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Abstract

In this article, we provide a general description of a random stack of

solid particles. We consider fine particles of any shape distributed evenly

on a flat surface. The angular distribution of the particles is arbitrary. In

the absence of constraints imposed on the medium, the volume fraction is

expressed analytically according to the parameters of the problem. We thus

define a generalized strain measurement of the medium taking into account

the internal reorganizations of the microstructure which can then be used

in analytical mechanical models to predict their response. The approach is

verified digitally by generating digital stacks of fibers, disks and rectangular

particles.
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1. Introduction

Discontinuous composites are widely used in industrial processes due to

their low manufacturing costs, good processability and in some cases compa-

rable mechanical properties to those of continuous fiber composites. There

is renewed interest in this class of materials due to the development of recy-5

cling technologies that rely on grinding to create new discontinuous materi-

als [1, 2, 3]. Discontinuous composites consist of solid particles of finite size

immersed in a flexible matrix and distributed in a random or controlled man-

ner (see Fig.C.1). Depending on the industrial process and the application,

these solid particles can be fibers, chopped tows, tapes or platelets [4, 5]. For10

instance in Sheet Molding Compounds (SMC) or Prepreg Platelet Molded

Composites (PPMC), the solid particles are deposited randomly on a flat sur-

face resulting in an architecture which we will refer to as ”random stacks”.

The solid material is mainly layered in the vertical direction that corresponds

to the deposition direction. These materials are typically used in molding15

processes in which the suspension can be highly deformed by mechanical

loads applied along the vertical direction. The internal meso-structure is

then subjected to major in-plane and through-the-thickness geometric trans-

formations [6, 7, 8, 9, 5]. Since the particles are not cohesive, each particle

can move relative to the others changing the microstructure during the mold-20

ing process. The resulting microstructure will determine the final mechanical

performance [10]. It is generally acknowledged that this complex deforma-

tion behavior is governed by the mechanical properties of the meso-structure

[8, 11, 12] and the particle to particle interaction mechanisms [13] that affect

their displacements (such as frictional forces for compact systems or hydro-25
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dynamic interactions in the case of suspensions). The industrial use of these

materials is limited as accurate descriptions of their transformation during

the molding process are not available. In the absence of such understanding

it is difficult to control part to part variability during the molding process.

It has been shown that the mechanical response of a bed of packed fibers

under through-thickness compression is non-linear and depends on geomet-

rical parameters such as fiber volume fraction, initial fiber orientation and

fiber curvature [14, 15, 16]. In the absence of a matrix phase, there is no

relative displacement between the fibers during the compression. Van Wyk’s

law relates the compression pressure due to the elastic contribution of the

fibers to the fiber volume fraction [17]:

P ∝ φn − φn (1)

where P is the compression pressure, φ is the volume fraction of the fibers and30

n is the exponent which depends on the material and takes a value generally

between 3 and 5, depending on the deformation modes of the fiber. This

expression also introduces φ, which is equal to zero for continuous fibers (i.e.

with an infinite aspect ratio) and corresponds to the fiber volume fraction

when no compression force is applied (in an elastic dry system). We will35

refer to this state as the ”bulky” configuration, which is also referred to

in the literature as ”loose”, ”unloaded” or ”unforced packing” [14]. This

value is required to define the appropriate deformation metrics and to obtain

mechanical constitutive models. An analytical expression was derived by Toll

in [14] to relate the bulky fiber volume fraction to the orientation distribution40

and the fiber aspect ratio. This theory was then widely used in other models

to describe the mechanical compression of dry or lubricated fibrous systems
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[18, 11].

To understand more precisely the internal structure of random stacks and

the bulk mechanical behavior of the arrangement, some authors used numer-45

ical generations of packed particles. These algorithms can be classified into

two main groups. The first group of techniques is based on the Random Se-

quential Addition (RSA) algorithm [19]. Particles are successively added in

a domain considering the non-penetration between the particles. The place-

ment is determined to reach a targeted volume fraction. This purely geo-50

metrical method allows one to obtain digital materials with many particles

but it cannot represent physical materials, where the internal contact forces

and deformations of the particles govern the internal structure. The second

group of methods uses finite elements to generate digital materials [20]. In

this case, a large mechanical problem is solved by considering the particle55

deformations and all solid contacts. This produces realistic and complex

composite materials, where different deformation modes are involved (slid-

ing, shear and bending, transverse compression), as it is shown in Fig.C.2.

In [5], the authors studied the meso-structure of randomly dropped square

platelets to model an industrial molding process. They discussed the complex60

description of the resulting material for different compaction levels.

In this paper, we present a general analytical method to revisit Toll’s

description and calculate the solid volume fraction in random stacks of thin

solid particles. Then we will discuss these values for different particle geome-

tries and compare them with both experimental and numerical data from the65

literature. In particular, our description of the bulky configuration will be

compared to numerical simulations of random stacks. Then, we will discuss
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our modeling assumptions and especially the initial consolidation due to the

gravitational force, comparing it to the realistic direct simulation of [5]. We

will demonstrate that the proposed model predicts the volume fraction of70

real materials made of stacked thin particles.

