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1 Introduction
Ribonucleic Acids (RNA) are molecules that are essential to any living organism.
They are composed of nucleotides named Adenine, Cytosine, Guanine and Uracile, and
usually represented as sequences over an {A, C, G, U} alphabet. Such sequences dif-
fer slightly from DNA, itself encoded on an {A, C, G, T} alphabet, since Thymines are
replaced by Uracile upon transcription. Functional RNA molecules feature a wide va-
riety of sizes, ranging from 25 nucleotides (nts) for the aptly named micro RNAs, to
dozen of thousands for viruses using RNA as its primary genomic material. For in-
stance, HIV-1 encodes its function in a single-stranded RNA of approximately 9,500
nts while the genome of SARS-CoV 2, responsible for the COVID-19 pandemic, con-
sists of an RNA molecule of more than 30,000 nts.

This length diversity reflects a wide functional diversity. Acting as mediators,
messenger RNAs consist of slices of the genetic information contained in the DNA,
and are used as a template for the synthesis of proteins. RNAs also play an integral part
in the ribosome, a large multi-molecular assembly which translates messenger RNAs
into proteins. They also regulate gene expression at a quantitative level, for example
through the process of RNA interference, where small single-stranded RNAs bind to
messenger RNAs, preventing the ribosome from binding to then, and thus inhibiting
the synthesis of associated proteins.

Far from being exhaustive, this list of functions is also constantly growing, mirror-
ing our ever-increasing discovery of novel RNAs. The RFAM database [Kalvari et al.,
2017], which lists and organizes documented RNAs into functional families, has been
experiencing a constant growth since its creation in 2002. As of 2022, RFAM lists
more than 4000 functional families, as shown in Figure 1.

1.1 RNA folding
Unlike DNA, RNA is synthesized as a single molecule and does not necessarily adopt
a regular double-helix structure like DNA. On the contrary, RNA is initially single-
stranded during its synthesis, and folds back on itself through a process that is subject
to nanoscale fluctuations. It is stabilized in some of its conformations, or structures, by
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Figure 1: Evolution of the number of functional RNA families, indexed in the RFAM
database [Kalvari et al., 2017]. The strong increase in the number of families in
2009 coincides with the democratization of the RNA-seq technology [ENCODE et al.,
2007].

the formation of base pairs, connecting some of those nucleotides through hydrogen
bonds.

Amongst non-coding RNAs, which act directly as RNAs and not through transla-
tion into proteins, a well-defined structure often constitutes an essential determinant
of function. Consequently, across many functional families, the adoption of a precise
structure is more conserved throughout evolution than a certain nucleotide sequence.
Predicting the functional structure of an RNA therefore represents a necessary first
step to understand its mode(s) of action, and to figure out its role within the broader
context of biological systems.

1.1.1 Paradigms for folding prediction

From a perspective inspired by statistical physics, illustrated by Figure 2, RNA is
initially transcribed in an essentially unstructured form (A). It then fluctuates in a
stochastic manner, moving between its different states, aka structures or conforma-
tions. The system eventually reaches thermodynamic equilibrium, where the prob-
ability of observing an RNA in a given conformation ceases to evolve with time.

At the thermodynamic equilibrium, the set of structures possibly adopted by an
RNA ω follows a Boltzmann distribution, such that a structure S is observed with
probability

P(S | ω) =
e−E(S)/RT

Z
where R is the Boltzmann constant, E(S) is the free energy of S, T the tempera-
ture, and Z the partition function, a crucial quantity which can be seen here as a
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Figure 2: Main paradigms for RNA folding prediction. The folding process can be
abstracted as a continuous time Markov process (left), whose states (A,B,C & D) rep-
resent the main conformations adopted by a toy RNA. Left for sufficient time, the
process converge to a thermodynamic equilibrium (right) where the probability of ob-
serving RNA in a given structure depends only on its free-energy. The most probable
structure is then the one with minimum free-energy, but others may sometimes domi-
nate the thermodynamic equilibrium.

renormalization constant. This distribution maximizes the entropy given the average,
measurable energy of the system.

This distribution motivates a focus, shared by many predictive approaches, on the
Minimum Free-Energy (MFE) structure. Indeed, the MFE provably possesses the
highest probability in the Boltzmann distribution, and thus represents the most likely
structure to be observed by its potential partners in the cellular environment.

However, although maximal among structures, the MFE probability may be very
small in absolute terms and, in the absence of evolutionary pressure, is even assumed
to decrease exponentially with the length of the RNA. Rather than focus on a single
poorly representative structure, some approaches will instead consider the expected
properties of folding at thermodynamic equilibrium. For instance, in Figure 2 the
outermost helix, involving both ends of the RNA, is present in structures B, C and
D. It is therefore much more probably than the two apical hairpin loops, only found
in the MFE structure D. Ensemble approaches, based on the explicit computation of
the partition function and/or sampling techniques, make it possible to calculate these
average properties, as well as representative structures (eg centroids of the dominant
clusters).

More recent works focus on the kinetics of RNA, considering the properties of
RNA folding before it reaches the thermodynamic equilibrium. Indeed, several phe-
nomena (co-transcriptional folding [Lai et al., 2013], multi-stable RNAs [Findeiß
et al., 2017]) exhibit a dependency on the initial distribution, refuting the hypothesis
of convergence to an equilibrium. This out-of-equilibrium behavior can be explained
by the limited life span of RNA, induced by an enzymatic degradation which prevents
RNA from overcoming some energy barriers in time comparable to its half-life.
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Figure 3: Representation of the secondary structure associated with the 3D folding of
a transfer RNA (PDB 1EHZ, chain A).

Finally, evolution can help predict the functional structure of RNA, by postulating
the existence of selection pressure constraining the structure of homologous RNAs to
adopt the same function. From a reverse the point of view, a collection of homologous
RNAs is likely to collectively adopt a common structure. This induces additional
constraints, which supplement the energy model to inform the prediction of a shared
structure.

1.2 Secondary structure
It is generally accepted that RNA adopts its functional structure through a folding
process that is hierarchical in nature. RNA initially adopts a tree-like structure called
the secondary structure, through a set of canonical pairings. In a second stage, RNA
adopts a complex three-dimensional structure made possible by weaker stabilizing
motifs.

Among these, we can find non-canonical bonds and complex topological patterns
called pseudoknots, consisting of base pairs that are crossing when drawn in the up-
per half-plane. For this reason, structure prediction often starts with the critical guess
of one (or more) candidate secondary structure(s). This initial prediction is then com-
pleted by additional crossing elements, and finally by the three-dimensional arrange-
ment of these patterns.

Formally, a secondary structure is a set S ⊂ [1, n]2 of base pairs (i, j), 1 ≤ i <
j ≤ n, satisfying the following constraints:

1. Minimum distance θ: if (i, j) ∈ S, it then follows that j − i > θ.

2. Monogamy: any position is involved in at most one pair of S.

3. Forbidden crossings: if (i, j), (k, l) ∈ S such that i < k, it then follows that

i < k < l < j or i < j < k < l.
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Under the aforementioned restrictions, the secondary structure can be represented
in several forms, as illustrated in Figure 3. From a 3D RNA structure in the Protein
Data Bank (PDB [Berman et al., 2000] – A), a secondary structure can be extracted,
e.g.] using the DSSR program [Lu et al., 2015]. It can then be drawn without crossing
as an outerplanar graph (B), or an arc-annotated sequence (C). Ultimately, a secondary
structure can be represented very compactly using the dot-bracket notation (D), that
is a sequence t ∈ {(, ), •}? such that:

• There are as many opening and closing parentheses (|t|( = |t|));

• For any prefix t′ v t, one has |t′|( ≥ |t′|).

In this setting, each opening parenthesis is unambiguously associated with a closing
parenthesis, representing a base pair. The positions presenting a character • are then
left free of interactions, or unpaired.

We finally describe the set of candidate structures, possibly adopted by an RNA
sequence ω ∈ {A, C, G, U}n. A secondary structure S is compatible with ω if any base
pair (i, j) ∈ S is canonical, that is either a Watson-Crick (G-C or A-U) or Wobble
base pair. More formally:

(ωi, ωj) ∈ {(G, C), (C, G), (A, U), (U, A), (G, U), (U, G)} .

The set of structures compatible with the RNA ω is denoted by Sω (or simply S when
clear from the context), and Si,j represents the set of secondary structures that are
compatible with the region [i, j] of ω.

1.2.1 Energy model and structure space decomposition

RNA stability is physically determined by its free energy, expressed in kcal.mol−1.
The lower the free energy, the more stable an RNA structure is. The free energy of a
structure depends largely on its base pairs, and their interaction in the form of patterns
stabilizing the RNA structure.

In order to illustrate the different algorithmic approaches available for structure
prediction, we shall consider a simple energy model, defined additively over base
pairs. More precisely, let S be a secondary structure for a sequence ω, one has:

E(S) :=
∑

(i,j)∈S

Eωi,j

where Eωi,j is the energy difference associated with the creation of the pair (i, j).
An energy of −1 can be associated with canonical base pairs (G-C, A-U, and G-

U), and energy of +∞ can be associated to invalid base pair. In other words, in this
simple model, minimizing the free-energy coincides with maximizing the number of
canonical pairs. Alternatively, one might consider an energy model that fosters base
pairs considered to be more stable (G-C→ −3, A-U→ −2), disadvantaging those that
are more transient (G-U→ −1).

5
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Figure 4: Decomposition of the space of secondary structures, possibly adopted by
an RNA on a region [i, j], 1 ≤ i < j ≤ n, given a minimal base pair distance of θ
nucleotides.

