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Abstract. We propose a generic agnostic approach allowing to gener-
ate different and complementary types of symbolic explanations. More
precisely, we generate explanations to locally explain a single prediction
by analyzing the relationship between the features and the output. Our
approach uses a propositional encoding of the predictive model and a
SAT-based setting to generate two types of symbolic explanations which
are Sufficient Reasons and Counterfactuals. The experimental results on
imagee classification task show the feasibility of the proposed approach
and its effectiveness in providing Sufficient Reasons and Counterfactual
explanations.

Keywords: Explainable Artificial Intelligence (XAI) · Symbolic expla-
nations · Model-Agnostic · Satisfiability testing.

1 Introduction

Modern machine learning (ML) and deep learning methods are nowadays widely
used in many sensitive fields and industries. However, despite the good predictive
performance of the ML models, there are critical applications that fundamen-
tally require trust like applications applied to medicine, driverless cars and law
enforcement. Therefore, it becomes increasingly important to explain the behav-
ior of those models and their output to enhance trust in the model predictions
and their adoption in real world applications. This leads to a rapid growth in
attention to eXplainable AI (XAI). The XAI methods can be grouped into pre-
model (ante-hoc), in-model, and post-model (post-hoc) methods. In the latter,
we identify two types of explanations: (1) symbolic (knowledge-driven) methods
that are based on logical representations used for explanation (e.g. [18],[10]), ver-
ification and diagnostic purposes (e.g. [15], [17], [10]), and (2) numerical feature-
based methods that provide insights into how much each feature contributed to
that outcome (e.g. SHAP[13], LIME[16]). The main limitation to the existing
explainability methods based on symbolic representations is the fact that they
are generally intended to specific models and cannot be applied to any model
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(non agnostic). In the other hand, feature-based methods such as LIME[16] and
SHAP[13] try to assess the amount of contribution of features into the predic-
tions but fail at answering certain questions such as What are the feature values
which are sufficient in order to trigger the prediction whatever the values of the
other variables ? or Which values are sufficient to change in the instance x to
have a different prediction ?
To address the problem of answering this type of fundamental questions, we
propose in this paper an approach to provide ”different” and ”complementary”
types of symbolic explanations: the Sufficient Reasons (SRx for short) and
the Counterfactuals (CFx for short). The main advantage of our approach is
the fact of being model-agnostic, where we try to learn accurate yet simple mod-
els to emulate the given black-box. In the other hand, the approach is based on
rigorous and well-known Boolean satisfiability concepts that allow us to exploit
the availability of efficient SAT solvers. Accordingly, our approach is declarative
and does not require the implementation of specific algorithms. We evaluate the
feasibility and efficiency of our approach on image classification task.

2 Preliminaries and notations

We first introduce the necessary notations and recall some definitions used in
the remainder of this paper. For the sake of simplicity, we will limit the presen-
tation to binary classifiers with binary features. We also focus only on negative
predictions where the outcome is 0. As for explaining positive predictions where
the outcome is 1, the approach applies similarly as discussed in the Conclusion.

Definition 1. (Binary Classifier) A Binary Classifier is defined by two sets
of variables: A feature space X= {X1,...,Xn} where |X| = n, and a binary class
variable denoted Y . Both the features and the class variable take values in {0,1}.

A decision function describes the classifier’s behavior independently from the
way it is implemented. We define it as a function f : X → Y mapping each
instantiation x of X to y=f(x). A data instance x is the feature vector associ-
ated with an instance of interest whose prediction from the ML model is to be
explained. We use interchangeably in this paper f to designate the classifier and
its decision function. Let us now define the representation framework we use.

Definition 2. (SAT : The Boolean Satisfiability problem) Usually called
SAT, the Boolean satisfiability problem is the decision problem, which, given a
propositional logic formula, determines whether there is an assignment of propo-
sitional variables that makes the formula true.

The logic formulas are built from propositional variables and Boolean connectors
”AND” (∧), ”OR” (∨), ”NOT” (¬). A formula is satisfiable if there is an assign-
ment of all variables that makes it true. It is said inconsistent or unsatisfiable
otherwise. A complete assignment of variables making a formula true is called a
model while a complete assignment making it false is called a countermodel.

Definition 3. (CNF (Clausal Normal Form)) is a set of clauses seen as a
conjunction. A clause is a formula composed of a disjunction of literals. A literal
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is either a Boolean variable p or its negation ¬p. A quantifier-free formula is built
from atomic formulae using conjunction ∧, disjunction ∨, and negation ¬. An
interpretation µ assigns values from {0, 1} to every Boolean variable. Let Σ be
a CNF formula, µ satisfies Σ iff µ satisfies all clauses of Σ.