Random microstructures are a result of interactions between solid particles

in a compliant matrix in industrial processes. In many cases, random microstructures

consist of an aggregation of solid particles. Such heterogeneous media can

be discontinuous, porous, without internal cohesion, resulting in complex75

behaviors when they are subjected to external loading. Manufacturing products

out of these materials usually induces transformations on several scales that

can affect their macroscopic behavior and mechanical response. Natural

granular media are a widely studied class of random microstructures. In

many cases, industrial precursor materials are created by a random dropping80

process of solid particles on a planar surface where they stack up and form a

layered structure. This type of precursor material microstructure is formed

in various industrial processes which involve short fiber suspensions and

composites, recycling of composites, paper industry, textiles, filters, biology,

chemistry, etc. [21, 11, 4, 22, 12, 1, 3, 23, 24]. We will call this class of85

microstructure ”random stacks”. Precursor materials are used as initial

materials in industrial processes to form useful products by subjecting them

to mechanical loadings such as transverse compression. The resulting final

microstructure is a function of the initial random stack microstructure hence

modeling approaches require appropriate descriptions of these precursor materials.90

The objective of this approach is to get a physical representation of the

microstructure of these materials, which can change significantly during the
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manufacturing process. These materials encompass fiber or platelet reinforced

composite materials. Their use in the manufacture of structural components

involves displacement over long distances, which will affect the mechanical95

response of the final part. The representation of these microstructures is

important for modeling the evolution of these materials and for capturing

some of the behaviors that cannot be treated by the usual continuum theories.One

such random stack is formed by dry fibers. A seminal study about the

transverse compression of dry fibers can be found in [17]. It is now established100

that the mechanical response of a bed of packed fibers under through-thickness

compression is non-linear and depends on geometrical parameters such as

fiber volume fraction, initial fiber orientation and fiber curvature [14, 15, 16].

When a matrix phase is present, the deformation of the bulk material induces

in-plane displacements and local deformations. If the matrix is a viscous105

fluid, fibers can be advected by the resulting flow of the in-homogeneous

suspension. The internal microstructure is then subjected to major geometric

transformations [6, 7, 8]. These behaviors were also observed for other types

of particles as strands and platelets [9, 5]. The similarity between fibrous

systems and granular media may be seen in [25], where the authors give110

experimental results concerning the particle volume fraction in such random

media. Similar mechanical responses are observed in lubricated compression

where friction effects play a major role. The mechanical behavior depends

on the initial microstructure and its deformation state as it evolves during

the transformation. An improved description of the initial microstructure115

of these random stacks needs to be taken into account to describe their

evolution under applied stress and deformation improving our ability to
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guide the processing of such materials to steer their microstructure to tailor

desired mechanical performance. In this paper, we propose a new approach to

describe the microstructure of these random stacks. The model presented in120

[14] for fibers is generalized to address a broader class of microstructures

addressing the stacking of thin particles. Analytical expressions for the

volume fraction of different type of solid particles are derived. Then, an

equation of state is introduced to describe the deformation state of these

media. This law establishes a relation between the different multi-scale125

transformations that generally occur during forming processes. It provides

a general kinematic description which can be used in a mechanical model to

describe the response of the microstructure subjected to external loading.

2. Theory

2.1. Modeling assumptions130

We focus on a certain class of thin materials such as fibers, fiber bundles

or particles that are randomly dropped on a planar surface where they ”pile

up” and create a layered structure that we call ”random stack”. A stack is

made up of the same particles. This type of microstructure has similarities

to granular media, which are also random aggregates of particles, however135

layered structures require a more complex description [25, 26].

In this study the generation of random stacks relies on four assumptions:

1) Particles are assumed to be of constant thickness, finite dimension

and thin as our description of stacks will require a simplification to de-

scribe contacts between particles. Contact directions are perpendicular140
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to the planar surface on which particles are dropped down. It simpli-

fies the formulation, which is not valid for granular media or nested

particles. No partial contact nor nested contacts are permitted.

2) Planar orientation distribution is assumed as the particles in a layer

lie in the same plane and form a layered stack and hence no inter-145

penetrations are allowed. The planar orientations can be described by

a (2D) distribution function.

3) Uniform spatial distribution assumption implies that the particles

are dropped without any spatial correlations between particles’ posi-

tions which leads to statistically homogeneous microstructures.150

4) Statistically equivalent layers assumption allows to average quan-

tities over the layers and neglect boundary conditions at the top and

bottom of the microstructure.

The resulting microstructure is a layered structure of particles randomly

added to the stack. As there is no interpenetration and the distribution155

is random, particles of a certain length must stack creating internal voids

or porosities inside the microstructure. If no loading is applied (no force

on boundaries and no body force), the stack lies in an initial uncompressed

state referred to as ”bulky”. In this state, the solid volume fraction is low

and we will see that it can be predicted from the geometrical parameters of160

the problem. Solid volume fractions lower than the bulky volume fraction

correspond to ”suspended particles”, which may be the case if particles are

immersed and dispersed in a matrix. If the volume fraction is higher than the

bulky volume fraction, this configuration is referred as ”compacted stacks”.
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Firstly, we will only consider unloaded loose stacks. In this paper, quantities165

related to the bulky state will be noted with an over line symbol.

Finally, particles are assumed to be non cohesive; In-plane transforma-

tions are allowed to rearrange the particles within the microstructure. For

instance, consider an evolving fibrous microstructure where fibers are aligned

during a transformation. It may be due to the presence of a fluid ma-170

trix which imposes in-plane drag forces on the fibers. In the same way, a

squeeze-flow will transport the fibers in the plane. In-plane forces may be

considered to represent friction effects. Conversely, a compression of a fibrous

microstructure without internal rearrangements leads to the creation of new

contacts between particles, the latter will deform and the vertical loads to175

compress it further will increase. In our work, we take into account these

internal rearrangements which will affect the internal forces thus requiring a

new geometric description for random stacks.

2.2. Stacking of straight fibers with an isotropic angular distribution

First, we consider a stack of short, straight fibers. The fibers are of length180

L and distributed according to an isotropic angular distribution in the plane

: ψ(θ) = 1/(2π). When forming the stack, if two fibers intersect, the second

will stack on top of the first and end up on the top layer. In the absence of

constraints imposed on the medium, the stack consists of successive layers

containing fibers and porosities (see Fig. C.3). The characterization of the185

microstructure is done using the volume fraction of fibers φ = Nv/V , where

N denotes the number of fibers distributed in the volume V , and v is the

volume of a fiber. In the absence of constraints, the stack is said to be

”bulky”. The stack is in a loose state which maximizes its porosity fraction
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by verifying that each fiber rests at least on another or on the deposition190

surface. Using the assumption that all layers are statistically equivalent,

the volume fraction is identical in each layer of the stack and is equal to φ.