As shown in Figure 4, it is possible to decompose the secondary structures of Si,j
compatible with a region [i, j] of a RNA ω. For this purpose, one considers the status
of nucleotide i in a structure formed over [i, j]:

Case A Either i is unpaired, and followed by a secondary structure formed indepen-
dently over the region [i+ 1, j];

Case B Or i is paired to a position j, j− i > θ, and any secondary structure is formed
over the region [i+ 1, j − 1];

Case C Or i is paired to a position k < j, k − i > θ, and two structures are then
formed in regions [i+ 1, k− 1] and [k+ 1, j]. These latter are independent, due
to pseudoknots being forbidden.

It can be shown that this decomposition is complete, i.e. any structure of Si,j is
generated/decomposed by one of the three cases above. Moreover, it is unambiguous,
and any structure of Si,j can be uniquely generated/decomposed through a recursive
application of the three cases. Finally, it is correct for our simple energy model, as it
explicitly scores base pairs, thus making it possible to capture our energy model.

2 Optimization for structure prediction

2.1 Computing the minimum free-energy (MFE) structure
The Minimum Free-Energy structure (MFE) represents the most stable structure
among all of the structures adopted by a sequence. It is also the most probable struc-
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ture at the thermodynamic equilibrium and, as such, represents a reasonable candidate
while searching for the functional conformation for a given RNA.

Nonetheless, to determine this structure, one must overcome a combinatorial ex-
plosion of the number of secondary structures, asymptotically equivalent to ∼ 1.8n

[Zuker and Sankoff, 1984] on average for an RNA sequence of length n. The compu-
tation of a minimum energy structure thus represents a, potentially difficult, combina-
torial optimization problem which can be defined as follows.

Free energy minimization

Input: Sequence ω ∈ {A, C, G, U}+, |ω| = n.
Output: Secondary structure S? such that

E(S?) = min
S∈S

E(S)

A dynamic programming scheme for this problem is based on the decomposition
introduced in Section 1.2.1. With this scheme, we are looking into the minimal energy
mi,j accessible by folding the [i, j] region within the input RNA. In any structure over
[i, j], and thus any minimum energy structure, only three options are possible for
position i: Either i is free, and the structure minimum energy is found by optimizing
the energy over [i + 1, j]; or i is paired to j, and an optimal folding forms over [i +
1, j−1]; or position i is paired to some k < j, and two optimal and independent folds
form over [i+ 1, k − 1] and [k + 1, j].

It follows that, for a region [i, j] such that j − i > θ, the minimum free-energy
mi,j over the region [i, j] obeys:

mi,j = min


mi+1,j I Case A: Pos. i is free

Eωi,j +mi+1,j−1 I Case B: Pair (i, j)

j−1

min
k=i+θ+1

Eωi,k +mi,k−1 +mk+1,j I Case C: Pair (i, k), k > j

(1)

When j − i ≤ θ one gets mi,j = 0 because the region is then too small to contain a
base pair.

We need to formulate an algorithm to efficiently compute this recurrence. More-
over, we also want to produce a minimum free-energy structure, and not just its energy,
so we need to find an algorithm to reconstruct the chosen structure. Two algorithms
are thus necessary, with quite similar structures:

• Algorithm 1 computes the minimum energy associated with each region [i, j] in
the sequence, as described in the system (1).

• Algorithm 2 backtracks, to reconstruct a minimum energy structure S? for the
sequence ω.

7



ALGORITHM 1: Filling the minimum energy matrix
Entrée : ω – RNA of size n
Sortie : m – Matrix m, filled according to (1)

1 Fonction FillMatrix (ω):
2 m← EmptyMatrix(n× n)

// Initialize with 0 all the values of the diagonal up to θ.
3 for i← 1 to n do
4 for j ← i to min (i+ θ, n) do
5 mi,j ← 0

6 for i← n to 1 do
7 for j ← i+ θ + 1 to n do

I Case A: Position i left without partner ;
8 mi,j ← mi+1,j ;

I Case B : Positions i and j form a base pair ;

9 mi,j ← min
(
mi,j ,mi+1,j−1 + Eω

i,j

)
I Case C: Position i paired to k < j ;

10 for k ← i+ θ + 1 to j − 1 do
11 mi,j ← min

(
mi,j ,mi+1,k−1 +mk+1,j + Eω

i,k

)
12 return m

ALGORITHM 2: Backtracking for the minimum energy structure.
Entrée : [i, j] – Region under consideration

m – Dyn. prog. matrix, previously computed according to Equation (1)
ω – RNA of length n

Sortie : S? – Structure minimizing free energy

1 Fonction Backtrack (i, j,m, ω):
2 if j − i ≤ θ then

3 return
j−i+1︷ ︸︸ ︷
• . . . • // The empty structure has minimum energy

4 else
I Case A: Position i left without partner ;

5 if mi,j = mi+1,j then // Min. energy achieved by struct. where i is free
6 S?

i ← Backtrack(i+ 1, j,m, ω)
7 return •S?

i

I Case B : Positions i and j form a base pair ;
8 if mi,j = mi+1,j−1 + Eω

i,j then // Min. energy achieved by struct. pairing i and j
9 S?

i,j ← Backtrack(i+ 1, j − 1,m, ω)

10 return (S?
i,j )

I Case C: Position i paired to k < j ;
11 for k ← i+ θ + 1 to j − 1 do
12 if mi,j = mi+1,k−1 +mk+1,j + Eω

i,k then // Optimal struct. pairing i and k
13 S?

1 ← Backtrack(i+ 1, k − 1,m, ω)
14 S?

2 ← Backtrack(k + 1, j,m, ω)
15 return (S?

1 )S?
2
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2.1.1 Correctness of the algorithms

Proposition 1. Algorithm 1 returns a matrix m which contains at position mi,j the
minimum energy of the subsequence ωi,j .

Proof. We shall show directly that, at each step of the computation, the value obtained
for mi,j is correct. First, as mentioned in Section 1.2, there can be no base pair over
a region of length smaller than θ + 2. We can therefore initialize mi,j with 0 for all
regions [i, j] such that j − i + 1 < θ + 2, equivalent to j − i ≤ θ, which is achieved
by the double loop starting at line 3.

Now, in the loop starting at line 6, we fill in the matrix m one cell at a time. We
iterate over the regions [i, j] in ascending order on i (and then on j). In this way, we
can guarantee that, by the time we compute an accurate [i, j], the values mi′,j′ such
that i′ < i have already been computed.

We are then going to assume these values mi′,j′ , i < i′ are correct, and show that
this implies the correction of mi,j . In order to obtain the value of mi,j , there are only
three possible cases to consider:

Case A An optimal structure leaves position i without a partner. The optimal struc-
ture is then composed of the base pairs of an independent folding on [i + 1, j],
whose energy can be found in ωi+1,j . Since i + 1 > i, this value was already
computed and can be assumed to be correct.

Case B An optimal structure pairs the positions i and j. In this case, the optimal
structure is composed of a pair (i, j), of energy Eωi,j , and an optimal folding
over [i + 1, j − 1], of energy found in mi+1,j−1. It can be assumed that the
latter is correctly computed because i+ 1 > i.

Case C An optimal structure pairs the positions i and k < j. The pair (i, k) thus
delimits two regions [i + 1, k − 1] and [k + 1, j], where the RNA forms inde-
pendent folds (pseudoknots not being allowed). These two regions start after i,
and their minimum energies can thus be found in mi+1,k−1 and mk+1,j . The
sum of these terms is therefore completed by the contribution Eωi,k of the pair to
obtain the minimum energy.

Given that any structure falls into one of these categories, the value assigned to mi,j

indeed represents the structure having minimum energy over [i, j]. The correction of
mi,j can thus be inferred and, by induction, the correction of the computation over
any region ensues.

Proposition 2. Letm be the matrix computed by Algorithm 1, the function Backtrack(i, j,m, ω)
of Algorithm 2 returns a minimal energy structure over the region [i, j].

Proof. By Proposition 1, we know that mi,j contains the minimum energy for any
region [i, j]. Then there are four possible cases for the optimal structure:

9



Case 0: Sequence too short i− j < θ. We know that if the regions contains less than
θ+2 nucleotides, it cannot form a base pair. The structure without base pair, re-
turned at line 2 is therefore the only compatible structure, and thus has minimal
energy.

Case A: Position i left without a partner. In this case, we have mi,j = mi+1,j , and
the optimal structure which starts with a free position, followed by an optimal
structure over [i+ 1, j]. Such a structure has energy mi+1,j , and is thus also of
minimal energy for [i, j].

Case B: Paired positions i and j. In this case, we have mi,j = mi+1,j−1 + Eωi,j ,
with the latter coinciding with the energy of the structure pairing i to j, and
forming an optimal folding on [i+ 1, j − 1], which the algorithm returns.

Case C: Position i paired to k < j. In this final case, we have thatmi,j = mi+1,k−1+
mk+1,j + Eωi,k. This optimal energy is indeed that of the structure, returned
by the algorithm, containing the pair (i, k), and two optimal folds on regions
[i+ 1, k − 1] and [k + 1, j].

As the cases below cover all possible structures, we can conclude that the returned
structure has indeed optimal energy over its region.

2.1.2 Complexity analysis

The overall complexity of the above algorithm for producing a minimum energy sec-
ondary structure is Θ(n3) in time, and Θ(n2) in memory.

For FillMatrix, after allocating space for the matrix m in Θ(n2), which bounds
the memory complexity, the initialization takes Θ(n) time, due to the iterations of
the innermost loop being bounded by a constant θ. The main contribution to the
complexity is due to the three nested for loops (line 6 and following). The first two
loops enumerate all regions [i, j] such that j − i > θ, and the last one chooses k ∈
[i + θ + 1, j − 1]. Each of these loops is executed at most n times, and the time
complexity is O(n3), that is, asymptotically bounded by C n3 where C is a constant.