Thanks to the achievements that the SAT field had known in the recent years,
the modern SAT solvers1 have gained in performance and efficiency where they
can handle now problems with several million clauses and variables. Recall that
we use a SAT oracle to generate our formal symbolic explanations. We encode
the explanation generation problem as two common problems related to SAT-
solving which are enumerating minimal reasons why a formula is inconsistent
and minimal changes to a formula in order to restore its consistency. Indeed,
in the case of an unsatisfiable CNF, we can analyze the inconsistency by enu-
merating sets of clauses causing the inconsistency (called Minimal Unsatisfiable
Subsets (MUS)), and other sets of clauses allowing to restore its consistency
(called Minimal Correction Subsets (MCS)). The enumeration of MUS/MCS
are well-known problems dealt with in many areas such as knowledge-base repa-
ration. Several approaches and tools have been proposed in the SAT community
for their generation (e.g [12], [6]).

3 Overview of the proposed approach

The objective of our approach is explaining the prediction made by a classifier
for a given input data instance x. It associates a logical representation that is
almost equivalent to the decision function of the model to explain. Figure 1
represents an overview of the proposed approach.

Fig. 1. A global overview of the proposed approach

Given a predictive model f , our approach proceeds as follows:

– Step 1 (CNF encoding of the classifier): the goal is to encode f into an
equivalent symbolic representation Σf . The generation of symbolic explana-
tions in the next step is done using Σf . The encoding is done either by the
means of model encoding algorithms if they are available and the encoding

1 A SAT solver is a program for establishing the satisfiability of Boolean formulas
encoded in conjunctive normal form.
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remains tractable, or using a surrogate modeling approach as described in
Section 4.

– Step 2 (Explanation problem modeling): This step presented in Section
5 comes down to enumerating two types of symbolic explanations: SRx and
CFx. This task is formulated as a partial maximum satisfiability problem
Partial Max-SAT[2] using the CNF encoding Σf of f and Σx of the input
instance x. The symbolic explanations respectively correspond to Minimal
Unsatisfiable Subsets(MUS) and Minimal Correction Subsets(MCS) of Σf ∪
Σx in the SAT terminology.

The SAT solving is already used for providing some forms of symbolic expla-
nations for some specific ML [3, 9, 11]. The novelty in our approach is the fact
of being model-agnostic and succeeding in generating formal explanations based
on rigorous concepts.

4 CNF encoding of classifiers

The starting point of our approach is the encoding of the input ML model
f into a logical representation (CNF). This step is necessary in order to use
a SAT oracle for the enumeration of the symbolic explanations. Mainly, two
cases are considered: (1) an encoding of classifier f into an equivalent logical
representation exists, in which case we can use it (e.g. Binarized Neural Networks
(BNNs) [14], Naive and Latent-Tree Bayesian network [19]). (2) We consider the
classifier f as a black-box and we use a surrogate model approach to approximate
it in the vicinity of the instance to explain x (Agnostic option). The surrogate
models are used to explain individual predictions of black-box ML models.
We set the focus on the agnostic option in this paper. This latter is applied when
no direct CNF encoding exists for f or if the encoding is intractable.

Surrogate model encoding into CNF The approach proposed uses a
surrogate model mainly characterized by its faithfulness to the initial model f
(ensures same predictions) and its tractable logical representation (CNF). To
ensure the local faithfulness to f , we use a surrogate model fS trained on data
instances in the vicinity of the data instance x whose prediction from the model
needs to be explained. We construct the vicinity of x noted V (x, r) by sampling
new data instances within a radius r of x if the dataset is available2.

A model that can guarantee a good trade-offs between faithfulness and giv-
ing a tractable CNF encoding is the one of random forests [7]. As shown in our
experimental study, the random forest accuracy reflects a good level of faithful-
ness and its CNF encoding size remains tractable. The CNF encoding fS of a
classifier f should guarantee the equivalence of the two representations stated
as follows :

Definition 4. (Equivalence of a classifier and its CNF encoding) A
binary classifier f (resp. fS) can be equivalently encoded as a CNF Σf (resp.
ΣfS ) s.t. f(x)=1 (resp. fS(x)=1) iff x is a model of Σf (resp. ΣfS ).

2 Otherwise, we can draw new perturbed samples around x



Title Suppressed Due to Excessive Length 5

Namely, data instances x predicted positively (f(x)=1) by the classifier are mod-
els of the CNF encoding the classifier. Similarly, data instances x predicted neg-
atively (f(x)=0) are countermodels of the CNF encoding the classifier.