It is then necessary to determine an analytical expression of the density of

fibers in each layer of the microstructure by relating it to the probability of

intersection between two fibers. Some statistical geometry tools, described195

hereafter, allows us to establish these models. Statistical geometry tools,

described below, are used to build these models.

According to the Crofton’s formula [27], if we consider any two curves C

and C ′, the number of their intersections is related to their lengths, respec-

tively L and L′: ∫
Γ

χ(C ∩ C ′)dΓ = 4LL′ (2)

where χ(C ∩ C ′) denotes the number of intersections between the two curves.

The integration space dΓ represents the set of transformations (translations

and rotations) of the two curves, it is the set of possible configurations.

This formula indicates that the sum of all possible intersections between the

two curves (accounted with all the translations and rotations) represents an

area equals to four times the product of lengths. It is demonstrated by first

considering two small straight segments of respective lengths d` and d`′. The

integral then becomes: ∫ 2π

0

| sin(θ)|dθd`d`′ = 4d`d`′ (3)

where θ is the relative angle between the two segments which can take all

the values between 0 and 2π. This is the area shown in Fig. C.4 which is

integrated between 0 and 2π. Eq.(3) can then be integrated along the two200

curves in accordance with Crofton’s formula Eq.(2).
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The area of the configuration space is given by:∫
Γ

dΓ =

∫ L′

0

∫ L

0

∫ 2π

0

dθd`d`′ = 2πLL′ (4)

We now consider two consecutive layers of the stack of straight fibers of

length L. Each fiber of layer #2 rests on at least one fiber of layer #1. By

the assumption of equivalence of the layers, it can be considered that the two

layers contain the same number of fibers. Two surfaces can be defined from

previous relations. We define A as the overlapping area, i.e. the average zone

around a fiber allowing crossings with a second fiber present in this zone. It

is defined using the Crofton’s formula (2)

A =
1

2π

∫
Γ

χdΓ =
2

π
L2 (5)

We also define the area S from Eq.(4)as:

S =
1

2π

∫
Γ

dΓ = L2 (6)

The intersection probability between two random fibers becomes the ratio of

A over S. Then, S is interpreted as the average area which contains only

one fiber, or the inverse of the areal density of fiber per layer. Hence, S is

directly related to the fiber volume fraction in the bulky state by:

φ =
v

Se
(7)

where v and e are the volume and the thickness of a fiber respectively. The

analytical value of the fiber volume fraction of the bulky stack is thus ob-

tained: φ =
v

L2e
∝ 1

r
, where r = L/w represents the fiber shape factor. The

value of the multiplicative constant depends on the cross-section of the fibers
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and is equal to π/4 for an elliptical cross-section. Note that the fiber volume

fraction only depends on the geometry of fibers in the case of a random stack

with an isotropic angular distribution. We also establish the relationship

between the two surfaces defined in Eqs. (5) and (6) by the expression (8)

which will be generalized later:

A

S
=

2

π
(8)

2.3. Generalization to arbitrary shaped particles

Results in Eqs. (5), (6), (7) and (8) are extended to random stacks of

arbitrary shaped particles. We start by considering curved fibers of length L,

distributed according to a given angular distribution in the plane ψ. ψ(θ)dθ is205

the probability of finding an element of length along a fiber oriented between

θ and θ+ dθ. ψ must fulfill the normality condition
∫ 2π

0
ψ(θ)dθ = 1. We can

note that the angular distribution is a symmetric function: ψ(−θ) = ψ(θ).

We introduce c the average number of contacts between two fibers, which

is a function of the curvature of fibers. It is equal to 1 for straight fibers210

because there is always only one intersection. c is equal to 2 when the fibers

form circles and c is equal to 4 when the fibers fold to form a U (as shown

in Fig. C.5).

We also define the isotropy factor α by:

α =
π

2
〈‖d~̀∧ d~̀′‖〉 (9)

This parameter measures the effect of the angular distribution on the fiber

volume fraction. d~̀ and d~̀′ are vectors tangent to the fibers and represent215

the local orientations of fibers. α is equal to 1 for fibers equally distributed
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in all directions or randomly curved (Fig. C.6). α is equal to π/4 for fibers

oriented in two random perpendicular directions. α tends towards 0 for

straight and parallel fibers (Fig. C.6). Examples of the calculation of these

two parameters are given in 5. Solving Jeffery’s equation for a population220

of straight fibers in a planar shear flow allows one to obtain the evolution of

α. Its evolution is related to the second invariant of the orientation tensor,

which also represents the evolution of relative orientations in the population.

The representation of α is a function of the second invariant of A2 and is

shown in Fig. C.7 . Examples of the calculation of c and α are presented in225

5.

With the help of these two geometric parameters α and L, Eqs. (5) and

(6) can be generalized for any stacks taking into account multiple intersec-

tions:

Ac =

∫
Γ

ψχdΓ =
2

π
αL2 (10)

Sc =

∫
Γ

ψdΓ = αL2 (11)

Eq.(10) allows one to calculate the average area when two fibers intersect

(A), while Eq.(11) allows one to calculate S and the areal density of fiber

per layer. The derivation of these relationships is given in the 5. The ratio

between these two areas always verifies the condition given in Eq.(8).230

Noting that the area S contains on average a single fiber, one can combine

Eqs. (7) and (11) to obtain the volume fraction of fibers for a stack of fibers

in the general case:

φ =
cv

αL2e
=

c

αr
(12)
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where r = L/w r = L2e/v is the shape factor of fibers. For long fibers,

r ∼ L/w.

Any random fibrous stack can thus be described in its bulky state, i.e.,

in an unloaded state, using its bulky volume fraction (12). This latter is a

function of the geometry of fibers, angular distribution α defined in Eq.(9),235

and fiber curvature characterized by c, which represents the average number

of contacts or crossings between two fibers. Note that according to Eq.(12), c

is related in the case of high curvatures (where the convex hull of the curved

fiber still has an high aspect ratio) with the fiber length ` and the linear

length of its convex hull L:240

c =

(
`

L

)2

and φ =
1

αr

(
`

L

)2

(13)

considering the product of Eq.(12) with an effective fiber content ϕ = `w
LW

,

where w is the fiber width and W is the convex hull width. In Eq.(13), the

number of crossings c has the same expression than as the usual definition

of the hydraulic tortuosity [28].