To prove the asymptotic equivalent, and thus the complexity in Θ(n3), one may
consider triplets (i, k, j) associated with the innermost loop executions (line 10). One
notices that such triplets correspond to choosing of 3 distinct elements among n−C ′,
C ′ being a constant, and are therefore counted by:(

n− C ′

3

)
=

(n− C ′)(n− C ′ − 1)(n− C ′ − 2)

3!
=
n3

6
+O(n2) ∈ Θ(n3).

To determine the complexity of Backtrack, it is clear that, excluding the recursive
calls, the number of operations performed by the algorithm is linear on the size of
the region [i, j]. Moreover, the recursive calls involve subregions whose cumulative
size is decreasing. It follows that, in the tree of recursive calls, the total number of

10



iterations of the innermost loop, summed over all calls at depth p, remains bounded
by n. Since the size of regions is strictly decreasing during successive recursive calls,
the depth of the tree is bounded by n. The worst-case complexity is then Θ(n2), and
the complexity of Backtrack remains dominated by that of FillMatrix.

2.1.3 Going further

Despite its simplicity, this model already produces informative predictions, as can be
seen in Section 4.2. They can also be substantially improved by considering a more
realistic energy model (see Section 4.1). This requires a more complex algorithm, but
very similar in principle to the one presented here.

Although the algorithm is commonly attributed to Nussinov et al. [1978], this
seminal contribution was slightly different and, importantly, ambiguous: Despite be-
ing correct for the minimization, it did not allow the computation of the partition
function introduced in Section 3.1. The version presented here is inspired by previous
combinatorial works by Waterman [1978].

The algorithm can be also used to predict the interaction of two RNAs. In-
deed, complexes can be predicted by running the algorithm on the concatenation of
two RNAs, interspersed with θ anonymized nucleotides (N) to enable the full pairing
of both RNAs. A minimum energy complex is then obtained, composed of both in-
tramolecular base pairs (within a single RNA) and some intermolecular base pairs (in-
volving both RNAs). However, since pseudoknots are forbidden, interactions remain
limited to positions in the outer face of each of the two RNA (intramolecular) struc-
tures. More sophisticated dynamic programming schemes [Mückstein et al., 2006]
have therefore have been introduced to capture more realistic conformation spaces,
allowing for example the interaction of loops.

The algorithm can also be used to simplify a pseudoknotted structure S∩∩, in order
to recover a maximal non-crossing subset of base pairs. To this end, it is sufficient to
adopt an energy model where Eωi,j := −1 if (i, j) ∈ S∩∩, and Eωi,j := +∞ otherwise.
Minimizing the energy is then equivalent to maximizing the number of pairs retained
from S∩∩ such that pseudoknots are removed while arguably maximizing the residual
structural information.

2.2 Listing (sub)optimal structures
Although fruitful, the energy minimization paradigm remains highly sensitive to the
intrinsically-imperfect inaccuracy of energy models. It is potentially impacted by
measurement errors involved in the energy parameters, including the individual con-
tributions of base pairs and, more generally, structural motifs.

Consequently, a structure S may be marginally more stable than an alternative
structure S′, and still returned by an energy minimization algorithm. This may happen
despite the energy distance |E(S′)−E(S)| being arbitrarily small, much smaller than
the experimental imprecision of the protocols used to calibrate the energy model. In
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such a case, it seems arbitrary to produce a structure S as representative of the folding
process, especially when slightly suboptimal structures significantly differ.

This motivates the consideration of ∆-admissible suboptimal structures, i.e.
structures compatible with the input RNA that located within at most ∆ kcal.mol−1 of
the minimum free energy structure. This problem was initially considered by Zuker
[1989], in a version restricted to sets of structures having no pairwise base pairs in
common. Nevertheless, due to its greedy nature, this strategy turned out to be highly
dependent on the order of produced structures, and was found to overlook important
stable structures.

A, more satisfactory, exhaustive version of the problem was subsequently consid-
ered by Wuchty et al. [1999].

∆-suboptimal structures

Input: Sequence ω ∈ {A, C, G, U}+; Tolerance ∆ ∈ R+.
Output: Set S∆ of secondary ∆-admissible structures, having energy within ∆
of minimum energy:

S∆ = {S such that E(S)−MFE(ω) ≤ ∆}

A first idea, natural in the context of dynamic programming, consists in computing
the exhaustive list of the ∆-sub optimal structures realizable over each region [i, j].
The lists associated with the different regions should then be stored in the cells of a
specific matrix, and can be computed recursively. However, such a strategy would
result in a memory complexity in Θ(n3 × M), where M is the number of ∆-sub
optimal structures, and would quickly become prohibitive even for small RNAs.

Wuchty et al. [1999]’s algorithm modifies the backtrack phase to generate all sub-
optimal structures, while guaranteeing that each recursive call generates at least one
admissible suboptimal structure. To this purpose, a parameter ∆, representing a resid-
ual tolerance, is introduced in the backtrack function. While inspecting cases in the
dynamic programming, this parameter is used to decide whether or not a given case
may contribute an admissible suboptimal. It is updated in the recursive calls to reflect
the fact that choosing a given DP case may already consume some tolerance. The
modified backtrack is summarized in Algorithm 3, and must be preceded by the DP
computation of the MFE matrix (Algorithm 1) to obtain all the ∆ suboptimal struc-
tures.

2.2.1 Correctness of the algorithm

Proposition 3. For any tolerance ∆ ≥ 0, and any region σ := {[1, n]}, Algorithm 3
returns the set of ∆-suboptimal structures such that E(S) ≤ m1,n + ∆.

Proof. Let us begin by noticing that, whenever invoked with ∆ ≥ 0, Subopts will
only pass positive values to ∆ upon its subsequent recursive calls, as can be verified

12



ALGORITHM 3: Backtracking for ∆-suboptimal structures.
Entrée : σ – Set of regions being considered (initially σ = {[1, n]})

Sp – Partial secondary structure (initially Sp = ∅)
∆ – Residual tolerance ∆ ≥ 0
m – Dyn. prog. matrix, previously computed according to Equation (1)
ω – RNA of size n

Sortie : S∆ – ∆-sub optimal structures over the region [i, j]

1 Fonction Subopts (σ, Sp,∆,m, ω):
2 if σ = ∅ then
3 return {Sp} // The partial structure Sp is ∆ sub-optimal
4 else
5 [i, j]← pop(σ) // Removes the first region of the stack σ
6 if j − i ≤ θ then
7 return Subopts(σ, Sp,∆,m, ω) // Processing other regions in σ
8 else
9 A ← ∅;B ← ∅; C ← {∅}jk=i

I Case A: Position i left without partner ;
10 δi ← mi+1,j −mi,j // Minimum distance to optimal if i free
11 if ∆− δi ≥ 0 then // ∃ struct. ∆-sub optimal where i is free
12 A ← Subopts([i+ 1, j] ◦ σ, Sp,∆− δi,m, ω)

I Case B : Positions i and j form a base pair ;
13 δi,j ← (mi+1,j−1 + Eω

i,j)−mi,j // Min. distance to opt. if (i, j) paired

14 if ∆− δi,j ≥ 0 then // ∃ struct. ∆-sub optimal pairing i and j
15 B ← Subopts([i+ 1, j − 1] ◦ σ, {(i, j)} ∪ Sp,∆− δi,j ,m, ω)

I Case C: Position i paired to k < j ;
16 for k ← i+ θ + 1 to j − 1 do
17 δi,k ← (mi+1,k−1 +mk+1,j + Eω

i,k)−mi,j // Min. dist. if (i, k) paired

18 if ∆− δi,k ≥ 0 then // ∃ struct. ∆-sub optimal pairing i and k
19 σk ← [i+ 1, k − 1] ◦ [k + 1, j] ◦ σ
20 Ck ← Subopts( σk, {(i, k)} ∪ Sp,∆− δi,k,m, ω )

21 returnA ∪ B ∪
⋃j

k=i Ck

13



in lines 11, 14, and 18. We thus assume without loss of generality that ∆ ≥ 0, and
consider the following generalization of Proposition 3.

Lemme 1. Consider an RNA ω of length n, and opt the matrix of the minimal energies
associated with regions. Then, for any list σ, any structure Sp, and any residual toler-
ance ∆ ≥ 0, the call to Subopts(σ, Sp,∆,m, ω) returns the set of every structure S,
compatible with ω and extending Sp with structures for every region of σ, such that

E(S) ≤ ∆ +
∑

[i,j]∈σ

mi,j +
∑

(a,b)∈Sp

Eωa,b. (2)

To prove Lemma 1, let us consider the cumulative length l(σ) :=
∑

[i,j]∈δ j−i+1

of the regions in σ. First of all, it can be seen that, when l(σ) = 0 (σ = ∅) the structure
Sp returned by the algorithm is such that

E(Sp) =
∑

(a,b)∈Sp

Eωa,b ≤
∑

(a,b)∈Sp

Eωa,b + ∆

and thus satisfies the conditions of Equation (2). Moreover, it is the only possible
extension of the input structure. This allows to conclude with the validity of Lemma 1
when l = 0, thus providing the base case of an inductive proof.

Next, we assume the correction of Lemma 1 for any list of regions σ having cu-
mulative length l < l?, for any value ∆ ≥ 0 and any structure Sp. Consider a list of
regions σ := [i, j] ◦ σ′ of cumulative length l?. The minimal energy accessible from
a pair (σ, Sp) is

m(σ, Sp) :=
∑

[i,j]∈σ

mi,j +
∑

(a,b)∈Sp

Eωa,b.

The choice of a decomposition case over [i, j] can be seen as committing to a subset
of structures, which may or may not include the local MFE, so the min. accessible
energy is m′ ≥ m(σ, Sp). In other words, an optimality loss

δ := m′ −m(σ, Sp) ≥ 0

results from the choice of a decomposition case.
If δ > ∆ then, in any structure S resulting from successive recursive calls, one

has E(S) ≥ m′ = m(σ, Sp) + δ > m(σ, Sp) + ∆, so S should not be returned by the
algorithm. It follows that A (respectively B and Ck) is empty when δ > ∆ (lines 11,
14 and 18).