4.1 CNF encoding of random forests

In this work, we adopted the random forest3 as the surrogate model fS . Its asso-
ciated CNF encoding resumes in i) encoding the decision trees individually and
then ii) encoding the combination rule (which is a majority voting rule).
Encode in CNF every decision tree : Remember that all the features in our
case are binary. Thus, each internal node of a decision tree DTi represents a bi-
nary test on one of the features. The result of a test is either true or false. For the
leaves of a decision tree, each one is annotated with the predicted class (namely,
0 or 1). The Boolean function encoded by a decision tree can be captured in
CNF as the conjunction of the negation of paths leading to leaves labelled 0.
Encode in CNF the combination rule : Let yi be a Boolean variable cap-
turing the truth value of the CNF associated to a DTi. Hence, the majority rule
used in random forests to combine the predictions of m decision trees can be
seen as a cardinality constraint4 [20] that can be stated as follows :

y ⇔
∑

i=1..m

yi ≥ t, (1)

where t is a threshold (usually t=m
2 ). To form the CNF corresponding to the

entire random forest, it suffices to conjuct the m CNFs associated to the decisions
trees, and, the CNF of the combination rule.

5 Generating symbolic explanations

This section will cover the presentation of both Sufficient Reasons and Counter-
factuals explanations as well as the SAT-based setting we use to generate such
explanations. This corresponds to Step 2 within the Fig.1. This step takes as
input the CNF encoding of a classifier Σf and a sample data instance Σx.

5.1 A SAT-based setting for the enumeration of explanations

We propose two complementary types of symbolic explanations: the Sufficient
Reasons which are a minimal subset of the input data, that if fixed, lead to
a given prediction and the Counterfactuals which are a minimal subset of the
input data that we can act on to obtain a different outcome. The enumeration
of those symbolic explanations in our approach is based on two very common
concepts in SAT which are MUS and MCS (defined formally in the following).
We use a variant of the SAT problem called Partial-Max SAT [2] in order to
restrict the explanations only to clauses encoding the input data x and do not
include clauses that encode the classifier f .

3 Random Forests are used for XAI purposes in some works such was [1, 4, 11]
4 In our case this constraint means that at least t decision trees predicted the label 1.
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The Partial-Max SAT problem can be efficiently solved by the existing tools
implementing the enumeration of MUSes and MCSes such as the tool in [5]. It
is composed of two disjoint sets of clauses where ΣH denotes the hard clauses
(those that could not be relaxed) and ΣS denotes the soft ones (those that could
be relaxed). Concretely in our approach, the set of hard clauses corresponds to
Σf and the soft clauses to Σx. The CNF Σx encoding the data instance x is
formed by unit clauses where each clause α ∈ Σx is composed of exactly one
literal (∀α ∈ Σx, |α| = 1) and each literal representing a Boolean variable of Σx

corresponds to a Boolean variable {Xi ∈ X} where X is the feature space of f .
Thanks to this Partial-MAX SAT setting, it is possible to both identify the
subsets of Σx responsible for the unsatisfiability of a given CNF Σf∪Σx (corre-
sponding to SRx of f(x)=0), and the subsets allowing to restore the consistency
of Σf∪Σx (corresponding to CFx allowing to change the prediction to f(x)=1).

5.2 Sufficient Reason Explanations (SRx)

We are trying to find explanations that identify the relevant variables that could
justify why the prediction is negative. This is carried out by identifying a subset
of our input which causes the inconsistency of the CNF formula Σf∪Σx (recall
that the prediction f(x) is captured by the truth value of Σf∪Σx). The identified
subsets of the input x represent Sufficient Reasons for the prediction to be
negative. We formally define the Sufficient Reasons explanations as follow:

Definition 5. (SRx explanations) Let x be a data instance and f(x)=0 its
prediction by the classifier f . A sufficient reason explanation x̃ of x is such that:

1. x̃ ⊆ x (x̃ is a part of x)
2. ∀x́, x̃ ⊂ x́ : f(x́)=f(x) (x̃ suffices to trigger the prediction)
3. There is no partial instance x̂ ⊂ x̃ satisfying 1 and 2 (minimality)

Intuitively, a sufficient reason x̃ is defined as the part of the data instance x
such that x̃ is minimal and causes the prediction f(x)=0. Namely, to explain
the classification it is ”sufficient” to observe those features with disregard to the
others. We define now the Minimal Unsatisfiable Subsets :

Definition 6. (MUS) A Minimal Unsatisfiable Subset (MUS) is a minimal
subset Γ of clauses of a CNF Σ such that ∀ α ∈ Γ , Γ\{α} is satisfiable.