It is noteworthy that the previous results remain unchanged during the245

passage from a curved fiber forming a lace to a particle without a hole sur-

rounded by this same lace. Thus, we see that a stack of particles of any shape

is also characterized by the analytical expression (12). Table [C.1] gives the

expressions of the bulky volume fractions of stacking of different shapes of

particles for different particle shapes. The calculations are detailed in the250

Appendix B.
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2.4. Comments

From the Eq.(12), we can extract some additional results about random

stacks. It can be seen that the bulky volume fraction depends both on the

occupied area v/e and the length of the fiber or the perimeter of the particle.255

Thanks to the isoperimetric theorem [29], it can be established that the

maximum volume fraction in the absence of constraints corresponds to that

of a stack of disks, so φmax = 1/(2π).

Note also that for the case of fibers, the volume fraction diverges for

small values of α, which corresponds to aligned fibers. However, the volume

fraction must be less than 1. This is due to the fact that in our calculations

we have considered fibers as 1D objects, which tends to infinity if they are

parallel. We have just seen that the volume fraction cannot exceed the value

of 1/(2π). We can thus establish a domain of validity for the isotropy factor

beyond which, the alignment of the fibers requires one to consider the width

of the fibers (see the result for the rectangular particles in [C.1]). We obtain:

α > αmin = 2π
cv

L2e
∝ 2πc

r
(14)

For fibers of rectangular section, with an aspect ratio r = 25, this corresponds

to a limit value αmin ' 0.25. The corresponding situation is shown in Fig.260

C.8.

It can be noticed than that the form of the equations in C.1, especially the

relation for rectangles is really similar than as the one which is introduced

in [30]. The difference comes from the fact that in the real case studied

by the authors, the microstructure is not bulky, due to the collapse of the

microstructure under the weight of its particles. The same kind of configu-
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rations is also studied in [5]. To understand the effect of the collapse of the

microstructure, the compaction measurement may be related to the num-

ber of contacts per particle nc. In the bulky state, it is assumed that each

particle is in contact (on average) with only two particles, one above and

one below. Then, nc = 2 if λ = 1. It seems reasonable to suppose that the

number of contact evolves linearly with λ−1. For different values of φ, one

can reuse the previous geometrical reasoning and the definitions of A and c

(Eq. (10)). Then, the number of contacts on a fiber is equal to the number

of fibers N which have their center-lines embedded in a volume Ae (where

e is the fiber thickness) around the first fiber, multiplied by c, the average

number of intersections between two fibers. Introducing the volume fraction

φ and Eq. (12), it comes:

nc = Aec×N =
2c

π
× (φ/φ) (15)

It will allow us to define the compaction as the ratio between φ and φ

which will be reformulated within a mechanical framework in Eq. (18). Then,

the number of contacts per fiber evolves linearly with λ−1. This linear depen-

dence on the volume fraction has already been observed in 3D suspensions

[14]. A microstructure compacted twice has an average number of contacts

per particle equals to 4. From nc, the average length between contact points

along fibers `c may be defined as the ratio between the fiber length and 2nc.

In the case of stacked fibers, it comes:

`c =
Lλ

2
(16)

Then, comparing with results given in [5] and [30], it appears that the studied

microstructures are already compacted due to their weigth weight .
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2.5. Kinematic equation

The relation (12) also allows one to calculate the average height of random

stacking. By noting % the number of particles distributed per unit area, the

bulky thickness of the stack is given by:

h =
%v

φ
=
α

c
%L2e (17)

So far, results have been obtained for stress-free microstructures. That is265

to say that the stack occupies a maximum volume. We have seen that this

unloaded state can be characterized by the bulky volume fraction (12) or the

bulky height of the stack (17), which are functions of the geometry, angular

distribution and the surface density of the particles. If we consider a trans-

formation of the microstructure causing one of these parameters to vary, the270

volume fraction and the thickness of the stack will change without however

inducing compressive forces in the medium. Imagine such a microstructure

in a suspension flow. In the absence of friction, the particles are dragged by

the fluid and the thickness of the stack decreases without constraints.

Now consider a fibrous microstructure in a shear flow [31]. The fibers

gradually align, which decreases the value of α and increases the volume frac-

tion. In the absence of friction, there are still no stresses induced by these

internal rearrangements. It is thus possible to generally define a deformation

measurement taking into account the reorganizations of the microstructure

for stacks of particles. In a way analogous to classical continuous mechan-

ics, where one defines a stretch compared to a state of reference assumed

unloaded, one introduces the parameter of compaction λ defined by:

λ = h/h = φ/φ (18)
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where h and φ denotes respectively the height and the volume fraction of

particles of the stack. h and φ always denote the values in the bulky state,

free from compression stresses. We can thus re-express (12) and (17) to

obtain a kinematic equation connecting the various transformations of the

microstructure to the compaction parameter:

h

%v
=

1

φ
= αλ

L2e

cv
(19)

We can explain the physical meaning of (19) by means of its time derivative:

ḣ

h
− %̇

%
= − φ̇

φ
=
α̇

α
+
λ̇

λ
− ċ

c
+
ė

e
(20)

considering here that L and v are constants. The first two terms on the left275

hand side represent the vertical compression and the induced flow, the third

term represents the consolidation of the material. These terms describe the

macroscopic deformations. On the right hand side of the equation, the first

term expresses the reorganizations of the microstructure and the second term

is the true strain of the medium (that which induces vertical stresses). The280

last two terms correspond to the deformations of the particles (see Fig. C.9).