When δ ≤ ∆, the produced subset depends on the decomposition case:

Case A (i free): The minimal energy of a structure leaving i unpaired is given by

m([i+1, j] ◦σ′, Sp) =
∑

[x,y]∈σ′
mx,y+

∑
(a,b)∈Sp

Eωa,b = m(σ, Sp)+mi+1,j−mi,j .

14



It thus follows that δ = m([i+ 1, j]◦σ′, Sp)−m(σ, Sp) = mi+1,j−mi,j ≥ 0.
Since l([i+ 1, j] ◦ σ′) = l(σ)− 1 < l?, the induction hypothesis applies to the
recursive call on σ′ and Sp. This thus produces all the structures S extending
Sp on [i+ 1, j] ◦ σ′, such that

E(S) ≤ m([i+ 1, j] ◦ σ′, Sp) + ∆− δ = m(σ, Sp) + ∆.

The set A thus coincides with the restriction of the extensions of Sp over σ,
where i is left unpaired.

Case B (i paired to j): The case where i is paired to j is similar, but induces a loss
of optimality δ = Eωi,j +mi+1,j−1−mi,j . We still have l([i+ 1, j− 1] ◦σ′) =
l(σ) − 2 < l? and the induction hypothesis implies correcting the recursive
call, which thus produces all the S structures, as extensions of Sp ∪ {(i, j)} on
[i+ 1, j − 1] ◦ σ′ such that

E(S) ≤ m([i+ 1, j − 1] ◦ σ′, {(i, j)} ∪ Sp) + ∆− δ = m(σ, Sp) + ∆.

The structures in B thus extend Sp on σ and satisfy (2) while pairing i with j.

Case C (i paired to k < j) When i is paired to k < j, one has δ = Eωi,k+mi+1,k−1+
mk+1,j −mi,j . For any k, the recursive call is made on σk := [i + 1, k − 1] ◦
[k+1, j]◦σ, such that l(σk) = l(σ)−2. The induction hypothesis thus applies,
and the set of all structures extending Sp∪{(i, k)} over σk is obtained such that

E(S) ≤ m(σk, {(i, k)} ∪ Sp) + ∆− δ = m(σ, Sp) + ∆.

The set Ck thus indeed represents the extensions of Sp on σ, verifying (2), and
pairing i and k.

We remind that any structure over [i, j] is generated by one of the three cases above.
The assumed correctness of the algorithm, for any σ such that l(σ) < l?, thus extends
to σ such that l(σ) = l?. In conjunction with the proven correctness when l(σ) = 0,
this concludes the induction, and shows the validity of Lemma 1.

Finally, notice that for σ = {[1, n]} and Sp = ∅ we obtain all structures such as

E(S) ≤ ∆ +
∑

[i,j]∈σ

mi,j +
∑

(a,b)∈Sp

Eωa,b = m1,n + ∆

so the correction of Lemma 1 implies Property 3.

2.2.2 Complexity analysis

The combinatorial explosion of the ∆-optimal structures produced by the algorithm,
in exponential number on ∆ and n, does not allow for a fine complexity analysis
according to the input parameters only. The complexity is therefore considered as a
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function of the number M of returned structures, and we show that Subopts can be
executed in time O(M × n2).

We first focus on the structure of the tree T of recursive calls. Initially called with
∆ ≥ 0, Subopts only makes recursive calls where ∆ ≥ 0, as seen in lines 11, 14 and
18 of the pseudocode. Moreover, when σ 6= ∅ and ∆ ≥ 0, at least one of the tests
contribute a structure, so the leaves of T correspond to the case σ = ∅, producing
a single structure {Sp} (line 3). These structures are pairwise distinct (unambiguous
decomposition), and thus in numberM since any structure produced is propagated and
backtracks to the root of T , where it is returned. Moreover, the height of T is at most
n, since the cumulative size of the regions involved in σ is strictly decreasing during
the successive recursive calls. The number of internal (non-root) nodes is therefore at
most M because, at any depth p ≤ n, the number of nodes at depth p is bounded by
M (otherwise there would exist more than M leaves in T ).

We obtain the predicted complexity of O(M × n2), noting that, excluding re-
cursive calls, each run of Subopts requires, at worst, a linear number of elementary
operations. For this purpose, suitable data structures will however have to be chosen,
allowing addition to lists/stacks, and the set disjoint union in O(1) time. In practice,
basic lists represent reasonable candidates, resulting in a relatively easy implementa-
tion.

2.2.3 Going further

The fundamental principle of the algorithm, which consists of updating a tolerance ∆
according to the choices made during the backtrack, generalizes previous works by
Waterman and Byers [1985], and can be slightly improved using techniques derived
from natural language processing [Huang and Chiang, 2005].

The suboptimal backtrack can be adapted to any algorithm based on an unambigu-
ous dynamic programming scheme. It remains valid for an ambiguous decomposition,
albeit generating some structures redundantly. However, this multiplicity typically in-
troduces an exponential overhead in n, thus restricting its practical use and motivating
the search for alternative unambiguous DP schemes.

2.3 Comparative prediction: Simultaneous alignment/folding of
RNAs

Comparative folding represents a final category of methods for structure prediction. It
takes advantage of an evolutionary pressure towards structure conservation, observed
within many functional families of non-coding RNAs. When a multiple sequence
alignment is available for homologous RNAs, then a fruitful approach consists in fold-
ing the alignment, thereby simultaneously predicting a structure for all of its RNAs.
This approach, which can be tackled using a variant of the Nussinov algorithm, opti-
mizes the cumulative free energy while including substantial bonuses to reward com-
pensatory mutations, i.e. pairs of positions in the alignment that mutate, yet preserve

16



the possibility to form base pairs.
Unfortunately, while the consideration of a structural alignment structure greater

improves the quality of predictions, such an alignment may be difficult to build in the
absence of a joint structure. This induces a circular dependence since the alignment
depends on the structure, and vice versa, so it is unclear where to start (chicken and egg
paradox). The pioneering work of [Sankoff, 1985], at the origin of multiple algorithms
and dozens of methods and software, works around the issue by solving the folding
and alignment problems simultaneously. More precisely, it introduces the problem of
determining the alignment/structure pair that optimizes a combination of free-energy,
conservation and compensatory mutations.

Similarly to multiple sequence alignment, the simultaneous alignment/folding prob-
lem is generally NP-hard [Wang and Jiang, 1994] for an arbitrary number of se-
quences, so a polynomial-time algorithm seems highly unlikely. Yet, the restriction of
the problem to a pair of homologous RNAs is already relevant and informative. In-
deed, an algorithm for the pairwise alignment can be leveraged in a a popular heuris-
tics for the multiple RNA alignment problem, which progressively incorporates se-
quences into a partial multiple sequence alignment. Interestingly, the alignment/fold-
ing of an RNA pair admits an exact solution in Θ(n6), based on a product of two
dynamic programming schemes, visually described in Figure 5.

2.4 Joint alignment/folding model
Let us now describe more precisely the notion of joint alignment/folding of a pair
(u, v) of RNAs. Let us recall that an alignment of two RNA sequences can be defined
as a pair of character strings A = (u′, v′) from an extended alphabet {A, C, G, U, -},
where the character - represents an insertion/deletion (indel) such that:

• The two sequences (u′, v′) have equal length |u′| = |v′| ≥ max(|u|, |v|);

• u (resp. v) is obtained from u′ (resp. v′) by removing the indels (-).

For instance, the RNA sequences u := ACGU and v := AGAU admit (among others) the
following alignments:

A1 :=

1 2 3 4

u′ → A C G - U

v′ → A - G A U

1 2 3 4

A2 :=

1 2 3 4

A C G U

A G A U

1 2 3 4

A3 :=

1 2 3 4

A C G U - - - -

- - - - A G A U

1 2 3 4
Each of the alignments induces a set of correspondences, called (mis)matches,

each involving a positions in the two RNAs. For example, alignment A1 above in-
duces the set of matches {(1, 1), (3, 2), (4, 4)}, alignment A2 induces the matches
{(1, 1), (2, 2), (3, 3), (4, 4)} and A3 has no matches (∅).
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Not all alignments are equally realistic, and evolutionary models can be inferred
associate a probability with any alignment. Within the maximal parsimony paradigm,
such probabilities are generally defined as product of independent probabilities, asso-
ciated with evolutionary events suggested by the alignment.

For instance, the match (1, 1) inA1 suggests the presence of A in the (common) an-
cestral sequence, while the C in the second column could have been recently acquired
by u (or lost by v). Finally, the matching of two distinct nucleotides, for example in
the second column of A2, suggests a mutation following the speciation/duplication of
the RNA being considered.

The probabilities of these events can be estimated, and the probability of an align-
ment is obtained by multiplying the probabilities of the events implied by the columns
of the alignment:

P(A | u, v) =
∏
x
y
∈A

Pµx,y
∏
x
-
∈A

Pιx
∏
-

y
∈A

Pδy

where Pµx,y represents the probability of a conservation/match (x = y) or substitu-
tion/mismatch (x 6= y). Meanwhile, Pιx (resp. Pδy) represents the probability of an
insertion into u (resp. v).

A joint alignment/folding (A,S) then simply adds a secondary structure S on top
of an alignment A = (u′, v′), with each base pairs implicitly pairs nucleotides in the
alignment columns. For any pair of bases (i, j) in S, at either (u′i, u

′
j) or (v′i, v

′
j) (or

both) may form a base pair. In the case where both sequences can form the base pair,
it possible to reward or penalize an apparent co-evolution of the two positions. On
the contrary, if only one of the sequences allows pairing, then its presence in a shared
structure becomes less likely.