A MUS for Σf∪Σx comes down to a subset of soft clauses, namely a part of x
that is causing the inconsistency, hence the prediction f(x)=0.

Proposition 1. Let f be a classifier, let Σf be its CNF representation. Let also
x be a data instance predicted negatively (f(x) = 0) and Σf∪Σx the correspond-
ing Partial Max-SAT encoding. Let SR(x, f) be the set of Sufficient Reasons of
x wrt. f . Let MUS(Σf,x) be the set of MUses of Σf ∪Σx. Then:

∀x̃ ⊆ x, x̃ ∈ SR(x, f) ⇐⇒ x̃ ∈MUS(Σf,x) (2)

Proposition 1 states that each MUS of the CNF Σf∪Σx is a Sufficient Reason
for the prediction f(x)=0 and vice versa.
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5.3 Counterfactual Explanations (CFx)

We are also interested in another type of explanation which would allow us to
figure out what changes can be made to the input data in order to alter the initial
outcome. Let us formally define the concept of counterfactual explanation.

Definition 7. (CFx Explanations) Let x be a complete data instance and f(x)
its prediction by the decision function of f . A counterfactual explanation x̃ of x
is such that:

1. x̃ ⊆ x (x̃ is a part of x)
2. f(x[x̃])= 1-f(x) (prediction inversion)
3. There is no x̂ ⊂ x̃ such that f(x[x̂])=f(x[x̃]) (minimality)

In definition 7, the term x[x̃] denotes the data instance x where variables included
in x̃ are inverted. In our approach, Counterfactuals are enumerated thanks to
the Minimal Correction Subset enumeration [5].

Definition 8. (MCS) A Minimal Correction Subset Ψ of a CNF Σ is a set of
formulas Ψ ⊆ Σ whose complement in Σ, i.e., Σ \ Ψ , is a maximal satisfiable
subset of Σ.

Following our modeling, an MCS for Σf∪Σx comes down to a subset of soft
clauses denoted x̃, namely a part of x that is enough to remove (or reverse) in or-
der to restore the consistency, hence to alter the prediction f(x)=0 to f(x[x̃])=1.

Proposition 2. Let f be the decision function of the classifier, let Σf be its
CNF representation. Let also x be a data instance predicted negatively (f(x) = 0)
and Σf∪Σx the corresponding Partial Max-SAT encoding. Let CFx(x, f) be the
set of counterfactuals of x wrt. f . Let MCS(Σf,x) the set of MCSs of Σf ∪Σx.
Then:

∀x̃ ⊆ x, x̃ ∈ CFx(x, f) ⇐⇒ x̃ ∈MCS(Σf,x) (3)

Proposition 2 states that each MCS of the CNF Σf∪Σx represents a CF
x̃⊆x for the prediction f(x)=0 and vice versa.

6 Empirical evaluation

Experimentation set-up The black-box models considered are ”one-vs-all”
binary neural networks (BNNs)5 trained on the widely used MNIST database 6.
MNIST is composed of 70,000 images of size 28 × 28 pixels. We use the pytorch
implementation7 of the Binary-Backpropagation algorithm ”BinaryNets”[8] to
train the BNN classifiers (one per digit from 0 to 9) on the binarized images
(threshold T = 127). All experiments have been conducted on Intel Core i7-7700
(3.60GHz ×8) processors with 32Gb memory on Linux.

5 defined as a neural networks with binary weights and activations at run-time
6 MNIST: handwritten digit databse, available at http://yann.lecun.com/exdb/mnist/
7 available at: https://github.com/itayhubara/BinaryNet.pytorch
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Results The surrogate model considered is a random forest (RF) classifier
trained on the vicinity of the input sample using the hyper-parameters nb trees =
10 and max depth = 24. We try out different values for the radius r but we only
present the results for r = 250 with an average of 200 neighbors around x due
to the limited number of pages. The black-box models (BNNs) trained to recog-
nize the ”0”,”2”,”5”,”6” and ”8” digits are used as predictive models 8. Around
1000 to 1500 images were picked randomly from the MNIST database for the
experimental study conducted on each classifier.

Evaluating the CNF encoding in practice : We are interested in evaluat-
ing the size of the CNF encoding using the setting mentioned above. We use the
Tseitin Transformation [21] to encode the propositional formulae into an equi-
satisfiable CNF formulae. The size of this latter is linear in the size of the original
formulae. The results are presented in Table 1. The high accuracy of fS shows
that the generated RF classifier provide interesting results in term of fidelity.
The number of variables/clauses of the CNF indicates that the logical represen-
tation remains tractable and makes the logical representation easily handled by
the current SAT-solvers which confirms the feasibility of the approach.