A basic application of Eq.(19) allows one to find van Wyk’s law for the

compression of fibrous systems [17]. Let’s consider a stack of straight fibers

(c = 1). The characteristic distance between contact points may be con-

sidered as proportional to the compaction and the fiber length 16. From

Eq.(20), the strain increment may be written as:

dε =
dλ

λ
(21)

We assume that the fibers bend during the compression. Then, the stiffness

of the material may be estimated as inversely proportional to the cube of the
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characteristic distance between contact points:

K ∝ 1

`3
c

∝ 1

L3λ3
(22)

The compression pressure P is equal to the applied force on the area S = αL2.

If the force is equal to the product of the stiffness (22) and the strain (21),

the increment of compression pressure is:

dP ∝ α−1L−5d(λ−5) (23)

Applying Eq.(19), it becomes the more classic form:

dP ∝ α4d(φ5) (24)

which gives after integration the classic form of van Wyk’s law:

P ∝ 1− λ−5

αL5
(25)

∝ α4(φ5 − φ5
) (26)

where φ is the bulky volume fraction. A more detailed calculation that is

not developed here would lead to the coefficient of proportionality which

corresponds to the compression modulus of the fibrous material (see [14] for

more details about the compression of fibrous media).285

A general method is thus obtained for describing the microstructures of

fibrous stacks and more generally the random stacks of particles. Thanks to

the analytical formula of the bulky volume fraction, we were able to obtain

a characterization of the true deformation of the medium (which induces290
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vertical forces), taking into account the internal reorganizations of the mi-

crostructure and the various possible transformations for non-cohesive par-

ticles. In the following, the analytical formulas of the volume fraction of

different stacks are compared with a numerical approach.

3. Computational modeling295

First, we propose a numerical generation algorithm to reproduce random

stacks for different particle geometries, with the assumptions used to de-

rive the analytical packing models. The generated microstructures will be

compared to real cases from the literature.

3.1. Virtual microstructure generation300

A stacking generation algorithm adapted to the studied situations is im-

plemented in Python. A periodic square domain is used to represent an

infinite deposition area. N particles are deposited on this domain, with a

uniform spatial distribution and a given angular distribution. The angles are

taken in the horizontal plane, transverse to the deposition direction. The305

particles remain in the plane during the entire process. Contacts between

particles are calculated for each new particle added to the stack. When a

contact is detected, the new particle is added onto the next layer. There is

no charge applied, the particles are not subject to gravity force and the stack

is in a free unloaded state.310

A simple stack generation algorithm is implemented in Python in order

to generate structures verifying stack modeling assumptions. On a periodic

square domain, N particles are deposited according to a uniform spatial

distribution and a given angular distribution. The contacts between particles
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are calculated accounting for the periodicity of the domain. Intersections315

between particles are detected, then, layers are reconstructed considering

particle addition order. There are no applied loads, particles have no mass,

stacks are in loose unloaded state.

Generation parameters are:

• Disks: diameter = 1, thickness = 1, number of disks = 11250 , domain320

length = 15

• Strands: length = 1, width = 1/2, thickness = 1, number of bundles

= 4000, domain length = 10

• Squares: length = 1, thickness = 1, number of platelets = 11250 ,

domain length = 15325

The volume fraction is calculated from the resulting bulky thickness using

Eq.(17). Twenty realizations of stacks are generated in each case. The nu-

merical average bulky volume fractions are compared with values predicted

from the models reported in Table [C.1]. Results are presented in Fig.(C.11-

C.14).330

3.2. Comparison with published results

The synthetic microstructure generator and analytical models predict the

solid volume fraction in a reference configuration called ”bulky state”, in

which the body forces are ignored. In physical samples, the gravitational

force causes a densification of the microstructure.335

In our model, in the bulky state, each stiff particle remains in the plane,

and has on average two contacts with other particles: one with the upper
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particle, and another with a lower particle. Assuming that rigid particles

do not deform under body forces, the compaction state depends only on

the number and distribution of contacts. In a gravitational field, the solid340

bodies fall before reaching a stable state in the stack. For a straight fiber,

this stable state corresponds to a configuration with two support points per

fiber, so on an average, four contact points per fiber (two contacts below, and

two contacts above) (see Fig. ??). In the same way, for convex particles, a

stable state requires two contact lines per particle, so also four contacts per345

particle. As the particles are very thin, most of them remain in-plane and

out-of-plane effects are negligible. Thus each particle lays on top of two other

particles to obtain a stable stacking, so that the average number of contacts

per particle becomes 4. Then, as shown in section 1, this corresponds to a

compaction λ = 0.5, so a volume fraction multiplied by 2 from φ and half350

the thickness than in the bulky state (Eq. (15)) . This hypothesis will be

confirmed with the help of physical stacks.

In [5], the authors used numerical simulations to recreate digital compos-

ite materials composed of square platelet. They are deposited on a planar

domain bounded by vertical walls. In the first step, the platelets are deposited355

and stacked. As gravity is taken into account, the platelets fall under their

own weight and stop when a stable position is found. Next, a mechanical

solver is used to compress the resulting material, taking into account par-

ticle deformations, mechanical response, and friction between particles. As

can be seen in Fig. 5 in [5], different points differ from our assumptions in360

the initial configuration (after the deposition phase). Along the sidewalls,

some platelets deviate from the plane in a region of double the length of
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the particle. In the center of the stack, the particles are predominantly in-

plane. During the first phase of compression, all particles tend to return to

the plane. Similar to our numerical generation, the lower layers seem to be365

denser than in the rest of the stack, and the upper layers are not full. Also

this numerical study is carried out on a single statistical realization. The

further comparisons will be done considering the statistical variability quan-

tified from our previous simulations for squared particles, corrected by the

multiplicative offset to match the degree of compaction after their numerical370

deposition under gravity.