To capture this aspect, we note S  (U, V ), where U and V are the restrictions of
SA, induced by u and v respectively, obtained by removing the indels (-) and the base
pairs involving at least one indel. The probability for an alignment A, in conjunction
with a common structure S for its two sequences, can then be (somewhat arbitrarily)
defined as

P(A,S | u, v) ∝ P(A | u, v)P(U | u)P(V | v)
∏

(a,b)∈S

Pπ
u′a,u

′
b

v′a,v
′
b

(3)

where P(S? | ω) is the Boltzmann probability of S? for a sequence ω, and Pπx1,y1
x2,y2

is the probability of a substitution of base pairs, involving nucleotides (x1, y1) in u
and (x2, y2) in v. This allows to reward compensatory mutations, defined here as:

Columns
x
y

and
a
b
, x 6= y, a 6= b such thats (x, a) and (y, b) can be paired.

Such mutations are often interpreted as indicating a positive selection pressure towards
the formation of base pairs, and have been used in comparative RNA modeling since
the early days of RNA research [Michel and Westhof, 1990].
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This probability P(A,S | u, v) should be maximized, which is equivalent to max-
imizing the right-hand side of Equation (3). In practice, to avoid issues related to
numerical precision, a logarithmic version of the objective function is considered.
Since the logarithm is a monotonously increasing function, optimizing the logarithm
of the objective function is equivalent to optimizing the objective function. Moreover,
partition functions-induced terms contribute a constant factor that is independent of
the structure or alignment. They can therefore be ignored for optimization purposes.
The objective function then becomes

F (A,S) =
∑
x
y
∈A

µx,y +
∑
x
-
∈A

ιx +
∑
-

y
∈A

δy

− (E(U, u) + E(V, v)) +
∑

(a,b)∈S

π
u′a,u

′
b

v′a,v
′
b

(4)

where µ, ι, δ and π represent the respective natural logarithms, multiplied by RT ,
respectively from Pµ, Pι, Pδ and Pπ.

Combined alignment/folding

Input: u, v ∈ {A, C, G, U}?; Matrices ι, δ, µ, and π.
Output: Alignment/structure pair (A?, S?) having max probability w.r.t. (4) :

F (A?, S?) = max
A,S

F (A,S)

2.4.1 Algorithm and complexity

The above problem can also be solved using a polynomial dynamic programming al-
gorithm. It relies on simulating all possible alignments during folding, as illustrated by
Figure 5. A dynamic programming equation can be immediately derived to compute
the maximal logarithmic score f i,jk,l achievable on the region [i, j] of u, and region
[k, l] of v.

Namely, for empty regions on u and/or v, we have:

f i,j<ik,l<l := 0 // Regions of u and v both empty

f i,j<ik,l≥k := −mv
k,l +

∑
c∈vk,l

δc // Empty region of v→ The region of u is folded and inserted

f i,j≥ik,l<k := −mu
i,j +

∑
c∈ui,j

ιc // Empty region of u→ The region of v is folded and deleted
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I Case A : Positions i and/or k left unpaired

I Case B/C : Positions i and/or k paired to positions x and/or y

Figure 5: Decomposition of the combined alignment/folding space based on the
Sankoff algorithm. For two RNA sequences restricted to regions [i, j] and [k, l], the
decomposition distinguishes between leaving the first position unpaired, or pairing it
to some other column.

where mω
i,j represents the minimum energy of a folding of ω over the [i, j] region,

computed as seen in Section 2.1. In addition to the energies induced by the indepen-
dent foldings, the optimal scores must take into account the full insertion/deletion of
the non-empty region, hence the above sums.

In the general case, non-empty regions are considered in both u and v, and one has

f i,j≥ik,l≥k := max



I Case A: Unpaired positions i and/or k

max
bi,bk∈{0,1}2

bi bk ιui + bi bk δvk + bi bk µui,vk + f i+bi,jk+bk,l

I Case B/C: Pairings (i, x) and/or (k, y)

(jl)
max

(xy)=(i+θ+1
k+θ+1);

(bi,bxbk,by
)∈[0,1]4

bibx+bkby≥1

∣∣∣∣∣∣∣∣∣∣

bi bk ιui + bi bk δvk + bx by ιux + bx by δvy
+ bi bk µui,vk + bx by µux,vy
+ bi bx bk by π

ui,ux
vk,vy

+ bi bxE
u
i,x + bk by E

v
k,y

+ f i+bi,x−bxk+bk,y−by + fx+1,j
y+1,l

(5)

where bp := (1− bp) for any position p.
Each of the bp reflects the implication (bp = 1) or not (bp = 0) of a position p in

a column of the generated alignment. Such Boolean variables are used to factor the
(otherwise numerous) cases in the decomposition, inferred by the enumeration of the
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alignments, only incorporating relevant terms in each case.
For example, consider the term bi bk µui,vk . If the positions i and k are both

aligned (bi = bk = 1), one then has bi bk µui,vk = µui,vk , corresponding to the
conservation/substitution term expected for a match of i and k. On the other hand,
if one of the two positions remains unaligned (bi = 0 or bk = 0), then one has
bi bk µui,vk = 0, and the score does not include any contribution from the match.

Similarly, one has:

• bp bq ιup → Insertion score only if p without partner (q);

• bp bq δuq → Deletion score only if q without partner (p);

• bp bq br bs π
up,uq
vr,vs → Base pair substitution score only if the four positions in-

volved are pairwise aligned;

• bp bqEωp,q → Energy of the base pair only if the pair is populated.

A variant of the Sankoff algorithm then computes the terms of this recurrence
using dynamic programming. In its outermost loop, it processes (pairs of) regions by
increasing order of their cumulative size N(i, j, k, l), defined such that:

N(i, j, k, l) = |[i, j]|+ |[k, l]| = j − i+ k − l + 2

and in any order for the other indices/loops. A backtracking then completes the algo-
rithm, and reconstructs the optimal folding/alignment.

Each run of this algorithm requires a Θ(n6) time for two sequences u and v of
equal length n, and Θ(n4) in memory. More precisely, the time complexity of this
algorithm is Θ(|u|3 · |v|3), and its memory complexity is Θ(|u|2 · |v|2). The decompo-
sition underlying the Sankoff algorithm can also be generalized to M sequences, but
the time complexity then increases to Θ(n3M ), while the memory requirement scales
to Θ(n2M ).

2.4.2 Going further

The principle behind the Sankoff algorithm is at the core of virtually every approach
for comparative prediction. The quality of its predictions is far superior to those ob-
tained using energy minimization and (as of 2022) machine learning. However, its
high complexity, especially in terms of memory, prevents its direct utilization for
RNAs longer than ∼ 100 nucleotides. Consequently various computational tricks
and heuristics can be found in modern implementations to support multiple (long) se-
quences without substantially sacrificing the predictive capability (see SPARSE [Will
et al., 2015], currently at the state of the art despite its modest Θ(n2) complexity).

The alignment model can be extended in a number of directions:

• First of all, the Sankoff algorithm can be extended to the full nearest-neighbor
energy model introduced by [Turner and Mathews, 2010]. It can also support

21



more complex evolutionary models, for example taking a phylogenetic tree as
input, in order to consider evolutionary distances and speciation events while
interpreting a compensatory mutations.

• The cost associated with a sequence of g consecutive indels can be defined as an
affine function α× g + β, instead of an implicit α′ × g in our model. The new
objective function can be optimized using a variant of the Sankoff algorithm
having the same complexity (up to constants) owing to a generic technique de-
vised by Gotoh [1982]. A similar trick can be used to remove the ambiguity
induced by the alignment (essentially due to the commutativity of the indels),
unlocking the door to alignment under the assumption of preservation of the
Boltzmann ensemble [Will et al., 2012].

3 Analyzing the Boltzmann ensemble

3.1 Computing the partition function
As seen in Section 2.2, suboptimal structures can be produced, and provide a sense
of the diversity of almost-optimal structures. However, while they may be useful in
modeling to suggest alternative structures, it is impossible to judge whether or not
suboptimals accurately reflect the full diversity explored by the folding process. In-
deed, at the thermodynamic equilibrium, the minimum-free energy (MFE) structure
is typically associated with a probability which, despite being maximal by definition,
remains abysmally small. Moreover suboptimal structures produced by the algorithm
for a given tolerance ∆, may be extremely similar without being fully representative of
the Boltzmann ensemble. It follows that, for a given tolerance, the list of suboptimals
is typically biased towards the MFE and its trivial variations. It may overlook the exis-
tence of alternative conformations, represented by a large number of similar structures
whose accumulated probability may exceed the MFE (+ variations) probability.

Let us formalize the notion of being representative of the folding space, also called
Boltzmann Ensemble, using concepts from statistical mechanics. To this end, let
us remind that at the thermodynamic equilibrium, the set of all possible structures
S ∈ Sω for an RNA ω, is expected to follow a Boltzmann distribution:

P(S | ω) =
e−

E(S)
RT

Z
(6)

where T is the temperature (K),R is the Boltzmann constant (1.987×10−3 kcal.mol-1.K-1),
and Z is the partition function, defined as

Z =
∑
S∈S

e−E(S)/RT . (7)

The partition function is essential to adopt a statistical perspective over the Boltz-
mann ensemble. For example, the probability of the minimum free-energy structure,
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giving us an idea of its prevalence, is given by e−m1,n/RT /Z . More generally, com-
puting the partition function is an essential prerequisite to sample the ensemble, as
shown in Section 3.2, or to accurately compute average ensemble properties, as de-
scribed in Section 3.3.

In practice, we must not only compute Z , but also Zi,j the partition function
restricted to the set Si,j of structures adopted on a region [i, j]. Note that Z := Z1,n,
so these (partial) partition functions can be used to find the global partition function of
the system. Computation those for all regions [i, j] therefore represents, a potentially
complex, weighted counting problem defined as follows.

