connected and simply connected. Throughout, we assume that X is equipped with
a Mal’cev coordinates τ as well as a metric dX .

Recall that X is equipped with a natural choice of measure, namely the Haar
measure µX . A sequence (xn)

∞
n=0 is equidistributed in X if for each continuous

map f : X → R,

lim
N→∞

1

N

N−1∑
n=0

f(xn) =

∫
X

fdµX .

We will also need a quantitative variant of this property. For δ > 0 and N ∈ N,
a sequence (xn)

N−1
n=0 is said to be δ-equidistributed in X if for every Lipschitz map

f : X → R, ∣∣∣∣∣ 1N
N−1∑
n=0

f(xn)−
∫
X

fdµX

∣∣∣∣∣ ≤ δ ∥f∥Lip ,

where ∥f∥Lip = supx∈X |f |+ supx,y∈X |f(x)− f(y)| /dX(x, y).

We let Xab = G/[G,G]Γ ≃ (R/Z)dab denote the so-called horizontal torus, which
is the largest torus that is a factor of X, and we let πab : X → Xab denote the corre-
sponding projection. We cite a criterion for equidistribution obtained by Leibman.

Theorem A.2 ([Lei05, Thm. C]). Let g : Z → G be a polynomial map. Then
(g(n)Γ)

∞
n=0 is equidistributed in X if and only if (πab(g(n)Γ))

∞
n=0 is equidistributed

in Xab.

A horizontal character η : G → R/Z is a continuous homomorphism with Γ ⊆
ker(η). Note that η vanishes on [G,G]Γ and hence induces a continuous homomor-
phism Xab → R/Z. Identifying Xab with (R/Z)dab allows us to identify η with a
vector k ∈ Zdab , and we set |η| = ∥k∥∞. The identification of Xab with (R/Z)dab

is generally not unique, but Mal’cev coordinates provide one distinguished choice.
We cite a simplified variant of the quantitative version of Leibman’s theorem.

Theorem A.3 ([GT12b, Thm. 1.16]). Let g : Z → G be a polynomial map. Then
there exists a positive real number C, which depends on X, τ , and g, such that the
following holds. For any δ ∈ (0, 1/2) and N ∈ N such that the sequence (g(n)Γ)N−1

n=0

is not δ-equidistributed, there exists a horizontal character η : G → R/Z such that
0 < |η| ≤ 1/δC and ∥η ◦ g∥C∞[N ] ≤ 1/δCN .

We record the following consequence of Theorem A.3, combined with the Schmidt
subspace theorem. Below, we say that a polynomial map g : Z → G has algebraic
coefficients if the corresponding map τ̃ ◦g is a polynomial with algebraic coefficients
(cf. eq. (6)).

Lemma A.4. Let g : Z → G be a polynomial map with algebraic coefficients.
Suppose that the sequence (g(n)Γ)∞n=0 is equidistributed. Then there exists a con-
stant c > 0 (dependent on G,Γ, τ , and g) such that for each N ∈ N the sequence

(g(n)Γ)
N−1
n=0 is O(N−c)-equidistributed in X.
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Proof. We argue by contradiction, assuming that the sequence (g(n)Γ)
N−1
n=0 is not

N−δ-equidistributed inX for some small δ > 0, to be determined in the course of the
argument. It follows from Theorem A.3 that there exists a real number C > 0 and
a horizontal character η : G→ R/Z such that |η| ≤ NCδ and ∥η ◦ g∥C∞[N ] ≤ NCδ.

Letting πab : X → Xab denote the projection to the abelian torus and identifying
Xab with (R/Z)dab , we can expand

(58) πab(g(n)) =

r∑
j=0

α(j)nj ,

where for every j, 0 ≤ j ≤ r, α(j) = (α
(j)
i )dab

i=1 ∈ Xab. Identifying η with a vector
k = (k1, k2, . . . , kdab

) ∈ Zdab , we have

(59)
∥∥∥k · α(j)

∥∥∥ =

∥∥∥∥∥
dab∑
i=1

kiα
(j)
i

∥∥∥∥∥ ≤ NCδ−j ≤ NCδ−1 ,

for every j, 0 ≤ j ≤ r. We have not guarantee that 1, α
(j)
1 , α

(j)
2 , . . . , α

(j)
dab

are
Q-linearly independent for some j. However, we can find a linear combination
β = (βi)

dab
i=1 =

∑
j wjα

(j), with wj ∈ Z, such that 1, β1, β2, . . . , βdab
are Q-linearly

independent. Then, we infer from (59) that

(60) ∥k · β∥ =

∥∥∥∥∥
dab∑
i=1

kiβi

∥∥∥∥∥ ≪ NCδ−1 .

On the other hand, it follows from the subspace theorem (see [Sch72]) that

(61) ∥k · β∥ =

∥∥∥∥∥
dab∑
i=1

kiβi

∥∥∥∥∥ ≫
(

max
1≤i≤dab

ki

)−dab−1

≫ N−Cδ(dab+1) .

Provided that N is sufficiently large and δ is sufficiently small, (60) and (61) are
contradictory. □

A.3. Orbit closures. Lastly, we discuss the behaviour of bounded GP sequences
under shifts. First, we record a consequence of Theorem 4.1 and other results in
[BL07]. Roughly speaking, it asserts that the class of bounded GP maps repre-
sentable by a formula of a given “shape” is closed under shifts. (See also Section
13 for an alternative formulation.)

Lemma A.5. Let g : Z → R be a bounded GP map. Then there exists d ∈ N0 and
a GP map h : Rd × Z → R such that, for every m ∈ Z, there exists α ∈ [0, 1)d such
that g(n+m) = h(α, n) for all n ∈ Z.

Proof. Let g(n) = f(Tn(x)) be the representation of g coming from Theorem 4.1
(using the notation therein). Assume first that X is connected and let τ : X →
[0, 1)d be some Mal’cev coordinates on X. Set h(α, n) = f(Tn(τ−1(α))). Then
h is a GP map by [BL07, Sec. 1.15]. For m ∈ Z, let α(m) = τ(Tm(x)). Then
h(α(m), n) = g(n+m) for all n ∈ Z. If X is not connected, then we can reduce to
the connected case by passing to an arithmetic progression. □

Finally, we mention a closure property of bounded GP maps from N to R. We
stress that the same conclusion does not hold after replacing N with Z.
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Lemma A.6. Let d ∈ N, h : Rd × N → R be a GP map, and (xi)
∞
i=0 be a bounded

sequence with values in Rd. Let us assume that the limit

g(n) = lim
i→∞

h(xi, n)

exists for all n ∈ N. Then g is a GP map.

Proof. This is a special case of [Kon21, Prop. 2.16]. Note that the assumption that
the limit above exists allows us to avoid the use of limits along ultrafilters, which
appear in [Kon21]. □
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