From publication data, the thickness after the deposition process is h0 =

11 mm, and the compression velocity is ḣ = −12.2 mm/s. Platelets are

squares of length 12.7 mm and thickness 0.14 mm. 1400 platelets are deposed

on a finite domain of dimensions 100 mm x 100 mm. The angular orientation

is random and a uniform orientation distribution is considered. The volume

fraction after the deposition process is given as φ = 31.3%. According to

Eq. C.1, the bulky volume fraction does not depends of any geometrical

parameters and is:

φ =
1

4 + π
' 14% (27)

Following our assumption for the consolidation under gravitational force, the

predicted value for the volume fraction is:

φ1 = 2φ ' 28% (28)

As the total thickness is reduced with a constant velocity and the quantity of

platelets is conserved, the platelet volume fraction versus time is expressed
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as:

φ(t) = φ1 ·
h0

h
=

φ1

1 + ḣt/h0

(29)

Data from Fig.4.b of [5] and values predicted by Eq.29 are compared in

Fig.C.10. As the initial platelet volume fraction (φ) is slightly different be-

tween the publication and the one in Eq.(28) there is an offset between both

curves. This initial offset is eliminated in the corrected analytical solution375

plotted in Fig.C.10, a very good match is obtained up to φ = 0.7. The de-

viation for φ > 0.7 arises because the platelets become thinner under high

mechanical loading. This mechanism is not included in our model where par-

ticles are assumed to be infinitely rigid. Nevertheless, the very good match up

to φ = 0.7 confirms that our model can be used to describe the deformation380

in various applications for this class of materials.

4. Results and discussions

The analytical bulky volume fractions (in dot lines) and the average values

from the numerical simulations (in black lines) are plotted in Fig. Figs.(C.11-

C.14) for different particle shapes. The numerical volume fractions are rep-385

resented in gray lines for each realizations.

In each case, the numerical estimation of the bulky volume fraction con-

verges toward the analytical value when the number of particles within the

stack increases.

As shown in Fig. C.15, the number of particles in the bottom layers390

(level z/e = 0) is generally higher than in the rest of the stack. It is due

to the higher probability to stack in the bottom layers, as all particles have

to stack first on the bottom plate and then pile up. At the other end, the
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top layers which are placed last are incomplete, as the filling of layers is not

uniform. The number of particles slowly decreases to zero in the upper layers.395

In the middle of the stack, the density of particles converges on average to

the analytical value Θ. So, most layers are statistically equivalent if there

are sufficient number of layers in the stack. Then, the influence of bottom

and top boundaries can be neglected. Comparing Fig. Figs.C.11-C.14, the

convergence is reached for an areal density higher than 20 particles per unit400

area (with unit particle length), which corresponds to almost 100 layers in

the bulky stack.

The effect of boundaries is important in case of fibers and bundles (en-

hanced particles). For such cases, the thickness is not well defined, because

of unavoidable statistical fluctuations. In such cases, the thickness can be405

defined with a limit Θ/2. It provides a good estimation of the average thick-

ness to calculate the bulky volume fraction which can be compared to the

analytical value.

The comparison with numerical results from [5] show that the proposed

statistical model predicts fairly well the platelet volume fraction (φ), even in410

a physical case with gravity effects. Although the analytical model under-

estimates φ by 3% at t=0 (28 % instead of 31 %), it nevertheless gives the

correct trend. To further confirm this, predicted values are multiplied by the

constant factor of 31
28

to get the same initial value. As shown in Fig. C.10 a

good match is obtained up to the volume fraction of 70%. In [5], the authors415

explain that they observe small platelet deformations under shear and bend-

ing modes until 50%, then deformations by thickness compression arise. Our

model shows good agreement and captures the evolution of volume fraction
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after important platelet deformations.

To derive the analytical formulas, the assumption of infinite domain must420

be used. We show in the different bulky simulation that it is sufficient to

predict the volume fraction values for enough particles in the stack (an areal

density generally equals to at least 20 from Fig. C.14). In the second case,

the platelets are stacked in a finite box, so boundary conditions have a certain

effect on the stack construction: the local volume fractions are lower along425

the walls (see Fig. 5 in [5]). Along the upper and lower walls, we explained

that the local volume fraction is also different (higher along the lower wall

and lower along the upper wall, also see Fig. 5 in [5]). These errors tend to

compensate for each other.

Finally, it is noteworthy that authors from [5] simulate only one realiza-430

tion of platelet stack. According to the number of components that they

used, the particle density equals to 22.58. The statistical variability can be

estimated from Fig. C.14, if we neglect the effect of boundary conditions.

Then, the standard deviation is equal to 1.5%. For the stack densified under

gravity, we can consider also that this standard deviation is multiplied by435

2 (as the average value is multiplied by 2), so an initial standard deviation

of 3%. It reveals that our analytical model, without the initial correction,

remains in the error interval.

5. Conclusion

Microstructures of randomly distributed particles are ubiquitous and may440

be represented as a random layered stack of non-cohesive particles. This

model material can represent the microstructure of Sheet Molding Com-
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pounds or Bulk Molding Compounds. For such cases, the resulting mi-

crostructure is mainly influenced by the contacts which induce particle stacking

the stacking of the particles. When no loads are load is applied on the stack,445

the microstructure is referred to as said to be bulky and may can be described

with by its bulky volume fraction. This values only depends on the geometri-

cal parameters (particle shape, curvatures and orientation distribution). An

equation is derived to obtain an analytical expression of the bulky volume

fraction for various particle shapes. This formula is verified by conducting450

numerical generations of random stacks.

In a general case, a random layered microstructure may be described

introducing the compaction as the ratio of the bulky volume fraction to

the compacted volume fraction. It leads to a kinematic equation which de-

scribes the deformation state of the random microstructure with all internal455

multi-scale rearrangements of the particles. Such multi-scale transformations

are typically present in composite squeeze-flow processes with transport and

realignment of particles due to fluid drag forces. Then, the obtained rep-

resentation addresses the evolution of a population of planar particles with

local contact, which gives more geometrical and statistical information about460

the microstructure than usual continuum approach.This description may be

incorporated to generalize mechanical models when considering the mechan-

ical response of the evolving microstructure and its effect on a squeeze-flow,

which will be investigated by the authors in future works.
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Symbols465

A overlapping area

α isotropy factor

c average number of crossings between two particles

e particle thickness

h microstructure thickness

h bulky thickness

L fiber length (or particle perimeter)

` particle length

λ compaction

N number of particles

~p particle orientation vector

φ particle volume fraction

φ bulky volume fraction

ψ orientation distribution function

r particle shape factor

% number of particles per unit area

S unit area

θ local orientation

Θ areal density of particles per layer

v particle volume

w particle width
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Appendix A. Demonstration of the general formula

The previous proof is based on obtaining equality (8) whatever the an-

gular distribution and the geometry of the particles. To do this, this result

should be obtained for a stack of fibers in the general case by showing that470

the ratio between A and S remains constant.