Computation of the partition function Z

Input: Sequence ω ∈ {A, C, G, U}+, |ω| = n.
Output: Partition function Zi,j for any region [i, j], defined as

Zi,j =
∑
S∈Si,j

e−E(S)/RT

While the number of terms in the sum grows exponentially with the sequence length
n, it is in fact possible to compute Z very efficiently, in time only polynomial in n, as
done by Algorithm 4.

In fact, we already introduced a correct polynomial algorithm for the problem
in Section 2.1, up to a simple change of algebra! Indeed, our implementation of
FillMatrix in Algorithm 1 can be slightly modified to calculate Zi,j instead ofmi,j .
Towards that, one simply has to replace sums by products, minimizations by sums, and
transform constant energy terms into their Boltzmann factor:

min→ + +→ × E → e−E/RT

We finally obtain Algorithm 4, which computes the partition functions Zi,j .

3.1.1 Correctness of the algorithms

Let us start with a purely technical observation, which will represent the basis of our
proof by induction. Precisely, let E(S) = E1 + · · ·+ El be the energy of a structure
S, which can be decomposed into l terms, one then has

l∏
i=1

e−Ei/RT = e−
∑l
i=1 Ei/RT = e−E(S)/RT (8)

Equipped with this property, we can now establish the correction of the matrix filling
procedure.

Proposition 4. Algorithm 4 correctly computes the partition function of ω for each
region.
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ALGORITHM 4: Computation of the partition function Z
Entrée : ω – RNA of size n
Sortie : Z – Partition function Z

1 Fonction PartitionFunction (ω):
2 Z ← EmptyMatrix(n× n)

// Initialize to 1 all the values of the diagonal up to θ
3 for i← 1 to n do
4 for j ← i to min (i+ θ, n) do
5 Zi,j ← 1

6 for i← n to 1 do
7 for j ← i+ θ + 1 to n do

I Case A: Position i left without partner
8 Zi,j ← Zi+1,j

I Case B: Positions i and j form a base pair

9 Zi,j ← Zi,j + Zi+1,j−1 × e−Eωi,j/RT

I Case C: Position i paired to k < j

10 for k ← i+ θ + 1 to j − 1 do
11 Zi,j ← Zi,j + Zi+1,k−1 ×Zk+1,j × e−Eωi,k/RT

12 return Z

Proof. We proceed by induction on the length of the region [i, j], and prove that the
value computed in Zi,j coincides with the partition function restricted to the subse-
quence ωi,j . In the base case, when i − j ≤ θ, there is only one possible structure,
with no base pair and therefore zero energy, whose Boltzmann factor is e−0/RT = 1.
Now, the initialization assigns the value 1 to Zi,j for any region of length at most
θ + 1, and we thus get the expected result.

We now assume the validity of the proposition for any region [i′, j′] of length
j′−i′+1 < n?, meaning that the valueZi′,j′ coincides well with the partition function
restricted to ωi′,j′ . Now consider a region [i, j] of length n?, while computing Zi,j we
have three possible cases:

Case A: Position i left without a partner. Since j − i + 1 < n?, the induction as-
sumption applies and, in conjunction with the lack of energy contribution from
the unmatched positions, implies that:

Zi+1,j =
∑

S′∈Si+1,j

e
−E(S′)
RT =

∑
S′∈Si+1,j

e
−E(•S′)
RT =

∑
S∈•Si+1,j

e
−E(S)
RT .

In other words,Zi+1,j coincides with the partition function on [i, j], restricted to
structures letting i free. We will denote this restriction by Z•S in the following.

Case B: Positions i paired with j. The induction hypothesis applies to [i+ 1, j−1].
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Noting that the pair (i, j) provides an energy Eωi,j , we get:

e
−Eωi,j
RT ×Zi+1,j−1 = e

−Eωi,j
RT

∑
S′∈Si+1,j−1

e
−E(S′)
RT =

∑
S′∈Si+1,j−1

e
−(Eωi,j+E(S′))

RT

=
∑

S′∈Si+1,j−1

e
−E((S′))
RT =

∑
S∈(Si+1,j−1)

e
−E(S)
RT

The computation proposed in the algorithm thus captures all the structures pair-
ing i to j, whose partition function is denoted by Z(S).

Case C: Position i paired to k < j. In this case, the algorithm adds to the partition
function a quantity

∑j−1
i+θ+1 e

−Eωi,j/RTZi+1,k−1Zk+1,j with correct contribu-
tions as follows from the induction hypothesis. One thus obtains:

e
−Eωi,k
RT Zi+1,k−1Zk+1,j = e

−Eωi,k
RT

∑
S1∈Si+1,k−1

e
−E(S1)
RT

∑
S2∈Sk+1,j

e
−E(S2)
RT

=
∑

S1∈Si+1,k−1

∑
S2∈Sk+1,j

e−
Eωi,k+E(S1)+E(S2)

RT =
∑

S∈(Si+1,k−1)Sk+1,j

e
−E(S)
RT .

The term of the sum coincide with the definition of the partition function re-
stricted to the structures paring i to k, for a given value of k. By summing over
all the values of k on [i+θ+1, j−1], one obtains the partition function Z(S1)S2

of all the structures pairing i to any position other than j.

It is easy to see that the decomposition is unambiguous, i.e. that the various cases
cover pairwise disjoint sets of structures. Moreover, any structure over a region [i, j]
falls into one of these three categories. We conclude that:

Z•S + Z(S) + Z(S1)S2
=

∑
S∈•Si+1,j

⋃
(Si+1,j−1)⋃

(Si+1,k−1)Sk+1,j

e−
E(S)
RT =

∑
S∈Si,j

e
−E(S)
RT . (9)

The validity of the computed partition function on any region of length n < n? implies
the correctness on regions of size n?, allowing us to conclude the induction.

The differences between Algorithms 1 and 4 lead to constant time/memory over-
heads: elementary energy terms are e−E/RT instead of E while sums and products
replace the minima and sums, all computable in constant time. We thus obtain an
algorithm running in overall Θ(n3) time and Θ(n2) space complexity.

3.1.2 Going further

The change of algebra (min,+, E) → (+,×, e−E/RT ) can, in principle, be adapted
to any combinatorial problem solvable using dynamic programming. However, in
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order for the modified algorithm to compute the true partition function, one must
ensure that the underlying decomposition is complete – that it captures all the elements
of the search space – and unambiguous – that it produces each element in a single way.

The number of secondary structures compatible with an RNA ω can also be easily
obtained through a computation of a partition function. Indeed, assigning a very large
value to the temperature T , and one obtains

Z := Z1,n =
∑
s∈S

e−E(S)/RT −→
T→+∞

∑
s∈S

e0 =
∑
s∈S

1 = |S|.

3.2 Statistical sampling
The partition function is an essential quantity to derive the statistical properties of the
folding space. However, it essentially only gives access to the individual probabilities
of the structures. Meanwhile, there is a large number of structures, growing expo-
nentially with the sequence size n, all associated with probabilities that are exponen-
tially small. Computing the statistical properties in a deterministic fashion, by going
through the list of all structures while accounting from their individual probabilities,
would then require exponential time.

To overcome this issues, while still granting access to statistics of the Boltzmann
ensemble for a specific RNA, Ding and Lawrence [2003] introduce a random genera-
tion algorithm, also called stochastic sampling. The idea is to modify the backtrack-
ing step in order to produce a random structure, generated according to the Boltzmann
distribution

P(S | ω) =
e−E(S)/RT

Z
where Z = e−E(S)/RT is the partition function, calculated as shown in Section 3.1.

Sampling structures

Input: Sequence ω ∈ {A, C, G, U}+, |ω| = n.
Output: Structure S with probability

P(S) =
pS
Z

=
e−E(S)/RT

Z

The stochastic backtracking, implemented as Algorithm 2, can be used to solve
the problem in a simple energy model.

Its principle, illustrated by Figure 6, relies on a random choice, at each step of the
generation, of a decomposition case with probability proportional to its contribution
to the partition function. Namely, let us consider a region [i, j] giving access to a set
Si,j of structures, and assume that each decomposition case gives access to a subset
S ′ ⊆ Si,j , associated with a partition function ZS′ :=

∑
S∈S′ e

−E(S)/RT . Such a
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Case term.

ZD
ZD

Case term.

× × × ×

A := S B C D := {S}

P(S) = = e
−E(S)
RT

Z

S

Figure 6: Principle of random generation using the recursive method. At each step, a
decomposition case is chosen with probability proportional to its contribution in the
partition function. The probability of generating a given structure S then equals the
probability product over the chosen cases, and the consecutive numerators/denomina-
tors cancel out, leading S to the generated with Boltzmann probability.

case will be chosen, an backtracked upon, with probability:

pS′ =
ZS′
Zi,j

If a valid Boltzmann generator for S ′ is available and called, the probability of emitting
a given structure S′ ∈ S ′ for [i, j] then becomes

P(S′ | [i, j]) = pS′ × P(S′ | S ′) =
ZS′
Zi,j

× e−E(S′)/RT

ZS′
=
e−E(S′)/RT

Zi,j

where one recognizes the targeted probability when called for the full sequence ω with
[i, j] = [1, n].