MNIST 0 MNIST 2 MNIST 5 MNIST 6 MNIST 8
avg acc of RF 98% 93% 99% 96% 95%
min size CNF 1744/4944 1941/5452 2196/6102 1978/5534 1837/5178
avg size CNF 1979/5540 2172/6050 2481/6856 2270/6293 2059/5727
max size CNF 2176/6066 2429/6760 2789/7694 2558/7028 2330/6408
min enc runtime (s) 0.83 0.88 0.92 0.82 0.74
avg enc runtime (s) 1.05 1.06 1.11 0.92 0.86
max enc runtime (s) 1.51 1.92 1.56 1.31 1.32

min #CFs 10 13 10 15 6
avg #CFs 35790 63916 99174 79520 4846
max #CFs 285219 546005 633416 640868 65554
min enumtime (s) 0.005 0.11 0.006 0.11 0.008
avg enumtime (s) 21.49 42.11 77.72 50.86 2.35
max enumtime (s) 234.18 600 600 531.16 35.08

Table 1. Evaluating (1) the encoding into the logical representation and (2) the enu-
meration of explanations for different classifiers used to locally explain MNIST images.

Evaluating the feasibility of the enumeration of explanations : We want
to assess the practical feasibility of the enumeration of Sufficient Reasons and
Counterfactual explanations. To enumerate the CFx, we use the EnumELSRM-
RCache tool1 with a timeout set to 600s. Thanks to the duality between MUSes
and MCSes, the enumeration of SRx can be done by computing the minimal
hitting set of CFx. However, the results in this paper only cover the enumera-
tion of CFx due to the page limitation.
In Table 1, we report the average run-time (enumtime) needed to enumerate
all the explanations within the timeout whereas in reality the solver manages to
find explanations instantly in the majority of cases. Accordingly, the enumeration
time remains reasonable and shows the practical feasibility of the enumeration of
such explanations for medium size classifiers (like the BNNs used). Additionally,

8 results for the other digits are similar but not be reported because of space limitation
1 implementing the boosting algorithm for MCSes enumeration proposed in [5]
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we notice that the number of CFx enumerated is significant and that it quickly
becomes unmanageable for a user to process the result. This reinforces the need
for quality metrics to filter the generated explanations.

SRx and CFx for MNIST : We use the ”one-vs-all” BNN f8 trained to
recognize the eight ”8” digit (positive prediction for an image representing ”8”,
negative otherwise) that has achieved an accuracy of 97%. Fig.2 shows a few
data samples negatively predicted by f8. Heatmaps in the 3rd column of Fig.2
show examples of CFx highlighting the necessary changes to be made on the
input data sample in order to alter the outcome of f8 from negative to positive.
We can visually distinguish a sort of pattern of the digit ”8” highlighting the
pixels we need to act on. This actually matches the definition of CFx. Although
the underlying mechanisms of our approach and SHAP differ which may lead to
very different explanations for the same input, we can see that our explanations
are visually simpler, clearer and easier to understand and use compared to SHAP
explanations in the last column.

Fig. 2. Data samples from MNIST predicted negatively by f8 in the 1st column. The
heatmap of the: 2nd column represent the variables involved by the explanations, the
3th and 4th columns, a single counterfactual and sufficient reason explanation. The last
column is the SHAP values of the variables contributing positively to the prediction.

7 Concluding remarks and Discussions

We try to explain individual outcomes of black-box models by the mean of a
novel model agnostic generic approach presented within this paper in order to
provide two complementary types of explanations: Sufficient reasons and Coun-
terfactuals. The approach is based on the Boolean satisfiability concepts which
allow us to take advantage of the strengths of already existing and proven so-
lutions, and the powerful practical tools for the generation of MCS/MUS. We
use the notion of surrogate model to overcome the complexity of encoding a ML
classifier into an equivalent logical representation. It is a local encoding since
we approximate the original model in the vicinity of the sample of interest. The
same mechanism is used to explain positively predicted instances. It suffices to
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work with the negation of the representation of f (¬f) to enumerate the ex-
planations in a similar way. We intend in future works to assess the relevance
of explanations and features individually w.r.t a set of properties allowing to
evaluate explanations in ways that are closer to how users consume them.

Acknowledgment : This work was supported by the Région Hauts-de-France.
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