We start by recalling a relation resulting from the equations (2) and (4)

in the case of an isotropic angular distribution:∫
χdΓ =

2

π

∫
dΓ (A.1)

which justifies why the term 2/π appears in equation (8). More generally,

we use the definitions in Eqs (10) and (11), and by introducing the change

of variable: 1
2π

Γ∗ = ψΓ on the configuration space to recover an isotropic

configuration, we obtain:

Sc =

∫
ψχdΓ =

∫
χ
dΓ∗

2π
=

2

π

∫
dΓ∗

2π
=

2

π

∫
ψdΓ =

2

π
Ac (A.2)

where we used the relation (A.1). Thus, whatever the stack of fibers, the

relation (8) remains true. The quantities Ac and Sc can then be written in

the form:

Ac =

∫
ψχdΓ =

2

π
αL2 (A.3)

Sc =

∫
ψdΓ = αL2 (A.4)

where we reintroduce the isotropy factor defined in an equivalent way by:

α =

∫
ψχdΓ

1
2π

∫
χdΓ

and α =

∫
ψdΓ

1
2π

∫
dΓ

(A.5)
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Returning to the calculation of (3) in the case of any angular distribution,

we obtain a last definition of α given by (9).

To clarify the calculation of (A.2), the change of variable used is equivalent

to shearing the configuration by correcting the lengths of the fibers by the

isotropy factor to keep them constant. By defining a corrected length: L∗ =

αL, we find the form of the equation (6):∫
ψdΓ = αL2 =

1

α
L∗2 = LL∗ (A.6)

We can also obtain a relation similar to (5) :∫
ψχdΓ =

2

π
LL∗ (A.7)

Appendix B. General formulas for integrals on the configuration

space475

Configuration space:

1

2π

∫
dΓ =

1

2π

∫
dθd`d`′ = LL′ (B.1)

∫
ψdΓ =

1

2π

∫
dθd`d`∗ = LL∗ (B.2)

with `∗ = α`′, that we obtain by the change of variable introduced in 5.

Crofton’s formula [27]:

1

2π

∫
χdΓ =

1

2π

∫
| sin(θ)|dθd`d`′ = 2

π
LL′ (B.3)
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∫
ψχdΓ =

1

2π

∫
| sin(θ)|dθd`d`∗ =

2

π
LL∗ (B.4)

with
∫ 2π

0
| sin(θ)|dθ = 4.

Appendix C. Sample calculation480

The previous results are applied here to characterize different particle

stacks and compute the bulky volume fractions given in [C.1]. The calcula-

tions are based on the explicit calculation of A and α as a function of the

particles, which gives the other results.

485

Stack of monodisperse disks: We consider a stack of cylindrical parti-

cles, of thin thickness compared to their diameter d. Their axis of symmetry

remains vertical in the stack. Two disks intersect if their relative center-

to-center distance is less than their diameter. The overlapping surface A

therefore draws a disk of radius d. By applying the formula (8), we obtain:

S =
π2d2

2
(C.1)

This makes it possible to obtain the bulky volume fraction from the definition

(7) :

φmonodisperse =
1

2π
(C.2)

It is worth to note that the volume fraction is then independent of the pa-

rameters of the problem. By applying the definition of α (9) on the circular

contours of disks, we trivially obtain that α = 1. We deduce the value of

c from the bulky volume fraction using (12): c = 2, which means that the

number of crossings between two circles is equal to 2 (trivial result).490
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Stack of rectangular particles: We now consider rectangular particles,

of length `, width w and thickness e. The thickness is small compared to

other dimensions to verify the stack modeling assumptions. We also define

the aspect ratio of the particle by r = `/w.495

To describe the angular distribution, it is more convenient to redefine ori-

entation parameters similar to α using the global orientations of the particles

and not the local orientations of their outlines. We introduce:

α′ =
π

2
〈‖~p ∧ ~p′‖〉 (C.3)

β =
π

2
〈|~p · ~p′|〉 (C.4)

where ~p and ~p′ represent the direction vectors of two different particles

(aligned along the length of the rectangular particles). α′ measures the

isotropy of the distribution. It is equal to 1 for an isotropic distribution

in the plane and 0 for aligned particles. Conversely, β′ measures particle

alignment. It is equal to π/2 for aligned particles and 1 for isotropic dis-

tribution. If we consider the set of configurations with fixed orientations

allowing the overlap of two particles, we see that we draw a figure which can

be split into 6 zones which can be expressed as a function of α′, β′, ` and w

(see Fig. C.16). We thus obtain the overlapping area:

A =
2

π
`w
(
α′r + 2β′ + π + α′r−1

)
(C.5)

Using (8) and (7) the bulky volume fraction of rectangular particles reads:

φrectangles =
1

α′r + 2β′ + π + α′r−1
(C.6)
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One can also analytically calculate the isotropy factor α from its definition

(9). For this, we consider the sine of the relative angles of the sides two by

two of two particles that we average on the contour. We then obtain:

α =
α′r + 2β′ + π + α′r−1

r + 2 + r−1
(C.7)

The average number of crossings between two rectangular contours can then

be obtained by (12) :

c = 4

(
α′r + 2β′ + α′r−1

α′r + 2β′ + π + α′r−1

)
(C.8)

These results can be simplified for specific configurations. We give the results

for aligned rectangles and square particles. In the first case, α′ = 0 et

β′ = π/2. In the second case, α′ = 1 = β′ and r = 1. The bulky volume

fractions are obtained in the two respective cases:

φaligned =
1

2π
and φsquares =

1

4 + π
(C.9)

Stack of polydisperse disks: Finally, we consider a stack of polydis-

perse disks. Now the overlapping area A between two particles draws a disk

of radius 1
4
〈(d+d′)2〉, where 〈·〉 denotes the average operator. The calculation

of A gives:

A = π〈d〉2
[
1 +

1

2

σ2

〈d〉2

]
(C.10)

with 〈d〉 the average particle diameter and σ2 the variance of the diameter

distribution. This gives the bulky volume fraction:

φpolydisperse =
1

2π

[
1 +

1

2

σ2

〈d〉2

] (C.11)
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44 (2) (1985) 131–140.