3.2.1 Correctness of the algorithm

Proposition 5. Let Zi,j be the partition function of an RNA ω restricted to [i, j]. Then
a call to RandomStruct(i, j, ω,Z) returns some S? ∈ Si,j with probability:

P(S?) =
e−E(S?)/RT

Zi,j

Proof. We proceed by induction on the length of the regions [i, j]. In the base case,
when i − j ≤ θ, there is only one possible structure S?, the empty structure. It is
returned with probability 1 as described at line 2.
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ALGORITHM 5: Generates a structure S with probability e−E(S)/RT /Z
Entrée : [i, j] – Region being considered

Z – Partition function for each region, computed by Algorithm 4
ω – RNA of size n

Sortie : S – Random Boltzmann-distributed structure compatible with ω over [i, j]

1 Fonction RandomStruct(i, j,Z, ω):

2 if j − i ≤ θ then return
j−i+1︷ ︸︸ ︷
• . . . • // Empty structure is unique→ Probability 1

3 else
4 a←random(0,Zi,j) // Random number, uniform drawn in [0,Zi,j [

I Case A: Position i left without partner
5 a← a−Zi+1,j // Subtracting part. func. of all structures leaving i unpaired
6 if a < 0 then // True when a ∈ [0,Zi+1,j [→ Probability Zi+1,j/Zi,j
7 S?

i ← RandomStruct(i+ 1, j,Z, ω)
8 return •S?

i

I Case B: Positions i and j form a base pair

9 a← a−Zi+1,j−1× e−Eωi,j/RT // Subtracting part. func. of all structures pairing i to j

10 if a < 0 then // True with prob. Zi+1,j × e
−Eωi,j/RT /Zi,j

11 S?
i,j ← RandomStruct(i+ 1, j − 1,Z, ω)

12 return (S?
i,j )

I Case C: Position i paired to k < j ;
13 for k ← i+ θ + 1 to j − 1 do
14 a← a−Zi+1,k−1 ×Zk+1,j × e−Eωi,k/RT // Sub. part. fun. pairing i to k < j

15 if a < 0 then // True with prob. (Zi+1,k−1 × Zk+1,j × e
−Eωi,k/RT )/Zi,j

16 S?
1 ← RandomStruct(i+ 1, k − 1,Z, ω)

17 S?
2 ← RandomStruct(k + 1, j,Z, ω)

18 return (S?
1 )S?

2
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Let us now assume that the property holds for any region [i, j] such that j−i+1 ≤
n− 1. As we have seen for the computation of the partition function, we have:

S︷︸︸︷
Zi,j =

•Si+1,j︷ ︸︸ ︷
Zi+1,j +

(Si+1,j−1)︷ ︸︸ ︷
Eωi,j ×Zi+1,j−1 +

j−1∑
k=i+θ+1

(Si+1,k−1)Sk+1,j︷ ︸︸ ︷
Eωi,k ×Zi+1,k−1 ×Zk+1,j . (10)

Each term of the sum represents the contribution of a subset of possible structures for
S?, associated with one of the decomposition cases. The random number a generated
by Algorithm 5 is be used to identify the decomposition case, so that each ends up
being chosen with a probability proportional to its contribution.

Consider a structure S? generated by the algorithm over a region j − i + 1 ≤ n.
There are three possible cases:

Case A: Position i without partner in S?. One has S? = •S′, where S′ is gener-
ated over [i+ 1, j] with Boltzmann probability as per the induction hypothesis,
and such that E(S?) = E(S′). Moreover, the probability of choosing this case
is P(a ≤ Zi+1,j) = Zi+1,j/Zi,j . The emission probability of generating S? is
therefore:

P(S?) =
Zi+1,j

Zi,j
· P(S′) =

Zi+1,j

Zi,j
· e
−E(S′)
RT

Zi+1,j
=
e
−E(S′)
RT

Zi,j
=
e
−E(S?)
RT

Zi,j
.

Case B: Positions i and j paired in S? . One has S? = (S′), where S′ is generated
over [i+1, j−1] such thatE(S?) = E(S′)+Eωi,k. The probability of choosing
a such that it identifies this case is Zi+1,j−1 × e−E

ω
i,j/RT /Zi,j . The likelihood

of generating S? is therefore:

P(S?) =
Zi+1,j−1 × e

−Eωi,j
RT

Zi,j
× e

−E(S′)
RT

Zi+1,j−1
=
e−

E(S′)+Eωi,j
RT

Zi,j
=
e
−E(S?)
RT

Zi,j
.

Case C: Position i paired to k < j in S?. In the last case, we have S? = (S1)S2,
where S1 and S2 are generated over regions [i+ 1, k− 1] and [k+ 1, j] respec-
tively, and E(S?) = Eωi,k + E(S1) + E(S2). The probability of choosing this
case is then

Zi+1,k−1 ×Zk+1,j × e−E
ω
i,k/RT

Zi,j
and it follows that the probability of generating S? is

P(S?) =
Zi+1,k−1Zk+1,j e

−Eωi,k
RT

Zi,j
e
−E(S1)
RT

Zi+1,k−1

e
−E(S2)
RT

Zk+1,j

=
e−

Eωi,k+E(S1)+E(S2)

RT

Zi,j
=
e−E(S?)/RT

Zi,j
.
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As these three cases cover exhaustively and uniquely all the structures, the function
RandomStruct(i, j,Z, ω, ) thus returns S? ∈ Si,j with the expected probability.

3.2.2 Complexity

Assuming that a random uniform number can be generated in constant time, the com-
plexity of the RandomStruct algorithm is Θ(n2), with a worst case similar to the one
analyzed in Section 2.1. It is thus possible to generate a sample of M structures in
Θ(M.n2) time after a preprocessing in Θ(n3) time and Θ(n2) space.

3.2.3 Going further

From a representative sample of structures, it is possible to estimate the statistical
properties of a folding. For instance, to study how structured an RNA is, one can use
the expected number of base pairs as a proxy, estimated from a random sample of
structures S1, S2, ..., SM through a basic estimator:

E(#Pairs(S)) =

∑M
i=1 #Pairs(Si)

M

Sampling can also be combined with unsupervised machine learning (clustering
algorithm), based on a notion of base pair distance, to identify dominant conforma-
tion(s) within the Boltzmann Ensemble [Ding et al., 2005].

The average complexity of the algorithm is Θ(n
√
n) [Ponty, 2008]. It can be

significantly improved by simply changing the examination order of the k values in
case C. For this, the original loop order

k := i+ θ + 1→ i+ θ + 2 . . .→ j − 2→ j − 1

can simply be replaced by a Boustrophedon order, converging from the extremities of
the interval towards its center

k := i+ θ + 1→ j − 1→ i+ θ + 2→ j − 2→ . . .

A highly technical analysis of the worst-case complexity allows to conclude that the
worst-case execution time then becomes O(n log n) [Ponty, 2008].

3.3 Boltzmann probability of structural patterns
Statistical sampling enables the estimation of statistical properties at thermodynamic
equilibrium, while offering (probabilistic) guarantees regarding their accuracy, for in-
stance in the form of confidence intervals. It thus makes it possible for example, by
generating enough structures, to satisfactorily address questions such as: What is the
average energy of a folding at thermodynamic equilibrium?

However, confidence intervals, based on the law of large numbers, only allow
to control the absolute error. Sampling encounters issues, or becomes very costly,
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Figure 7: Decomposition of structures featuring a structural pattern, here the base
pair (15, 23). Any structure featuring (15, 23) contains an outside part (red), and
an inside part (blue), both of which independently contribute to the stability. The
set of structures containing the pair can be obtained as a Cartesian product of both,
considering all combinations of inner and outer structures.

when the objective is to estimate quantities having smaller, or very diverse values.
In particular, it does not provide a very satisfactory solution to the question: What
are the Boltzmann probabilities of all base pairs (i, j)? More generally, it provides
only, possibly noisy, probabilistic estimates for computing the probability of complex
structural patterns at the thermodynamic equilibrium.

A major contribution of the seminal paper by McCaskill [1990] resides in an effi-
cient computation of the exact Boltzmann probability of a structural pattern m:

P(m ∈ S) :=
∑
S∈S

such thatm∈S

P(S | w) =
∑
S∈S

such thatm∈S

e−E(S)/RT

Z
=
Zm
Z

where Z is the partition function and Zm :=
∑
S∈S;m∈S e

−E(S)/RT is the partition
function restricted to structures featuring the motif m. Since Z is computable in
Θ(n3) time, as seen in Section 3.1, the main remaining difficulty resides in computing
Zm.

The algorithm proposed by McCaskill adapts the approach of the Inside-Outside
algorithm [Lari and Young, 1990], initially proposed in the context of automatic lan-
guage processing. It is based on a non-ambiguous decomposition, illustrated in Figure
7, of all S structures containing m ∈ S into:

• A decomposition-induced production P , applicable to a region [i, j], creating
an instance of the pattern m, and followed by one or more substructure(s) over
region(s) [i1, j1], [i2, j2] . . .;

• An (inside) structure Sr for each region [ir, jr] produced by P ;

• An outside structure SE , defined over [1, n] while leaving a hole in [i, j].
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Proposition 6. Let E(P ) be the proper contribution of a production P to the free
energy, and Yi,j the outside partition function with respect to the region [i, j], such
that

Yi,j :=
∑

SE external to [i,j]

e
−E(SE)

RT (11)

One then has

Zm =
∑

P=([i,j]→[i1,j1],...,[ir,jr])
such thatm∈P

e
−E(P )
RT Yi,j

∏
r

Zir,jr . (12)

Proof. Let us first note that, for any structure S featuringm, one hasE(S) = E(P )+
E(SE) +

∑
r E(Sr). Consider then the quantity

Φ :=
∑

P=[i,j]→[i1,j1],[i2,j2]...
such thatm∈P

e
−E(P )
RT Yi,j

∏
r

Zir,jr .

By replacing the partition functions by their respective definitions, one obtains

Φ =
∑

P ;m∈P
e
−E(P )
RT

 ∑
SE ext.
to [i,j]

e
−E(SE)

RT

∏
r

 ∑
Sr

over [ir,jr]

e
−E(Sr)
RT


=

∑
P ;m∈P

∑
SE ,S1,S2,...

e−
E(P )+E(SE)+

∑
r E(Sr)

RT =
∑
S∈S

such thatm∈S

e−E(S)/RT ≡ Zm.