[26] J. E. Andrade, C. Avila, S. A. Hall, N. Lenoir, G. Viggiani, Multiscale570

modeling and characterization of granular matter: from grain kinematics

to continuum mechanics, Journal of the Mechanics and Physics of Solids

59 (2) (2011) 237–250.

[27] L. A. S. Sors, L. A. Santaló, Integral geometry and geometric probability,

Cambridge university press, 2004.575

[28] B. Ghanbarian, A. G. Hunt, R. P. Ewing, M. Sahimi, Tortuosity in

porous media: a critical review, Soil science society of America journal

77 (5) (2013) 1461–1477.

[29] R. Osserman, The isoperimetric inequality, Bulletin of the American

Mathematical Society 84 (6) (1978) 1182–1238.580

[30] O. Rahli, L. Tadrist, R. Blanc, Experimental analysis of the porosity

of randomly packed rigid fibers, Comptes Rendus de l’Académie des

Sciences-Series IIB-Mechanics-Physics-Astronomy 327 (8) (1999) 725–

729.

37



[31] S. G. Advani, C. L. Tucker III, Closure approximations for three-585

dimensional structure tensors, Journal of Rheology 34 (3) (1990) 367–

386.

[32] S. Sultana, A. Asadi, J. Colton, K. Kalaitzidou, Composites made from

cf prepreg trim waste tapes using sheet molding compounds (smc) tech-

nology: Challenges and potential, Composites Part A: Applied Science590

and Manufacturing 134 (2020) 105906.

38



List of Figures

C.1 Carbon Sheet Molding Compounds [32] . . . . . . . . . . . . . 40
C.2 Numerical deposition of square platelets before and after com-

paction[5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41595

C.3 Depositions for different particle geometries. Colours repre-
sent the location of the layer in the stack in the vertical direc-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

C.4 Overlapping area. . . . . . . . . . . . . . . . . . . . . . . . . . 43
C.5 Number of contacts c for different configurations. . . . . . . . 44600

C.6 Values of isotropy factors for different configurations. . . . . . 45
C.7 Isotropy factor α as a function of the second invariant of the

orientation tensor A2 . . . . . . . . . . . . . . . . . . . . . . . 46
C.8 Top view of a fibrous microstructure with α = αmin. Colors

represent the altitude of each fiber. . . . . . . . . . . . . . . . 47605

C.9 Multi-scale transformation mechanisms. . . . . . . . . . . . . . 48
C.10 Comparison between analytical model and numerical simula-

tion from [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C.11 Distribution of disks. . . . . . . . . . . . . . . . . . . . . . . . 50
C.12 Isotropic orientation distribution of strands with shape factor610

r = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
C.13 Distribution of aligned strands (α′ = 0 and β′ = π/2) with a

shape factor r = 2. . . . . . . . . . . . . . . . . . . . . . . . . 52
C.14 Distribution of squares. . . . . . . . . . . . . . . . . . . . . . . 53
C.15 Density curves through the layers for bundle stacks. . . . . . . 54615

C.16 Overlapping rectangular particles : a) Particle dimensions, b)
Construction of the overlapping area, c) Decomposition of the
overlapping area. . . . . . . . . . . . . . . . . . . . . . . . . . 55

39



Figure C.1: Carbon Sheet Molding Compounds [32]
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Figure C.2: Numerical deposition of square platelets before and after compaction[5]
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(a) Fiber deposition (b) Disk deposition (c) Square deposition

Figure C.3: Depositions for different particle geometries. Colours represent the location
of the layer in the stack in the vertical direction.
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Figure C.4: Overlapping area.
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Figure C.5: Number of contacts c for different configurations.
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Figure C.6: Values of isotropy factors for different configurations.
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Figure C.7: Isotropy factor α as a function of the second invariant of the orientation tensor
A2

46



Figure C.8: Top view of a fibrous microstructure with α = αmin. Colors represent the
altitude of each fiber.
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Figure C.9: Multi-scale transformation mechanisms.

48



Figure C.10: Comparison between analytical model and numerical simulation from [5]
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Figure C.11: Distribution of disks.
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Figure C.12: Isotropic orientation distribution of strands with shape factor r = 2.
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Figure C.13: Distribution of aligned strands (α′ = 0 and β′ = π/2) with a shape factor
r = 2.
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Figure C.14: Distribution of squares.
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Figure C.15: Density curves through the layers for bundle stacks.
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Figure C.16: Overlapping rectangular particles : a) Particle dimensions, b) Construction
of the overlapping area, c) Decomposition of the overlapping area.
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Particles Bulky volume fraction φ

Fibers
cv

αL2e
∝ c

αr

Disks
1

2π

Rectangles
1

α′r + 2β′ + π + α′r−1

Aligned rectangles
1

2π

Squares (for α = 1)
1

4 + π

Polydisperses disks
1

2π(1 + 1
2
(σ2/〈d〉2))

Table C.1: Analytical expression for the bulky volume fraction for different geometrical
shaped particles (r is the particle aspect ratio, α′ = π

2 〈‖~p∧~p
′‖〉 and β′ = π

2 〈|~p ·~p
′|〉, where

~p and ~p ′ are particles’ orientation vectors, σ2 is the variance of the diameter distribution
as defined in Appendix B).
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