Remind that the (inside) partition functions Zi,j can be computed in time Θ(n3)
(see Section 3.1), simultaneously for all regions [i, j]. The only missing ingredient to
compute Zm, and thus pm, is the outside partition function Y .

Outside partition function

Input: Sequence ω ∈ {A, C, G, U}+
Output: The outside partition function Y associated with each region [i, j],
defined as

Yi,j =
∑

SE outside [i,j]

e−E(SE)/RT
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h i− 1 ji

I Case A : Access to [i, j] due to leaving i− 1 unpaired

I Case B : Access to [i, j] due to pairing i− 1 with j + 1

I Case CG : Access to [i, j] due to pairing i− 1 to j + 1 within [i− 1, k]

I Case CD : Access to [i, j] due to pairing h with i+ 1 within [h, j]

Figure 8: Decomposition of structures outside a region [i, j].

Fortunately, Y follows a relatively simple formula, based on the decomposition
described in Figure 8, which we establish by inverting the rules of the dynamic pro-
gramming scheme. One then obtains, for i > 1:

Yi,j =
∑



Yi−1,j I Case A: Pos. i− 1 is free

// If j < n and j − i > θ :

e
−Eωi−1,j+1

RT Yi−1,j−1

I Case B: Pair (i− 1, j + 1)

// If j − i > θ:
n∑

k=j+2

e
−Eωi−1,j+1

RT Yi−1,k Zk+1,j

I Case CG: Pair (i− 1, j + 1)

in [i− 1, k > j]

i−θ−2∑
h=1

e
−Eωh,i−1

RT Yh,j Zh+1,i−2 I Case CD: Pair (h, i− 1)

in [h < i, j]

(13)

with Y1,n := 1 and Y1,j<n := 0. This equation can be computed for any interval
using dynamic programming as described in Algorithm 6. The resulting algorithm
has a time complexity in Θ(n3), and a memory complexity in Θ(n2).
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ALGORITHM 6: Outside partition function
Entrée : ω – RNA of size n
Sortie : Z – Matrix Y , filled according to Equation (13)

1 Y ← EmptyMatrix(n× n)
// Initialize to 0 all the values of the diagonal up to θ

2 for j ← 1 to n− 1 do Y1,j ← 0
3 Y1,n ← 1
4 for i← 2 to n do
5 for j ← i to n do

I Case A: Position i left without partner
6 Yi,j ← Yi−1,j

I Case B: Positions i and j form a base pair
7 if j < n j − i > θ + 2 then
8 Yi,j ← Yi,j + e−Eωi−1,j+1/RT × Yi−1,j−1

I Case CG: Position i paired to k < j

9 if j < n j − i > θ + 2 then
10 for k ← j + 2 to n do
11 Yi,j ← Yi,j + Yi−1,k × e−Eωi−1,j+1/RT ×Zk+1,j

I Case CD: Position i paired to k < j

12 for h← 1 to i− θ − 2 do
13 Yi,j ← Yi,j + Yh,j × e−Eωh,i−1/RT ×Zh+1,i−2

14 return Y

To calculate the Boltzmann probability of a pattern, the transitions producing a
particular pattern thus remain to be enumerated. In practical terms, the probability of
leaving a position i free is given by

P(i free) =
Yi,i +

∑n
j=i+1 Yi,jZi+1,j

Z1,n
.

Similarly, the probability of forming a base pair (i, j) is obtained by

P(pair (i, j)) =
e
−Eωi,j
RT Yi,jZi+1,j−1 +

∑n
k=j+1 e

−Eωi,j
RT Yi,kZi+1,j−1Zj+1,k

Z1,n
.

Here, these probabilities can typically be computed simultaneously for all possible
positions of the pattern in O(n3) time.

3.3.1 Going further

In order to take advantage of an efficient algorithm, here in O(n3) time, the pattern
must be identifiable in the dynamic programming scheme. In the Nussinov decom-
position, this constraint limits the list of eligible patterns to base pairs and unpaired

34



i

j

Q'
i

j-1

Q1i

j

Q1

i j

Q'

i

jk

Q1

i

j
k

Q

Q1

i

Q

j

1 j

Q5

1

Q5

j-1

Q'

1 j
Q5

k
+

i j i j

i+1
j-1

Q'

i j

j-1

i'>i+1 Q'

i'>i+1
j'<j-1

i j

Q'

j'<j-1

i j

i+1

Q'

+ +

+ +

+

+

Exterior loop Last position unpaired

Stem

Last position paired

Hairpin loop Stacking pairs Internal loop

Right bulge Left bulge Multiloop

Multi helices Last helix, preceded by
unpaired region

Single helix

At least 2 helices

Last position unpaired Last position paired

H
IS

i+1 j-1

kQ Q1

M
B3

B5

1

10

20

30

40

50

60

70
80

90

100
110

118

B3

B3

H

I

I I H

S
S

S
S

S
S
S
S

S

S S S SSS

S

S

S

S

S

S

S

M

H

S

I

B3

M

B5

Hairpin loop

Right Bulge

Stacking pairs

Internal loop

Left Bulge

Multiloop

Figure 9: Loops of the Turner energy model, illustrated using the structure of a 5s
ribosomal RNA (left), and decomposition (right) of all secondary structures allowing
for the expression of the loops-based energy model.

positions. However, different types of loops can also be considered by more com-
plex decompositions, for instance those capturing the Turner energy model as seen in
Section 4.1.

The framework described above considers patterns (base pairs, unpaired positions)
that appear at most once in each structure. However, the same calculation can be
exactly used for a pattern m′ that possibly occurs several times in a given structure.
The value returned by the algorithm then simply becomes the expectation of the
number of occurrences of m′ in the Boltzmann distribution.

4 Studying RNA structure in practice

4.1 The Turner model
The base-pair based free energy model used throughout this chapter may appear over
simplistic, and indeed is! Base pairs are actually not the main determinants of free
energy, but the latter is thought to be dominated by the contributions of structural
“blocks” [Xia et al., 1998] called loops, namely the closed regions appearing in the
graph drawing of the secondary structure (see Figure 9). In particular, the stackings
of two directly nested base pairs (i, j) → (i + 1, j − 1), often represent the main
contributors to the free energy. Energies associated with the different types and con-
tents of the loops, have been precisely calculated and extrapolated from the results of
optical melting curve experiments [Turner and Mathews, 2010].
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Although more complex, this energy model preserves a notion of independence of
local patterns in the structure. For this reason, it can be captured by a decomposition,
illustrated in Figure 9, which retains the same properties (completeness, unambiguity,
correctness) as the simple base pairs-based decompositions presented in this chapter.
All the methods and algorithmic approaches presented in this chapter can thus be
adapted, with essentially the same complexity, to this more realistic model.

The resulting gain in predictive accuracy is significant, as illustrated in Figure 10.
We considered a structure/sequence database proposed by Mathews [2004], compris-
ing RNAs having known structure. For each sequence, we used Algorithm 2 to pro-
duce a minimum energy structure, based on contributions G-C → -3, A-U → -2, and
G-U→ -1 (kcal.mol−1). We also run a recent version of the RNAfold software [Lorenz
et al., 2011], implementing energy minimization in the Turner model, to produce an
alternative, hopefully more accurate, structure.

To evaluate the quality of a predicted structure S, for an RNA ω of known structure
S?, we considered the True/False Positive/Negative (see Section ?? of Chapter ??)
base pairs, such that:

VP :=|S ∩ S?| FP :=|S \ S?| VN :=|{(i, j)} \ (S ∪ S?)| FN :=|S? \ S|.

The sensitivity is then derived, defined as the proportion of pairs from the reference S?

that are actually predicted by a given algorithm; conversely, the positive predictive
value (PPV) is the proportion of pairs from S, predicted by the algorithm, that are
found in the reference; and finally the Matthews Correlation Coefficient (MCC), an
agglomeration of the different measures, such that:

Sens =
VP

VP + FN
PPV =

VP

VP + FP

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
≈
√

Sens.× PPV.

With respect to these metrics, as can be seen in Figure 10, the Turner model pro-
duces predictions that are far superior to those obtained with the simplified model,
regardless of the measure being considered. For this reason, despite its sophistication
and the technicality of its implementation, the Turner model can be found in virtually
all the predictive methods in the state of the art (described in the next section).

4.2 Tools
There is a large number of available tools for predicting the structure of RNA se-
quences. Among the most popular implementations is the ViennaRNA software suite [Lorenz
et al., 2011]. It contains an extensive set of options and variations on folding/align-
ment, in addition to Python and Perl interfaces which can be easily integrated within
an analysis pipeline. It is one of the most complete, and highly popular, tools in RNA
bioinformatics due to these features. The RNAstructure package also offers many
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Figure 10: Sensitivity, Positive Predictive Value (PPV), and Matthews Correlation
Coefficient (MCC) of energy minimization-based prediction in two energy models:
Simplified model based on base pairs (blue); and Turner model (orange).
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Task Section Tool/command Package/Ref.

Energy minimization 2.1 RNAfold ViennaRNA

Fold RNAStructure

Suboptimal folding 2.2 RNAsubopt ViennaRNA

AllSub RNAStructure

Comparative folding 2.3 LocARNA ViennaRNA

dynalign RNAStructure

FoldAlign Sundfeld et al. [2015]
Partition function 3.1 RNAfold -p ViennaRNA

partition RNAStructure

Statistical sampling 3.2 RNAsubopt -p ViennaRNA

stochastic RNAStructure

Boltzmann probabilities 3.3 RNAfold -p ViennaRNA

partition RNAStructure

Multiple folding – RNAalifold ViennaRNA

Table 1: Reference implementations of the algorithms seen in this chapter (Turner
energy model).

features, and provides a myriad of options, as well as a Java graphical interface [Reuter
and Mathews, 2010]. Table 1 summarizes the main implementations of the algorithms
presented in this chapter.
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